xref: /linux/arch/s390/mm/vmem.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2006
4  */
5 
6 #include <linux/memory_hotplug.h>
7 #include <linux/memblock.h>
8 #include <linux/kasan.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/init.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <linux/slab.h>
15 #include <linux/sort.h>
16 #include <asm/cacheflush.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/pgalloc.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/set_memory.h>
23 
24 static DEFINE_MUTEX(vmem_mutex);
25 
26 static void __ref *vmem_alloc_pages(unsigned int order)
27 {
28 	unsigned long size = PAGE_SIZE << order;
29 
30 	if (slab_is_available())
31 		return (void *)__get_free_pages(GFP_KERNEL, order);
32 	return memblock_alloc(size, size);
33 }
34 
35 static void vmem_free_pages(unsigned long addr, int order)
36 {
37 	/* We don't expect boot memory to be removed ever. */
38 	if (!slab_is_available() ||
39 	    WARN_ON_ONCE(PageReserved(virt_to_page(addr))))
40 		return;
41 	free_pages(addr, order);
42 }
43 
44 void *vmem_crst_alloc(unsigned long val)
45 {
46 	unsigned long *table;
47 
48 	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
49 	if (table)
50 		crst_table_init(table, val);
51 	return table;
52 }
53 
54 pte_t __ref *vmem_pte_alloc(void)
55 {
56 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
57 	pte_t *pte;
58 
59 	if (slab_is_available())
60 		pte = (pte_t *) page_table_alloc(&init_mm);
61 	else
62 		pte = (pte_t *) memblock_alloc(size, size);
63 	if (!pte)
64 		return NULL;
65 	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
66 	return pte;
67 }
68 
69 static void vmem_pte_free(unsigned long *table)
70 {
71 	/* We don't expect boot memory to be removed ever. */
72 	if (!slab_is_available() ||
73 	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
74 		return;
75 	page_table_free(&init_mm, table);
76 }
77 
78 #define PAGE_UNUSED 0xFD
79 
80 /*
81  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
82  * from unused_sub_pmd_start to next PMD_SIZE boundary.
83  */
84 static unsigned long unused_sub_pmd_start;
85 
86 static void vmemmap_flush_unused_sub_pmd(void)
87 {
88 	if (!unused_sub_pmd_start)
89 		return;
90 	memset((void *)unused_sub_pmd_start, PAGE_UNUSED,
91 	       ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start);
92 	unused_sub_pmd_start = 0;
93 }
94 
95 static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end)
96 {
97 	/*
98 	 * As we expect to add in the same granularity as we remove, it's
99 	 * sufficient to mark only some piece used to block the memmap page from
100 	 * getting removed (just in case the memmap never gets initialized,
101 	 * e.g., because the memory block never gets onlined).
102 	 */
103 	memset((void *)start, 0, sizeof(struct page));
104 }
105 
106 static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
107 {
108 	/*
109 	 * We only optimize if the new used range directly follows the
110 	 * previously unused range (esp., when populating consecutive sections).
111 	 */
112 	if (unused_sub_pmd_start == start) {
113 		unused_sub_pmd_start = end;
114 		if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE)))
115 			unused_sub_pmd_start = 0;
116 		return;
117 	}
118 	vmemmap_flush_unused_sub_pmd();
119 	vmemmap_mark_sub_pmd_used(start, end);
120 }
121 
122 static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
123 {
124 	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
125 
126 	vmemmap_flush_unused_sub_pmd();
127 
128 	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
129 	vmemmap_mark_sub_pmd_used(start, end);
130 
131 	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
132 	if (!IS_ALIGNED(start, PMD_SIZE))
133 		memset((void *)page, PAGE_UNUSED, start - page);
134 	/*
135 	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
136 	 * consecutive sections. Remember for the last added PMD the last
137 	 * unused range in the populated PMD.
