xref: /linux/arch/s390/mm/gmap.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2016
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 #include <linux/swapops.h>
16 #include <linux/ksm.h>
17 #include <linux/mman.h>
18 
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/gmap.h>
22 #include <asm/tlb.h>
23 
24 #define GMAP_SHADOW_FAKE_TABLE 1ULL
25 
26 /**
27  * gmap_alloc - allocate and initialize a guest address space
28  * @mm: pointer to the parent mm_struct
29  * @limit: maximum address of the gmap address space
30  *
31  * Returns a guest address space structure.
32  */
33 static struct gmap *gmap_alloc(unsigned long limit)
34 {
35 	struct gmap *gmap;
36 	struct page *page;
37 	unsigned long *table;
38 	unsigned long etype, atype;
39 
40 	if (limit < _REGION3_SIZE) {
41 		limit = _REGION3_SIZE - 1;
42 		atype = _ASCE_TYPE_SEGMENT;
43 		etype = _SEGMENT_ENTRY_EMPTY;
44 	} else if (limit < _REGION2_SIZE) {
45 		limit = _REGION2_SIZE - 1;
46 		atype = _ASCE_TYPE_REGION3;
47 		etype = _REGION3_ENTRY_EMPTY;
48 	} else if (limit < _REGION1_SIZE) {
49 		limit = _REGION1_SIZE - 1;
50 		atype = _ASCE_TYPE_REGION2;
51 		etype = _REGION2_ENTRY_EMPTY;
52 	} else {
53 		limit = -1UL;
54 		atype = _ASCE_TYPE_REGION1;
55 		etype = _REGION1_ENTRY_EMPTY;
56 	}
57 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
58 	if (!gmap)
59 		goto out;
60 	INIT_LIST_HEAD(&gmap->crst_list);
61 	INIT_LIST_HEAD(&gmap->children);
62 	INIT_LIST_HEAD(&gmap->pt_list);
63 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
64 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
65 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
66 	spin_lock_init(&gmap->guest_table_lock);
67 	spin_lock_init(&gmap->shadow_lock);
68 	atomic_set(&gmap->ref_count, 1);
69 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
70 	if (!page)
71 		goto out_free;
72 	page->index = 0;
73 	list_add(&page->lru, &gmap->crst_list);
74 	table = (unsigned long *) page_to_phys(page);
75 	crst_table_init(table, etype);
76 	gmap->table = table;
77 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
78 		_ASCE_USER_BITS | __pa(table);
79 	gmap->asce_end = limit;
80 	return gmap;
81 
82 out_free:
83 	kfree(gmap);
84 out:
85 	return NULL;
86 }
87 
88 /**
89  * gmap_create - create a guest address space
90  * @mm: pointer to the parent mm_struct
91  * @limit: maximum size of the gmap address space
92  *
93  * Returns a guest address space structure.
94  */
95 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
96 {
97 	struct gmap *gmap;
98 	unsigned long gmap_asce;
99 
100 	gmap = gmap_alloc(limit);
101 	if (!gmap)
102 		return NULL;
103 	gmap->mm = mm;
104 	spin_lock(&mm->context.lock);
105 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
106 	if (list_is_singular(&mm->context.gmap_list))
107 		gmap_asce = gmap->asce;
108 	else
109 		gmap_asce = -1UL;
110 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
111 	spin_unlock(&mm->context.lock);
112 	return gmap;
113 }
114 EXPORT_SYMBOL_GPL(gmap_create);
115 
116 static void gmap_flush_tlb(struct gmap *gmap)
117 {
118 	if (MACHINE_HAS_IDTE)
119 		__tlb_flush_idte(gmap->asce);
120 	else
121 		__tlb_flush_global();
122 }
123 
124 static void gmap_radix_tree_free(struct radix_tree_root *root)
125 {
126 	struct radix_tree_iter iter;
127 	unsigned long indices[16];
128 	unsigned long index;
129 	void __rcu **slot;
130 	int i, nr;
131 
132 	/* A radix tree is freed by deleting all of its entries */
133 	index = 0;
134 	do {
135 		nr = 0;
136 		radix_tree_for_each_slot(slot, root, &iter, index) {
137 			indices[nr] = iter.index;
138 			if (++nr == 16)
139 				break;
140 		}
141 		for (i = 0; i < nr; i++) {
142 			index = indices[i];
143 			radix_tree_delete(root, index);
144 		}
145 	} while (nr > 0);
146 }
147 
148 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
149 {
150 	struct gmap_rmap *rmap, *rnext, *head;
151 	struct radix_tree_iter iter;
152 	unsigned long indices[16];
153 	unsigned long index;
154 	void __rcu **slot;
155 	int i, nr;
156 
157 	/* A radix tree is freed by deleting all of its entries */
158 	index = 0;
159 	do {
160 		nr = 0;
161 		radix_tree_for_each_slot(slot, root, &iter, index) {
162 			indices[nr] = iter.index;
163 			if (++nr == 16)
164 				break;
165 		}
166 		for (i = 0; i < nr; i++) {
167 			index = indices[i];
168 			head = radix_tree_delete(root, index);
169 			gmap_for_each_rmap_safe(rmap, rnext, head)
170 				kfree(rmap);
171 		}
172 	} while (nr > 0);
173 }
174 
175 /**
176  * gmap_free - free a guest address space
177  * @gmap: pointer to the guest address space structure
178  *
179  * No locks required. There are no references to this gmap anymore.
