xref: /linux/arch/s390/mm/pgtable.c (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 
27 #ifndef CONFIG_64BIT
28 #define ALLOC_ORDER	1
29 #define FRAG_MASK	0x0f
30 #else
31 #define ALLOC_ORDER	2
32 #define FRAG_MASK	0x03
33 #endif
34 
35 
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
37 {
38 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39 
40 	if (!page)
41 		return NULL;
42 	return (unsigned long *) page_to_phys(page);
43 }
44 
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
46 {
47 	free_pages((unsigned long) table, ALLOC_ORDER);
48 }
49 
50 #ifdef CONFIG_64BIT
51 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
52 {
53 	unsigned long *table, *pgd;
54 	unsigned long entry;
55 
56 	BUG_ON(limit > (1UL << 53));
57 repeat:
58 	table = crst_table_alloc(mm);
59 	if (!table)
60 		return -ENOMEM;
61 	spin_lock_bh(&mm->page_table_lock);
62 	if (mm->context.asce_limit < limit) {
63 		pgd = (unsigned long *) mm->pgd;
64 		if (mm->context.asce_limit <= (1UL << 31)) {
65 			entry = _REGION3_ENTRY_EMPTY;
66 			mm->context.asce_limit = 1UL << 42;
67 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68 						_ASCE_USER_BITS |
69 						_ASCE_TYPE_REGION3;
70 		} else {
71 			entry = _REGION2_ENTRY_EMPTY;
72 			mm->context.asce_limit = 1UL << 53;
73 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74 						_ASCE_USER_BITS |
75 						_ASCE_TYPE_REGION2;
76 		}
77 		crst_table_init(table, entry);
78 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79 		mm->pgd = (pgd_t *) table;
80 		mm->task_size = mm->context.asce_limit;
81 		table = NULL;
82 	}
83 	spin_unlock_bh(&mm->page_table_lock);
84 	if (table)
85 		crst_table_free(mm, table);
86 	if (mm->context.asce_limit < limit)
87 		goto repeat;
88 	return 0;
89 }
90 
91 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
92 {
93 	pgd_t *pgd;
94 
95 	while (mm->context.asce_limit > limit) {
96 		pgd = mm->pgd;
97 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98 		case _REGION_ENTRY_TYPE_R2:
99 			mm->context.asce_limit = 1UL << 42;
100 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101 						_ASCE_USER_BITS |
102 						_ASCE_TYPE_REGION3;
103 			break;
104 		case _REGION_ENTRY_TYPE_R3:
105 			mm->context.asce_limit = 1UL << 31;
106 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107 						_ASCE_USER_BITS |
108 						_ASCE_TYPE_SEGMENT;
109 			break;
110 		default:
111 			BUG();
112 		}
113 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114 		mm->task_size = mm->context.asce_limit;
115 		crst_table_free(mm, (unsigned long *) pgd);
116 	}
117 }
118 #endif
119 
120 #ifdef CONFIG_PGSTE
121 
122 /**
123  * gmap_alloc - allocate a guest address space
124  * @mm: pointer to the parent mm_struct
125  *
126  * Returns a guest address space structure.
127  */
128 struct gmap *gmap_alloc(struct mm_struct *mm)
129 {
130 	struct gmap *gmap;
131 	struct page *page;
132 	unsigned long *table;
133 
134 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135 	if (!gmap)
136 		goto out;
137 	INIT_LIST_HEAD(&gmap->crst_list);
138 	gmap->mm = mm;
139 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140 	if (!page)
141 		goto out_free;
142 	list_add(&page->lru, &gmap->crst_list);
143 	table = (unsigned long *) page_to_phys(page);
144 	crst_table_init(table, _REGION1_ENTRY_EMPTY);
145 	gmap->table = table;
146 	gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147 		     _ASCE_USER_BITS | __pa(table);
148 	list_add(&gmap->list, &mm->context.gmap_list);
149 	return gmap;
150 
151 out_free:
152 	kfree(gmap);
153 out:
154 	return NULL;
155 }
156 EXPORT_SYMBOL_GPL(gmap_alloc);
157 
158 static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
159 {
160 	struct gmap_pgtable *mp;
161 	struct gmap_rmap *rmap;
162 	struct page *page;
163 
164 	if (*table & _SEGMENT_ENTRY_INVALID)
165 		return 0;
166 	page = pfn_to_page(*table >> PAGE_SHIFT);
167 	mp = (struct gmap_pgtable *) page->index;
168 	list_for_each_entry(rmap, &mp->mapper, list) {
169 		if (rmap->entry != table)
170 			continue;
171 		list_del(&rmap->list);
172 		kfree(rmap);
173 		break;
174 	}
175 	*table = mp->vmaddr | _SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_PROTECT;
176 	return 1;
177 }
178 
179 static void gmap_flush_tlb(struct gmap *gmap)
180 {
181 	if (MACHINE_HAS_IDTE)
182 		__tlb_flush_idte((unsigned long) gmap->table |
183 				 _ASCE_TYPE_REGION1);
184 	else
185 		__tlb_flush_global();