138 	 */
139 	if (!IS_ALIGNED(end, PMD_SIZE))
140 		unused_sub_pmd_start = end;
141 }
142 
143 /* Returns true if the PMD is completely unused and can be freed. */
144 static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
145 {
146 	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
147 
148 	vmemmap_flush_unused_sub_pmd();
149 	memset((void *)start, PAGE_UNUSED, end - start);
150 	return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE);
151 }
152 
153 /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
154 static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
155 				  unsigned long end, bool add, bool direct)
156 {
157 	unsigned long prot, pages = 0;
158 	int ret = -ENOMEM;
159 	pte_t *pte;
160 
161 	prot = pgprot_val(PAGE_KERNEL);
162 	if (!MACHINE_HAS_NX)
163 		prot &= ~_PAGE_NOEXEC;
164 
165 	pte = pte_offset_kernel(pmd, addr);
166 	for (; addr < end; addr += PAGE_SIZE, pte++) {
167 		if (!add) {
168 			if (pte_none(*pte))
169 				continue;
170 			if (!direct)
171 				vmem_free_pages((unsigned long) pfn_to_virt(pte_pfn(*pte)), 0);
172 			pte_clear(&init_mm, addr, pte);
173 		} else if (pte_none(*pte)) {
174 			if (!direct) {
175 				void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
176 
177 				if (!new_page)
178 					goto out;
179 				set_pte(pte, __pte(__pa(new_page) | prot));
180 			} else {
181 				set_pte(pte, __pte(__pa(addr) | prot));
182 			}
183 		} else {
184 			continue;
185 		}
186 		pages++;
187 	}
188 	ret = 0;
189 out:
190 	if (direct)
191 		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
192 	return ret;
193 }
194 
195 static void try_free_pte_table(pmd_t *pmd, unsigned long start)
196 {
197 	pte_t *pte;
198 	int i;
199 
200 	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
201 	pte = pte_offset_kernel(pmd, start);
202 	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
203 		if (!pte_none(*pte))
204 			return;
205 	}
206 	vmem_pte_free((unsigned long *) pmd_deref(*pmd));
207 	pmd_clear(pmd);
208 }
209 
210 /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
211 static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
212 				  unsigned long end, bool add, bool direct)
213 {
214 	unsigned long next, prot, pages = 0;
215 	int ret = -ENOMEM;
216 	pmd_t *pmd;
217 	pte_t *pte;
218 
219 	prot = pgprot_val(SEGMENT_KERNEL);
220 	if (!MACHINE_HAS_NX)
221 		prot &= ~_SEGMENT_ENTRY_NOEXEC;
222 
223 	pmd = pmd_offset(pud, addr);
224 	for (; addr < end; addr = next, pmd++) {
225 		next = pmd_addr_end(addr, end);
226 		if (!add) {
227 			if (pmd_none(*pmd))
228 				continue;
229 			if (pmd_large(*pmd)) {
230 				if (IS_ALIGNED(addr, PMD_SIZE) &&
231 				    IS_ALIGNED(next, PMD_SIZE)) {
232 					if (!direct)
233 						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
234 					pmd_clear(pmd);
235 					pages++;
236 				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
237 					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
238 					pmd_clear(pmd);
239 				}
240 				continue;
241 			}
242 		} else if (pmd_none(*pmd)) {
243 			if (IS_ALIGNED(addr, PMD_SIZE) &&
244 			    IS_ALIGNED(next, PMD_SIZE) &&
245 			    MACHINE_HAS_EDAT1 && direct &&
246 			    !debug_pagealloc_enabled()) {
247 				set_pmd(pmd, __pmd(__pa(addr) | prot));
248 				pages++;
249 				continue;
250 			} else if (!direct && MACHINE_HAS_EDAT1) {
251 				void *new_page;
252 
253 				/*
254 				 * Use 1MB frames for vmemmap if available. We
255 				 * always use large frames even if they are only
256 				 * partially used. Otherwise we would have also
257 				 * page tables since vmemmap_populate gets
258 				 * called for each section separately.
