xref: /linux/arch/s390/mm/pgtable.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2007, 2011
4  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/gfp.h>
11 #include <linux/mm.h>
12 #include <linux/swap.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/rcupdate.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/sysctl.h>
19 #include <linux/ksm.h>
20 #include <linux/mman.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/page-states.h>
26 
27 pgprot_t pgprot_writecombine(pgprot_t prot)
28 {
29 	/*
30 	 * mio_wb_bit_mask may be set on a different CPU, but it is only set
31 	 * once at init and only read afterwards.
32 	 */
33 	return __pgprot(pgprot_val(prot) | mio_wb_bit_mask);
34 }
35 EXPORT_SYMBOL_GPL(pgprot_writecombine);
36 
37 pgprot_t pgprot_writethrough(pgprot_t prot)
38 {
39 	/*
40 	 * mio_wb_bit_mask may be set on a different CPU, but it is only set
41 	 * once at init and only read afterwards.
42 	 */
43 	return __pgprot(pgprot_val(prot) & ~mio_wb_bit_mask);
44 }
45 EXPORT_SYMBOL_GPL(pgprot_writethrough);
46 
47 static inline void ptep_ipte_local(struct mm_struct *mm, unsigned long addr,
48 				   pte_t *ptep, int nodat)
49 {
50 	unsigned long opt, asce;
51 
52 	if (MACHINE_HAS_TLB_GUEST) {
53 		opt = 0;
54 		asce = READ_ONCE(mm->context.gmap_asce);
55 		if (asce == 0UL || nodat)
56 			opt |= IPTE_NODAT;
57 		if (asce != -1UL) {
58 			asce = asce ? : mm->context.asce;
59 			opt |= IPTE_GUEST_ASCE;
60 		}
61 		__ptep_ipte(addr, ptep, opt, asce, IPTE_LOCAL);
62 	} else {
63 		__ptep_ipte(addr, ptep, 0, 0, IPTE_LOCAL);
64 	}
65 }
66 
67 static inline void ptep_ipte_global(struct mm_struct *mm, unsigned long addr,
68 				    pte_t *ptep, int nodat)
69 {
70 	unsigned long opt, asce;
71 
72 	if (MACHINE_HAS_TLB_GUEST) {
73 		opt = 0;
74 		asce = READ_ONCE(mm->context.gmap_asce);
75 		if (asce == 0UL || nodat)
76 			opt |= IPTE_NODAT;
77 		if (asce != -1UL) {
78 			asce = asce ? : mm->context.asce;
79 			opt |= IPTE_GUEST_ASCE;
80 		}
81 		__ptep_ipte(addr, ptep, opt, asce, IPTE_GLOBAL);
82 	} else {
83 		__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
84 	}
85 }
86 
87 static inline pte_t ptep_flush_direct(struct mm_struct *mm,
88 				      unsigned long addr, pte_t *ptep,
89 				      int nodat)
90 {
91 	pte_t old;
92 
93 	old = *ptep;
94 	if (unlikely(pte_val(old) & _PAGE_INVALID))
95 		return old;
96 	atomic_inc(&mm->context.flush_count);
97 	if (MACHINE_HAS_TLB_LC &&
98 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
99 		ptep_ipte_local(mm, addr, ptep, nodat);
100 	else
101 		ptep_ipte_global(mm, addr, ptep, nodat);
102 	atomic_dec(&mm->context.flush_count);
103 	return old;
104 }
105 
106 static inline pte_t ptep_flush_lazy(struct mm_struct *mm,
107 				    unsigned long addr, pte_t *ptep,
108 				    int nodat)
109 {
110 	pte_t old;
111 
112 	old = *ptep;
113 	if (unlikely(pte_val(old) & _PAGE_INVALID))
114 		return old;
115 	atomic_inc(&mm->context.flush_count);
116 	if (cpumask_equal(&mm->context.cpu_attach_mask,
117 			  cpumask_of(smp_processor_id()))) {
118 		set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_INVALID)));
119 		mm->context.flush_mm = 1;
120 	} else
121 		ptep_ipte_global(mm, addr, ptep, nodat);
122 	atomic_dec(&mm->context.flush_count);
123 	return old;
124 }
125 
126 static inline pgste_t pgste_get_lock(pte_t *ptep)
127 {
128 	unsigned long value = 0;
129 #ifdef CONFIG_PGSTE
130 	unsigned long *ptr = (unsigned long *)(ptep + PTRS_PER_PTE);
131 
132 	do {
133 		value = __atomic64_or_barrier(PGSTE_PCL_BIT, ptr);
134 	} while (value & PGSTE_PCL_BIT);
135 	value |= PGSTE_PCL_BIT;
136 #endif
137 	return __pgste(value);
138 }
139 
140 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
141 {
142 #ifdef CONFIG_PGSTE
143 	barrier();
144 	WRITE_ONCE(*(unsigned long *)(ptep + PTRS_PER_PTE), pgste_val(pgste) & ~PGSTE_PCL_BIT);
145 #endif
146 }
147 
148 static inline pgste_t pgste_get(pte_t *ptep)
149 {
150 	unsigned long pgste = 0;
151 #ifdef CONFIG_PGSTE
152 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
153 #endif
154 	return __pgste(pgste);
155 }
156 
157 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
158 {
159 #ifdef CONFIG_PGSTE
160 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
161 #endif
162 }
163 
164 static inline pgste_t pgste_update_all(pte_t pte, pgste_t pgste,
165 				       struct mm_struct *mm)
166 {
167 #ifdef CONFIG_PGSTE
168 	unsigned long address, bits, skey;
169 
170 	if (!mm_uses_skeys(mm) || pte_val(pte) & _PAGE_INVALID)
171 		return pgste;
172 	address = pte_val(pte) & PAGE_MASK;
173 	skey = (unsigned long) page_get_storage_key(address);
174 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
175 	/* Transfer page changed & referenced bit to guest bits in pgste */
176 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
177 	/* Copy page access key and fetch protection bit to pgste */
178 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
179 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
180 #endif
181 	return pgste;
182 
183 }
184 
185 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
186 				 struct mm_struct *mm)
187 {
188 #ifdef CONFIG_PGSTE
189 	unsigned long address;
190 	unsigned long nkey;
191 
192 	if (!mm_uses_skeys(mm) || pte_val(entry) & _PAGE_INVALID)
193 		return;
194 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
195 	address = pte_val(entry) & PAGE_MASK;
196 	/*
197 	 * Set page access key and fetch protection bit from pgste.
