1 /* 2 * Copyright IBM Corp. 2007, 2011 3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/kernel.h> 8 #include <linux/errno.h> 9 #include <linux/gfp.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/smp.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> 15 #include <linux/spinlock.h> 16 #include <linux/module.h> 17 #include <linux/quicklist.h> 18 #include <linux/rcupdate.h> 19 #include <linux/slab.h> 20 #include <linux/swapops.h> 21 #include <linux/sysctl.h> 22 #include <linux/ksm.h> 23 #include <linux/mman.h> 24 25 #include <asm/pgtable.h> 26 #include <asm/pgalloc.h> 27 #include <asm/tlb.h> 28 #include <asm/tlbflush.h> 29 #include <asm/mmu_context.h> 30 31 #define ALLOC_ORDER 2 32 #define FRAG_MASK 0x03 33 34 int HPAGE_SHIFT; 35 36 unsigned long *crst_table_alloc(struct mm_struct *mm) 37 { 38 struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); 39 40 if (!page) 41 return NULL; 42 return (unsigned long *) page_to_phys(page); 43 } 44 45 void crst_table_free(struct mm_struct *mm, unsigned long *table) 46 { 47 free_pages((unsigned long) table, ALLOC_ORDER); 48 } 49 50 static void __crst_table_upgrade(void *arg) 51 { 52 struct mm_struct *mm = arg; 53 54 if (current->active_mm == mm) { 55 clear_user_asce(); 56 set_user_asce(mm); 57 } 58 __tlb_flush_local(); 59 } 60 61 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit) 62 { 63 unsigned long *table, *pgd; 64 unsigned long entry; 65 int flush; 66 67 BUG_ON(limit > (1UL << 53)); 68 flush = 0; 69 repeat: 70 table = crst_table_alloc(mm); 71 if (!table) 72 return -ENOMEM; 73 spin_lock_bh(&mm->page_table_lock); 74 if (mm->context.asce_limit < limit) { 75 pgd = (unsigned long *) mm->pgd; 76 if (mm->context.asce_limit <= (1UL << 31)) { 77 entry = _REGION3_ENTRY_EMPTY; 78 mm->context.asce_limit = 1UL << 42; 79 mm->context.asce_bits = _ASCE_TABLE_LENGTH | 80 _ASCE_USER_BITS | 81 _ASCE_TYPE_REGION3; 82 } else { 83 entry = _REGION2_ENTRY_EMPTY; 84 mm->context.asce_limit = 1UL << 53; 85 mm->context.asce_bits = _ASCE_TABLE_LENGTH | 86 _ASCE_USER_BITS | 87 _ASCE_TYPE_REGION2; 88 } 89 crst_table_init(table, entry); 90 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd); 91 mm->pgd = (pgd_t *) table; 92 mm->task_size = mm->context.asce_limit; 93 table = NULL; 94 flush = 1; 95 } 96 spin_unlock_bh(&mm->page_table_lock); 97 if (table) 98 crst_table_free(mm, table); 99 if (mm->context.asce_limit < limit) 100 goto repeat; 101 if (flush) 102 on_each_cpu(__crst_table_upgrade, mm, 0); 103 return 0; 104 } 105 106 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit) 107 { 108 pgd_t *pgd; 109 110 if (current->active_mm == mm) { 111 clear_user_asce(); 112 __tlb_flush_mm(mm); 113 } 114 while (mm->context.asce_limit > limit) { 115 pgd = mm->pgd; 116 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) { 117 case _REGION_ENTRY_TYPE_R2: 118 mm->context.asce_limit = 1UL << 42; 119 mm->context.asce_bits = _ASCE_TABLE_LENGTH | 120 _ASCE_USER_BITS | 121 _ASCE_TYPE_REGION3; 122 break; 123 case _REGION_ENTRY_TYPE_R3: 124 mm->context.asce_limit = 1UL << 31; 125 mm->context.asce_bits = _ASCE_TABLE_LENGTH | 126 _ASCE_USER_BITS | 127 _ASCE_TYPE_SEGMENT; 128 break; 129 default: 130 BUG(); 131 } 132 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN); 133 mm->task_size = mm->context.asce_limit; 134 crst_table_free(mm, (unsigned long *) pgd); 135 } 136 if (current->active_mm == mm) 137 set_user_asce(mm); 138 } 139 140 #ifdef CONFIG_PGSTE 141 142 /** 143 * gmap_alloc - allocate a guest address space 144 * @mm: pointer to the parent mm_struct 145 * @limit: maximum size of the gmap address space 146 * 147 * Returns a guest address space structure. 148 */ 149 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) 150 { 151 struct gmap *gmap; 152 struct page *page; 153 unsigned long *table; 154 unsigned long etype, atype; 155 156 if (limit < (1UL << 31)) { 157 limit = (1UL << 31) - 1; 158 atype = _ASCE_TYPE_SEGMENT; 159 etype = _SEGMENT_ENTRY_EMPTY; 160 } else if (limit < (1UL << 42)) { 161 limit = (1UL << 42) - 1; 162 atype = _ASCE_TYPE_REGION3; 163 etype = _REGION3_ENTRY_EMPTY; 164 } else if (limit < (1UL << 53)) { 165 limit = (1UL << 53) - 1; 166 atype = _ASCE_TYPE_REGION2; 167 etype = _REGION2_ENTRY_EMPTY; 168 } else { 169 limit = -1UL; 170 atype = _ASCE_TYPE_REGION1; 171 etype = _REGION1_ENTRY_EMPTY; 172 } 173 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 174 if (!gmap) 175 goto out; 176 INIT_LIST_HEAD(&gmap->crst_list); 177 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 178 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 179 spin_lock_init(&gmap->guest_table_lock); 180 gmap->mm = mm; 181 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); 182 if (!page) 183 goto out_free; 184 page->index = 0; 185 list_add(&page->lru, &gmap->crst_list); 186 table = (unsigned long *) page_to_phys(page); 187 crst_table_init(table, etype); 188 gmap->table = table; 189 gmap->asce = atype | _ASCE_TABLE_LENGTH | 190 _ASCE_USER_BITS | __pa(table); 191 gmap->asce_end = limit; 192 down_write(&mm->mmap_sem); 193 list_add(&gmap->list, &mm->context.gmap_list); 194 up_write(&mm->mmap_sem); 195 return gmap; 196 197 