180  */
181 static void gmap_free(struct gmap *gmap)
182 {
183 	struct page *page, *next;
184 
185 	/* Flush tlb of all gmaps (if not already done for shadows) */
186 	if (!(gmap_is_shadow(gmap) && gmap->removed))
187 		gmap_flush_tlb(gmap);
188 	/* Free all segment & region tables. */
189 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
190 		__free_pages(page, CRST_ALLOC_ORDER);
191 	gmap_radix_tree_free(&gmap->guest_to_host);
192 	gmap_radix_tree_free(&gmap->host_to_guest);
193 
194 	/* Free additional data for a shadow gmap */
195 	if (gmap_is_shadow(gmap)) {
196 		/* Free all page tables. */
197 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
198 			page_table_free_pgste(page);
199 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
200 		/* Release reference to the parent */
201 		gmap_put(gmap->parent);
202 	}
203 
204 	kfree(gmap);
205 }
206 
207 /**
208  * gmap_get - increase reference counter for guest address space
209  * @gmap: pointer to the guest address space structure
210  *
211  * Returns the gmap pointer
212  */
213 struct gmap *gmap_get(struct gmap *gmap)
214 {
215 	atomic_inc(&gmap->ref_count);
216 	return gmap;
217 }
218 EXPORT_SYMBOL_GPL(gmap_get);
219 
220 /**
221  * gmap_put - decrease reference counter for guest address space
222  * @gmap: pointer to the guest address space structure
223  *
224  * If the reference counter reaches zero the guest address space is freed.
225  */
226 void gmap_put(struct gmap *gmap)
227 {
228 	if (atomic_dec_return(&gmap->ref_count) == 0)
229 		gmap_free(gmap);
230 }
231 EXPORT_SYMBOL_GPL(gmap_put);
232 
233 /**
234  * gmap_remove - remove a guest address space but do not free it yet
235  * @gmap: pointer to the guest address space structure
236  */
237 void gmap_remove(struct gmap *gmap)
238 {
239 	struct gmap *sg, *next;
240 	unsigned long gmap_asce;
241 
242 	/* Remove all shadow gmaps linked to this gmap */
243 	if (!list_empty(&gmap->children)) {
244 		spin_lock(&gmap->shadow_lock);
245 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
246 			list_del(&sg->list);
247 			gmap_put(sg);
248 		}
249 		spin_unlock(&gmap->shadow_lock);
250 	}
251 	/* Remove gmap from the pre-mm list */
252 	spin_lock(&gmap->mm->context.lock);
253 	list_del_rcu(&gmap->list);
254 	if (list_empty(&gmap->mm->context.gmap_list))
255 		gmap_asce = 0;
256 	else if (list_is_singular(&gmap->mm->context.gmap_list))
257 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
258 					     struct gmap, list)->asce;
259 	else
260 		gmap_asce = -1UL;
261 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
262 	spin_unlock(&gmap->mm->context.lock);
263 	synchronize_rcu();
264 	/* Put reference */
265 	gmap_put(gmap);
266 }
267 EXPORT_SYMBOL_GPL(gmap_remove);
268 
269 /**
270  * gmap_enable - switch primary space to the guest address space
271  * @gmap: pointer to the guest address space structure
272  */
273 void gmap_enable(struct gmap *gmap)
274 {
275 	S390_lowcore.gmap = (unsigned long) gmap;
276 }
277 EXPORT_SYMBOL_GPL(gmap_enable);
278 
279 /**
280  * gmap_disable - switch back to the standard primary address space
281  * @gmap: pointer to the guest address space structure
282  */
283 void gmap_disable(struct gmap *gmap)
284 {
285 	S390_lowcore.gmap = 0UL;
286 }
287 EXPORT_SYMBOL_GPL(gmap_disable);
288 
289 /**
290  * gmap_get_enabled - get a pointer to the currently enabled gmap
291  *
292  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
293  */
294 struct gmap *gmap_get_enabled(void)
295 {
296 	return (struct gmap *) S390_lowcore.gmap;
297 }
298 EXPORT_SYMBOL_GPL(gmap_get_enabled);
299 
300 /*
301  * gmap_alloc_table is assumed to be called with mmap_sem held
302  */
303 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
304 			    unsigned long init, unsigned long gaddr)
305 {
306 	struct page *page;
307 	unsigned long *new;
308 
309 	/* since we dont free the gmap table until gmap_free we can unlock */
310 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
311 	if (!page)
312 		return -ENOMEM;
313 	new = (unsigned long *) page_to_phys(page);
314 	crst_table_init(new, init);
315 	spin_lock(&gmap->guest_table_lock);
316 	if (*table & _REGION_ENTRY_INVALID) {
317 		list_add(&page->lru, &gmap->crst_list);
318 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
319 			(*table & _REGION_ENTRY_TYPE_MASK);
320 		page->index = gaddr;
321 		page = NULL;
322 	}
323 	spin_unlock(&gmap->guest_table_lock);
324 	if (page)
325 		__free_pages(page, CRST_ALLOC_ORDER);
326 	return 0;
327 }
328 
329 /**
330  * __gmap_segment_gaddr - find virtual address from segment pointer