198 	 * The guest C/R information is still in the PGSTE, set real
199 	 * key C/R to 0.
200 	 */
201 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
202 	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
203 	page_set_storage_key(address, nkey, 0);
204 #endif
205 }
206 
207 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
208 {
209 #ifdef CONFIG_PGSTE
210 	if ((pte_val(entry) & _PAGE_PRESENT) &&
211 	    (pte_val(entry) & _PAGE_WRITE) &&
212 	    !(pte_val(entry) & _PAGE_INVALID)) {
213 		if (!MACHINE_HAS_ESOP) {
214 			/*
215 			 * Without enhanced suppression-on-protection force
216 			 * the dirty bit on for all writable ptes.
217 			 */
218 			entry = set_pte_bit(entry, __pgprot(_PAGE_DIRTY));
219 			entry = clear_pte_bit(entry, __pgprot(_PAGE_PROTECT));
220 		}
221 		if (!(pte_val(entry) & _PAGE_PROTECT))
222 			/* This pte allows write access, set user-dirty */
223 			pgste_val(pgste) |= PGSTE_UC_BIT;
224 	}
225 #endif
226 	set_pte(ptep, entry);
227 	return pgste;
228 }
229 
230 static inline pgste_t pgste_pte_notify(struct mm_struct *mm,
231 				       unsigned long addr,
232 				       pte_t *ptep, pgste_t pgste)
233 {
234 #ifdef CONFIG_PGSTE
235 	unsigned long bits;
236 
237 	bits = pgste_val(pgste) & (PGSTE_IN_BIT | PGSTE_VSIE_BIT);
238 	if (bits) {
239 		pgste_val(pgste) ^= bits;
240 		ptep_notify(mm, addr, ptep, bits);
241 	}
242 #endif
243 	return pgste;
244 }
245 
246 static inline pgste_t ptep_xchg_start(struct mm_struct *mm,
247 				      unsigned long addr, pte_t *ptep)
248 {
249 	pgste_t pgste = __pgste(0);
250 
251 	if (mm_has_pgste(mm)) {
252 		pgste = pgste_get_lock(ptep);
253 		pgste = pgste_pte_notify(mm, addr, ptep, pgste);
254 	}
255 	return pgste;
256 }
257 
258 static inline pte_t ptep_xchg_commit(struct mm_struct *mm,
259 				    unsigned long addr, pte_t *ptep,
260 				    pgste_t pgste, pte_t old, pte_t new)
261 {
262 	if (mm_has_pgste(mm)) {
263 		if (pte_val(old) & _PAGE_INVALID)
264 			pgste_set_key(ptep, pgste, new, mm);
265 		if (pte_val(new) & _PAGE_INVALID) {
266 			pgste = pgste_update_all(old, pgste, mm);
267 			if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
268 			    _PGSTE_GPS_USAGE_UNUSED)
269 				old = set_pte_bit(old, __pgprot(_PAGE_UNUSED));
270 		}
271 		pgste = pgste_set_pte(ptep, pgste, new);
272 		pgste_set_unlock(ptep, pgste);
273 	} else {
274 		set_pte(ptep, new);
275 	}
276 	return old;
277 }
278 
279 pte_t ptep_xchg_direct(struct mm_struct *mm, unsigned long addr,
280 		       pte_t *ptep, pte_t new)
281 {
282 	pgste_t pgste;
283 	pte_t old;
284 	int nodat;
285 
286 	preempt_disable();
287 	pgste = ptep_xchg_start(mm, addr, ptep);
288 	nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
289 	old = ptep_flush_direct(mm, addr, ptep, nodat);
290 	old = ptep_xchg_commit(mm, addr, ptep, pgste, old, new);
291 	preempt_enable();
292 	return old;
293 }
294 EXPORT_SYMBOL(ptep_xchg_direct);
295 
296 /*
297  * Caller must check that new PTE only differs in _PAGE_PROTECT HW bit, so that
298  * RDP can be used instead of IPTE. See also comments at pte_allow_rdp().
299  */
300 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
301 			 pte_t new)
302 {
303 	preempt_disable();
304 	atomic_inc(&mm->context.flush_count);
305 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
306 		__ptep_rdp(addr, ptep, 0, 0, 1);
307 	else
308 		__ptep_rdp(addr, ptep, 0, 0, 0);
309 	/*
310 	 * PTE is not invalidated by RDP, only _PAGE_PROTECT is cleared. That
311 	 * means it is still valid and active, and must not be changed according
312 	 * to the architecture. But writing a new value that only differs in SW
313 	 * bits is allowed.
