1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * IBM System z Huge TLB Page Support for Kernel. 4 * 5 * Copyright IBM Corp. 2007,2020 6 * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com> 7 */ 8 9 #define KMSG_COMPONENT "hugetlb" 10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 11 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/sched/mm.h> 16 #include <linux/security.h> 17 18 /* 19 * If the bit selected by single-bit bitmask "a" is set within "x", move 20 * it to the position indicated by single-bit bitmask "b". 21 */ 22 #define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b)) 23 24 static inline unsigned long __pte_to_rste(pte_t pte) 25 { 26 unsigned long rste; 27 28 /* 29 * Convert encoding pte bits pmd / pud bits 30 * lIR.uswrdy.p dy..R...I...wr 31 * empty 010.000000.0 -> 00..0...1...00 32 * prot-none, clean, old 111.000000.1 -> 00..1...1...00 33 * prot-none, clean, young 111.000001.1 -> 01..1...1...00 34 * prot-none, dirty, old 111.000010.1 -> 10..1...1...00 35 * prot-none, dirty, young 111.000011.1 -> 11..1...1...00 36 * read-only, clean, old 111.000100.1 -> 00..1...1...01 37 * read-only, clean, young 101.000101.1 -> 01..1...0...01 38 * read-only, dirty, old 111.000110.1 -> 10..1...1...01 39 * read-only, dirty, young 101.000111.1 -> 11..1...0...01 40 * read-write, clean, old 111.001100.1 -> 00..1...1...11 41 * read-write, clean, young 101.001101.1 -> 01..1...0...11 42 * read-write, dirty, old 110.001110.1 -> 10..0...1...11 43 * read-write, dirty, young 100.001111.1 -> 11..0...0...11 44 * HW-bits: R read-only, I invalid 45 * SW-bits: p present, y young, d dirty, r read, w write, s special, 46 * u unused, l large 47 */ 48 if (pte_present(pte)) { 49 rste = pte_val(pte) & PAGE_MASK; 50 rste |= move_set_bit(pte_val(pte), _PAGE_READ, 51 _SEGMENT_ENTRY_READ); 52 rste |= move_set_bit(pte_val(pte), _PAGE_WRITE, 53 _SEGMENT_ENTRY_WRITE); 54 rste |= move_set_bit(pte_val(pte), _PAGE_INVALID, 55 _SEGMENT_ENTRY_INVALID); 56 rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT, 57 _SEGMENT_ENTRY_PROTECT); 58 rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY, 59 _SEGMENT_ENTRY_DIRTY); 60 rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG, 61 _SEGMENT_ENTRY_YOUNG); 62 #ifdef CONFIG_MEM_SOFT_DIRTY 63 rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY, 64 _SEGMENT_ENTRY_SOFT_DIRTY); 65 #endif 66 rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC, 67 _SEGMENT_ENTRY_NOEXEC); 68 } else 69 rste = _SEGMENT_ENTRY_EMPTY; 70 return rste; 71 } 72 73 static inline pte_t __rste_to_pte(unsigned long rste) 74 { 75 int present; 76 pte_t pte; 77 78 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 79 present = pud_present(__pud(rste)); 80 else 81 present = pmd_present(__pmd(rste)); 82 83 /* 84 * Convert encoding pmd / pud bits pte bits 85 * dy..R...I...wr lIR.uswrdy.p 86 * empty 00..0...1...00 -> 010.000000.0 87 * prot-none, clean, old 00..1...1...00 -> 111.000000.1 88 * prot-none, clean, young 01..1...1...00 -> 111.000001.1 89 * prot-none, dirty, old 10..1...1...00 -> 111.000010.1 90 * prot-none, dirty, young 11..1...1...00 -> 111.000011.1 91 * read-only, clean, old 00..1...1...01 -> 111.000100.1 92 * read-only, clean, young 01..1...0...01 -> 101.000101.1 93 * read-only, dirty, old 10..1...1...01 -> 111.000110.1 94 * read-only, dirty, young 11..1...0...01 -> 101.000111.1 95 * read-write, clean, old 00..1...1...11 -> 111.001100.1 96 * read-write, clean, young 01..1...0...11 -> 101.001101.1 97 * read-write, dirty, old 