259 				 */
260 				new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE);
261 				if (new_page) {
262 					set_pmd(pmd, __pmd(__pa(new_page) | prot));
263 					if (!IS_ALIGNED(addr, PMD_SIZE) ||
264 					    !IS_ALIGNED(next, PMD_SIZE)) {
265 						vmemmap_use_new_sub_pmd(addr, next);
266 					}
267 					continue;
268 				}
269 			}
270 			pte = vmem_pte_alloc();
271 			if (!pte)
272 				goto out;
273 			pmd_populate(&init_mm, pmd, pte);
274 		} else if (pmd_large(*pmd)) {
275 			if (!direct)
276 				vmemmap_use_sub_pmd(addr, next);
277 			continue;
278 		}
279 		ret = modify_pte_table(pmd, addr, next, add, direct);
280 		if (ret)
281 			goto out;
282 		if (!add)
283 			try_free_pte_table(pmd, addr & PMD_MASK);
284 	}
285 	ret = 0;
286 out:
287 	if (direct)
288 		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
289 	return ret;
290 }
291 
292 static void try_free_pmd_table(pud_t *pud, unsigned long start)
293 {
294 	const unsigned long end = start + PUD_SIZE;
295 	pmd_t *pmd;
296 	int i;
297 
298 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
299 	if (end > VMALLOC_START)
300 		return;
301 
302 	pmd = pmd_offset(pud, start);
303 	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
304 		if (!pmd_none(*pmd))
305 			return;
306 	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER);
307 	pud_clear(pud);
308 }
309 
310 static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
311 			    bool add, bool direct)
312 {
313 	unsigned long next, prot, pages = 0;
314 	int ret = -ENOMEM;
315 	pud_t *pud;
316 	pmd_t *pmd;
317 
318 	prot = pgprot_val(REGION3_KERNEL);
319 	if (!MACHINE_HAS_NX)
320 		prot &= ~_REGION_ENTRY_NOEXEC;
321 	pud = pud_offset(p4d, addr);
322 	for (; addr < end; addr = next, pud++) {
323 		next = pud_addr_end(addr, end);
324 		if (!add) {
325 			if (pud_none(*pud))
326 				continue;
327 			if (pud_large(*pud)) {
328 				if (IS_ALIGNED(addr, PUD_SIZE) &&
329 				    IS_ALIGNED(next, PUD_SIZE)) {
330 					pud_clear(pud);
331 					pages++;
332 				}
333 				continue;
334 			}
335 		} else if (pud_none(*pud)) {
336 			if (IS_ALIGNED(addr, PUD_SIZE) &&
337 			    IS_ALIGNED(next, PUD_SIZE) &&
338 			    MACHINE_HAS_EDAT2 && direct &&
339 			    !debug_pagealloc_enabled()) {
340 				set_pud(pud, __pud(__pa(addr) | prot));
341 				pages++;
342 				continue;
343 			}
344 			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
345 			if (!pmd)
346 				goto out;
347 			pud_populate(&init_mm, pud, pmd);
348 		} else if (pud_large(*pud)) {
349 			continue;
350 		}
351 		ret = modify_pmd_table(pud, addr, next, add, direct);
352 		if (ret)
353 			goto out;
354 		if (!add)
355 			try_free_pmd_table(pud, addr & PUD_MASK);
356 	}
357 	ret = 0;
358 out:
359 	if (direct)
360 		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
361 	return ret;
362 }
363 
364 static void try_free_pud_table(p4d_t *p4d, unsigned long start)
365 {
366 	const unsigned long end = start + P4D_SIZE;
367 	pud_t *pud;
368 	int i;
369 
370 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
371 	if (end > VMALLOC_START)
372 		return;
373 
374 	pud = pud_offset(p4d, start);
375 	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
376 		if (!pud_none(*pud))
377 			return;
378 	}
379 	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER);
380 	p4d_clear(p4d);
381 }
382 
383 static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
384 			    bool add, bool direct)
385 {
386 	unsigned long next;
387 	int ret = -ENOMEM;
388 	p4d_t *p4d;
389 	pud_t *pud;
390 
391 	p4d = p4d_offset(pgd, addr);
392 	for (; addr < end; addr = next, p4d++) {
393 		next = p4d_addr_end(addr, end);
394 		if (!add) {
395 			if (p4d_none(*p4d))
396 				continue;
397 		} else if (p4d_none(*p4d)) {
398 			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
399 			if (!pud)
400 				goto out;
401 			p4d_populate(&init_mm, p4d, pud);
402 		}
403 		ret = modify_pud_table(p4d, addr, next, add, direct);
404 		if (ret)
405 			goto out;
406 		if (!add)
407 			try_free_pud_table(p4d, addr & P4D_MASK);
408 	}
409 	ret = 0;
410 out:
411 	return ret;
412 }
413 
