xref: /linux/arch/s390/mm/pgalloc.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Page table allocation functions
4  *
5  *    Copyright IBM Corp. 2016
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  */
8 
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 
18 #ifdef CONFIG_PGSTE
19 
20 int page_table_allocate_pgste = 0;
21 EXPORT_SYMBOL(page_table_allocate_pgste);
22 
23 static struct ctl_table page_table_sysctl[] = {
24 	{
25 		.procname	= "allocate_pgste",
26 		.data		= &page_table_allocate_pgste,
27 		.maxlen		= sizeof(int),
28 		.mode		= S_IRUGO | S_IWUSR,
29 		.proc_handler	= proc_dointvec_minmax,
30 		.extra1		= SYSCTL_ZERO,
31 		.extra2		= SYSCTL_ONE,
32 	},
33 	{ }
34 };
35 
36 static struct ctl_table page_table_sysctl_dir[] = {
37 	{
38 		.procname	= "vm",
39 		.maxlen		= 0,
40 		.mode		= 0555,
41 		.child		= page_table_sysctl,
42 	},
43 	{ }
44 };
45 
46 static int __init page_table_register_sysctl(void)
47 {
48 	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
49 }
50 __initcall(page_table_register_sysctl);
51 
52 #endif /* CONFIG_PGSTE */
53 
54 unsigned long *crst_table_alloc(struct mm_struct *mm)
55 {
56 	struct page *page = alloc_pages(GFP_KERNEL, 2);
57 
58 	if (!page)
59 		return NULL;
60 	arch_set_page_dat(page, 2);
61 	return (unsigned long *) page_to_virt(page);
62 }
63 
64 void crst_table_free(struct mm_struct *mm, unsigned long *table)
65 {
66 	free_pages((unsigned long) table, 2);
67 }
68 
69 static void __crst_table_upgrade(void *arg)
70 {
71 	struct mm_struct *mm = arg;
72 
73 	/* change all active ASCEs to avoid the creation of new TLBs */
74 	if (current->active_mm == mm) {
75 		S390_lowcore.user_asce = mm->context.asce;
76 		__ctl_load(S390_lowcore.user_asce, 7, 7);
77 	}
78 	__tlb_flush_local();
79 }
80 
81 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
82 {
83 	unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
84 	unsigned long asce_limit = mm->context.asce_limit;
85 
86 	/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
87 	VM_BUG_ON(asce_limit < _REGION2_SIZE);
88 
89 	if (end <= asce_limit)
90 		return 0;
91 
92 	if (asce_limit == _REGION2_SIZE) {
93 		p4d = crst_table_alloc(mm);
94 		if (unlikely(!p4d))
95 			goto err_p4d;
96 		crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
97 	}
98 	if (end > _REGION1_SIZE) {
99 		pgd = crst_table_alloc(mm);
100 		if (unlikely(!pgd))
101 			goto err_pgd;
102 		crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
103 	}
104 
105 	spin_lock_bh(&mm->page_table_lock);
106 
107 	/*
108 	 * This routine gets called with mmap_lock lock held and there is
109 	 * no reason to optimize for the case of otherwise. However, if
110 	 * that would ever change, the below check will let us know.