10..0...1...11 -> 110.001110.1 98 * read-write, dirty, young 11..0...0...11 -> 100.001111.1 99 * HW-bits: R read-only, I invalid 100 * SW-bits: p present, y young, d dirty, r read, w write, s special, 101 * u unused, l large 102 */ 103 if (present) { 104 pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE; 105 pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT; 106 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ, 107 _PAGE_READ); 108 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE, 109 _PAGE_WRITE); 110 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID, 111 _PAGE_INVALID); 112 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT, 113 _PAGE_PROTECT); 114 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY, 115 _PAGE_DIRTY); 116 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG, 117 _PAGE_YOUNG); 118 #ifdef CONFIG_MEM_SOFT_DIRTY 119 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY, 120 _PAGE_SOFT_DIRTY); 121 #endif 122 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC, 123 _PAGE_NOEXEC); 124 } else 125 pte_val(pte) = _PAGE_INVALID; 126 return pte; 127 } 128 129 static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste) 130 { 131 struct page *page; 132 unsigned long size, paddr; 133 134 if (!mm_uses_skeys(mm) || 135 rste & _SEGMENT_ENTRY_INVALID) 136 return; 137 138 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) { 139 page = pud_page(__pud(rste)); 140 size = PUD_SIZE; 141 paddr = rste & PUD_MASK; 142 } else { 143 page = pmd_page(__pmd(rste)); 144 size = PMD_SIZE; 145 paddr = rste & PMD_MASK; 146 } 147 148 if (!test_and_set_bit(PG_arch_1, &page->flags)) 149 __storage_key_init_range(paddr, paddr + size - 1); 150 } 151 152 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 153 pte_t *ptep, pte_t pte) 154 { 155 unsigned long rste; 156 157 rste = __pte_to_rste(pte); 158 if (!MACHINE_HAS_NX) 159 rste &= ~_SEGMENT_ENTRY_NOEXEC; 160 161 /* Set correct table type for 2G hugepages */ 162 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) { 163 if (likely(pte_present(pte))) 164 rste |= _REGION3_ENTRY_LARGE; 165 rste |= _REGION_ENTRY_TYPE_R3; 166 } else if (likely(pte_present(pte))) 167 rste |= _SEGMENT_ENTRY_LARGE; 168 169 clear_huge_pte_skeys(mm, rste); 170 pte_val(*ptep) = rste; 171 } 172 173 pte_t huge_ptep_get(pte_t *ptep) 174 { 175 return __rste_to_pte(pte_val(*ptep)); 176 } 177 178 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 179 unsigned long addr, pte_t *ptep) 180 { 181 pte_t pte = huge_ptep_get(ptep); 182 pmd_t *pmdp = (pmd_t *) ptep; 183 pud_t *pudp = (pud_t *) ptep; 184 185 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 186 pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY)); 187 else 188 pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 189 return pte; 190 } 191 192 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 193 unsigned long addr, unsigned long sz) 194 { 195 pgd_t *pgdp; 196 p4d_t *p4dp; 197 pud_t *pudp; 198 pmd_t *pmdp = NULL; 199 200 pgdp = pgd_offset(mm, addr); 201 p4dp = p4d_alloc(mm, pgdp, addr); 202 if (p4dp) { 203 pudp = pud_alloc(mm, p4dp, addr); 204 if (pudp) { 205 if (sz == PUD_SIZE) 206 return (pte_t *) pudp; 207 else if (sz == PMD_SIZE) 208 pmdp = pmd_alloc(mm, pudp, addr); 209 } 210 } 211 return (pte_t *) pmdp; 212 } 213 214 pte_t *huge_pte_offset(struct mm_struct *mm, 215 unsigned long addr, unsigned long sz) 216 { 217 pgd_t *pgdp; 218 p4d_t *p4dp; 219 pud_t *pudp; 220 pmd_t *pmdp = NULL; 221 222 pgdp = pgd_offset(mm, addr); 223 if (pgd_present(*pgdp)) { 