314 	 */
315 	set_pte(ptep, new);
316 	atomic_dec(&mm->context.flush_count);
317 	preempt_enable();
318 }
319 EXPORT_SYMBOL(ptep_reset_dat_prot);
320 
321 pte_t ptep_xchg_lazy(struct mm_struct *mm, unsigned long addr,
322 		     pte_t *ptep, pte_t new)
323 {
324 	pgste_t pgste;
325 	pte_t old;
326 	int nodat;
327 
328 	preempt_disable();
329 	pgste = ptep_xchg_start(mm, addr, ptep);
330 	nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
331 	old = ptep_flush_lazy(mm, addr, ptep, nodat);
332 	old = ptep_xchg_commit(mm, addr, ptep, pgste, old, new);
333 	preempt_enable();
334 	return old;
335 }
336 EXPORT_SYMBOL(ptep_xchg_lazy);
337 
338 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
339 			     pte_t *ptep)
340 {
341 	pgste_t pgste;
342 	pte_t old;
343 	int nodat;
344 	struct mm_struct *mm = vma->vm_mm;
345 
346 	preempt_disable();
347 	pgste = ptep_xchg_start(mm, addr, ptep);
348 	nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
349 	old = ptep_flush_lazy(mm, addr, ptep, nodat);
350 	if (mm_has_pgste(mm)) {
351 		pgste = pgste_update_all(old, pgste, mm);
352 		pgste_set(ptep, pgste);
353 	}
354 	return old;
355 }
356 
357 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
358 			     pte_t *ptep, pte_t old_pte, pte_t pte)
359 {
360 	pgste_t pgste;
361 	struct mm_struct *mm = vma->vm_mm;
362 
363 	if (!MACHINE_HAS_NX)
364 		pte = clear_pte_bit(pte, __pgprot(_PAGE_NOEXEC));
365 	if (mm_has_pgste(mm)) {
366 		pgste = pgste_get(ptep);
367 		pgste_set_key(ptep, pgste, pte, mm);
368 		pgste = pgste_set_pte(ptep, pgste, pte);
369 		pgste_set_unlock(ptep, pgste);
370 	} else {
371 		set_pte(ptep, pte);
372 	}
373 	preempt_enable();
374 }
375 
376 static inline void pmdp_idte_local(struct mm_struct *mm,
377 				   unsigned long addr, pmd_t *pmdp)
378 {
379 	if (MACHINE_HAS_TLB_GUEST)
380 		__pmdp_idte(addr, pmdp, IDTE_NODAT | IDTE_GUEST_ASCE,
381 			    mm->context.asce, IDTE_LOCAL);
382 	else
383 		__pmdp_idte(addr, pmdp, 0, 0, IDTE_LOCAL);
384 	if (mm_has_pgste(mm) && mm->context.allow_gmap_hpage_1m)
385 		gmap_pmdp_idte_local(mm, addr);
386 }
387 
388 static inline void pmdp_idte_global(struct mm_struct *mm,
389 				    unsigned long addr, pmd_t *pmdp)
390 {
391 	if (MACHINE_HAS_TLB_GUEST) {
392 		__pmdp_idte(addr, pmdp, IDTE_NODAT | IDTE_GUEST_ASCE,
393 			    mm->context.asce, IDTE_GLOBAL);
394 		if (mm_has_pgste(mm) && mm->context.allow_gmap_hpage_1m)
395 			gmap_pmdp_idte_global(mm, addr);
396 	} else if (MACHINE_HAS_IDTE) {
397 		__pmdp_idte(addr, pmdp, 0, 0, IDTE_GLOBAL);
398 		if (mm_has_pgste(mm) && mm->context.allow_gmap_hpage_1m)
399 			gmap_pmdp_idte_global(mm, addr);
400 	} else {
401 		__pmdp_csp(pmdp);
402 		if (mm_has_pgste(mm) && mm->context.allow_gmap_hpage_1m)
403 			gmap_pmdp_csp(mm, addr);
404 	}
405 }
406 
407 static inline pmd_t pmdp_flush_direct(struct mm_struct *mm,
408 				      unsigned long addr, pmd_t *pmdp)
409 {
410 	pmd_t old;
411 
412 	old = *pmdp;
413 	if (pmd_val(old) & _SEGMENT_ENTRY_INVALID)
414 		return old;
415 	atomic_inc(&mm->context.flush_count);
416 	if (MACHINE_HAS_TLB_LC &&
417 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
418 		pmdp_idte_local(mm, addr, pmdp);
419 	else
420 		pmdp_idte_global(mm, addr, pmdp);
421 	atomic_dec(&mm->context.flush_count);
422 	return old;
423 }
424 
425 static inline pmd_t pmdp_flush_lazy(struct mm_struct *mm,
426 				    unsigned long addr, pmd_t *pmdp)
427 {
428 	pmd_t old;
429 
430 	old = *pmdp;
431 	if (pmd_val(old) & _SEGMENT_ENTRY_INVALID)
432 		return old;
433 	atomic_inc(&mm->context.flush_count);
434 	if (cpumask_equal(&mm->context.cpu_attach_mask,
435 			  cpumask_of(smp_processor_id()))) {
436 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_INVALID)));
437 		mm->context.flush_mm = 1;
438 		if (mm_has_pgste(mm))
439 			gmap_pmdp_invalidate(mm, addr);
440 	} else {
441 		pmdp_idte_global(mm, addr, pmdp);
442 	}
443 	atomic_dec(&mm->context.flush_count);
444 	return old;
445 }
446 
447 #ifdef CONFIG_PGSTE
448 static int pmd_lookup(struct mm_struct *mm, unsigned long addr, pmd_t **pmdp)
449 {
450 	struct vm_area_struct *vma;
451 	pgd_t *pgd;
452 	p4d_t *p4d;
453 	pud_t *pud;
454 
455 	/* We need a valid VMA, otherwise this is clearly a fault. */
456 	vma = vma_lookup(mm, addr);
457 	if (!vma)
458 		return -EFAULT;
459 
460 	pgd = pgd_offset(mm, addr);
461 	if (!pgd_present(*pgd))
462 		return -ENOENT;
463 
464 	p4d = p4d_offset(pgd, addr);
465 	if (!p4d_present(*p4d))
466 		return -ENOENT;
467 
468 	pud = pud_offset(p4d, addr);
469 	if (!pud_present(*pud))
470 		return -ENOENT;
471 
472 	/* Large PUDs are not supported yet. */
473 	if (pud_leaf(*pud))
474 		return -EFAULT;