out_free: 198 kfree(gmap); 199 out: 200 return NULL; 201 } 202 EXPORT_SYMBOL_GPL(gmap_alloc); 203 204 static void gmap_flush_tlb(struct gmap *gmap) 205 { 206 if (MACHINE_HAS_IDTE) 207 __tlb_flush_asce(gmap->mm, gmap->asce); 208 else 209 __tlb_flush_global(); 210 } 211 212 static void gmap_radix_tree_free(struct radix_tree_root *root) 213 { 214 struct radix_tree_iter iter; 215 unsigned long indices[16]; 216 unsigned long index; 217 void **slot; 218 int i, nr; 219 220 /* A radix tree is freed by deleting all of its entries */ 221 index = 0; 222 do { 223 nr = 0; 224 radix_tree_for_each_slot(slot, root, &iter, index) { 225 indices[nr] = iter.index; 226 if (++nr == 16) 227 break; 228 } 229 for (i = 0; i < nr; i++) { 230 index = indices[i]; 231 radix_tree_delete(root, index); 232 } 233 } while (nr > 0); 234 } 235 236 /** 237 * gmap_free - free a guest address space 238 * @gmap: pointer to the guest address space structure 239 */ 240 void gmap_free(struct gmap *gmap) 241 { 242 struct page *page, *next; 243 244 /* Flush tlb. */ 245 if (MACHINE_HAS_IDTE) 246 __tlb_flush_asce(gmap->mm, gmap->asce); 247 else 248 __tlb_flush_global(); 249 250 /* Free all segment & region tables. */ 251 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 252 __free_pages(page, ALLOC_ORDER); 253 gmap_radix_tree_free(&gmap->guest_to_host); 254 gmap_radix_tree_free(&gmap->host_to_guest); 255 down_write(&gmap->mm->mmap_sem); 256 list_del(&gmap->list); 257 up_write(&gmap->mm->mmap_sem); 258 kfree(gmap); 259 } 260 EXPORT_SYMBOL_GPL(gmap_free); 261 262 /** 263 * gmap_enable - switch primary space to the guest address space 264 * @gmap: pointer to the guest address space structure 265 */ 266 void gmap_enable(struct gmap *gmap) 267 { 268 S390_lowcore.gmap = (unsigned long) gmap; 269 } 270 EXPORT_SYMBOL_GPL(gmap_enable); 271 272 /** 273 * gmap_disable - switch back to the standard primary address space 274 * @gmap: pointer to the guest address space structure 275 */ 276 void gmap_disable(struct gmap *gmap) 277 { 278 S390_lowcore.gmap = 0UL; 279 } 280 EXPORT_SYMBOL_GPL(gmap_disable); 281 282 /* 283 * gmap_alloc_table is assumed to be called with mmap_sem held 284 */ 285 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 286 unsigned long init, unsigned long gaddr) 287 { 288 struct page *page; 289 unsigned long *new; 290 291 /* since we dont free the gmap table until gmap_free we can unlock */ 292 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER); 293 if (!page) 294 return -ENOMEM; 295 new = (unsigned long *) page_to_phys(page); 296 crst_table_init(new, init); 297 spin_lock(&gmap->mm->page_table_lock); 298 if (*table & _REGION_ENTRY_INVALID) { 299 list_add(&page->lru, &gmap->crst_list); 300 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 301 (*table & _REGION_ENTRY_TYPE_MASK); 302 page->index = gaddr; 303 page = NULL; 304 } 305 spin_unlock(&gmap->mm->page_table_lock); 306 if (page) 307 __free_pages(page, ALLOC_ORDER); 308 return 0; 309 } 310 311 /** 312 * __gmap_segment_gaddr - find virtual address from segment pointer 313 * @entry: pointer to a segment table entry in the guest address space 314 * 315 * Returns the virtual address in the guest address space for the segment 316 */ 317 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 318 { 319 struct page *page; 320 unsigned long offset, mask; 321 322 offset = (unsigned long) entry / sizeof(unsigned long); 323 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 324 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 325 page = virt_to_page((void *)((unsigned long) entry & mask)); 326 return page->index + offset; 327 } 328 329 /** 330 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 331 * @gmap: pointer to the guest address space structure 332 * @vmaddr: address in the host process address space 333 * 334 * Returns 1 if a TLB flush is required 335 */ 336 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 337 { 338 unsigned long *entry; 339 int flush = 0; 340 341 spin_lock(&gmap->guest_table_lock); 342 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 343 if (entry) { 344 flush = (*entry != _SEGMENT_ENTRY_INVALID); 345 *entry = _SEGMENT_ENTRY_INVALID; 346 } 347 spin_unlock(&gmap->guest_table_lock); 348 return flush; 349 } 350 351 /** 352 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 353 * @gmap: pointer to the guest address space structure 354 * @gaddr: address in the guest address space 355 * 356 * Returns 1 if a TLB flush is required 357 */ 358 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 359 { 360 unsigned long vmaddr; 361 362 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 363 gaddr >> PMD_SHIFT); 364 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 365 } 366 367 /** 368 * gmap_unmap_segment - unmap segment from the guest address space 369 * @gmap: pointer to the guest address space structure 370 * @to: address in the guest address space 371 * @len: length of the memory area to unmap 372 * 373 * Returns 0 if the unmap succeeded, -EINVAL if not. 374 */ 375 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 376 { 377 unsigned long off; 378 int flush; 379 380 if ((to | len) & (PMD_SIZE - 1)) 381 return -EINVAL; 382 if (len == 0 || to + len < to) 383 return -EINVAL; 384 385 flush = 0; 386 down_write(&gmap->mm->mmap_sem); 387 for (off = 0; off < len; off += PMD_SIZE) 388 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 389 up_write(&gmap->mm->mmap_sem); 390 if (flush) 391 gmap_flush_tlb(gmap); 392 return 0; 393 } 394 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 395 396 /** 397 * gmap_mmap_segment - map a segment to the guest address space 398 * @gmap: pointer to the guest address space structure 399 * @from: source address in the parent address space 400 * @to: target address in the guest address space 401 * @len: length of the memory area to map 402 * 403 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 404 */ 405 int gmap_map_segment(struct gmap *gmap, unsigned long from, 406 unsigned long to, unsigned long len) 407 { 408 unsigned long off; 409 int flush; 410 411 if ((from | to | len) & (PMD_SIZE - 1)) 412 return -EINVAL; 413 if (len == 0 || from + len < from || to + len < to || 414 from + len > TASK_MAX_SIZE || to + len > gmap->asce_end) 415 return -EINVAL; 416 417 flush = 0; 418 down_write(&gmap->mm->mmap_sem); 419 for (off = 0; off < len; off += PMD_SIZE) { 420 /* Remove old translation */ 421 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 422 /* Store new translation */ 423 if (radix_tree_insert(&gmap->guest_to_host, 424 (to + off) >> PMD_SHIFT, 425 (void *) from + off)) 426 break; 427 } 428 up_write(&gmap->mm->mmap_sem); 429 if (flush) 430 gmap_flush_tlb(gmap); 431 if (off >= len) 432 return 0; 433 gmap_unmap_segment(gmap, to, len); 434 return -ENOMEM; 435 } 436 EXPORT_SYMBOL_GPL(gmap_map_segment); 437 438 /** 439 * __gmap_translate - translate a guest address to a user space address 440 * @gmap: pointer to guest mapping meta data structure 441 * @gaddr: guest address 442 * 443 * Returns user space address which corresponds to the guest address or 444 * -EFAULT if no such mapping exists. 445 * This function does not establish potentially missing page table entries. 446 * The mmap_sem of the mm that belongs to the address space must be held 447 * when this function gets called. 448 */ 449 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 450 { 451 unsigned long vmaddr; 452 453 vmaddr = (unsigned long) 454 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 455 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 456 } 457 EXPORT_SYMBOL_GPL(__gmap_translate); 458 459 /** 460 * gmap_translate - translate a guest address to a user space address 461 * @gmap: pointer to guest mapping meta data structure 462 * @gaddr: guest address 463 * 464 * Returns user space address which corresponds to the guest address or 465 * -EFAULT if no such mapping exists. 466 * This function does not establish potentially missing page table entries. 467 */ 468 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 469 { 470 unsigned long rc; 471 472 down_read(&gmap->mm->mmap_sem); 473 rc = __gmap_translate(gmap, gaddr); 474 up_read(&gmap->mm->mmap_sem); 475 return rc; 476 } 477 EXPORT_SYMBOL_GPL(gmap_translate); 478 479 /** 480 * gmap_unlink - disconnect a page table from the gmap shadow tables 481 * @gmap: pointer to guest mapping meta data structure 482 * @table: pointer to the host page table 483 * @vmaddr: vm address associated with the host page table 484 */ 485 static void gmap_unlink(struct mm_struct *mm, unsigned long *table, 486 unsigned long vmaddr) 487 { 488 struct gmap *gmap; 489 int flush; 490 491 list_for_each_entry(gmap, &mm->context.gmap_list, list) { 492 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 493 if (flush) 494 gmap_flush_tlb(gmap); 495 } 496 } 497 498 /** 499 * gmap_link - set up shadow page tables to connect a host to a guest address 500 * @gmap: pointer to guest mapping meta data structure 501 * @gaddr: guest address 502 * @vmaddr: vm address 503 * 504 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 505 * if the vm address is already mapped to a different guest segment. 506 * The mmap_sem of the mm that belongs to the address space must be held 507 * when this function gets called. 508 */ 509 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 510 { 511 struct mm_struct *mm; 512 unsigned long *table; 513 spinlock_t *ptl; 514 pgd_t *pgd; 515 pud_t *pud; 516 pmd_t *pmd; 517 int rc; 518 519 /* Create higher level tables in the gmap page table */ 520 table = gmap->table; 521 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 522 table += (gaddr >> 53) & 0x7ff; 523 if ((*table & _REGION_ENTRY_INVALID) && 524 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 525 gaddr & 0xffe0000000000000UL)) 526 return -ENOMEM; 527 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 528 } 529 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 530 table += (gaddr >> 42) & 0x7ff; 531 if ((*table & _REGION_ENTRY_INVALID) && 532 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 533 gaddr & 0xfffffc0000000000UL)) 534 return -ENOMEM; 535 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 536 } 537 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 538 table += (gaddr >> 