224 p4dp = p4d_offset(pgdp, addr); 225 if (p4d_present(*p4dp)) { 226 pudp = pud_offset(p4dp, addr); 227 if (pud_present(*pudp)) { 228 if (pud_large(*pudp)) 229 return (pte_t *) pudp; 230 pmdp = pmd_offset(pudp, addr); 231 } 232 } 233 } 234 return (pte_t *) pmdp; 235 } 236 237 int pmd_huge(pmd_t pmd) 238 { 239 return pmd_large(pmd); 240 } 241 242 int pud_huge(pud_t pud) 243 { 244 return pud_large(pud); 245 } 246 247 struct page * 248 follow_huge_pud(struct mm_struct *mm, unsigned long address, 249 pud_t *pud, int flags) 250 { 251 if (flags & FOLL_GET) 252 return NULL; 253 254 return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 255 } 256 257 bool __init arch_hugetlb_valid_size(unsigned long size) 258 { 259 if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) 260 return true; 261 else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) 262 return true; 263 else 264 return false; 265 } 266 267 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, 268 unsigned long addr, unsigned long len, 269 unsigned long pgoff, unsigned long flags) 270 { 271 struct hstate *h = hstate_file(file); 272 struct vm_unmapped_area_info info; 273 274 info.flags = 0; 275 info.length = len; 276 info.low_limit = current->mm->mmap_base; 277 info.high_limit = TASK_SIZE; 278 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 279 info.align_offset = 0; 280 return vm_unmapped_area(&info); 281 } 282 283 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, 284 unsigned long addr0, unsigned long len, 285 unsigned long pgoff, unsigned long flags) 286 { 287 struct hstate *h = hstate_file(file); 288 struct vm_unmapped_area_info info; 289 unsigned long addr; 290 291 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 292 info.length = len; 293 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 294 info.high_limit = current->mm->mmap_base; 295 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 296 info.align_offset = 0; 297 addr = vm_unmapped_area(&info); 298 299 /* 300 * A failed mmap() very likely causes application failure, 301 * so fall back to the bottom-up function here. This scenario 302 * can happen with large stack limits and large mmap() 303 * allocations. 304 */ 305 if (addr & ~PAGE_MASK) { 306 VM_BUG_ON(addr != -ENOMEM); 307 info.flags = 0; 308 info.low_limit = TASK_UNMAPPED_BASE; 309 info.high_limit = TASK_SIZE; 310 addr = vm_unmapped_area(&info); 311 } 312 313 return addr; 314 } 315 316 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 317 unsigned long len, unsigned long pgoff, unsigned long flags) 318 { 319 struct hstate *h = hstate_file(file); 320 struct mm_struct *mm = current->mm; 321 struct vm_area_struct *vma; 322 323 if (len & ~huge_page_mask(h)) 324 return -EINVAL; 325 if (len > TASK_SIZE - mmap_min_addr) 326 return -ENOMEM; 327 328 if (flags & MAP_FIXED) { 329 if (prepare_hugepage_range(file, addr, len)) 330 return -EINVAL; 331 goto check_asce_limit; 332 } 333 334 if (addr) { 335 addr = ALIGN(addr, huge_page_size(h)); 336 vma = find_vma(mm, addr); 337 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && 338 (!vma || addr + len <= vm_start_gap(vma))) 339 goto check_asce_limit; 340 } 341 342 if (mm->get_unmapped_area == arch_get_unmapped_area) 343 addr = hugetlb_get_unmapped_area_bottomup(file, addr, len, 344 pgoff, flags); 345 else 346 addr = hugetlb_get_unmapped_area_topdown(file, addr, len, 347 pgoff, flags); 348 if (offset_in_page(addr)) 349 return addr; 350 351 check_asce_limit: 352 return check_asce_limit(mm, addr, len); 353 } 354