111 	 */
112 	VM_BUG_ON(asce_limit != mm->context.asce_limit);
113 
114 	if (p4d) {
115 		__pgd = (unsigned long *) mm->pgd;
116 		p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
117 		mm->pgd = (pgd_t *) p4d;
118 		mm->context.asce_limit = _REGION1_SIZE;
119 		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
120 			_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
121 		mm_inc_nr_puds(mm);
122 	}
123 	if (pgd) {
124 		__pgd = (unsigned long *) mm->pgd;
125 		pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
126 		mm->pgd = (pgd_t *) pgd;
127 		mm->context.asce_limit = TASK_SIZE_MAX;
128 		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
129 			_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
130 	}
131 
132 	spin_unlock_bh(&mm->page_table_lock);
133 
134 	on_each_cpu(__crst_table_upgrade, mm, 0);
135 
136 	return 0;
137 
138 err_pgd:
139 	crst_table_free(mm, p4d);
140 err_p4d:
141 	return -ENOMEM;
142 }
143 
144 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
145 {
146 	unsigned int old, new;
147 
148 	do {
149 		old = atomic_read(v);
150 		new = old ^ bits;
151 	} while (atomic_cmpxchg(v, old, new) != old);
152 	return new;
153 }
154 
155 #ifdef CONFIG_PGSTE
156 
157 struct page *page_table_alloc_pgste(struct mm_struct *mm)
158 {
159 	struct page *page;
160 	u64 *table;
161 
162 	page = alloc_page(GFP_KERNEL);
163 	if (page) {
164 		table = (u64 *)page_to_virt(page);
165 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
166 		memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
167 	}
168 	return page;
169 }
170 
171 void page_table_free_pgste(struct page *page)
172 {
173 	__free_page(page);
174 }
175 
176 #endif /* CONFIG_PGSTE */
177 
178 /*
179  * page table entry allocation/free routines.
180  */
181 unsigned long *page_table_alloc(struct mm_struct *mm)
182 {
183 	unsigned long *table;
184 	struct page *page;
185 	unsigned int mask, bit;
186 
187 	/* Try to get a fragment of a 4K page as a 2K page table */
188 	if (!mm_alloc_pgste(mm)) {
189 		table = NULL;
190 		spin_lock_bh(&mm->context.lock);
191 		if (!list_empty(&mm->context.pgtable_list)) {
192 			page = list_first_entry(&mm->context.pgtable_list,
193 						struct page, lru);
194 			mask = atomic_read(&page->_refcount) >> 24;
195 			mask = (mask | (mask >> 4)) & 3;
196 			if (mask != 3) {
197 				table = (unsigned long *) page_to_virt(page);
198 				bit = mask & 1;		/* =1 -> second 2K */
199 				if (bit)
200 					table += PTRS_PER_PTE;
201 				atomic_xor_bits(&page->_refcount,
202 							1U << (bit + 24));
203 				list_del(&page->lru);
204 			}
205 		}
206 		spin_unlock_bh(&mm->context.lock);
207 		if (table)
208 			return table;
209 	}
210 	/* Allocate a fresh page */
211 	page = alloc_page(GFP_KERNEL);
212 	if (!page)
213 		return NULL;
214 	if (!pgtable_pte_page_ctor(page)) {
215 		__free_page(page);
216 		return NULL;
217 	}
218 	arch_set_page_dat(page, 0);
219 	/* Initialize page table */
220 	table = (unsigned long *) page_to_virt(page);
221 	if (mm_alloc_pgste(mm)) {
222 		/* Return 4K page table with PGSTEs */
223 		atomic_xor_bits(&page->_refcount, 3 << 24);
224 		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
225 		memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
226 	} else {
227 		/* Return the first 2K fragment of the page */
228 		atomic_xor_bits(&page->_refcount, 1 << 24);
229 		memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
230 		spin_lock_bh(&mm->context.lock);
231 		list_add(&page->lru, &mm->context.pgtable_list);
232 		spin_unlock_bh(&mm->context.lock);
233 	}
234 	return table;
235 }
236 
237 void page_table_free(struct mm_struct *mm, unsigned long *table)
238 {
239 	struct page *page;
240 	unsigned int bit, mask;
241 
242 	page = virt_to_page(table);
243 	if (!mm_alloc_pgste(mm)) {
244 		/* Free 2K page table fragment of a 4K page */
245 		bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
