xref: /linux/arch/s390/mm/vmem.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 	pud = vmem_alloc_pages(2);
42 	if (!pud)
43 		return NULL;
44 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 	return pud;
46 }
47 
48 static inline pmd_t *vmem_pmd_alloc(void)
49 {
50 	pmd_t *pmd = NULL;
51 
52 	pmd = vmem_alloc_pages(2);
53 	if (!pmd)
54 		return NULL;
55 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
56 	return pmd;
57 }
58 
59 static pte_t __ref *vmem_pte_alloc(unsigned long address)
60 {
61 	pte_t *pte;
62 
63 	if (slab_is_available())
64 		pte = (pte_t *) page_table_alloc(&init_mm);
65 	else
66 		pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
67 					  PTRS_PER_PTE * sizeof(pte_t));
68 	if (!pte)
69 		return NULL;
70 	clear_table((unsigned long *) pte, _PAGE_INVALID,
71 		    PTRS_PER_PTE * sizeof(pte_t));
72 	return pte;
73 }
74 
75 /*
76  * Add a physical memory range to the 1:1 mapping.
77  */
78 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
79 {
80 	unsigned long end = start + size;
81 	unsigned long address = start;
82 	pgd_t *pg_dir;
83 	pud_t *pu_dir;
84 	pmd_t *pm_dir;
85 	pte_t *pt_dir;
86 	int ret = -ENOMEM;
87 
88 	while (address < end) {
89 		pg_dir = pgd_offset_k(address);
90 		if (pgd_none(*pg_dir)) {
91 			pu_dir = vmem_pud_alloc();
92 			if (!pu_dir)
93 				goto out;
94 			pgd_populate(&init_mm, pg_dir, pu_dir);
95 		}
96 		pu_dir = pud_offset(pg_dir, address);
97 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
98 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
99 		     !debug_pagealloc_enabled()) {
100 			pud_val(*pu_dir) = __pa(address) |
101 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102 				(ro ? _REGION_ENTRY_PROTECT : 0);
103 			address += PUD_SIZE;
104 			continue;
105 		}
106 		if (pud_none(*pu_dir)) {
107 			pm_dir = vmem_pmd_alloc();
108 			if (!pm_dir)
109 				goto out;
110 			pud_populate(&init_mm, pu_dir, pm_dir);
111 		}
112 		pm_dir = pmd_offset(pu_dir, address);
113 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
114 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
115 		    !debug_pagealloc_enabled()) {
116 			pmd_val(*pm_dir) = __pa(address) |
117 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
118 				_SEGMENT_ENTRY_YOUNG |
119 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
120 			address += PMD_SIZE;
121 			continue;
122 		}
123 		if (pmd_none(*pm_dir)) {
124 			pt_dir = vmem_pte_alloc(address);
125 			if (!pt_dir)
126 				goto out;
127 			pmd_populate(&init_mm, pm_dir, pt_dir);
128 		}
129 
130 		pt_dir = pte_offset_kernel(pm_dir, address);
131 		pte_val(*pt_dir) = __pa(address) |
132 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
133 		address += PAGE_SIZE;
134 	}
135 	ret = 0;
136 out:
137 	return ret;
138 }
139 
140 /*
141  * Remove a physical memory range from the 1:1 mapping.
142  * Currently only invalidates page table entries.