331  * @entry: pointer to a segment table entry in the guest address space
332  *
333  * Returns the virtual address in the guest address space for the segment
334  */
335 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
336 {
337 	struct page *page;
338 	unsigned long offset, mask;
339 
340 	offset = (unsigned long) entry / sizeof(unsigned long);
341 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
342 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
343 	page = virt_to_page((void *)((unsigned long) entry & mask));
344 	return page->index + offset;
345 }
346 
347 /**
348  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
349  * @gmap: pointer to the guest address space structure
350  * @vmaddr: address in the host process address space
351  *
352  * Returns 1 if a TLB flush is required
353  */
354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
355 {
356 	unsigned long *entry;
357 	int flush = 0;
358 
359 	BUG_ON(gmap_is_shadow(gmap));
360 	spin_lock(&gmap->guest_table_lock);
361 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
362 	if (entry) {
363 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
364 		*entry = _SEGMENT_ENTRY_EMPTY;
365 	}
366 	spin_unlock(&gmap->guest_table_lock);
367 	return flush;
368 }
369 
370 /**
371  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
372  * @gmap: pointer to the guest address space structure
373  * @gaddr: address in the guest address space
374  *
375  * Returns 1 if a TLB flush is required
376  */
377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
378 {
379 	unsigned long vmaddr;
380 
381 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
382 						   gaddr >> PMD_SHIFT);
383 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
384 }
385 
386 /**
387  * gmap_unmap_segment - unmap segment from the guest address space
388  * @gmap: pointer to the guest address space structure
389  * @to: address in the guest address space
390  * @len: length of the memory area to unmap
391  *
392  * Returns 0 if the unmap succeeded, -EINVAL if not.
393  */
394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
395 {
396 	unsigned long off;
397 	int flush;
398 
399 	BUG_ON(gmap_is_shadow(gmap));
400 	if ((to | len) & (PMD_SIZE - 1))
401 		return -EINVAL;
402 	if (len == 0 || to + len < to)
403 		return -EINVAL;
404 
405 	flush = 0;
406 	down_write(&gmap->mm->mmap_sem);
407 	for (off = 0; off < len; off += PMD_SIZE)
408 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
409 	up_write(&gmap->mm->mmap_sem);
410 	if (flush)
411 		gmap_flush_tlb(gmap);
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
415 
416 /**
417  * gmap_map_segment - map a segment to the guest address space
418  * @gmap: pointer to the guest address space structure
419  * @from: source address in the parent address space
420  * @to: target address in the guest address space
421  * @len: length of the memory area to map
422  *
423  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
424  */
425 int gmap_map_segment(struct gmap *gmap, unsigned long from,
426 		     unsigned long to, unsigned long len)
427 {
428 	unsigned long off;
429 	int flush;
430 
431 	BUG_ON(gmap_is_shadow(gmap));
432 	if ((from | to | len) & (PMD_SIZE - 1))
433 		return -EINVAL;
434 	if (len == 0 || from + len < from || to + len < to ||
435 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
436 		return -EINVAL;
437 
438 	flush = 0;
439 	down_write(&gmap->mm->mmap_sem);
440 	for (off = 0; off < len; off += PMD_SIZE) {
441 		/* Remove old translation */
442 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
443 		/* Store new translation */
444 		if (radix_tree_insert(&gmap->guest_to_host,
445 				      (to + off) >> PMD_SHIFT,
446 				      (void *) from + off))
447 			break;
448 	}
449 	up_write(&gmap->mm->mmap_sem);
450 	if (flush)
451 		gmap_flush_tlb(gmap);
452 	if (off >= len)
453 		return 0;
454 	gmap_unmap_segment(gmap, to, len);
455 	return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(gmap_map_segment);
458 
459 /**
460  * __gmap_translate - translate a guest address to a user space address
461  * @gmap: pointer to guest mapping meta data structure
462  * @gaddr: guest address
463  *
464  * Returns user space address which corresponds to the guest address or
465  * -EFAULT if no such mapping exists.
466  * This function does not establish potentially missing page table entries.
467  * The mmap_sem of the mm that belongs to the address space must be held
468  * when this function gets called.
469  *
470  * Note: Can also be called for shadow gmaps.