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  */
192 void gmap_free(struct gmap *gmap)
193 {
194 	struct page *page, *next;
195 	unsigned long *table;
196 	int i;
197 
198 
199 	/* Flush tlb. */
200 	if (MACHINE_HAS_IDTE)
201 		__tlb_flush_idte((unsigned long) gmap->table |
202 				 _ASCE_TYPE_REGION1);
203 	else
204 		__tlb_flush_global();
205 
206 	/* Free all segment & region tables. */
207 	down_read(&gmap->mm->mmap_sem);
208 	spin_lock(&gmap->mm->page_table_lock);
209 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210 		table = (unsigned long *) page_to_phys(page);
211 		if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212 			/* Remove gmap rmap structures for segment table. */
213 			for (i = 0; i < PTRS_PER_PMD; i++, table++)
214 				gmap_unlink_segment(gmap, table);
215 		__free_pages(page, ALLOC_ORDER);
216 	}
217 	spin_unlock(&gmap->mm->page_table_lock);
218 	up_read(&gmap->mm->mmap_sem);
219 	list_del(&gmap->list);
220 	kfree(gmap);
221 }
222 EXPORT_SYMBOL_GPL(gmap_free);
223 
224 /**
225  * gmap_enable - switch primary space to the guest address space
226  * @gmap: pointer to the guest address space structure
227  */
228 void gmap_enable(struct gmap *gmap)
229 {
230 	S390_lowcore.gmap = (unsigned long) gmap;
231 }
232 EXPORT_SYMBOL_GPL(gmap_enable);
233 
234 /**
235  * gmap_disable - switch back to the standard primary address space
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_disable(struct gmap *gmap)
239 {
240 	S390_lowcore.gmap = 0UL;
241 }
242 EXPORT_SYMBOL_GPL(gmap_disable);
243 
244 /*
245  * gmap_alloc_table is assumed to be called with mmap_sem held
246  */
247 static int gmap_alloc_table(struct gmap *gmap,
248 			       unsigned long *table, unsigned long init)
249 {
250 	struct page *page;
251 	unsigned long *new;
252 
253 	/* since we dont free the gmap table until gmap_free we can unlock */
254 	spin_unlock(&gmap->mm->page_table_lock);
255 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
256 	spin_lock(&gmap->mm->page_table_lock);
257 	if (!page)
258 		return -ENOMEM;
259 	new = (unsigned long *) page_to_phys(page);
260 	crst_table_init(new, init);
261 	if (*table & _REGION_ENTRY_INVALID) {
262 		list_add(&page->lru, &gmap->crst_list);
263 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
264 			(*table & _REGION_ENTRY_TYPE_MASK);
265 	} else
266 		__free_pages(page, ALLOC_ORDER);
267 	return 0;
268 }
269 
270 /**
271  * gmap_unmap_segment - unmap segment from the guest address space
272  * @gmap: pointer to the guest address space structure
273  * @addr: address in the guest address space
274  * @len: length of the memory area to unmap
275  *
276  * Returns 0 if the unmap succeded, -EINVAL if not.
277  */
278 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
279 {
280 	unsigned long *table;
281 	unsigned long off;
282 	int flush;
283 
284 	if ((to | len) & (PMD_SIZE - 1))
285 		return -EINVAL;
286 	if (len == 0 || to + len < to)
287 		return -EINVAL;
288 
289 	flush = 0;
290 	down_read(&gmap->mm->mmap_sem);
291 	spin_lock(&gmap->mm->page_table_lock);
292 	for (off = 0; off < len; off += PMD_SIZE) {
293 		/* Walk the guest addr space page table */
294 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
295 		if (*table & _REGION_ENTRY_INVALID)
296 			goto out;
297 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
298 		table = table + (((to + off) >> 42) & 0x7ff);
299 		if (*table & _REGION_ENTRY_INVALID)
300 			goto out;
301 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
302 		table = table + (((to + off) >> 31) & 0x7ff);
303 		if (*table & _REGION_ENTRY_INVALID)
304 			goto out;
305 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
306 		table = table + (((to + off) >> 20) & 0x7ff);
307 
308 		/* Clear segment table entry in guest address space. */
309 		flush |= gmap_unlink_segment(gmap, table);
310 		*table = _SEGMENT_ENTRY_INVALID;
311 	}
312 out:
313 	spin_unlock(&gmap->mm->page_table_lock);
314 	up_read(&gmap->mm->mmap_sem);
315 	if (flush)
316 		gmap_flush_tlb(gmap);
317 	return 0;
318 }
319 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
320 
321 /**
322  * gmap_mmap_segment - map a segment to the guest address space
323  * @gmap: pointer to the guest address space structure
324  * @from: source address in the parent address space
325  * @to: target address in the guest address space
326  *
327  * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