31) & 0x7ff; 539 if ((*table & _REGION_ENTRY_INVALID) && 540 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 541 gaddr & 0xffffffff80000000UL)) 542 return -ENOMEM; 543 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 544 } 545 table += (gaddr >> 20) & 0x7ff; 546 /* Walk the parent mm page table */ 547 mm = gmap->mm; 548 pgd = pgd_offset(mm, vmaddr); 549 VM_BUG_ON(pgd_none(*pgd)); 550 pud = pud_offset(pgd, vmaddr); 551 VM_BUG_ON(pud_none(*pud)); 552 pmd = pmd_offset(pud, vmaddr); 553 VM_BUG_ON(pmd_none(*pmd)); 554 /* large pmds cannot yet be handled */ 555 if (pmd_large(*pmd)) 556 return -EFAULT; 557 /* Link gmap segment table entry location to page table. */ 558 rc = radix_tree_preload(GFP_KERNEL); 559 if (rc) 560 return rc; 561 ptl = pmd_lock(mm, pmd); 562 spin_lock(&gmap->guest_table_lock); 563 if (*table == _SEGMENT_ENTRY_INVALID) { 564 rc = radix_tree_insert(&gmap->host_to_guest, 565 vmaddr >> PMD_SHIFT, table); 566 if (!rc) 567 *table = pmd_val(*pmd); 568 } else 569 rc = 0; 570 spin_unlock(&gmap->guest_table_lock); 571 spin_unlock(ptl); 572 radix_tree_preload_end(); 573 return rc; 574 } 575 576 /** 577 * gmap_fault - resolve a fault on a guest address 578 * @gmap: pointer to guest mapping meta data structure 579 * @gaddr: guest address 580 * @fault_flags: flags to pass down to handle_mm_fault() 581 * 582 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 583 * if the vm address is already mapped to a different guest segment. 584 */ 585 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 586 unsigned int fault_flags) 587 { 588 unsigned long vmaddr; 589 int rc; 590 591 down_read(&gmap->mm->mmap_sem); 592 vmaddr = __gmap_translate(gmap, gaddr); 593 if (IS_ERR_VALUE(vmaddr)) { 594 rc = vmaddr; 595 goto out_up; 596 } 597 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) { 598 rc = -EFAULT; 599 goto out_up; 600 } 601 rc = __gmap_link(gmap, gaddr, vmaddr); 602 out_up: 603 up_read(&gmap->mm->mmap_sem); 604 return rc; 605 } 606 EXPORT_SYMBOL_GPL(gmap_fault); 607 608 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm) 609 { 610 if (!non_swap_entry(entry)) 611 dec_mm_counter(mm, MM_SWAPENTS); 612 else if (is_migration_entry(entry)) { 613 struct page *page = migration_entry_to_page(entry); 614 615 if (PageAnon(page)) 616 dec_mm_counter(mm, MM_ANONPAGES); 617 else 618 dec_mm_counter(mm, MM_FILEPAGES); 619 } 620 free_swap_and_cache(entry); 621 } 622 623 /* 624 * this function is assumed to be called with mmap_sem held 625 */ 626 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 627 { 628 unsigned long vmaddr, ptev, pgstev; 629 pte_t *ptep, pte; 630 spinlock_t *ptl; 631 pgste_t pgste; 632 633 /* Find the vm address for the guest address */ 634 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 635 gaddr >> PMD_SHIFT); 636 if (!vmaddr) 637 return; 638 vmaddr |= gaddr & ~PMD_MASK; 639 /* Get pointer to the page table entry */ 640 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 641 if (unlikely(!ptep)) 642 return; 643 pte = *ptep; 644 if (!pte_swap(pte)) 645 goto out_pte; 646 /* Zap unused and logically-zero pages */ 647 pgste = pgste_get_lock(ptep); 648 pgstev = pgste_val(pgste); 649 ptev = pte_val(pte); 650 if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) || 651 ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) { 652 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm); 653 pte_clear(gmap->mm, vmaddr, ptep); 654 } 655 pgste_set_unlock(ptep, pgste); 656 out_pte: 657 pte_unmap_unlock(ptep, ptl); 658 } 659 EXPORT_SYMBOL_GPL(__gmap_zap); 660 661 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 662 { 663 unsigned long gaddr, vmaddr, size; 664 struct vm_area_struct *vma; 665 666 down_read(&gmap->mm->mmap_sem); 667 for (gaddr = from; gaddr < to; 668 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 669 /* Find the vm address for the guest address */ 670 vmaddr = (unsigned long) 671 radix_tree_lookup(&gmap->guest_to_host, 672 gaddr >> PMD_SHIFT); 673 if (!vmaddr) 674 continue; 675 vmaddr |= gaddr & ~PMD_MASK; 676 /* Find vma in the parent mm */ 677 vma = find_vma(gmap->mm, vmaddr); 678 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 679 zap_page_range(vma, vmaddr, size, NULL); 680 } 681 up_read(&gmap->mm->mmap_sem); 682 } 683 EXPORT_SYMBOL_GPL(gmap_discard); 684 685 static LIST_HEAD(gmap_notifier_list); 686 static DEFINE_SPINLOCK(gmap_notifier_lock); 687 688 /** 689 * gmap_register_ipte_notifier - register a pte invalidation callback 690 * @nb: pointer to the gmap notifier block 691 */ 692 void gmap_register_ipte_notifier(struct gmap_notifier *nb) 693 { 694 spin_lock(&gmap_notifier_lock); 695 list_add(&nb->list, &gmap_notifier_list); 696 spin_unlock(&gmap_notifier_lock); 697 } 698 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier); 699 700 /** 701 * gmap_unregister_ipte_notifier - remove a pte invalidation callback 702 * @nb: pointer to the gmap notifier block 703 */ 704 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb) 705 { 706 spin_lock(&gmap_notifier_lock); 707 list_del_init(&nb->list); 708 spin_unlock(&gmap_notifier_lock); 709 } 710 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier); 711 712 /** 713 * gmap_ipte_notify - mark a range of ptes for invalidation notification 714 * @gmap: pointer to guest mapping meta data structure 715 * @gaddr: virtual address in the guest address space 716 * @len: size of area 717 * 718 * Returns 0 if for each page in the given range a gmap mapping exists and 719 * the invalidation notification could be set. If the gmap mapping is missing 720 * for one or more pages -EFAULT is returned. If no memory could be allocated 721 * -ENOMEM is returned. This function establishes missing page table entries. 