475 
476 	*pmdp = pmd_offset(pud, addr);
477 	return 0;
478 }
479 #endif
480 
481 pmd_t pmdp_xchg_direct(struct mm_struct *mm, unsigned long addr,
482 		       pmd_t *pmdp, pmd_t new)
483 {
484 	pmd_t old;
485 
486 	preempt_disable();
487 	old = pmdp_flush_direct(mm, addr, pmdp);
488 	set_pmd(pmdp, new);
489 	preempt_enable();
490 	return old;
491 }
492 EXPORT_SYMBOL(pmdp_xchg_direct);
493 
494 pmd_t pmdp_xchg_lazy(struct mm_struct *mm, unsigned long addr,
495 		     pmd_t *pmdp, pmd_t new)
496 {
497 	pmd_t old;
498 
499 	preempt_disable();
500 	old = pmdp_flush_lazy(mm, addr, pmdp);
501 	set_pmd(pmdp, new);
502 	preempt_enable();
503 	return old;
504 }
505 EXPORT_SYMBOL(pmdp_xchg_lazy);
506 
507 static inline void pudp_idte_local(struct mm_struct *mm,
508 				   unsigned long addr, pud_t *pudp)
509 {
510 	if (MACHINE_HAS_TLB_GUEST)
511 		__pudp_idte(addr, pudp, IDTE_NODAT | IDTE_GUEST_ASCE,
512 			    mm->context.asce, IDTE_LOCAL);
513 	else
514 		__pudp_idte(addr, pudp, 0, 0, IDTE_LOCAL);
515 }
516 
517 static inline void pudp_idte_global(struct mm_struct *mm,
518 				    unsigned long addr, pud_t *pudp)
519 {
520 	if (MACHINE_HAS_TLB_GUEST)
521 		__pudp_idte(addr, pudp, IDTE_NODAT | IDTE_GUEST_ASCE,
522 			    mm->context.asce, IDTE_GLOBAL);
523 	else if (MACHINE_HAS_IDTE)
524 		__pudp_idte(addr, pudp, 0, 0, IDTE_GLOBAL);
525 	else
526 		/*
527 		 * Invalid bit position is the same for pmd and pud, so we can
528 		 * re-use _pmd_csp() here
529 		 */
530 		__pmdp_csp((pmd_t *) pudp);
531 }
532 
533 static inline pud_t pudp_flush_direct(struct mm_struct *mm,
534 				      unsigned long addr, pud_t *pudp)
535 {
536 	pud_t old;
537 
538 	old = *pudp;
539 	if (pud_val(old) & _REGION_ENTRY_INVALID)
540 		return old;
541 	atomic_inc(&mm->context.flush_count);
542 	if (MACHINE_HAS_TLB_LC &&
543 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
544 		pudp_idte_local(mm, addr, pudp);
545 	else
546 		pudp_idte_global(mm, addr, pudp);
547 	atomic_dec(&mm->context.flush_count);
548 	return old;
549 }
550 
551 pud_t pudp_xchg_direct(struct mm_struct *mm, unsigned long addr,
552 		       pud_t *pudp, pud_t new)
553 {
554 	pud_t old;
555 
556 	preempt_disable();
557 	old = pudp_flush_direct(mm, addr, pudp);
558 	set_pud(pudp, new);
559 	preempt_enable();
560 	return old;
561 }
562 EXPORT_SYMBOL(pudp_xchg_direct);
563 
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
566 				pgtable_t pgtable)
567 {
568 	struct list_head *lh = (struct list_head *) pgtable;
569 
570 	assert_spin_locked(pmd_lockptr(mm, pmdp));
571 
572 	/* FIFO */
573 	if (!pmd_huge_pte(mm, pmdp))
574 		INIT_LIST_HEAD(lh);
575 	else
576 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
577 	pmd_huge_pte(mm, pmdp) = pgtable;
578 }
579 
580 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
581 {
582 	struct list_head *lh;
583 	pgtable_t pgtable;
584 	pte_t *ptep;
585 
586 	assert_spin_locked(pmd_lockptr(mm, pmdp));
587 
588 	/* FIFO */
589 	pgtable = pmd_huge_pte(mm, pmdp);
590 	lh = (struct list_head *) pgtable;
591 	if (list_empty(lh))
592 		pmd_huge_pte(mm, pmdp) = NULL;
593 	else {
594 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
595 		list_del(lh);
596 	}
597 	ptep = (pte_t *) pgtable;
598 	set_pte(ptep, __pte(_PAGE_INVALID));
599 	ptep++;
600 	set_pte(ptep, __pte(_PAGE_INVALID));
601 	return pgtable;
602 }
603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
604 
605 #ifdef CONFIG_PGSTE
606 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
607 		     pte_t *ptep, pte_t entry)
608 {
609 	pgste_t pgste;
610 
611 	/* the mm_has_pgste() check is done in set_pte_at() */
612 	preempt_disable();
613 	pgste = pgste_get_lock(ptep);
614 	pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
615 	pgste_set_key(ptep, pgste, entry, mm);
616 	pgste = pgste_set_pte(ptep, pgste, entry);
617 	pgste_set_unlock(ptep, pgste);
618 	preempt_enable();
619 }
620 
621 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
622 {
623 	pgste_t pgste;
624 
625 	preempt_disable();
626 	pgste = pgste_get_lock(ptep);
627 	pgste_val(pgste) |= PGSTE_IN_BIT;
628 	pgste_set_unlock(ptep, pgste);
629 	preempt_enable();
630 }
631 
632 /**
633  * ptep_force_prot - change access rights of a locked pte
634  * @mm: pointer to the process mm_struct
635  * @addr: virtual address in the guest address space
636  * @ptep: pointer to the page table entry
637  * @prot: indicates guest access rights: PROT_NONE, PROT_READ or PROT_WRITE
638  * @bit: pgste bit to set (e.g. for notification)
639  *
640  * Returns 0 if the access rights were changed and -EAGAIN if the current
641  * and requested access rights are incompatible.