328  */
329 int gmap_map_segment(struct gmap *gmap, unsigned long from,
330 		     unsigned long to, unsigned long len)
331 {
332 	unsigned long *table;
333 	unsigned long off;
334 	int flush;
335 
336 	if ((from | to | len) & (PMD_SIZE - 1))
337 		return -EINVAL;
338 	if (len == 0 || from + len > TASK_MAX_SIZE ||
339 	    from + len < from || to + len < to)
340 		return -EINVAL;
341 
342 	flush = 0;
343 	down_read(&gmap->mm->mmap_sem);
344 	spin_lock(&gmap->mm->page_table_lock);
345 	for (off = 0; off < len; off += PMD_SIZE) {
346 		/* Walk the gmap address space page table */
347 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
348 		if ((*table & _REGION_ENTRY_INVALID) &&
349 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
350 			goto out_unmap;
351 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
352 		table = table + (((to + off) >> 42) & 0x7ff);
353 		if ((*table & _REGION_ENTRY_INVALID) &&
354 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
355 			goto out_unmap;
356 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
357 		table = table + (((to + off) >> 31) & 0x7ff);
358 		if ((*table & _REGION_ENTRY_INVALID) &&
359 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
360 			goto out_unmap;
361 		table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
362 		table = table + (((to + off) >> 20) & 0x7ff);
363 
364 		/* Store 'from' address in an invalid segment table entry. */
365 		flush |= gmap_unlink_segment(gmap, table);
366 		*table =  (from + off) | (_SEGMENT_ENTRY_INVALID |
367 					  _SEGMENT_ENTRY_PROTECT);
368 	}
369 	spin_unlock(&gmap->mm->page_table_lock);
370 	up_read(&gmap->mm->mmap_sem);
371 	if (flush)
372 		gmap_flush_tlb(gmap);
373 	return 0;
374 
375 out_unmap:
376 	spin_unlock(&gmap->mm->page_table_lock);
377 	up_read(&gmap->mm->mmap_sem);
378 	gmap_unmap_segment(gmap, to, len);
379 	return -ENOMEM;
380 }
381 EXPORT_SYMBOL_GPL(gmap_map_segment);
382 
383 static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap)
384 {
385 	unsigned long *table;
386 
387 	table = gmap->table + ((address >> 53) & 0x7ff);
388 	if (unlikely(*table & _REGION_ENTRY_INVALID))
389 		return ERR_PTR(-EFAULT);
390 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
391 	table = table + ((address >> 42) & 0x7ff);
392 	if (unlikely(*table & _REGION_ENTRY_INVALID))
393 		return ERR_PTR(-EFAULT);
394 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
395 	table = table + ((address >> 31) & 0x7ff);
396 	if (unlikely(*table & _REGION_ENTRY_INVALID))
397 		return ERR_PTR(-EFAULT);
398 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
399 	table = table + ((address >> 20) & 0x7ff);
400 	return table;
401 }
402 
403 /**
404  * __gmap_translate - translate a guest address to a user space address
405  * @address: guest address
406  * @gmap: pointer to guest mapping meta data structure
407  *
408  * Returns user space address which corresponds to the guest address or
409  * -EFAULT if no such mapping exists.
410  * This function does not establish potentially missing page table entries.
411  * The mmap_sem of the mm that belongs to the address space must be held
412  * when this function gets called.
413  */
414 unsigned long __gmap_translate(unsigned long address, struct gmap *gmap)
415 {
416 	unsigned long *segment_ptr, vmaddr, segment;
417 	struct gmap_pgtable *mp;
418 	struct page *page;
419 
420 	current->thread.gmap_addr = address;
421 	segment_ptr = gmap_table_walk(address, gmap);
422 	if (IS_ERR(segment_ptr))
423 		return PTR_ERR(segment_ptr);
424 	/* Convert the gmap address to an mm address. */
425 	segment = *segment_ptr;
426 	if (!(segment & _SEGMENT_ENTRY_INVALID)) {
427 		page = pfn_to_page(segment >> PAGE_SHIFT);
428 		mp = (struct gmap_pgtable *) page->index;
429 		return mp->vmaddr | (address & ~PMD_MASK);
430 	} else if (segment & _SEGMENT_ENTRY_PROTECT) {
431 		vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
432 		return vmaddr | (address & ~PMD_MASK);
433 	}
434 	return -EFAULT;
435 }
436 EXPORT_SYMBOL_GPL(__gmap_translate);
437 
438 /**
439  * gmap_translate - translate a guest address to a user space address
440  * @address: guest address
441  * @gmap: pointer to guest mapping meta data structure
442  *
443  * Returns user space address which corresponds to the guest address or
444  * -EFAULT if no such mapping exists.
445  * This function does not establish potentially missing page table entries.