143  */
144 static void vmem_remove_range(unsigned long start, unsigned long size)
145 {
146 	unsigned long end = start + size;
147 	unsigned long address = start;
148 	pgd_t *pg_dir;
149 	pud_t *pu_dir;
150 	pmd_t *pm_dir;
151 	pte_t *pt_dir;
152 	pte_t  pte;
153 
154 	pte_val(pte) = _PAGE_INVALID;
155 	while (address < end) {
156 		pg_dir = pgd_offset_k(address);
157 		if (pgd_none(*pg_dir)) {
158 			address += PGDIR_SIZE;
159 			continue;
160 		}
161 		pu_dir = pud_offset(pg_dir, address);
162 		if (pud_none(*pu_dir)) {
163 			address += PUD_SIZE;
164 			continue;
165 		}
166 		if (pud_large(*pu_dir)) {
167 			pud_clear(pu_dir);
168 			address += PUD_SIZE;
169 			continue;
170 		}
171 		pm_dir = pmd_offset(pu_dir, address);
172 		if (pmd_none(*pm_dir)) {
173 			address += PMD_SIZE;
174 			continue;
175 		}
176 		if (pmd_large(*pm_dir)) {
177 			pmd_clear(pm_dir);
178 			address += PMD_SIZE;
179 			continue;
180 		}
181 		pt_dir = pte_offset_kernel(pm_dir, address);
182 		*pt_dir = pte;
183 		address += PAGE_SIZE;
184 	}
185 	flush_tlb_kernel_range(start, end);
186 }
187 
188 /*
189  * Add a backed mem_map array to the virtual mem_map array.
190  */
191 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
192 {
193 	unsigned long address = start;
194 	pgd_t *pg_dir;
195 	pud_t *pu_dir;
196 	pmd_t *pm_dir;
197 	pte_t *pt_dir;
198 	int ret = -ENOMEM;
199 
200 	for (address = start; address < end;) {
201 		pg_dir = pgd_offset_k(address);
202 		if (pgd_none(*pg_dir)) {
203 			pu_dir = vmem_pud_alloc();
204 			if (!pu_dir)
205 				goto out;
206 			pgd_populate(&init_mm, pg_dir, pu_dir);
207 		}
208 
209 		pu_dir = pud_offset(pg_dir, address);
210 		if (pud_none(*pu_dir)) {
211 			pm_dir = vmem_pmd_alloc();
212 			if (!pm_dir)
213 				goto out;
214 			pud_populate(&init_mm, pu_dir, pm_dir);
215 		}
216 
217 		pm_dir = pmd_offset(pu_dir, address);
218 		if (pmd_none(*pm_dir)) {
219 			/* Use 1MB frames for vmemmap if available. We always
220 			 * use large frames even if they are only partially
221 			 * used.
222 			 * Otherwise we would have also page tables since
223 			 * vmemmap_populate gets called for each section
224 			 * separately. */
225 			if (MACHINE_HAS_EDAT1) {
226 				void *new_page;
227 
228 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
229 				if (!new_page)
230 					goto out;
231 				pmd_val(*pm_dir) = __pa(new_page) |
232 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
233 				address = (address + PMD_SIZE) & PMD_MASK;
234 				continue;
235 			}
236 			pt_dir = vmem_pte_alloc(address);
237 			if (!pt_dir)
238 				goto out;
239 			pmd_populate(&init_mm, pm_dir, pt_dir);
240 		} else if (pmd_large(*pm_dir)) {
241 			address = (address + PMD_SIZE) & PMD_MASK;
242 			continue;
243 		}
244 
245 		pt_dir = pte_offset_kernel(pm_dir, address);
246 		if (pte_none(*pt_dir)) {
247 			void *new_page;
248 
249 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
250 			if (!new_page)
251 				goto out;
252 			pte_val(*pt_dir) =
253 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
254 		}
255 		address += PAGE_SIZE;
256 	}
257 	ret = 0;
258 out:
259 	return ret;
260 }
261 
262 void vmemmap_free(unsigned long start, unsigned long end)
263 {
264 }
265 
266 /*
267  * Add memory segment to the segment list if it doesn't overlap with
268  * an already present segment.
269  */
270 static int insert_memory_segment(struct memory_segment *seg)
271 {
272 	struct memory_segment *tmp;
273 
274 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
275 	    seg->start + seg->size < seg->start)
276 		return -ERANGE;
277 
278 	list_for_each_entry(tmp, &mem_segs, list) {
279 		if (seg->start >= tmp->start + tmp->size)
280 			continue;
281 		if (seg->start + seg->size <= tmp->start)
282 			continue;
283 		return -ENOSPC;
284 	}
285 	list_add(&seg->list, &mem_segs);
286 	return 0;
287 }
288 
289 /*
290  * Remove memory segment from the segment list.