471  */
472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 	unsigned long vmaddr;
475 
476 	vmaddr = (unsigned long)
477 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
478 	/* Note: guest_to_host is empty for a shadow gmap */
479 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
480 }
481 EXPORT_SYMBOL_GPL(__gmap_translate);
482 
483 /**
484  * gmap_translate - translate a guest address to a user space address
485  * @gmap: pointer to guest mapping meta data structure
486  * @gaddr: guest address
487  *
488  * Returns user space address which corresponds to the guest address or
489  * -EFAULT if no such mapping exists.
490  * This function does not establish potentially missing page table entries.
491  */
492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
493 {
494 	unsigned long rc;
495 
496 	down_read(&gmap->mm->mmap_sem);
497 	rc = __gmap_translate(gmap, gaddr);
498 	up_read(&gmap->mm->mmap_sem);
499 	return rc;
500 }
501 EXPORT_SYMBOL_GPL(gmap_translate);
502 
503 /**
504  * gmap_unlink - disconnect a page table from the gmap shadow tables
505  * @gmap: pointer to guest mapping meta data structure
506  * @table: pointer to the host page table
507  * @vmaddr: vm address associated with the host page table
508  */
509 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
510 		 unsigned long vmaddr)
511 {
512 	struct gmap *gmap;
513 	int flush;
514 
515 	rcu_read_lock();
516 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
517 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
518 		if (flush)
519 			gmap_flush_tlb(gmap);
520 	}
521 	rcu_read_unlock();
522 }
523 
524 /**
525  * gmap_link - set up shadow page tables to connect a host to a guest address
526  * @gmap: pointer to guest mapping meta data structure
527  * @gaddr: guest address
528  * @vmaddr: vm address
529  *
530  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
531  * if the vm address is already mapped to a different guest segment.
532  * The mmap_sem of the mm that belongs to the address space must be held
533  * when this function gets called.
534  */
535 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
536 {
537 	struct mm_struct *mm;
538 	unsigned long *table;
539 	spinlock_t *ptl;
540 	pgd_t *pgd;
541 	p4d_t *p4d;
542 	pud_t *pud;
543 	pmd_t *pmd;
544 	int rc;
545 
546 	BUG_ON(gmap_is_shadow(gmap));
547 	/* Create higher level tables in the gmap page table */
548 	table = gmap->table;
549 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
550 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
551 		if ((*table & _REGION_ENTRY_INVALID) &&
552 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
553 				     gaddr & _REGION1_MASK))
554 			return -ENOMEM;
555 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
556 	}
557 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
558 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
559 		if ((*table & _REGION_ENTRY_INVALID) &&
560 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
561 				     gaddr & _REGION2_MASK))
562 			return -ENOMEM;
563 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
564 	}
565 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
566 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
567 		if ((*table & _REGION_ENTRY_INVALID) &&
568 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
569 				     gaddr & _REGION3_MASK))
570 			return -ENOMEM;
571 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
572 	}
573 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
574 	/* Walk the parent mm page table */
575 	mm = gmap->mm;
576 	pgd = pgd_offset(mm, vmaddr);
577 	VM_BUG_ON(pgd_none(*pgd));
578 	p4d = p4d_offset(pgd, vmaddr);
579 	VM_BUG_ON(p4d_none(*p4d));
580 	pud = pud_offset(p4d, vmaddr);
581 	VM_BUG_ON(pud_none(*pud));
582 	/* large puds cannot yet be handled */
583 	if (pud_large(*pud))
584 		return -EFAULT;
585 	pmd = pmd_offset(pud, vmaddr);
586 	VM_BUG_ON(pmd_none(*pmd));
587 	/* large pmds cannot yet be handled */
588 	if (pmd_large(*pmd))
589 		return -EFAULT;
590 	/* Link gmap segment table entry location to page table. */
591 	rc = radix_tree_preload(GFP_KERNEL);
592 	if (rc)
593 		return rc;
594 	ptl = pmd_lock(mm, pmd);
595 	spin_lock(&gmap->guest_table_lock);
596 	if (*table == _SEGMENT_ENTRY_EMPTY) {
597 		rc = radix_tree_insert(&gmap->host_to_guest,
598 				       vmaddr >> PMD_SHIFT, table);
599 		if (!rc)
600 			*table = pmd_val(*pmd);
601 	} else
602 		rc = 0;
603 	spin_unlock(&gmap->guest_table_lock);
604 	spin_unlock(ptl);
605 	radix_tree_preload_end();
606 	return rc;
607 }
608 
609 /**
610  * gmap_fault - resolve a fault on a guest address
611  * @gmap: pointer to guest mapping meta data structure
612  * @gaddr: guest address
613  * @fault_flags: flags to pass down to handle_mm_fault()
614  *
615  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
616  * if the vm address is already mapped to a different guest segment.