414 static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
415 {
416 	const unsigned long end = start + PGDIR_SIZE;
417 	p4d_t *p4d;
418 	int i;
419 
420 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
421 	if (end > VMALLOC_START)
422 		return;
423 
424 	p4d = p4d_offset(pgd, start);
425 	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
426 		if (!p4d_none(*p4d))
427 			return;
428 	}
429 	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER);
430 	pgd_clear(pgd);
431 }
432 
433 static int modify_pagetable(unsigned long start, unsigned long end, bool add,
434 			    bool direct)
435 {
436 	unsigned long addr, next;
437 	int ret = -ENOMEM;
438 	pgd_t *pgd;
439 	p4d_t *p4d;
440 
441 	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
442 		return -EINVAL;
443 	for (addr = start; addr < end; addr = next) {
444 		next = pgd_addr_end(addr, end);
445 		pgd = pgd_offset_k(addr);
446 
447 		if (!add) {
448 			if (pgd_none(*pgd))
449 				continue;
450 		} else if (pgd_none(*pgd)) {
451 			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
452 			if (!p4d)
453 				goto out;
454 			pgd_populate(&init_mm, pgd, p4d);
455 		}
456 		ret = modify_p4d_table(pgd, addr, next, add, direct);
457 		if (ret)
458 			goto out;
459 		if (!add)
460 			try_free_p4d_table(pgd, addr & PGDIR_MASK);
461 	}
462 	ret = 0;
463 out:
464 	if (!add)
465 		flush_tlb_kernel_range(start, end);
466 	return ret;
467 }
468 
469 static int add_pagetable(unsigned long start, unsigned long end, bool direct)
470 {
471 	return modify_pagetable(start, end, true, direct);
472 }
473 
474 static int remove_pagetable(unsigned long start, unsigned long end, bool direct)
475 {
476 	return modify_pagetable(start, end, false, direct);
477 }
478 
479 /*
480  * Add a physical memory range to the 1:1 mapping.
481  */
482 static int vmem_add_range(unsigned long start, unsigned long size)
483 {
484 	start = (unsigned long)__va(start);
485 	return add_pagetable(start, start + size, true);
486 }
487 
488 /*
489  * Remove a physical memory range from the 1:1 mapping.
490  */
491 static void vmem_remove_range(unsigned long start, unsigned long size)
492 {
493 	start = (unsigned long)__va(start);
494 	remove_pagetable(start, start + size, true);
495 }
496 
497 /*
498  * Add a backed mem_map array to the virtual mem_map array.
499  */
500 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
501 			       struct vmem_altmap *altmap)
502 {
503 	int ret;
504 
505 	mutex_lock(&vmem_mutex);
506 	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
507 	ret = add_pagetable(start, end, false);
508 	if (ret)
509 		remove_pagetable(start, end, false);
510 	mutex_unlock(&vmem_mutex);
511 	return ret;
512 }
513 
514 void vmemmap_free(unsigned long start, unsigned long end,
515 		  struct vmem_altmap *altmap)
516 {
517 	mutex_lock(&vmem_mutex);
518 	remove_pagetable(start, end, false);
519 	mutex_unlock(&vmem_mutex);
520 }
521 
522 void vmem_remove_mapping(unsigned long start, unsigned long size)
523 {
524 	mutex_lock(&vmem_mutex);
525 	vmem_remove_range(start, size);
526 	mutex_unlock(&vmem_mutex);
527 }
528 
529 struct range arch_get_mappable_range(void)
530 {
531 	struct range mhp_range;
532 
533 	mhp_range.start = 0;
534 	mhp_range.end =  VMEM_MAX_PHYS - 1;
535 	return mhp_range;
536 }
537 
538 int vmem_add_mapping(unsigned long start, unsigned long size)
539 {
540 	struct range range = arch_get_mappable_range();
541 	int ret;
542 
543 	if (start < range.start ||
544 	    start + size > range.end + 1 ||
545 	    start + size < start)
546 		return -ERANGE;
547 
548 	mutex_lock(&vmem_mutex);
549 	ret = vmem_add_range(start, size);
550 	if (ret)
551 		vmem_remove_range(start, size);
552 	mutex_unlock(&vmem_mutex);
553 	return ret;
554 }
555 
556 /*
557  * Allocate new or return existing page-table entry, but do not map it
558  * to any physical address. If missing, allocate segment- and region-
559  * table entries along. Meeting a large segment- or region-table entry
560  * while traversing is an error, since the function is expected to be
561  * called against virtual regions reserved for 4KB mappings only.