291  */
292 static void remove_memory_segment(struct memory_segment *seg)
293 {
294 	list_del(&seg->list);
295 }
296 
297 static void __remove_shared_memory(struct memory_segment *seg)
298 {
299 	remove_memory_segment(seg);
300 	vmem_remove_range(seg->start, seg->size);
301 }
302 
303 int vmem_remove_mapping(unsigned long start, unsigned long size)
304 {
305 	struct memory_segment *seg;
306 	int ret;
307 
308 	mutex_lock(&vmem_mutex);
309 
310 	ret = -ENOENT;
311 	list_for_each_entry(seg, &mem_segs, list) {
312 		if (seg->start == start && seg->size == size)
313 			break;
314 	}
315 
316 	if (seg->start != start || seg->size != size)
317 		goto out;
318 
319 	ret = 0;
320 	__remove_shared_memory(seg);
321 	kfree(seg);
322 out:
323 	mutex_unlock(&vmem_mutex);
324 	return ret;
325 }
326 
327 int vmem_add_mapping(unsigned long start, unsigned long size)
328 {
329 	struct memory_segment *seg;
330 	int ret;
331 
332 	mutex_lock(&vmem_mutex);
333 	ret = -ENOMEM;
334 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
335 	if (!seg)
336 		goto out;
337 	seg->start = start;
338 	seg->size = size;
339 
340 	ret = insert_memory_segment(seg);
341 	if (ret)
342 		goto out_free;
343 
344 	ret = vmem_add_mem(start, size, 0);
345 	if (ret)
346 		goto out_remove;
347 	goto out;
348 
349 out_remove:
350 	__remove_shared_memory(seg);
351 out_free:
352 	kfree(seg);
353 out:
354 	mutex_unlock(&vmem_mutex);
355 	return ret;
356 }
357 
358 /*
359  * map whole physical memory to virtual memory (identity mapping)
360  * we reserve enough space in the vmalloc area for vmemmap to hotplug
361  * additional memory segments.
362  */
363 void __init vmem_map_init(void)
364 {
365 	unsigned long ro_start, ro_end;
366 	struct memblock_region *reg;
367 	phys_addr_t start, end;
368 
369 	ro_start = PFN_ALIGN((unsigned long)&_stext);
370 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
371 	for_each_memblock(memory, reg) {
372 		start = reg->base;
373 		end = reg->base + reg->size - 1;
374 		if (start >= ro_end || end <= ro_start)
375 			vmem_add_mem(start, end - start, 0);
376 		else if (start >= ro_start && end <= ro_end)
377 			vmem_add_mem(start, end - start, 1);
378 		else if (start >= ro_start) {
379 			vmem_add_mem(start, ro_end - start, 1);
380 			vmem_add_mem(ro_end, end - ro_end, 0);
381 		} else if (end < ro_end) {
382 			vmem_add_mem(start, ro_start - start, 0);
383 			vmem_add_mem(ro_start, end - ro_start, 1);
384 		} else {
385 			vmem_add_mem(start, ro_start - start, 0);
386 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
387 			vmem_add_mem(ro_end, end - ro_end, 0);
388 		}
389 	}
390 }
391 
392 /*
393  * Convert memblock.memory  to a memory segment list so there is a single
394  * list that contains all memory segments.
395  */
396 static int __init vmem_convert_memory_chunk(void)
397 {
398 	struct memblock_region *reg;
399 	struct memory_segment *seg;
400 
401 	mutex_lock(&vmem_mutex);
402 	for_each_memblock(memory, reg) {
403 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
404 		if (!seg)
405 			panic("Out of memory...\n");
406 		seg->start = reg->base;
407 		seg->size = reg->size;
408 		insert_memory_segment(seg);
409 	}
410 	mutex_unlock(&vmem_mutex);
411 	return 0;
412 }
413 
414 core_initcall(vmem_convert_memory_chunk);
415