617  */
618 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
619 	       unsigned int fault_flags)
620 {
621 	unsigned long vmaddr;
622 	int rc;
623 	bool unlocked;
624 
625 	down_read(&gmap->mm->mmap_sem);
626 
627 retry:
628 	unlocked = false;
629 	vmaddr = __gmap_translate(gmap, gaddr);
630 	if (IS_ERR_VALUE(vmaddr)) {
631 		rc = vmaddr;
632 		goto out_up;
633 	}
634 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
635 			     &unlocked)) {
636 		rc = -EFAULT;
637 		goto out_up;
638 	}
639 	/*
640 	 * In the case that fixup_user_fault unlocked the mmap_sem during
641 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
642 	 */
643 	if (unlocked)
644 		goto retry;
645 
646 	rc = __gmap_link(gmap, gaddr, vmaddr);
647 out_up:
648 	up_read(&gmap->mm->mmap_sem);
649 	return rc;
650 }
651 EXPORT_SYMBOL_GPL(gmap_fault);
652 
653 /*
654  * this function is assumed to be called with mmap_sem held
655  */
656 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
657 {
658 	unsigned long vmaddr;
659 	spinlock_t *ptl;
660 	pte_t *ptep;
661 
662 	/* Find the vm address for the guest address */
663 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
664 						   gaddr >> PMD_SHIFT);
665 	if (vmaddr) {
666 		vmaddr |= gaddr & ~PMD_MASK;
667 		/* Get pointer to the page table entry */
668 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
669 		if (likely(ptep))
670 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
671 		pte_unmap_unlock(ptep, ptl);
672 	}
673 }
674 EXPORT_SYMBOL_GPL(__gmap_zap);
675 
676 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
677 {
678 	unsigned long gaddr, vmaddr, size;
679 	struct vm_area_struct *vma;
680 
681 	down_read(&gmap->mm->mmap_sem);
682 	for (gaddr = from; gaddr < to;
683 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
684 		/* Find the vm address for the guest address */
685 		vmaddr = (unsigned long)
686 			radix_tree_lookup(&gmap->guest_to_host,
687 					  gaddr >> PMD_SHIFT);
688 		if (!vmaddr)
689 			continue;
690 		vmaddr |= gaddr & ~PMD_MASK;
691 		/* Find vma in the parent mm */
692 		vma = find_vma(gmap->mm, vmaddr);
693 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
694 		zap_page_range(vma, vmaddr, size);
695 	}
696 	up_read(&gmap->mm->mmap_sem);
697 }
698 EXPORT_SYMBOL_GPL(gmap_discard);
699 
700 static LIST_HEAD(gmap_notifier_list);
701 static DEFINE_SPINLOCK(gmap_notifier_lock);
702 
703 /**
704  * gmap_register_pte_notifier - register a pte invalidation callback
705  * @nb: pointer to the gmap notifier block
706  */
707 void gmap_register_pte_notifier(struct gmap_notifier *nb)
708 {
709 	spin_lock(&gmap_notifier_lock);
710 	list_add_rcu(&nb->list, &gmap_notifier_list);
711 	spin_unlock(&gmap_notifier_lock);
712 }
713 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
714 
715 /**
716  * gmap_unregister_pte_notifier - remove a pte invalidation callback
717  * @nb: pointer to the gmap notifier block
718  */
719 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
720 {
721 	spin_lock(&gmap_notifier_lock);
722 	list_del_rcu(&nb->list);
723 	spin_unlock(&gmap_notifier_lock);
724 	synchronize_rcu();
725 }
726 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
727 
728 /**
729  * gmap_call_notifier - call all registered invalidation callbacks
730  * @gmap: pointer to guest mapping meta data structure
731  * @start: start virtual address in the guest address space
732  * @end: end virtual address in the guest address space
733  */
734 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
735 			       unsigned long end)
736 {
737 	struct gmap_notifier *nb;
738 
739 	list_for_each_entry(nb, &gmap_notifier_list, list)
740 		nb->notifier_call(gmap, start, end);
741 }
742 
743 /**
744  * gmap_table_walk - walk the gmap page tables
745  * @gmap: pointer to guest mapping meta data structure
746  * @gaddr: virtual address in the guest address space
747  * @level: page table level to stop at
748  *
749  * Returns a table entry pointer for the given guest address and @level
750  * @level=0 : returns a pointer to a page table table entry (or NULL)
751  * @level=1 : returns a pointer to a segment table entry (or NULL)
752  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
753  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
754  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
755  *
756  * Returns NULL if the gmap page tables could not be walked to the
757  * requested level.
758  *
759  * Note: Can also be called for shadow gmaps.