722 */ 723 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len) 724 { 725 unsigned long addr; 726 spinlock_t *ptl; 727 pte_t *ptep, entry; 728 pgste_t pgste; 729 int rc = 0; 730 731 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK)) 732 return -EINVAL; 733 down_read(&gmap->mm->mmap_sem); 734 while (len) { 735 /* Convert gmap address and connect the page tables */ 736 addr = __gmap_translate(gmap, gaddr); 737 if (IS_ERR_VALUE(addr)) { 738 rc = addr; 739 break; 740 } 741 /* Get the page mapped */ 742 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) { 743 rc = -EFAULT; 744 break; 745 } 746 rc = __gmap_link(gmap, gaddr, addr); 747 if (rc) 748 break; 749 /* Walk the process page table, lock and get pte pointer */ 750 ptep = get_locked_pte(gmap->mm, addr, &ptl); 751 VM_BUG_ON(!ptep); 752 /* Set notification bit in the pgste of the pte */ 753 entry = *ptep; 754 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) { 755 pgste = pgste_get_lock(ptep); 756 pgste_val(pgste) |= PGSTE_IN_BIT; 757 pgste_set_unlock(ptep, pgste); 758 gaddr += PAGE_SIZE; 759 len -= PAGE_SIZE; 760 } 761 pte_unmap_unlock(ptep, ptl); 762 } 763 up_read(&gmap->mm->mmap_sem); 764 return rc; 765 } 766 EXPORT_SYMBOL_GPL(gmap_ipte_notify); 767 768 /** 769 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte. 770 * @mm: pointer to the process mm_struct 771 * @addr: virtual address in the process address space 772 * @pte: pointer to the page table entry 773 * 774 * This function is assumed to be called with the page table lock held 775 * for the pte to notify. 776 */ 777 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte) 778 { 779 unsigned long offset, gaddr; 780 unsigned long *table; 781 struct gmap_notifier *nb; 782 struct gmap *gmap; 783 784 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 785 offset = offset * (4096 / sizeof(pte_t)); 786 spin_lock(&gmap_notifier_lock); 787 list_for_each_entry(gmap, &mm->context.gmap_list, list) { 788 table = radix_tree_lookup(&gmap->host_to_guest, 789 vmaddr >> PMD_SHIFT); 790 if (!table) 791 continue; 792 gaddr = __gmap_segment_gaddr(table) + offset; 793 list_for_each_entry(nb, &gmap_notifier_list, list) 794 nb->notifier_call(gmap, gaddr); 795 } 796 spin_unlock(&gmap_notifier_lock); 797 } 798 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify); 799 800 static inline int page_table_with_pgste(struct page *page) 801 { 802 return atomic_read(&page->_mapcount) == 0; 803 } 804 805 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm) 806 { 807 struct page *page; 808 unsigned long *table; 809 810 page = alloc_page(GFP_KERNEL|__GFP_REPEAT); 811 if (!page) 812 return NULL; 813 if (!pgtable_page_ctor(page)) { 814 __free_page(page); 815 return NULL; 816 } 817 atomic_set(&page->_mapcount, 0); 818 table = (unsigned long *) page_to_phys(page); 819 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2); 820 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2); 821 return table; 822 } 823 824 static inline void page_table_free_pgste(unsigned long *table) 825 { 826 struct page *page; 827 828 page = pfn_to_page(__pa(table) >> PAGE_SHIFT); 829 pgtable_page_dtor(page); 830 atomic_set(&page->_mapcount, -1); 831 __free_page(page); 832 } 833 834 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 835 unsigned long key, bool nq) 836 { 837 spinlock_t *ptl; 838 pgste_t old, new; 839 pte_t *ptep; 840 841 down_read(&mm->mmap_sem); 842 retry: 843 ptep = get_locked_pte(mm, addr, &ptl); 844 if (unlikely(!ptep)) { 845 up_read(&mm->mmap_sem); 846 return -EFAULT; 847 } 848 if (!(pte_val(*ptep) & _PAGE_INVALID) && 849 (pte_val(*ptep) & _PAGE_PROTECT)) { 850 pte_unmap_unlock(ptep, ptl); 851 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) { 852 up_read(&mm->mmap_sem); 853 return -EFAULT; 854 } 855 goto retry; 856 } 857 858 new = old = pgste_get_lock(ptep); 859 pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT | 860 PGSTE_ACC_BITS | PGSTE_FP_BIT); 861 pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48; 862 pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 863 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 864 unsigned long address, bits, skey; 865 866 address = pte_val(*ptep) & PAGE_MASK; 867 skey = (unsigned long) page_get_storage_key(address); 868 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 869 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT); 870 /* Set storage key ACC and FP */ 871 page_set_storage_key(address, skey, !nq); 872 /* Merge host changed & referenced into pgste */ 873 pgste_val(new) |= bits << 52; 874 } 875 /* changing the