642  */
643 int ptep_force_prot(struct mm_struct *mm, unsigned long addr,
644 		    pte_t *ptep, int prot, unsigned long bit)
645 {
646 	pte_t entry;
647 	pgste_t pgste;
648 	int pte_i, pte_p, nodat;
649 
650 	pgste = pgste_get_lock(ptep);
651 	entry = *ptep;
652 	/* Check pte entry after all locks have been acquired */
653 	pte_i = pte_val(entry) & _PAGE_INVALID;
654 	pte_p = pte_val(entry) & _PAGE_PROTECT;
655 	if ((pte_i && (prot != PROT_NONE)) ||
656 	    (pte_p && (prot & PROT_WRITE))) {
657 		pgste_set_unlock(ptep, pgste);
658 		return -EAGAIN;
659 	}
660 	/* Change access rights and set pgste bit */
661 	nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
662 	if (prot == PROT_NONE && !pte_i) {
663 		ptep_flush_direct(mm, addr, ptep, nodat);
664 		pgste = pgste_update_all(entry, pgste, mm);
665 		entry = set_pte_bit(entry, __pgprot(_PAGE_INVALID));
666 	}
667 	if (prot == PROT_READ && !pte_p) {
668 		ptep_flush_direct(mm, addr, ptep, nodat);
669 		entry = clear_pte_bit(entry, __pgprot(_PAGE_INVALID));
670 		entry = set_pte_bit(entry, __pgprot(_PAGE_PROTECT));
671 	}
672 	pgste_val(pgste) |= bit;
673 	pgste = pgste_set_pte(ptep, pgste, entry);
674 	pgste_set_unlock(ptep, pgste);
675 	return 0;
676 }
677 
678 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
679 		    pte_t *sptep, pte_t *tptep, pte_t pte)
680 {
681 	pgste_t spgste, tpgste;
682 	pte_t spte, tpte;
683 	int rc = -EAGAIN;
684 
685 	if (!(pte_val(*tptep) & _PAGE_INVALID))
686 		return 0;	/* already shadowed */
687 	spgste = pgste_get_lock(sptep);
688 	spte = *sptep;
689 	if (!(pte_val(spte) & _PAGE_INVALID) &&
690 	    !((pte_val(spte) & _PAGE_PROTECT) &&
691 	      !(pte_val(pte) & _PAGE_PROTECT))) {
692 		pgste_val(spgste) |= PGSTE_VSIE_BIT;
693 		tpgste = pgste_get_lock(tptep);
694 		tpte = __pte((pte_val(spte) & PAGE_MASK) |
695 			     (pte_val(pte) & _PAGE_PROTECT));
696 		/* don't touch the storage key - it belongs to parent pgste */
697 		tpgste = pgste_set_pte(tptep, tpgste, tpte);
698 		pgste_set_unlock(tptep, tpgste);
699 		rc = 1;
700 	}
701 	pgste_set_unlock(sptep, spgste);
702 	return rc;
703 }
704 
705 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep)
706 {
707 	pgste_t pgste;
708 	int nodat;
709 
710 	pgste = pgste_get_lock(ptep);
711 	/* notifier is called by the caller */
712 	nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
713 	ptep_flush_direct(mm, saddr, ptep, nodat);
714 	/* don't touch the storage key - it belongs to parent pgste */
715 	pgste = pgste_set_pte(ptep, pgste, __pte(_PAGE_INVALID));
716 	pgste_set_unlock(ptep, pgste);
717 }
718 
719 static void ptep_zap_swap_entry(struct mm_struct *mm, swp_entry_t entry)
720 {
721 	if (!non_swap_entry(entry))
722 		dec_mm_counter(mm, MM_SWAPENTS);
723 	else if (is_migration_entry(entry)) {
724 		struct folio *folio = pfn_swap_entry_folio(entry);
725 
726 		dec_mm_counter(mm, mm_counter(folio));
727 	}
728 	free_swap_and_cache(entry);
729 }
730 
731 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
732 		     pte_t *ptep, int reset)
733 {
734 	unsigned long pgstev;
735 	pgste_t pgste;
736 	pte_t pte;
737 
738 	/* Zap unused and logically-zero pages */
739 	preempt_disable();
740 	pgste = pgste_get_lock(ptep);
741 	pgstev = pgste_val(pgste);
742 	pte = *ptep;
743 	if (!reset && pte_swap(pte) &&
744 	    ((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED ||
745 	     (pgstev & _PGSTE_GPS_ZERO))) {
746 		ptep_zap_swap_entry(mm, pte_to_swp_entry(pte));
747 		pte_clear(mm, addr, ptep);
748 	}
749 	if (reset)
750 		pgste_val(pgste) &= ~(_PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT);
751 	pgste_set_unlock(ptep, pgste);
752 	preempt_enable();
753 }
754 
755 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
756 {
757 	unsigned long ptev;
758 	pgste_t pgste;
759 
760 	/* Clear storage key ACC and F, but set R/C */
761 	preempt_disable();
762 	pgste = pgste_get_lock(ptep);
763 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
764 	pgste_val(pgste) |= PGSTE_GR_BIT | PGSTE_GC_BIT;
765 	ptev = pte_val(*ptep);
766 	if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
767 		page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 0);
768 	pgste_set_unlock(ptep, pgste);
769 	preempt_enable();
770 }
771 
772 /*
773  * Test and reset if a guest page is dirty
774  */