562  */
563 pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc)
564 {
565 	pte_t *ptep = NULL;
566 	pgd_t *pgd;
567 	p4d_t *p4d;
568 	pud_t *pud;
569 	pmd_t *pmd;
570 	pte_t *pte;
571 
572 	pgd = pgd_offset_k(addr);
573 	if (pgd_none(*pgd)) {
574 		if (!alloc)
575 			goto out;
576 		p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
577 		if (!p4d)
578 			goto out;
579 		pgd_populate(&init_mm, pgd, p4d);
580 	}
581 	p4d = p4d_offset(pgd, addr);
582 	if (p4d_none(*p4d)) {
583 		if (!alloc)
584 			goto out;
585 		pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
586 		if (!pud)
587 			goto out;
588 		p4d_populate(&init_mm, p4d, pud);
589 	}
590 	pud = pud_offset(p4d, addr);
591 	if (pud_none(*pud)) {
592 		if (!alloc)
593 			goto out;
594 		pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
595 		if (!pmd)
596 			goto out;
597 		pud_populate(&init_mm, pud, pmd);
598 	} else if (WARN_ON_ONCE(pud_large(*pud))) {
599 		goto out;
600 	}
601 	pmd = pmd_offset(pud, addr);
602 	if (pmd_none(*pmd)) {
603 		if (!alloc)
604 			goto out;
605 		pte = vmem_pte_alloc();
606 		if (!pte)
607 			goto out;
608 		pmd_populate(&init_mm, pmd, pte);
609 	} else if (WARN_ON_ONCE(pmd_large(*pmd))) {
610 		goto out;
611 	}
612 	ptep = pte_offset_kernel(pmd, addr);
613 out:
614 	return ptep;
615 }
616 
617 int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc)
618 {
619 	pte_t *ptep, pte;
620 
621 	if (!IS_ALIGNED(addr, PAGE_SIZE))
622 		return -EINVAL;
623 	ptep = vmem_get_alloc_pte(addr, alloc);
624 	if (!ptep)
625 		return -ENOMEM;
626 	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
627 	pte = mk_pte_phys(phys, prot);
628 	set_pte(ptep, pte);
629 	return 0;
630 }
631 
632 int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot)
633 {
634 	int rc;
635 
636 	mutex_lock(&vmem_mutex);
637 	rc = __vmem_map_4k_page(addr, phys, prot, true);
638 	mutex_unlock(&vmem_mutex);
639 	return rc;
640 }
641 
642 void vmem_unmap_4k_page(unsigned long addr)
643 {
644 	pte_t *ptep;
645 
646 	mutex_lock(&vmem_mutex);
647 	ptep = virt_to_kpte(addr);
648 	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
649 	pte_clear(&init_mm, addr, ptep);
650 	mutex_unlock(&vmem_mutex);
651 }
652 
653 static int __init memblock_region_cmp(const void *a, const void *b)
654 {
655 	const struct memblock_region *r1 = a;
656 	const struct memblock_region *r2 = b;
657 
658 	if (r1->base < r2->base)
659 		return -1;
660 	if (r1->base > r2->base)
661 		return 1;
662 	return 0;
663 }
664 
665 static void __init memblock_region_swap(void *a, void *b, int size)
666 {
667 	swap(*(struct memblock_region *)a, *(struct memblock_region *)b);
668 }
669 
670 #ifdef CONFIG_KASAN
671 #define __sha(x)	((unsigned long)kasan_mem_to_shadow((void *)x))
672 
673 static inline int set_memory_kasan(unsigned long start, unsigned long end)
674 {
675 	start = PAGE_ALIGN_DOWN(__sha(start));
676 	end = PAGE_ALIGN(__sha(end));
677 	return set_memory_rwnx(start, (end - start) >> PAGE_SHIFT);
678 }
679 #endif
680 
681 /*
682  * map whole physical memory to virtual memory (identity mapping)
683  * we reserve enough space in the vmalloc area for vmemmap to hotplug
684  * additional memory segments.