guest storage key is considered a change of the page */ 876 if ((pgste_val(new) ^ pgste_val(old)) & 877 (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT)) 878 pgste_val(new) |= PGSTE_UC_BIT; 879 880 pgste_set_unlock(ptep, new); 881 pte_unmap_unlock(ptep, ptl); 882 up_read(&mm->mmap_sem); 883 return 0; 884 } 885 EXPORT_SYMBOL(set_guest_storage_key); 886 887 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr) 888 { 889 spinlock_t *ptl; 890 pgste_t pgste; 891 pte_t *ptep; 892 uint64_t physaddr; 893 unsigned long key = 0; 894 895 down_read(&mm->mmap_sem); 896 ptep = get_locked_pte(mm, addr, &ptl); 897 if (unlikely(!ptep)) { 898 up_read(&mm->mmap_sem); 899 return -EFAULT; 900 } 901 pgste = pgste_get_lock(ptep); 902 903 if (pte_val(*ptep) & _PAGE_INVALID) { 904 key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56; 905 key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56; 906 key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48; 907 key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48; 908 } else { 909 physaddr = pte_val(*ptep) & PAGE_MASK; 910 key = page_get_storage_key(physaddr); 911 912 /* Reflect guest's logical view, not physical */ 913 if (pgste_val(pgste) & PGSTE_GR_BIT) 914 key |= _PAGE_REFERENCED; 915 if (pgste_val(pgste) & PGSTE_GC_BIT) 916 key |= _PAGE_CHANGED; 917 } 918 919 pgste_set_unlock(ptep, pgste); 920 pte_unmap_unlock(ptep, ptl); 921 up_read(&mm->mmap_sem); 922 return key; 923 } 924 EXPORT_SYMBOL(get_guest_storage_key); 925 926 static int page_table_allocate_pgste_min = 0; 927 static int page_table_allocate_pgste_max = 1; 928 int page_table_allocate_pgste = 0; 929 EXPORT_SYMBOL(page_table_allocate_pgste); 930 931 static struct ctl_table page_table_sysctl[] = { 932 { 933 .procname = "allocate_pgste", 934 .data = &page_table_allocate_pgste, 935 .maxlen = sizeof(int), 936 .mode = S_IRUGO | S_IWUSR, 937 .proc_handler = proc_dointvec, 938 .extra1 = &page_table_allocate_pgste_min, 939 .extra2 = &page_table_allocate_pgste_max, 940 }, 941 { } 942 }; 943 944 static struct ctl_table page_table_sysctl_dir[] = { 945 { 946 .procname = "vm", 947 .maxlen = 0, 948 .mode = 0555, 949 .child = page_table_sysctl, 950 }, 951 { } 952 }; 953 954 static int __init page_table_register_sysctl(void) 955 { 956 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM; 957 } 958 __initcall(page_table_register_sysctl); 959 960 #else /* CONFIG_PGSTE */ 961 962 static inline int page_table_with_pgste(struct page *page) 963 { 964 return 0; 965 } 966 967 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm) 968 { 969 return NULL; 970 } 971 972 static inline void page_table_free_pgste(unsigned long *table) 973 { 974 } 975 976 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table, 977 unsigned long vmaddr) 978 { 979 } 980 981 #endif /* CONFIG_PGSTE */ 982 983 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) 984 { 985 unsigned int old, new; 986 987 do { 988 old = atomic_read(v); 989 new = old ^ bits; 990 } while (atomic_cmpxchg(v, old, new) != old); 991 return new; 992 } 993 994 /* 995 * page table entry allocation/free routines. 996 */ 997 unsigned long *page_table_alloc(struct mm_struct *mm) 998 { 999 unsigned long *uninitialized_var(table); 1000 struct page *uninitialized_var(page); 1001 unsigned int mask, bit; 1002 1003 if (mm_alloc_pgste(mm)) 1004 return page_table_alloc_pgste(mm); 1005 /* Allocate fragments of a 4K page as 1K/2K page table */ 1006 spin_lock_bh(&mm->context.list_lock); 1007 mask = FRAG_MASK; 1008 if (!list_empty(&mm->context.pgtable_list)) { 1009 page = list_first_entry(&mm->context.pgtable_list, 1010 struct page, lru); 1011 table = (unsigned long *) page_to_phys(page); 1012 mask = atomic_read(&page->_mapcount); 1013 mask = mask | (mask >> 4); 1014 } 1015 if ((mask & FRAG_MASK) == FRAG_MASK) { 1016 spin_unlock_bh(&mm->context.list_lock); 1017 page = alloc_page(GFP_KERNEL|__GFP_REPEAT); 1018 if (!page) 1019 return NULL; 1020 if (!pgtable_page_ctor(page)) { 1021 __free_page(page); 1022 return NULL; 1023 } 1024 atomic_set(&page->_mapcount, 1); 1025 table = (unsigned long *) page_to_phys(page); 1026 clear_table(table, _PAGE_INVALID, PAGE_SIZE); 1027 spin_lock_bh(&mm->context.list_lock); 1028 list_add(&page->lru, &mm->context.pgtable_list); 1029 } else { 1030 for (bit = 1; mask & bit; bit <<= 1) 1031 table += PTRS_PER_PTE; 1032 mask = atomic_xor_bits(&page->_mapcount, bit); 1033 if ((mask & FRAG_MASK) == FRAG_MASK) 1034 list_del(&page->lru); 1035 } 1036 spin_unlock_bh(&mm->context.list_lock); 1037 return table; 1038 } 1039 1040 void page_table_free(struct mm_struct *mm, unsigned long *table) 1041 { 1042 struct page *page; 1043 unsigned int bit, mask; 1044 1045 page = pfn_to_page(__pa(table) >> PAGE_SHIFT); 1046 if (page_table_with_pgste(page)) 1047 return page_table_free_pgste(table); 1048 /* Free 1K/2K page table fragment of a 4K page */ 1049 bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t))); 1050 spin_lock_bh(&mm->context.list_lock); 1051 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK) 1052 list_del(&page->lru); 1053 mask = atomic_xor_bits(&page->_mapcount, bit); 1054 if (mask & FRAG_MASK) 1055 