246 		spin_lock_bh(&mm->context.lock);
247 		mask = atomic_xor_bits(&page->_refcount, 1U << (bit + 24));
248 		mask >>= 24;
249 		if (mask & 3)
250 			list_add(&page->lru, &mm->context.pgtable_list);
251 		else
252 			list_del(&page->lru);
253 		spin_unlock_bh(&mm->context.lock);
254 		if (mask != 0)
255 			return;
256 	} else {
257 		atomic_xor_bits(&page->_refcount, 3U << 24);
258 	}
259 
260 	pgtable_pte_page_dtor(page);
261 	__free_page(page);
262 }
263 
264 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
265 			 unsigned long vmaddr)
266 {
267 	struct mm_struct *mm;
268 	struct page *page;
269 	unsigned int bit, mask;
270 
271 	mm = tlb->mm;
272 	page = virt_to_page(table);
273 	if (mm_alloc_pgste(mm)) {
274 		gmap_unlink(mm, table, vmaddr);
275 		table = (unsigned long *) ((unsigned long)table | 3);
276 		tlb_remove_table(tlb, table);
277 		return;
278 	}
279 	bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
280 	spin_lock_bh(&mm->context.lock);
281 	mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
282 	mask >>= 24;
283 	if (mask & 3)
284 		list_add_tail(&page->lru, &mm->context.pgtable_list);
285 	else
286 		list_del(&page->lru);
287 	spin_unlock_bh(&mm->context.lock);
288 	table = (unsigned long *) ((unsigned long) table | (1U << bit));
289 	tlb_remove_table(tlb, table);
290 }
291 
292 void __tlb_remove_table(void *_table)
293 {
294 	unsigned int mask = (unsigned long) _table & 3;
295 	void *table = (void *)((unsigned long) _table ^ mask);
296 	struct page *page = virt_to_page(table);
297 
298 	switch (mask) {
299 	case 0:		/* pmd, pud, or p4d */
300 		free_pages((unsigned long) table, 2);
301 		break;
302 	case 1:		/* lower 2K of a 4K page table */
303 	case 2:		/* higher 2K of a 4K page table */
304 		mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
305 		mask >>= 24;
306 		if (mask != 0)
307 			break;
308 		fallthrough;
309 	case 3:		/* 4K page table with pgstes */
310 		if (mask & 3)
311 			atomic_xor_bits(&page->_refcount, 3 << 24);
312 		pgtable_pte_page_dtor(page);
313 		__free_page(page);
314 		break;
315 	}
316 }
317 
318 /*
319  * Base infrastructure required to generate basic asces, region, segment,
320  * and page tables that do not make use of enhanced features like EDAT1.
321  */
322 
323 static struct kmem_cache *base_pgt_cache;
324 
325 static unsigned long base_pgt_alloc(void)
326 {
327 	u64 *table;
328 
329 	table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
330 	if (table)
331 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
332 	return (unsigned long) table;
333 }
334 
335 static void base_pgt_free(unsigned long table)
336 {
337 	kmem_cache_free(base_pgt_cache, (void *) table);
338 }
339 
340 static unsigned long base_crst_alloc(unsigned long val)
341 {
342 	unsigned long table;
343 
344 	table =	 __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
345 	if (table)
346 		crst_table_init((unsigned long *)table, val);
347 	return table;
348 }
349 
350 static void base_crst_free(unsigned long table)
351 {
352 	free_pages(table, CRST_ALLOC_ORDER);
353 }
354 
355 #define BASE_ADDR_END_FUNC(NAME, SIZE)					\
356 static inline unsigned long base_##NAME##_addr_end(unsigned long addr,	\
357 						   unsigned long end)	\
358 {									\
359 	unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1);		\
360 									\
361 	return (next - 1) < (end - 1) ? next : end;			\
362 }
363 
364 BASE_ADDR_END_FUNC(page,    _PAGE_SIZE)
365 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
366 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
367 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
368 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
369 
370 static inline unsigned long base_lra(unsigned long address)
371 {
372 	unsigned long real;
373 
374 	asm volatile(
375 		"	lra	%0,0(%1)\n"
376 		: "=d" (real) : "a" (address) : "cc");
377 	return real;
378 }
379 
380 static int base_page_walk(unsigned long origin, unsigned long addr,