760  */
761 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
762 					     unsigned long gaddr, int level)
763 {
764 	unsigned long *table;
765 
766 	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
767 		return NULL;
768 	if (gmap_is_shadow(gmap) && gmap->removed)
769 		return NULL;
770 	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
771 		return NULL;
772 	table = gmap->table;
773 	switch (gmap->asce & _ASCE_TYPE_MASK) {
774 	case _ASCE_TYPE_REGION1:
775 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
776 		if (level == 4)
777 			break;
778 		if (*table & _REGION_ENTRY_INVALID)
779 			return NULL;
780 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
781 		/* Fallthrough */
782 	case _ASCE_TYPE_REGION2:
783 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
784 		if (level == 3)
785 			break;
786 		if (*table & _REGION_ENTRY_INVALID)
787 			return NULL;
788 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
789 		/* Fallthrough */
790 	case _ASCE_TYPE_REGION3:
791 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
792 		if (level == 2)
793 			break;
794 		if (*table & _REGION_ENTRY_INVALID)
795 			return NULL;
796 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
797 		/* Fallthrough */
798 	case _ASCE_TYPE_SEGMENT:
799 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
800 		if (level == 1)
801 			break;
802 		if (*table & _REGION_ENTRY_INVALID)
803 			return NULL;
804 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
805 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
806 	}
807 	return table;
808 }
809 
810 /**
811  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
812  *		      and return the pte pointer
813  * @gmap: pointer to guest mapping meta data structure
814  * @gaddr: virtual address in the guest address space
815  * @ptl: pointer to the spinlock pointer
816  *
817  * Returns a pointer to the locked pte for a guest address, or NULL
818  *
819  * Note: Can also be called for shadow gmaps.
820  */
821 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
822 			       spinlock_t **ptl)
823 {
824 	unsigned long *table;
825 
826 	if (gmap_is_shadow(gmap))
827 		spin_lock(&gmap->guest_table_lock);
828 	/* Walk the gmap page table, lock and get pte pointer */
829 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
830 	if (!table || *table & _SEGMENT_ENTRY_INVALID) {
831 		if (gmap_is_shadow(gmap))
832 			spin_unlock(&gmap->guest_table_lock);
833 		return NULL;
834 	}
835 	if (gmap_is_shadow(gmap)) {
836 		*ptl = &gmap->guest_table_lock;
837 		return pte_offset_map((pmd_t *) table, gaddr);
838 	}
839 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
840 }
841 
842 /**
843  * gmap_pte_op_fixup - force a page in and connect the gmap page table
844  * @gmap: pointer to guest mapping meta data structure
845  * @gaddr: virtual address in the guest address space
846  * @vmaddr: address in the host process address space
847  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
848  *
849  * Returns 0 if the caller can retry __gmap_translate (might fail again),
850  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
851  * up or connecting the gmap page table.
852  */
853 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
854 			     unsigned long vmaddr, int prot)
855 {
856 	struct mm_struct *mm = gmap->mm;
857 	unsigned int fault_flags;
858 	bool unlocked = false;
859 
860 	BUG_ON(gmap_is_shadow(gmap));
861 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
862 	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
863 		return -EFAULT;
864 	if (unlocked)
865 		/* lost mmap_sem, caller has to retry __gmap_translate */
866 		return 0;
867 	/* Connect the page tables */
868 	return __gmap_link(gmap, gaddr, vmaddr);
869 }
870 
871 /**
872  * gmap_pte_op_end - release the page table lock
873  * @ptl: pointer to the spinlock pointer
874  */
875 static void gmap_pte_op_end(spinlock_t *ptl)
876 {
877 	spin_unlock(ptl);
878 }
879 
880 /*
881  * gmap_protect_range - remove access rights to memory and set pgste bits
882  * @gmap: pointer to guest mapping meta data structure
883  * @gaddr: virtual address in the guest address space
884  * @len: size of area
885  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
886  * @bits: pgste notification bits to set
887  *
888  * Returns 0 if successfully protected, -ENOMEM if out of memory and
889  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
890  *
891  * Called with sg->mm->mmap_sem in read.
892  *
893  * Note: Can also be called for shadow gmaps.
894  */
895 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
896 			      unsigned long len, int prot, unsigned long bits)
897 {
898 	unsigned long vmaddr;
899 	spinlock_t *ptl;
900 	pte_t *ptep;
901 	int rc;
902 
903 	while (len) {
904 		rc = -EAGAIN;
905 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
906 		if (ptep) {
907 			rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits);
908 			gmap_pte_op_end(ptl);
909 		}
910 		if (rc) {
911 			vmaddr = __gmap_translate(gmap, gaddr);
912 			if (IS_ERR_VALUE(vmaddr))
913 				return vmaddr;
914 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
915 			if (rc)
916 				return rc;
917 			continue;
918 		}
919 		gaddr += PAGE_SIZE;
920 		len -= PAGE_SIZE;
921 	}
922 	return 0;
923 }
924 
925 /**
926  * gmap_mprotect_notify - change access rights for a range of ptes and
927  *                        call the notifier if any pte changes again
928  * @gmap: pointer to guest mapping meta data structure
929  * @gaddr: virtual address in the guest address space
930  * @len: size of area
931  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
932  *
933  * Returns 0 if for each page in the given range a gmap mapping exists,
934  * the new access rights could be set and the notifier could be armed.