446  */
447 unsigned long gmap_translate(unsigned long address, struct gmap *gmap)
448 {
449 	unsigned long rc;
450 
451 	down_read(&gmap->mm->mmap_sem);
452 	rc = __gmap_translate(address, gmap);
453 	up_read(&gmap->mm->mmap_sem);
454 	return rc;
455 }
456 EXPORT_SYMBOL_GPL(gmap_translate);
457 
458 static int gmap_connect_pgtable(unsigned long address, unsigned long segment,
459 				unsigned long *segment_ptr, struct gmap *gmap)
460 {
461 	unsigned long vmaddr;
462 	struct vm_area_struct *vma;
463 	struct gmap_pgtable *mp;
464 	struct gmap_rmap *rmap;
465 	struct mm_struct *mm;
466 	struct page *page;
467 	pgd_t *pgd;
468 	pud_t *pud;
469 	pmd_t *pmd;
470 
471 	mm = gmap->mm;
472 	vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
473 	vma = find_vma(mm, vmaddr);
474 	if (!vma || vma->vm_start > vmaddr)
475 		return -EFAULT;
476 	/* Walk the parent mm page table */
477 	pgd = pgd_offset(mm, vmaddr);
478 	pud = pud_alloc(mm, pgd, vmaddr);
479 	if (!pud)
480 		return -ENOMEM;
481 	pmd = pmd_alloc(mm, pud, vmaddr);
482 	if (!pmd)
483 		return -ENOMEM;
484 	if (!pmd_present(*pmd) &&
485 	    __pte_alloc(mm, vma, pmd, vmaddr))
486 		return -ENOMEM;
487 	/* pmd now points to a valid segment table entry. */
488 	rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
489 	if (!rmap)
490 		return -ENOMEM;
491 	/* Link gmap segment table entry location to page table. */
492 	page = pmd_page(*pmd);
493 	mp = (struct gmap_pgtable *) page->index;
494 	rmap->gmap = gmap;
495 	rmap->entry = segment_ptr;
496 	rmap->vmaddr = address & PMD_MASK;
497 	spin_lock(&mm->page_table_lock);
498 	if (*segment_ptr == segment) {
499 		list_add(&rmap->list, &mp->mapper);
500 		/* Set gmap segment table entry to page table. */
501 		*segment_ptr = pmd_val(*pmd) & PAGE_MASK;
502 		rmap = NULL;
503 	}
504 	spin_unlock(&mm->page_table_lock);
505 	kfree(rmap);
506 	return 0;
507 }
508 
509 static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table)
510 {
511 	struct gmap_rmap *rmap, *next;
512 	struct gmap_pgtable *mp;
513 	struct page *page;
514 	int flush;
515 
516 	flush = 0;
517 	spin_lock(&mm->page_table_lock);
518 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
519 	mp = (struct gmap_pgtable *) page->index;
520 	list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
521 		*rmap->entry = mp->vmaddr | (_SEGMENT_ENTRY_INVALID |
522 					     _SEGMENT_ENTRY_PROTECT);
523 		list_del(&rmap->list);
524 		kfree(rmap);
525 		flush = 1;
526 	}
527 	spin_unlock(&mm->page_table_lock);
528 	if (flush)
529 		__tlb_flush_global();
530 }
531 
532 /*
533  * this function is assumed to be called with mmap_sem held
534  */
535 unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
536 {
537 	unsigned long *segment_ptr, segment;
538 	struct gmap_pgtable *mp;
539 	struct page *page;
540 	int rc;
541 
542 	current->thread.gmap_addr = address;
543 	segment_ptr = gmap_table_walk(address, gmap);
544 	if (IS_ERR(segment_ptr))
545 		return -EFAULT;
546 	/* Convert the gmap address to an mm address. */
547 	while (1) {
548 		segment = *segment_ptr;
549 		if (!(segment & _SEGMENT_ENTRY_INVALID)) {
550 			/* Page table is present */
551 			page = pfn_to_page(segment >> PAGE_SHIFT);
552 			mp = (struct gmap_pgtable *) page->index;
553 			return mp->vmaddr | (address & ~PMD_MASK);
554 		}
555 		if (!(segment & _SEGMENT_ENTRY_PROTECT))
556 			/* Nothing mapped in the gmap address space. */
557 			break;
558 		rc = gmap_connect_pgtable(address, segment, segment_ptr, gmap);
559 		if (rc)
560 			return rc;
561 	}
562 	return -EFAULT;
563 }
564 
565 unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
566 {
567 	unsigned long rc;
568 
569 	down_read(&gmap->mm->mmap_sem);
570 	rc = __gmap_fault(address, gmap);
571 	up_read(&gmap->mm->mmap_sem);
572 
573 	return rc;
574 }
575 EXPORT_SYMBOL_GPL(gmap_fault);
576 
577 void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
578 {
579 
580 	unsigned long *table, address, size;
581 	struct vm_area_struct *vma;
582 	struct gmap_pgtable *mp;
583 	struct page *page;
584 
585 	down_read(&gmap->mm->mmap_sem);
586 	address = from;
587 	while (address < to) {
588 		/* Walk the gmap address space page table */
589 		table = gmap->table + ((address >> 53) & 0x7ff);
590 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
591 			address = (address + PMD_SIZE) & PMD_MASK;
592 			continue;
593 		}
594 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
595 		table = table + ((address >> 42) & 0x7ff);
596 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
597 			address = (address + PMD_SIZE) & PMD_MASK;
598 			continue;
599 		}
600 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
601 		table = table + ((address >> 31) & 0x7ff);
602 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
603 			address = (address + PMD_SIZE) & PMD_MASK;
604 			continue;
605 		}
606 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
607 		table = table + ((address >> 20) & 0x7ff);
608 		if (unlikely(*table & _SEGMENT_ENTRY_INVALID)) {
609 			address = (address + PMD_SIZE) & PMD_MASK;
610 			continue;
611 		}
612 		page = pfn_to_page(*table >> PAGE_SHIFT);
613 		mp = (struct gmap_pgtable *) page->index;
614 		vma = find_vma(gmap->mm, mp->vmaddr);
615 		size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
616 		zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
617 			       size, NULL);
618 		address = (address + PMD_SIZE) & PMD_MASK;
619 	}
620 	up_read(&gmap->mm->mmap_sem);
621 }
622 EXPORT_SYMBOL_GPL(gmap_discard);
623 
624 static LIST_HEAD(gmap_notifier_list);
625 static DEFINE_SPINLOCK(gmap_notifier_lock);
626 
627 /**
628  * gmap_register_ipte_notifier - register a pte invalidation callback
629  * @nb: pointer to the gmap notifier block
630  */
631 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
632 {
633 	spin_lock(&gmap_notifier_lock);
634 	list_add(&nb->list, &gmap_notifier_list);
635 	spin_unlock(&gmap_notifier_lock);
636 }
637 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
638 
639 /**
640  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
641  * @nb: pointer to the gmap notifier block
642  */
643 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
644 {
645 	spin_lock(&gmap_notifier_lock);
646 	list_del_init(&nb->list);
647 	spin_unlock(&gmap_notifier_lock);
648 }
649 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
650 
651 /**
652  * gmap_ipte_notify - mark a range of ptes for invalidation notification
653  * @gmap: pointer to guest mapping meta data structure
654  * @address: virtual address in the guest address space
655  * @len: size of area
656  *
657  * Returns 0 if for each page in the given range a gmap mapping exists and
658  * the invalidation notification could be set. If the gmap mapping is missing
659  * for one or more pages -EFAULT is returned. If no memory could be allocated
660  * -ENOMEM is returned. This function establishes missing page table entries.