381 			  unsigned long end, int alloc)
382 {
383 	unsigned long *pte, next;
384 
385 	if (!alloc)
386 		return 0;
387 	pte = (unsigned long *) origin;
388 	pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
389 	do {
390 		next = base_page_addr_end(addr, end);
391 		*pte = base_lra(addr);
392 	} while (pte++, addr = next, addr < end);
393 	return 0;
394 }
395 
396 static int base_segment_walk(unsigned long origin, unsigned long addr,
397 			     unsigned long end, int alloc)
398 {
399 	unsigned long *ste, next, table;
400 	int rc;
401 
402 	ste = (unsigned long *) origin;
403 	ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
404 	do {
405 		next = base_segment_addr_end(addr, end);
406 		if (*ste & _SEGMENT_ENTRY_INVALID) {
407 			if (!alloc)
408 				continue;
409 			table = base_pgt_alloc();
410 			if (!table)
411 				return -ENOMEM;
412 			*ste = table | _SEGMENT_ENTRY;
413 		}
414 		table = *ste & _SEGMENT_ENTRY_ORIGIN;
415 		rc = base_page_walk(table, addr, next, alloc);
416 		if (rc)
417 			return rc;
418 		if (!alloc)
419 			base_pgt_free(table);
420 		cond_resched();
421 	} while (ste++, addr = next, addr < end);
422 	return 0;
423 }
424 
425 static int base_region3_walk(unsigned long origin, unsigned long addr,
426 			     unsigned long end, int alloc)
427 {
428 	unsigned long *rtte, next, table;
429 	int rc;
430 
431 	rtte = (unsigned long *) origin;
432 	rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
433 	do {
434 		next = base_region3_addr_end(addr, end);
435 		if (*rtte & _REGION_ENTRY_INVALID) {
436 			if (!alloc)
437 				continue;
438 			table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
439 			if (!table)
440 				return -ENOMEM;
441 			*rtte = table | _REGION3_ENTRY;
442 		}
443 		table = *rtte & _REGION_ENTRY_ORIGIN;
444 		rc = base_segment_walk(table, addr, next, alloc);
445 		if (rc)
446 			return rc;
447 		if (!alloc)
448 			base_crst_free(table);
449 	} while (rtte++, addr = next, addr < end);
450 	return 0;
451 }
452 
453 static int base_region2_walk(unsigned long origin, unsigned long addr,
454 			     unsigned long end, int alloc)
455 {
456 	unsigned long *rste, next, table;
457 	int rc;
458 
459 	rste = (unsigned long *) origin;
460 	rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
461 	do {
462 		next = base_region2_addr_end(addr, end);
463 		if (*rste & _REGION_ENTRY_INVALID) {
464 			if (!alloc)
465 				continue;
466 			table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
467 			if (!table)
468 				return -ENOMEM;
469 			*rste = table | _REGION2_ENTRY;
470 		}
471 		table = *rste & _REGION_ENTRY_ORIGIN;
472 		rc = base_region3_walk(table, addr, next, alloc);
473 		if (rc)
474 			return rc;
475 		if (!alloc)
476 			base_crst_free(table);
477 	} while (rste++, addr = next, addr < end);
478 	return 0;
479 }
480 
481 static int base_region1_walk(unsigned long origin, unsigned long addr,
482 			     unsigned long end, int alloc)
483 {
484 	unsigned long *rfte, next, table;
485 	int rc;
486 
487 	rfte = (unsigned long *) origin;
488 	rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
489 	do {
490 		next = base_region1_addr_end(addr, end);
491 		if (*rfte & _REGION_ENTRY_INVALID) {
492 			if (!alloc)
493 				continue;
494 			table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
495 			if (!table)
496 				return -ENOMEM;
497 			*rfte = table | _REGION1_ENTRY;
498 		}
499 		table = *rfte & _REGION_ENTRY_ORIGIN;
500 		rc = base_region2_walk(table, addr, next, alloc);
501 		if (rc)
502 			return rc;
503 		if (!alloc)
504 			base_crst_free(table);
505 	} while (rfte++, addr = next, addr < end);
506 	return 0;
507 }
508 
509 /**
510  * base_asce_free - free asce and tables returned from base_asce_alloc()
511  * @asce: asce to be freed
512  *
513  * Frees all region, segment, and page tables that were allocated with a
514  * corresponding base_asce_alloc() call.