935  * If the gmap mapping is missing for one or more pages -EFAULT is
936  * returned. If no memory could be allocated -ENOMEM is returned.
937  * This function establishes missing page table entries.
938  */
939 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
940 			 unsigned long len, int prot)
941 {
942 	int rc;
943 
944 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
945 		return -EINVAL;
946 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
947 		return -EINVAL;
948 	down_read(&gmap->mm->mmap_sem);
949 	rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT);
950 	up_read(&gmap->mm->mmap_sem);
951 	return rc;
952 }
953 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
954 
955 /**
956  * gmap_read_table - get an unsigned long value from a guest page table using
957  *                   absolute addressing, without marking the page referenced.
958  * @gmap: pointer to guest mapping meta data structure
959  * @gaddr: virtual address in the guest address space
960  * @val: pointer to the unsigned long value to return
961  *
962  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
963  * if reading using the virtual address failed.
964  *
965  * Called with gmap->mm->mmap_sem in read.
966  */
967 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
968 {
969 	unsigned long address, vmaddr;
970 	spinlock_t *ptl;
971 	pte_t *ptep, pte;
972 	int rc;
973 
974 	while (1) {
975 		rc = -EAGAIN;
976 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
977 		if (ptep) {
978 			pte = *ptep;
979 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
980 				address = pte_val(pte) & PAGE_MASK;
981 				address += gaddr & ~PAGE_MASK;
982 				*val = *(unsigned long *) address;
983 				pte_val(*ptep) |= _PAGE_YOUNG;
984 				/* Do *NOT* clear the _PAGE_INVALID bit! */
985 				rc = 0;
986 			}
987 			gmap_pte_op_end(ptl);
988 		}
989 		if (!rc)
990 			break;
991 		vmaddr = __gmap_translate(gmap, gaddr);
992 		if (IS_ERR_VALUE(vmaddr)) {
993 			rc = vmaddr;
994 			break;
995 		}
996 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
997 		if (rc)
998 			break;
999 	}
1000 	return rc;
1001 }
1002 EXPORT_SYMBOL_GPL(gmap_read_table);
1003 
1004 /**
1005  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1006  * @sg: pointer to the shadow guest address space structure
1007  * @vmaddr: vm address associated with the rmap
1008  * @rmap: pointer to the rmap structure
1009  *
1010  * Called with the sg->guest_table_lock
1011  */
1012 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1013 				    struct gmap_rmap *rmap)
1014 {
1015 	void __rcu **slot;
1016 
1017 	BUG_ON(!gmap_is_shadow(sg));
1018 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1019 	if (slot) {
1020 		rmap->next = radix_tree_deref_slot_protected(slot,
1021 							&sg->guest_table_lock);
1022 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1023 	} else {
1024 		rmap->next = NULL;
1025 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1026 				  rmap);
1027 	}
1028 }
1029 
1030 /**
1031  * gmap_protect_rmap - modify access rights to memory and create an rmap
1032  * @sg: pointer to the shadow guest address space structure
1033  * @raddr: rmap address in the shadow gmap
1034  * @paddr: address in the parent guest address space
1035  * @len: length of the memory area to protect
1036  * @prot: indicates access rights: none, read-only or read-write
1037  *
1038  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1039  * if out of memory and -EFAULT if paddr is invalid.
1040  */
1041 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1042 			     unsigned long paddr, unsigned long len, int prot)
1043 {
1044 	struct gmap *parent;
1045 	struct gmap_rmap *rmap;
1046 	unsigned long vmaddr;
1047 	spinlock_t *ptl;
1048 	pte_t *ptep;
1049 	int rc;
1050 
1051 	BUG_ON(!gmap_is_shadow(sg));
1052 	parent = sg->parent;
1053 	while (len) {
1054 		vmaddr = __gmap_translate(parent, paddr);
1055 		if (IS_ERR_VALUE(vmaddr))
1056 			return vmaddr;
1057 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1058 		if (!rmap)
1059 			return -ENOMEM;
1060 		rmap->raddr = raddr;
1061 		rc = radix_tree_preload(GFP_KERNEL);
1062 		if (rc) {
1063 			kfree(rmap);
1064 			return rc;
1065 		}
1066 		rc = -EAGAIN;
1067 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1068 		if (ptep) {
1069 			spin_lock(&sg->guest_table_lock);
1070 			rc = ptep_force_prot(parent->mm, paddr, ptep, prot,
1071 					     PGSTE_VSIE_BIT);
1072 			if (!rc)
1073 				gmap_insert_rmap(sg, vmaddr, rmap);
1074 			spin_unlock(&sg->guest_table_lock);
1075 			gmap_pte_op_end(ptl);
1076 		}
1077 		radix_tree_preload_end();
1078 		if (rc) {
1079 			kfree(rmap);
1080 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1081 			if (rc)
1082 				return rc;
1083 			continue;
1084 		}
1085 		paddr += PAGE_SIZE;
1086 		len -= PAGE_SIZE;
1087 	}
1088 	return 0;
1089 }
1090 
1091 #define _SHADOW_RMAP_MASK	0x7
1092 #define _SHADOW_RMAP_REGION1	0x5
1093 #define _SHADOW_RMAP_REGION2	0x4
1094 #define _SHADOW_RMAP_REGION3	0x3
1095 #define _SHADOW_RMAP_SEGMENT	0x2
1096 #define _SHADOW_RMAP_PGTABLE	0x1
1097 
1098 /**
1099  * gmap_idte_one - invalidate a single region or segment table entry
1100  * @asce: region or segment table *origin* + table-type bits
1101  * @vaddr: virtual address to identify the table entry to flush
1102  *
1103  * The invalid bit of a single region or segment table entry is set
1104  * and the associated TLB entries depending on the entry are flushed.