661  */
662 int gmap_ipte_notify(struct gmap *gmap, unsigned long start, unsigned long len)
663 {
664 	unsigned long addr;
665 	spinlock_t *ptl;
666 	pte_t *ptep, entry;
667 	pgste_t pgste;
668 	int rc = 0;
669 
670 	if ((start & ~PAGE_MASK) || (len & ~PAGE_MASK))
671 		return -EINVAL;
672 	down_read(&gmap->mm->mmap_sem);
673 	while (len) {
674 		/* Convert gmap address and connect the page tables */
675 		addr = __gmap_fault(start, gmap);
676 		if (IS_ERR_VALUE(addr)) {
677 			rc = addr;
678 			break;
679 		}
680 		/* Get the page mapped */
681 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
682 			rc = -EFAULT;
683 			break;
684 		}
685 		/* Walk the process page table, lock and get pte pointer */
686 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
687 		if (unlikely(!ptep))
688 			continue;
689 		/* Set notification bit in the pgste of the pte */
690 		entry = *ptep;
691 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
692 			pgste = pgste_get_lock(ptep);
693 			pgste_val(pgste) |= PGSTE_IN_BIT;
694 			pgste_set_unlock(ptep, pgste);
695 			start += PAGE_SIZE;
696 			len -= PAGE_SIZE;
697 		}
698 		spin_unlock(ptl);
699 	}
700 	up_read(&gmap->mm->mmap_sem);
701 	return rc;
702 }
703 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
704 
705 /**
706  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
707  * @mm: pointer to the process mm_struct
708  * @addr: virtual address in the process address space
709  * @pte: pointer to the page table entry
710  *
711  * This function is assumed to be called with the page table lock held
712  * for the pte to notify.
713  */
714 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *pte)
715 {
716 	unsigned long segment_offset;
717 	struct gmap_notifier *nb;
718 	struct gmap_pgtable *mp;
719 	struct gmap_rmap *rmap;
720 	struct page *page;
721 
722 	segment_offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
723 	segment_offset = segment_offset * (4096 / sizeof(pte_t));
724 	page = pfn_to_page(__pa(pte) >> PAGE_SHIFT);
725 	mp = (struct gmap_pgtable *) page->index;
726 	spin_lock(&gmap_notifier_lock);
727 	list_for_each_entry(rmap, &mp->mapper, list) {
728 		list_for_each_entry(nb, &gmap_notifier_list, list)
729 			nb->notifier_call(rmap->gmap,
730 					  rmap->vmaddr + segment_offset);
731 	}
732 	spin_unlock(&gmap_notifier_lock);
733 }
734 
735 static inline int page_table_with_pgste(struct page *page)
736 {
737 	return atomic_read(&page->_mapcount) == 0;
738 }
739 
740 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
741 						    unsigned long vmaddr)
742 {
743 	struct page *page;
744 	unsigned long *table;
745 	struct gmap_pgtable *mp;
746 
747 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
748 	if (!page)
749 		return NULL;
750 	mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
751 	if (!mp) {
752 		__free_page(page);
753 		return NULL;
754 	}
755 	pgtable_page_ctor(page);
756 	mp->vmaddr = vmaddr & PMD_MASK;
757 	INIT_LIST_HEAD(&mp->mapper);
758 	page->index = (unsigned long) mp;
759 	atomic_set(&page->_mapcount, 0);
760 	table = (unsigned long *) page_to_phys(page);
761 	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
762 	clear_table(table + PTRS_PER_PTE, PGSTE_HR_BIT | PGSTE_HC_BIT,
763 		    PAGE_SIZE/2);
764 	return table;
765 }
766 
767 static inline void page_table_free_pgste(unsigned long *table)
768 {
769 	struct page *page;
770 	struct gmap_pgtable *mp;
771 
772 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
773 	mp = (struct gmap_pgtable *) page->index;
774 	BUG_ON(!list_empty(&mp->mapper));
775 	pgtable_page_dtor(page);
776 	atomic_set(&page->_mapcount, -1);
777 	kfree(mp);
778 	__free_page(page);
779 }
780 
781 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
782 			  unsigned long key, bool nq)
783 {
784 	spinlock_t *ptl;
785 	pgste_t old, new;
786 	pte_t *ptep;
787 
788 	down_read(&mm->mmap_sem);
789 	ptep = get_locked_pte(current->mm, addr, &ptl);
790 	if (unlikely(!ptep)) {
791 		up_read(&mm->mmap_sem);
792 		return -EFAULT;
793 	}
794 
795 	new = old = pgste_get_lock(ptep);
796 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
797 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
798 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
799 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
800 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
801 		unsigned long address, bits, skey;
802 
803 		address = pte_val(*ptep) & PAGE_MASK;
804 		skey = (unsigned long) page_get_storage_key(address);
805 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