775 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long addr,
776 		       pte_t *ptep)
777 {
778 	pgste_t pgste;
779 	pte_t pte;
780 	bool dirty;
781 	int nodat;
782 
783 	pgste = pgste_get_lock(ptep);
784 	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
785 	pgste_val(pgste) &= ~PGSTE_UC_BIT;
786 	pte = *ptep;
787 	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
788 		pgste = pgste_pte_notify(mm, addr, ptep, pgste);
789 		nodat = !!(pgste_val(pgste) & _PGSTE_GPS_NODAT);
790 		ptep_ipte_global(mm, addr, ptep, nodat);
791 		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
792 			pte = set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
793 		else
794 			pte = set_pte_bit(pte, __pgprot(_PAGE_INVALID));
795 		set_pte(ptep, pte);
796 	}
797 	pgste_set_unlock(ptep, pgste);
798 	return dirty;
799 }
800 EXPORT_SYMBOL_GPL(ptep_test_and_clear_uc);
801 
802 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
803 			  unsigned char key, bool nq)
804 {
805 	unsigned long keyul, paddr;
806 	spinlock_t *ptl;
807 	pgste_t old, new;
808 	pmd_t *pmdp;
809 	pte_t *ptep;
810 
811 	/*
812 	 * If we don't have a PTE table and if there is no huge page mapped,
813 	 * we can ignore attempts to set the key to 0, because it already is 0.
814 	 */
815 	switch (pmd_lookup(mm, addr, &pmdp)) {
816 	case -ENOENT:
817 		return key ? -EFAULT : 0;
818 	case 0:
819 		break;
820 	default:
821 		return -EFAULT;
822 	}
823 again:
824 	ptl = pmd_lock(mm, pmdp);
825 	if (!pmd_present(*pmdp)) {
826 		spin_unlock(ptl);
827 		return key ? -EFAULT : 0;
828 	}
829 
830 	if (pmd_leaf(*pmdp)) {
831 		paddr = pmd_val(*pmdp) & HPAGE_MASK;
832 		paddr |= addr & ~HPAGE_MASK;
833 		/*
834 		 * Huge pmds need quiescing operations, they are
835 		 * always mapped.
836 		 */
837 		page_set_storage_key(paddr, key, 1);
838 		spin_unlock(ptl);
839 		return 0;
840 	}
841 	spin_unlock(ptl);
842 
843 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
844 	if (!ptep)
845 		goto again;
846 	new = old = pgste_get_lock(ptep);
847 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
848 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
849 	keyul = (unsigned long) key;
850 	pgste_val(new) |= (keyul & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
851 	pgste_val(new) |= (keyul & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
852 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
853 		unsigned long bits, skey;
854 
855 		paddr = pte_val(*ptep) & PAGE_MASK;
856 		skey = (unsigned long) page_get_storage_key(paddr);
857 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
858 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
859 		/* Set storage key ACC and FP */
860 		page_set_storage_key(paddr, skey, !nq);
861 		/* Merge host changed & referenced into pgste  */
862 		pgste_val(new) |= bits << 52;
863 	}
864 	/* changing the guest storage key is considered a change of the page */
865 	if ((pgste_val(new) ^ pgste_val(old)) &
866 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
867 		pgste_val(new) |= PGSTE_UC_BIT;
868 
869 	pgste_set_unlock(ptep, new);
870 	pte_unmap_unlock(ptep, ptl);
871 	return 0;
872 }
873 EXPORT_SYMBOL(set_guest_storage_key);
874 
875 /*
876  * Conditionally set a guest storage key (handling csske).
877  * oldkey will be updated when either mr or mc is set and a pointer is given.
878  *
879  * Returns 0 if a guests storage key update wasn't necessary, 1 if the guest
880  * storage key was updated and -EFAULT on access errors.
881  */
882 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
883 			       unsigned char key, unsigned char *oldkey,
884 			       bool nq, bool mr, bool mc)
885 {
886 	unsigned char tmp, mask = _PAGE_ACC_BITS | _PAGE_FP_BIT;
887 	int rc;
888 
889 	/* we can drop the pgste lock between getting and setting the key */
890 	if (mr | mc) {
891 		rc = get_guest_storage_key(current->mm, addr, &tmp);
892 		if (rc)
893 			return rc;
894 		if (oldkey)
895 			*oldkey = tmp;
896 		if (!mr)
897 			mask |= _PAGE_REFERENCED;
898 		if (!mc)
899 			mask |= _PAGE_CHANGED;
900 		if (!((tmp ^ key) & mask))
901 			return 0;
902 	}
903 	rc = set_guest_storage_key(current->mm, addr, key, nq);
904 	return rc < 0 ? rc : 1;
905 }
906 EXPORT_SYMBOL(cond_set_guest_storage_key);
907 
908 /*
909  * Reset a guest reference bit (rrbe), returning the reference and changed bit.