515  */
516 void base_asce_free(unsigned long asce)
517 {
518 	unsigned long table = asce & _ASCE_ORIGIN;
519 
520 	if (!asce)
521 		return;
522 	switch (asce & _ASCE_TYPE_MASK) {
523 	case _ASCE_TYPE_SEGMENT:
524 		base_segment_walk(table, 0, _REGION3_SIZE, 0);
525 		break;
526 	case _ASCE_TYPE_REGION3:
527 		base_region3_walk(table, 0, _REGION2_SIZE, 0);
528 		break;
529 	case _ASCE_TYPE_REGION2:
530 		base_region2_walk(table, 0, _REGION1_SIZE, 0);
531 		break;
532 	case _ASCE_TYPE_REGION1:
533 		base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
534 		break;
535 	}
536 	base_crst_free(table);
537 }
538 
539 static int base_pgt_cache_init(void)
540 {
541 	static DEFINE_MUTEX(base_pgt_cache_mutex);
542 	unsigned long sz = _PAGE_TABLE_SIZE;
543 
544 	if (base_pgt_cache)
545 		return 0;
546 	mutex_lock(&base_pgt_cache_mutex);
547 	if (!base_pgt_cache)
548 		base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
549 	mutex_unlock(&base_pgt_cache_mutex);
550 	return base_pgt_cache ? 0 : -ENOMEM;
551 }
552 
553 /**
554  * base_asce_alloc - create kernel mapping without enhanced DAT features
555  * @addr: virtual start address of kernel mapping
556  * @num_pages: number of consecutive pages
557  *
558  * Generate an asce, including all required region, segment and page tables,
559  * that can be used to access the virtual kernel mapping. The difference is
560  * that the returned asce does not make use of any enhanced DAT features like
561  * e.g. large pages. This is required for some I/O functions that pass an
562  * asce, like e.g. some service call requests.
563  *
564  * Note: the returned asce may NEVER be attached to any cpu. It may only be
565  *	 used for I/O requests. tlb entries that might result because the
566  *	 asce was attached to a cpu won't be cleared.
567  */
568 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
569 {
570 	unsigned long asce, table, end;
571 	int rc;
572 
573 	if (base_pgt_cache_init())
574 		return 0;
575 	end = addr + num_pages * PAGE_SIZE;
576 	if (end <= _REGION3_SIZE) {
577 		table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
578 		if (!table)
579 			return 0;
580 		rc = base_segment_walk(table, addr, end, 1);
581 		asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
582 	} else if (end <= _REGION2_SIZE) {
583 		table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
584 		if (!table)
585 			return 0;
586 		rc = base_region3_walk(table, addr, end, 1);
587 		asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
588 	} else if (end <= _REGION1_SIZE) {
589 		table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
590 		if (!table)
591 			return 0;
592 		rc = base_region2_walk(table, addr, end, 1);
593 		asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
594 	} else {
595 		table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
596 		if (!table)
597 			return 0;
598 		rc = base_region1_walk(table, addr, end, 1);
599 		asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
600 	}
601 	if (rc) {
602 		base_asce_free(asce);
603 		asce = 0;
604 	}
605 	return asce;
606 }
607