806 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
807 		/* Set storage key ACC and FP */
808 		page_set_storage_key(address, skey, !nq);
809 		/* Merge host changed & referenced into pgste  */
810 		pgste_val(new) |= bits << 52;
811 	}
812 	/* changing the guest storage key is considered a change of the page */
813 	if ((pgste_val(new) ^ pgste_val(old)) &
814 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
815 		pgste_val(new) |= PGSTE_HC_BIT;
816 
817 	pgste_set_unlock(ptep, new);
818 	pte_unmap_unlock(*ptep, ptl);
819 	up_read(&mm->mmap_sem);
820 	return 0;
821 }
822 EXPORT_SYMBOL(set_guest_storage_key);
823 
824 #else /* CONFIG_PGSTE */
825 
826 static inline int page_table_with_pgste(struct page *page)
827 {
828 	return 0;
829 }
830 
831 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
832 						    unsigned long vmaddr)
833 {
834 	return NULL;
835 }
836 
837 static inline void page_table_free_pgste(unsigned long *table)
838 {
839 }
840 
841 static inline void gmap_disconnect_pgtable(struct mm_struct *mm,
842 					   unsigned long *table)
843 {
844 }
845 
846 #endif /* CONFIG_PGSTE */
847 
848 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
849 {
850 	unsigned int old, new;
851 
852 	do {
853 		old = atomic_read(v);
854 		new = old ^ bits;
855 	} while (atomic_cmpxchg(v, old, new) != old);
856 	return new;
857 }
858 
859 /*
860  * page table entry allocation/free routines.
861  */
862 unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
863 {
864 	unsigned long *uninitialized_var(table);
865 	struct page *uninitialized_var(page);
866 	unsigned int mask, bit;
867 
868 	if (mm_has_pgste(mm))
869 		return page_table_alloc_pgste(mm, vmaddr);
870 	/* Allocate fragments of a 4K page as 1K/2K page table */
871 	spin_lock_bh(&mm->context.list_lock);
872 	mask = FRAG_MASK;
873 	if (!list_empty(&mm->context.pgtable_list)) {
874 		page = list_first_entry(&mm->context.pgtable_list,
875 					struct page, lru);
876 		table = (unsigned long *) page_to_phys(page);
877 		mask = atomic_read(&page->_mapcount);
878 		mask = mask | (mask >> 4);
879 	}
880 	if ((mask & FRAG_MASK) == FRAG_MASK) {
881 		spin_unlock_bh(&mm->context.list_lock);
882 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
883 		if (!page)
884 			return NULL;
885 		pgtable_page_ctor(page);
886 		atomic_set(&page->_mapcount, 1);
887 		table = (unsigned long *) page_to_phys(page);
888 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
889 		spin_lock_bh(&mm->context.list_lock);
890 		list_add(&page->lru, &mm->context.pgtable_list);
891 	} else {
892 		for (bit = 1; mask & bit; bit <<= 1)
893 			table += PTRS_PER_PTE;
894 		mask = atomic_xor_bits(&page->_mapcount, bit);
895 		if ((mask & FRAG_MASK) == FRAG_MASK)
896 			list_del(&page->lru);
897 	}
898 	spin_unlock_bh(&mm->context.list_lock);
899 	return table;
900 }
901 
902 void page_table_free(struct mm_struct *mm, unsigned long *table)
903 {
904 	struct page *page;
905 	unsigned int bit, mask;
906 
907 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
908 	if (page_table_with_pgste(page)) {
909 		gmap_disconnect_pgtable(mm, table);
910 		return page_table_free_pgste(table);
911 	}
912 	/* Free 1K/2K page table fragment of a 4K page */
913 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
914 	spin_lock_bh(&mm->context.list_lock);
915 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
916 		list_del(&page->lru);
917 	mask = atomic_xor_bits(&page->_mapcount, bit);
918 	if (mask & FRAG_MASK)
919 		list_add(&page->lru, &mm->context.pgtable_list);
920 	spin_unlock_bh(&mm->context.list_lock);
921 	if (mask == 0) {
922 		pgtable_page_dtor(page);
923 		atomic_set(&page->_mapcount, -1);
924 		__free_page(page);
925 	}
926 }
927 
928 static void __page_table_free_rcu(void *table, unsigned bit)
929 {
930 	struct page *page;
931 
932 	if (bit == FRAG_MASK)
933 		return page_table_free_pgste(table);
934 	/* Free 1K/2K page table fragment of a 4K page */
935 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
936 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
937 		pgtable_page_dtor(page);
938 		atomic_set(&page->_mapcount, -1);
939 		__free_page(page);
940 	}
941 }
942 
943 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
944 {
945 	struct mm_struct *mm;
946 	struct page *page;
947 	unsigned int bit, mask;
948 
949 	mm = tlb->mm;
950 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
951 	if (page_table_with_pgste(page)) {
952 		gmap_disconnect_pgtable(mm, table);
953 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