910  *
911  * Returns < 0 in case of error, otherwise the cc to be reported to the guest.
912  */
913 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr)
914 {
915 	spinlock_t *ptl;
916 	unsigned long paddr;
917 	pgste_t old, new;
918 	pmd_t *pmdp;
919 	pte_t *ptep;
920 	int cc = 0;
921 
922 	/*
923 	 * If we don't have a PTE table and if there is no huge page mapped,
924 	 * the storage key is 0 and there is nothing for us to do.
925 	 */
926 	switch (pmd_lookup(mm, addr, &pmdp)) {
927 	case -ENOENT:
928 		return 0;
929 	case 0:
930 		break;
931 	default:
932 		return -EFAULT;
933 	}
934 again:
935 	ptl = pmd_lock(mm, pmdp);
936 	if (!pmd_present(*pmdp)) {
937 		spin_unlock(ptl);
938 		return 0;
939 	}
940 
941 	if (pmd_leaf(*pmdp)) {
942 		paddr = pmd_val(*pmdp) & HPAGE_MASK;
943 		paddr |= addr & ~HPAGE_MASK;
944 		cc = page_reset_referenced(paddr);
945 		spin_unlock(ptl);
946 		return cc;
947 	}
948 	spin_unlock(ptl);
949 
950 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
951 	if (!ptep)
952 		goto again;
953 	new = old = pgste_get_lock(ptep);
954 	/* Reset guest reference bit only */
955 	pgste_val(new) &= ~PGSTE_GR_BIT;
956 
957 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
958 		paddr = pte_val(*ptep) & PAGE_MASK;
959 		cc = page_reset_referenced(paddr);
960 		/* Merge real referenced bit into host-set */
961 		pgste_val(new) |= ((unsigned long) cc << 53) & PGSTE_HR_BIT;
962 	}
963 	/* Reflect guest's logical view, not physical */
964 	cc |= (pgste_val(old) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 49;
965 	/* Changing the guest storage key is considered a change of the page */
966 	if ((pgste_val(new) ^ pgste_val(old)) & PGSTE_GR_BIT)
967 		pgste_val(new) |= PGSTE_UC_BIT;
968 
969 	pgste_set_unlock(ptep, new);
970 	pte_unmap_unlock(ptep, ptl);
971 	return cc;
972 }
973 EXPORT_SYMBOL(reset_guest_reference_bit);
974 
975 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
976 			  unsigned char *key)
977 {
978 	unsigned long paddr;
979 	spinlock_t *ptl;
980 	pgste_t pgste;
981 	pmd_t *pmdp;
982 	pte_t *ptep;
983 
984 	/*
985 	 * If we don't have a PTE table and if there is no huge page mapped,
986 	 * the storage key is 0.
987 	 */
988 	*key = 0;
989 
990 	switch (pmd_lookup(mm, addr, &pmdp)) {
991 	case -ENOENT:
992 		return 0;
993 	case 0:
994 		break;
995 	default:
996 		return -EFAULT;
997 	}
998 again:
999 	ptl = pmd_lock(mm, pmdp);
1000 	if (!pmd_present(*pmdp)) {
1001 		spin_unlock(ptl);
1002 		return 0;
1003 	}
1004 
1005 	if (pmd_leaf(*pmdp)) {
1006 		paddr = pmd_val(*pmdp) & HPAGE_MASK;
1007 		paddr |= addr & ~HPAGE_MASK;
1008 		*key = page_get_storage_key(paddr);
1009 		spin_unlock(ptl);
1010 		return 0;
1011 	}
1012 	spin_unlock(ptl);
1013 
1014 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
1015 	if (!ptep)
1016 		goto again;
1017 	pgste = pgste_get_lock(ptep);
1018 	*key = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
1019 	paddr = pte_val(*ptep) & PAGE_MASK;
1020 	if (!(pte_val(*ptep) & _PAGE_INVALID))
1021 		*key = page_get_storage_key(paddr);
1022 	/* Reflect guest's logical view, not physical */
1023 	*key |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
1024 	pgste_set_unlock(ptep, pgste);
1025 	pte_unmap_unlock(ptep, ptl);
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL(get_guest_storage_key);
1029 
1030 /**
1031  * pgste_perform_essa - perform ESSA actions on the PGSTE.
1032  * @mm: the memory context. It must have PGSTEs, no check is performed here!
1033  * @hva: the host virtual address of the page whose PGSTE is to be processed
1034  * @orc: the specific action to perform, see the ESSA_SET_* macros.
1035  * @oldpte: the PTE will be saved there if the pointer is not NULL.
1036  * @oldpgste: the old PGSTE will be saved there if the pointer is not NULL.
1037  *
1038  * Return: 1 if the page is to be added to the CBRL, otherwise 0,
1039  *	   or < 0 in case of error. -EINVAL is returned for invalid values
1040  *	   of orc, -EFAULT for invalid addresses.