685  */
686 void __init vmem_map_init(void)
687 {
688 	struct memblock_region memory_rwx_regions[] = {
689 		{
690 			.base	= 0,
691 			.size	= sizeof(struct lowcore),
692 			.flags	= MEMBLOCK_NONE,
693 #ifdef CONFIG_NUMA
694 			.nid	= NUMA_NO_NODE,
695 #endif
696 		},
697 		{
698 			.base	= __pa(_stext),
699 			.size	= _etext - _stext,
700 			.flags	= MEMBLOCK_NONE,
701 #ifdef CONFIG_NUMA
702 			.nid	= NUMA_NO_NODE,
703 #endif
704 		},
705 		{
706 			.base	= __pa(_sinittext),
707 			.size	= _einittext - _sinittext,
708 			.flags	= MEMBLOCK_NONE,
709 #ifdef CONFIG_NUMA
710 			.nid	= NUMA_NO_NODE,
711 #endif
712 		},
713 		{
714 			.base	= __stext_amode31,
715 			.size	= __etext_amode31 - __stext_amode31,
716 			.flags	= MEMBLOCK_NONE,
717 #ifdef CONFIG_NUMA
718 			.nid	= NUMA_NO_NODE,
719 #endif
720 		},
721 	};
722 	struct memblock_type memory_rwx = {
723 		.regions	= memory_rwx_regions,
724 		.cnt		= ARRAY_SIZE(memory_rwx_regions),
725 		.max		= ARRAY_SIZE(memory_rwx_regions),
726 	};
727 	phys_addr_t base, end;
728 	u64 i;
729 
730 	/*
731 	 * Set RW+NX attribute on all memory, except regions enumerated with
732 	 * memory_rwx exclude type. These regions need different attributes,
733 	 * which are enforced afterwards.
734 	 *
735 	 * __for_each_mem_range() iterate and exclude types should be sorted.
736 	 * The relative location of _stext and _sinittext is hardcoded in the
737 	 * linker script. However a location of __stext_amode31 and the kernel
738 	 * image itself are chosen dynamically. Thus, sort the exclude type.
739 	 */
740 	sort(&memory_rwx_regions,
741 	     ARRAY_SIZE(memory_rwx_regions), sizeof(memory_rwx_regions[0]),
742 	     memblock_region_cmp, memblock_region_swap);
743 	__for_each_mem_range(i, &memblock.memory, &memory_rwx,
744 			     NUMA_NO_NODE, MEMBLOCK_NONE, &base, &end, NULL) {
745 		set_memory_rwnx((unsigned long)__va(base),
746 				(end - base) >> PAGE_SHIFT);
747 	}
748 
749 #ifdef CONFIG_KASAN
750 	for_each_mem_range(i, &base, &end)
751 		set_memory_kasan(base, end);
752 #endif
753 	set_memory_rox((unsigned long)_stext,
754 		       (unsigned long)(_etext - _stext) >> PAGE_SHIFT);
755 	set_memory_ro((unsigned long)_etext,
756 		      (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT);
757 	set_memory_rox((unsigned long)_sinittext,
758 		       (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT);
759 	set_memory_rox(__stext_amode31,
760 		       (__etext_amode31 - __stext_amode31) >> PAGE_SHIFT);
761 
762 	/* lowcore must be executable for LPSWE */
763 	if (static_key_enabled(&cpu_has_bear))
764 		set_memory_nx(0, 1);
765 	set_memory_nx(PAGE_SIZE, 1);
766 	if (debug_pagealloc_enabled())
767 		set_memory_4k(0, ident_map_size >> PAGE_SHIFT);
768 
769 	pr_info("Write protected kernel read-only data: %luk\n",
770 		(unsigned long)(__end_rodata - _stext) >> 10);
771 }
772