954 		tlb_remove_table(tlb, table);
955 		return;
956 	}
957 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
958 	spin_lock_bh(&mm->context.list_lock);
959 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
960 		list_del(&page->lru);
961 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
962 	if (mask & FRAG_MASK)
963 		list_add_tail(&page->lru, &mm->context.pgtable_list);
964 	spin_unlock_bh(&mm->context.list_lock);
965 	table = (unsigned long *) (__pa(table) | (bit << 4));
966 	tlb_remove_table(tlb, table);
967 }
968 
969 void __tlb_remove_table(void *_table)
970 {
971 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
972 	void *table = (void *)((unsigned long) _table & ~mask);
973 	unsigned type = (unsigned long) _table & mask;
974 
975 	if (type)
976 		__page_table_free_rcu(table, type);
977 	else
978 		free_pages((unsigned long) table, ALLOC_ORDER);
979 }
980 
981 static void tlb_remove_table_smp_sync(void *arg)
982 {
983 	/* Simply deliver the interrupt */
984 }
985 
986 static void tlb_remove_table_one(void *table)
987 {
988 	/*
989 	 * This isn't an RCU grace period and hence the page-tables cannot be
990 	 * assumed to be actually RCU-freed.
991 	 *
992 	 * It is however sufficient for software page-table walkers that rely
993 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
994 	 */
995 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
996 	__tlb_remove_table(table);
997 }
998 
999 static void tlb_remove_table_rcu(struct rcu_head *head)
1000 {
1001 	struct mmu_table_batch *batch;
1002 	int i;
1003 
1004 	batch = container_of(head, struct mmu_table_batch, rcu);
1005 
1006 	for (i = 0; i < batch->nr; i++)
1007 		__tlb_remove_table(batch->tables[i]);
1008 
1009 	free_page((unsigned long)batch);
1010 }
1011 
1012 void tlb_table_flush(struct mmu_gather *tlb)
1013 {
1014 	struct mmu_table_batch **batch = &tlb->batch;
1015 
1016 	if (*batch) {
1017 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1018 		*batch = NULL;
1019 	}
1020 }
1021 
1022 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1023 {
1024 	struct mmu_table_batch **batch = &tlb->batch;
1025 
1026 	tlb->mm->context.flush_mm = 1;
1027 	if (*batch == NULL) {
1028 		*batch = (struct mmu_table_batch *)
1029 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1030 		if (*batch == NULL) {
1031 			__tlb_flush_mm_lazy(tlb->mm);
1032 			tlb_remove_table_one(table);
1033 			return;
1034 		}
1035 		(*batch)->nr = 0;
1036 	}
1037 	(*batch)->tables[(*batch)->nr++] = table;
1038 	if ((*batch)->nr == MAX_TABLE_BATCH)
1039 		tlb_flush_mmu(tlb);
1040 }
1041 
1042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1043 static inline void thp_split_vma(struct vm_area_struct *vma)
1044 {
1045 	unsigned long addr;
1046 
1047 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1048 		follow_page(vma, addr, FOLL_SPLIT);
1049 }
1050 
1051 static inline void thp_split_mm(struct mm_struct *mm)
1052 {
1053 	struct vm_area_struct *vma;
1054 
1055 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1056 		thp_split_vma(vma);
1057 		vma->vm_flags &= ~VM_HUGEPAGE;
1058 		vma->vm_flags |= VM_NOHUGEPAGE;
1059 	}
1060 	mm->def_flags |= VM_NOHUGEPAGE;
1061 }
1062 #else
1063 static inline void thp_split_mm(struct mm_struct *mm)
1064 {
1065 }
1066 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1067 
1068 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1069 				struct mm_struct *mm, pud_t *pud,
1070 				unsigned long addr, unsigned long end)
1071 {
1072 	unsigned long next, *table, *new;
1073 	struct page *page;
1074 	pmd_t *pmd;
1075 
1076 	pmd = pmd_offset(pud, addr);
1077 	do {
1078 		next = pmd_addr_end(addr, end);
1079 again:
1080 		if (pmd_none_or_clear_bad(pmd))
1081 			continue;
1082 		table = (unsigned long *) pmd_deref(*pmd);
1083 		page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1084 		if (page_table_with_pgste(page))
1085 			continue;
1086 		/* Allocate new page table with pgstes */
1087 		new = page_table_alloc_pgste(mm, addr);
1088 		if (!new) {
1089 			mm->context.has_pgste = 0;
1090 			continue;
1091 		}
1092 		spin_lock(&mm->page_table_lock);
1093 		if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1094 			/* Nuke pmd entry pointing to the "short" page table */
1095 			pmdp_flush_lazy(mm, addr, pmd);
1096 			pmd_clear(pmd);
1097 			/* Copy ptes from old table to new table */
1098 			memcpy(new, table, PAGE_SIZE/2);
1099 			clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1100 			/* Establish new table */
1101 			pmd_populate(mm, pmd, (pte_t *) new);
1102 			/* Free old table with rcu, there might be a walker! */