list_add(&page->lru, &mm->context.pgtable_list); 1056 spin_unlock_bh(&mm->context.list_lock); 1057 if (mask == 0) { 1058 pgtable_page_dtor(page); 1059 atomic_set(&page->_mapcount, -1); 1060 __free_page(page); 1061 } 1062 } 1063 1064 static void __page_table_free_rcu(void *table, unsigned bit) 1065 { 1066 struct page *page; 1067 1068 if (bit == FRAG_MASK) 1069 return page_table_free_pgste(table); 1070 /* Free 1K/2K page table fragment of a 4K page */ 1071 page = pfn_to_page(__pa(table) >> PAGE_SHIFT); 1072 if (atomic_xor_bits(&page->_mapcount, bit) == 0) { 1073 pgtable_page_dtor(page); 1074 atomic_set(&page->_mapcount, -1); 1075 __free_page(page); 1076 } 1077 } 1078 1079 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, 1080 unsigned long vmaddr) 1081 { 1082 struct mm_struct *mm; 1083 struct page *page; 1084 unsigned int bit, mask; 1085 1086 mm = tlb->mm; 1087 page = pfn_to_page(__pa(table) >> PAGE_SHIFT); 1088 if (page_table_with_pgste(page)) { 1089 gmap_unlink(mm, table, vmaddr); 1090 table = (unsigned long *) (__pa(table) | FRAG_MASK); 1091 tlb_remove_table(tlb, table); 1092 return; 1093 } 1094 bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t))); 1095 spin_lock_bh(&mm->context.list_lock); 1096 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK) 1097 list_del(&page->lru); 1098 mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4)); 1099 if (mask & FRAG_MASK) 1100 list_add_tail(&page->lru, &mm->context.pgtable_list); 1101 spin_unlock_bh(&mm->context.list_lock); 1102 table = (unsigned long *) (__pa(table) | (bit << 4)); 1103 tlb_remove_table(tlb, table); 1104 } 1105 1106 static void __tlb_remove_table(void *_table) 1107 { 1108 const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK; 1109 void *table = (void *)((unsigned long) _table & ~mask); 1110 unsigned type = (unsigned long) _table & mask; 1111 1112 if (type) 1113 __page_table_free_rcu(table, type); 1114 else 1115 free_pages((unsigned long) table, ALLOC_ORDER); 1116 } 1117 1118 static void tlb_remove_table_smp_sync(void *arg) 1119 { 1120 /* Simply deliver the interrupt */ 1121 } 1122 1123 static void tlb_remove_table_one(void *table) 1124 { 1125 /* 1126 * This isn't an RCU grace period and hence the page-tables cannot be 1127 * assumed to be actually RCU-freed. 1128 * 1129 * It is however sufficient for software page-table walkers that rely 1130 * on IRQ disabling. See the comment near struct mmu_table_batch. 1131 */ 1132 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 1133 __tlb_remove_table(table); 1134 } 1135 1136 static void tlb_remove_table_rcu(struct rcu_head *head) 1137 { 1138 struct mmu_table_batch *batch; 1139 int i; 1140 1141 batch = container_of(head, struct mmu_table_batch, rcu); 1142 1143 for (i = 0; i < batch->nr; i++) 1144 __tlb_remove_table(batch->tables[i]); 1145 1146 free_page((unsigned long)batch); 1147 } 1148 1149 void tlb_table_flush(struct mmu_gather *tlb) 1150 { 1151 struct mmu_table_batch **batch = &tlb->batch; 1152 1153 if (*batch) { 1154 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 1155 *batch = NULL; 1156 } 1157 } 1158 1159 void tlb_remove_table(struct mmu_gather *tlb, void *table) 1160 { 1161 struct mmu_table_batch **batch = &tlb->batch; 1162 1163 tlb->mm->context.flush_mm = 1; 1164 if (*batch == NULL) { 1165 *batch = (struct mmu_table_batch *) 1166 __get_free_page(GFP_NOWAIT | __GFP_NOWARN); 1167 if (*batch == NULL) { 1168 __tlb_flush_mm_lazy(tlb->mm); 1169 tlb_remove_table_one(table); 1170 return; 1171 } 1172 (*batch)->nr = 0; 1173 } 1174 (*batch)->tables[(*batch)->nr++] = table; 1175 if ((*batch)->nr == MAX_TABLE_BATCH) 1176 tlb_flush_mmu(tlb); 1177 } 1178 1179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1180 static inline void thp_split_vma(struct vm_area_struct *vma) 1181 { 1182 unsigned long addr; 1183 1184 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) 1185 follow_page(vma, addr, FOLL_SPLIT); 1186 } 1187 1188 static inline void thp_split_mm(struct mm_struct *mm) 1189 { 1190 struct vm_area_struct *vma; 1191 1192 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 1193 thp_split_vma(vma); 1194 vma->vm_flags &= ~VM_HUGEPAGE; 1195 vma->vm_flags |= VM_NOHUGEPAGE; 1196 } 1197 mm->def_flags |= VM_NOHUGEPAGE; 1198 } 1199 #else 1200 static inline void thp_split_mm(struct mm_struct *mm) 1201 { 1202 } 1203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1204 1205 /* 1206 * switch on pgstes for its userspace process (for kvm) 1207 */ 1208 int s390_enable_sie(void) 1209 { 1210 struct mm_struct *mm = current->mm; 1211 1212 /* Do we have pgstes? if yes, we are done */ 1213 if (mm_has_pgste(mm)) 1214 return 0; 1215 /* Fail if the page tables are 2K */ 1216 if (!mm_alloc_pgste(mm)) 1217 return -EINVAL; 1218 down_write(&mm->mmap_sem); 1219 mm->context.has_pgste = 1; 1220 /* split thp mappings and disable thp for future mappings */ 1221 thp_split_mm(mm); 1222 up_write(&mm->mmap_sem); 1223 return 0; 1224 } 1225 EXPORT_SYMBOL_GPL(s390_enable_sie); 1226 1227 /* 1228 * Enable storage key handling from now on and initialize the storage 1229 * keys with the default key. 1230 */ 1231 static int __s390_enable_skey(pte_t *pte, unsigned long addr, 1232 unsigned long next, struct mm_walk *walk) 1233 { 1234 unsigned long ptev; 1235 pgste_t pgste; 1236 1237 pgste = pgste_get_lock(pte); 1238 /* 1239 * Remove all zero page mappings, 1240 * after establishing a policy to forbid zero page mappings 1241 * following faults for that page will get fresh anonymous pages 1242 */ 1243 if (is_zero_pfn(pte_pfn(*pte))) { 1244 ptep_flush_direct(walk->mm, addr, pte); 1245 pte_val(*pte) = _PAGE_INVALID; 1246 } 1247 /* Clear storage key */ 1248 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT | 1249 PGSTE_GR_BIT | PGSTE_GC_BIT); 1250 ptev = pte_val(*pte); 1251 if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE)) 1252 page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1); 1253 pgste_set_unlock(pte, pgste); 1254 return 0; 1255 } 1256 1257 int s390_enable_skey(void) 1258 { 1259 struct mm_walk walk = { .pte_entry = __s390_enable_skey }; 1260 struct mm_struct *mm = current->mm; 1261 struct vm_area_struct *vma; 1262 int rc = 0; 1263 1264 down_write(&mm->mmap_sem); 1265 if (mm_use_skey(mm)) 1266 goto out_up; 1267 1268 mm->context.use_skey = 1; 1269 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1270 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 1271 MADV_UNMERGEABLE, &vma->vm_flags)) { 1272 mm->context.use_skey = 0; 1273 rc = -ENOMEM; 1274 goto out_up; 1275 } 1276 } 1277 mm->def_flags &= ~VM_MERGEABLE; 1278 1279 walk.mm = mm; 1280 walk_page_range(0, TASK_SIZE, &walk); 1281 1282 out_up: 1283 up_write(&mm->mmap_sem); 1284 return rc; 1285 } 1286 EXPORT_SYMBOL_GPL(s390_enable_skey); 1287 1288 /* 1289 * Reset CMMA state, make all pages stable again. 1290 */ 1291 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 1292 unsigned long next, struct mm_walk *walk) 1293 { 1294 pgste_t pgste; 1295 1296 pgste = pgste_get_lock(pte); 1297 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK; 1298 pgste_set_unlock(pte, pgste); 1299 return 0; 1300 } 1301 1302 void s390_reset_cmma(struct mm_struct *mm) 1303 { 1304 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 1305 1306 down_write(&mm->mmap_sem); 1307 walk.mm = mm; 1308 walk_page_range(0, TASK_SIZE, &walk); 1309 up_write(&mm->mmap_sem); 1310 } 1311 EXPORT_SYMBOL_GPL(s390_reset_cmma); 1312 1313 /* 1314 * Test and reset if a guest page is dirty 1315 */ 1316 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap) 1317 { 1318 pte_t *pte; 1319 spinlock_t *ptl; 1320 bool dirty = false; 1321 1322 pte = get_locked_pte(gmap->mm, address, &ptl); 1323 if (unlikely(!pte)) 1324 return false; 1325 1326 if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte)) 1327 dirty = true; 1328 1329 spin_unlock(ptl); 1330 return dirty; 1331 } 1332 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty); 1333 1334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1335 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, 1336 pmd_t *pmdp) 1337 { 1338 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1339 /* No need to flush TLB 1340 * On s390 reference bits are in storage key and never in TLB */ 1341 return pmdp_test_and_clear_young(vma, address, pmdp); 1342 } 1343 1344 int pmdp_set_access_flags(struct vm_area_struct *vma, 1345 unsigned long address, pmd_t *pmdp, 1346 pmd_t entry, int dirty) 1347 { 1348 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1349 1350 entry = pmd_mkyoung(entry); 1351 if (dirty) 1352 entry = pmd_mkdirty(entry); 1353 if (pmd_same(*pmdp, entry)) 1354 return 0; 1355 pmdp_invalidate(vma, address, pmdp); 1356 set_pmd_at(vma->vm_mm, address, pmdp, entry); 1357 return 1; 1358 } 1359 1360 static void pmdp_splitting_flush_sync(void *arg) 1361 { 1362 /* Simply deliver the interrupt */ 1363 } 1364 1365 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, 1366 pmd_t *pmdp) 1367 { 1368 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1369 if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT, 1370 (unsigned long *) pmdp)) { 1371 /* need to serialize against gup-fast (IRQ disabled) */ 1372 smp_call_function(pmdp_splitting_flush_sync, NULL, 1); 1373 } 1374 } 1375 1376 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1377 pgtable_t pgtable) 1378 { 1379 struct list_head *lh = (struct list_head *) pgtable; 1380 1381 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1382 1383 /* FIFO */ 1384 if (!pmd_huge_pte(mm, pmdp)) 1385 INIT_LIST_HEAD(lh); 1386 else 1387 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 1388 pmd_huge_pte(mm, pmdp) = pgtable; 1389 } 1390 1391 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 1392 { 1393 struct list_head *lh; 1394 pgtable_t pgtable; 1395 pte_t *ptep; 1396 1397 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1398 1399 /* FIFO */ 1400 pgtable = pmd_huge_pte(mm, pmdp); 1401 lh = (struct list_head *) pgtable; 1402 if (list_empty(lh)) 1403 pmd_huge_pte(mm, pmdp) = NULL; 1404 else { 1405 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 1406 list_del(lh); 1407 } 1408 ptep = (pte_t *) pgtable; 1409 pte_val(*ptep) = _PAGE_INVALID; 1410 ptep++; 1411 pte_val(*ptep) = _PAGE_INVALID; 1412 return pgtable; 1413 } 1414 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1415