1041  */
1042 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1043 			unsigned long *oldpte, unsigned long *oldpgste)
1044 {
1045 	struct vm_area_struct *vma;
1046 	unsigned long pgstev;
1047 	spinlock_t *ptl;
1048 	pgste_t pgste;
1049 	pte_t *ptep;
1050 	int res = 0;
1051 
1052 	WARN_ON_ONCE(orc > ESSA_MAX);
1053 	if (unlikely(orc > ESSA_MAX))
1054 		return -EINVAL;
1055 
1056 	vma = vma_lookup(mm, hva);
1057 	if (!vma || is_vm_hugetlb_page(vma))
1058 		return -EFAULT;
1059 	ptep = get_locked_pte(mm, hva, &ptl);
1060 	if (unlikely(!ptep))
1061 		return -EFAULT;
1062 	pgste = pgste_get_lock(ptep);
1063 	pgstev = pgste_val(pgste);
1064 	if (oldpte)
1065 		*oldpte = pte_val(*ptep);
1066 	if (oldpgste)
1067 		*oldpgste = pgstev;
1068 
1069 	switch (orc) {
1070 	case ESSA_GET_STATE:
1071 		break;
1072 	case ESSA_SET_STABLE:
1073 		pgstev &= ~(_PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT);
1074 		pgstev |= _PGSTE_GPS_USAGE_STABLE;
1075 		break;
1076 	case ESSA_SET_UNUSED:
1077 		pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1078 		pgstev |= _PGSTE_GPS_USAGE_UNUSED;
1079 		if (pte_val(*ptep) & _PAGE_INVALID)
1080 			res = 1;
1081 		break;
1082 	case ESSA_SET_VOLATILE:
1083 		pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1084 		pgstev |= _PGSTE_GPS_USAGE_VOLATILE;
1085 		if (pte_val(*ptep) & _PAGE_INVALID)
1086 			res = 1;
1087 		break;
1088 	case ESSA_SET_POT_VOLATILE:
1089 		pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1090 		if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1091 			pgstev |= _PGSTE_GPS_USAGE_POT_VOLATILE;
1092 			break;
1093 		}
1094 		if (pgstev & _PGSTE_GPS_ZERO) {
1095 			pgstev |= _PGSTE_GPS_USAGE_VOLATILE;
1096 			break;
1097 		}
1098 		if (!(pgstev & PGSTE_GC_BIT)) {
1099 			pgstev |= _PGSTE_GPS_USAGE_VOLATILE;
1100 			res = 1;
1101 			break;
1102 		}
1103 		break;
1104 	case ESSA_SET_STABLE_RESIDENT:
1105 		pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1106 		pgstev |= _PGSTE_GPS_USAGE_STABLE;
1107 		/*
1108 		 * Since the resident state can go away any time after this
1109 		 * call, we will not make this page resident. We can revisit
1110 		 * this decision if a guest will ever start using this.
1111 		 */
1112 		break;
1113 	case ESSA_SET_STABLE_IF_RESIDENT:
1114 		if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1115 			pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1116 			pgstev |= _PGSTE_GPS_USAGE_STABLE;
1117 		}
1118 		break;
1119 	case ESSA_SET_STABLE_NODAT:
1120 		pgstev &= ~_PGSTE_GPS_USAGE_MASK;
1121 		pgstev |= _PGSTE_GPS_USAGE_STABLE | _PGSTE_GPS_NODAT;
1122 		break;
1123 	default:
1124 		/* we should never get here! */
1125 		break;
1126 	}
1127 	/* If we are discarding a page, set it to logical zero */
1128 	if (res)
1129 		pgstev |= _PGSTE_GPS_ZERO;
1130 
1131 	pgste_val(pgste) = pgstev;
1132 	pgste_set_unlock(ptep, pgste);
1133 	pte_unmap_unlock(ptep, ptl);
1134 	return res;
1135 }
1136 EXPORT_SYMBOL(pgste_perform_essa);
1137 
1138 /**
1139  * set_pgste_bits - set specific PGSTE bits.
1140  * @mm: the memory context. It must have PGSTEs, no check is performed here!
1141  * @hva: the host virtual address of the page whose PGSTE is to be processed
1142  * @bits: a bitmask representing the bits that will be touched
1143  * @value: the values of the bits to be written. Only the bits in the mask
1144  *	   will be written.
1145  *
1146  * Return: 0 on success, < 0 in case of error.
1147  */
1148 int set_pgste_bits(struct mm_struct *mm, unsigned long hva,
1149 			unsigned long bits, unsigned long value)
1150 {
1151 	struct vm_area_struct *vma;
1152 	spinlock_t *ptl;
1153 	pgste_t new;
1154 	pte_t *ptep;
1155 
1156 	vma = vma_lookup(mm, hva);
1157 	if (!vma || is_vm_hugetlb_page(vma))
1158 		return -EFAULT;
1159 	ptep = get_locked_pte(mm, hva, &ptl);
1160 	if (unlikely(!ptep))
1161 		return -EFAULT;
1162 	new = pgste_get_lock(ptep);
1163 
1164 	pgste_val(new) &= ~bits;
1165 	pgste_val(new) |= value & bits;
1166 
1167 	pgste_set_unlock(ptep, new);
1168 	pte_unmap_unlock(ptep, ptl);
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(set_pgste_bits);
1172 
1173 /**
1174  * get_pgste - get the current PGSTE for the given address.
1175  * @mm: the memory context. It must have PGSTEs, no check is performed here!
1176  * @hva: the host virtual address of the page whose PGSTE is to be processed
1177  * @pgstep: will be written with the current PGSTE for the given address.
1178  *
1179  * Return: 0 on success, < 0 in case of error.
1180  */
1181 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep)
1182 {
1183 	struct vm_area_struct *vma;
1184 	spinlock_t *ptl;
1185 	pte_t *ptep;
1186 
1187 	vma = vma_lookup(mm, hva);
1188 	if (!vma || is_vm_hugetlb_page(vma))
1189 		return -EFAULT;
1190 	ptep = get_locked_pte(mm, hva, &ptl);
1191 	if (unlikely(!ptep))
1192 		return -EFAULT;
1193 	*pgstep = pgste_val(pgste_get(ptep));
1194 	pte_unmap_unlock(ptep, ptl);
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL(get_pgste);
1198 #endif
1199