1103 			page_table_free_rcu(tlb, table);
1104 			new = NULL;
1105 		}
1106 		spin_unlock(&mm->page_table_lock);
1107 		if (new) {
1108 			page_table_free_pgste(new);
1109 			goto again;
1110 		}
1111 	} while (pmd++, addr = next, addr != end);
1112 
1113 	return addr;
1114 }
1115 
1116 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1117 				   struct mm_struct *mm, pgd_t *pgd,
1118 				   unsigned long addr, unsigned long end)
1119 {
1120 	unsigned long next;
1121 	pud_t *pud;
1122 
1123 	pud = pud_offset(pgd, addr);
1124 	do {
1125 		next = pud_addr_end(addr, end);
1126 		if (pud_none_or_clear_bad(pud))
1127 			continue;
1128 		next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1129 	} while (pud++, addr = next, addr != end);
1130 
1131 	return addr;
1132 }
1133 
1134 static void page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1135 			       unsigned long addr, unsigned long end)
1136 {
1137 	unsigned long next;
1138 	pgd_t *pgd;
1139 
1140 	pgd = pgd_offset(mm, addr);
1141 	do {
1142 		next = pgd_addr_end(addr, end);
1143 		if (pgd_none_or_clear_bad(pgd))
1144 			continue;
1145 		next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1146 	} while (pgd++, addr = next, addr != end);
1147 }
1148 
1149 /*
1150  * switch on pgstes for its userspace process (for kvm)
1151  */
1152 int s390_enable_sie(void)
1153 {
1154 	struct task_struct *tsk = current;
1155 	struct mm_struct *mm = tsk->mm;
1156 	struct mmu_gather tlb;
1157 
1158 	/* Do we have switched amode? If no, we cannot do sie */
1159 	if (s390_user_mode == HOME_SPACE_MODE)
1160 		return -EINVAL;
1161 
1162 	/* Do we have pgstes? if yes, we are done */
1163 	if (mm_has_pgste(tsk->mm))
1164 		return 0;
1165 
1166 	down_write(&mm->mmap_sem);
1167 	/* split thp mappings and disable thp for future mappings */
1168 	thp_split_mm(mm);
1169 	/* Reallocate the page tables with pgstes */
1170 	mm->context.has_pgste = 1;
1171 	tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1172 	page_table_realloc(&tlb, mm, 0, TASK_SIZE);
1173 	tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1174 	up_write(&mm->mmap_sem);
1175 	return mm->context.has_pgste ? 0 : -ENOMEM;
1176 }
1177 EXPORT_SYMBOL_GPL(s390_enable_sie);
1178 
1179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1180 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1181 			   pmd_t *pmdp)
1182 {
1183 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1184 	/* No need to flush TLB
1185 	 * On s390 reference bits are in storage key and never in TLB */
1186 	return pmdp_test_and_clear_young(vma, address, pmdp);
1187 }
1188 
1189 int pmdp_set_access_flags(struct vm_area_struct *vma,
1190 			  unsigned long address, pmd_t *pmdp,
1191 			  pmd_t entry, int dirty)
1192 {
1193 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1194 
1195 	if (pmd_same(*pmdp, entry))
1196 		return 0;
1197 	pmdp_invalidate(vma, address, pmdp);
1198 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1199 	return 1;
1200 }
1201 
1202 static void pmdp_splitting_flush_sync(void *arg)
1203 {
1204 	/* Simply deliver the interrupt */
1205 }
1206 
1207 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1208 			  pmd_t *pmdp)
1209 {
1210 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1211 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1212 			      (unsigned long *) pmdp)) {
1213 		/* need to serialize against gup-fast (IRQ disabled) */
1214 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1215 	}
1216 }
1217 
1218 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1219 				pgtable_t pgtable)
1220 {
1221 	struct list_head *lh = (struct list_head *) pgtable;
1222 
1223 	assert_spin_locked(&mm->page_table_lock);
1224 
1225 	/* FIFO */
1226 	if (!mm->pmd_huge_pte)
1227 		INIT_LIST_HEAD(lh);
1228 	else
1229 		list_add(lh, (struct list_head *) mm->pmd_huge_pte);
1230 	mm->pmd_huge_pte = pgtable;
1231 }
1232 
1233 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1234 {
1235 	struct list_head *lh;
1236 	pgtable_t pgtable;
1237 	pte_t *ptep;
1238 
1239 	assert_spin_locked(&mm->page_table_lock);
1240 
1241 	/* FIFO */
1242 	pgtable = mm->pmd_huge_pte;
1243 	lh = (struct list_head *) pgtable;
1244 	if (list_empty(lh))
1245 		mm->pmd_huge_pte = NULL;
1246 	else {
1247 		mm->pmd_huge_pte = (pgtable_t) lh->next;
1248 		list_del(lh);
1249 	}
1250 	ptep = (pte_t *) pgtable;
1251 	pte_val(*ptep) = _PAGE_INVALID;
1252 	ptep++;
1253 	pte_val(*ptep) = _PAGE_INVALID;
1254 	return pgtable;
1255 }
1256 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1257