1105  * The table-type of the @asce identifies the portion of the @vaddr
1106  * that is used as the invalidation index.
1107  */
1108 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1109 {
1110 	asm volatile(
1111 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1112 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1113 }
1114 
1115 /**
1116  * gmap_unshadow_page - remove a page from a shadow page table
1117  * @sg: pointer to the shadow guest address space structure
1118  * @raddr: rmap address in the shadow guest address space
1119  *
1120  * Called with the sg->guest_table_lock
1121  */
1122 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1123 {
1124 	unsigned long *table;
1125 
1126 	BUG_ON(!gmap_is_shadow(sg));
1127 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1128 	if (!table || *table & _PAGE_INVALID)
1129 		return;
1130 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1131 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1132 }
1133 
1134 /**
1135  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1136  * @sg: pointer to the shadow guest address space structure
1137  * @raddr: rmap address in the shadow guest address space
1138  * @pgt: pointer to the start of a shadow page table
1139  *
1140  * Called with the sg->guest_table_lock
1141  */
1142 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1143 				unsigned long *pgt)
1144 {
1145 	int i;
1146 
1147 	BUG_ON(!gmap_is_shadow(sg));
1148 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1149 		pgt[i] = _PAGE_INVALID;
1150 }
1151 
1152 /**
1153  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1154  * @sg: pointer to the shadow guest address space structure
1155  * @raddr: address in the shadow guest address space
1156  *
1157  * Called with the sg->guest_table_lock
1158  */
1159 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1160 {
1161 	unsigned long sto, *ste, *pgt;
1162 	struct page *page;
1163 
1164 	BUG_ON(!gmap_is_shadow(sg));
1165 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1166 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1167 		return;
1168 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1169 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1170 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1171 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1172 	*ste = _SEGMENT_ENTRY_EMPTY;
1173 	__gmap_unshadow_pgt(sg, raddr, pgt);
1174 	/* Free page table */
1175 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1176 	list_del(&page->lru);
1177 	page_table_free_pgste(page);
1178 }
1179 
1180 /**
1181  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1182  * @sg: pointer to the shadow guest address space structure
1183  * @raddr: rmap address in the shadow guest address space
1184  * @sgt: pointer to the start of a shadow segment table
1185  *
1186  * Called with the sg->guest_table_lock
1187  */
1188 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1189 				unsigned long *sgt)
1190 {
1191 	unsigned long *pgt;
1192 	struct page *page;
1193 	int i;
1194 
1195 	BUG_ON(!gmap_is_shadow(sg));
1196 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1197 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1198 			continue;
1199 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1200 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1201 		__gmap_unshadow_pgt(sg, raddr, pgt);
1202 		/* Free page table */
1203 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1204 		list_del(&page->lru);
1205 		page_table_free_pgste(page);
1206 	}
1207 }
1208 
1209 /**
1210  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1211  * @sg: pointer to the shadow guest address space structure
1212  * @raddr: rmap address in the shadow guest address space
1213  *
1214  * Called with the shadow->guest_table_lock
1215  */
1216 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1217 {
1218 	unsigned long r3o, *r3e, *sgt;
1219 	struct page *page;
1220 
1221 	BUG_ON(!gmap_is_shadow(sg));
1222 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1223 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1224 		return;
1225 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1226 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1227 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1228 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1229 	*r3e = _REGION3_ENTRY_EMPTY;
1230 	__gmap_unshadow_sgt(sg, raddr, sgt);
1231 	/* Free segment table */
1232 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1233 	list_del(&page->lru);
1234 	__free_pages(page, CRST_ALLOC_ORDER);
1235 }
1236 
1237 /**
1238  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1239  * @sg: pointer to the shadow guest address space structure
1240  * @raddr: address in the shadow guest address space
1241  * @r3t: pointer to the start of a shadow region-3 table
1242  *
1243  * Called with the sg->guest_table_lock
1244  */
1245 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1246 				unsigned long *r3t)
1247 {
1248 	unsigned long *sgt;
1249 	struct page *page;
1250 	int i;
1251 
1252 	BUG_ON(!gmap_is_shadow(sg));
1253 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1254 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1255 			continue;
1256 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1257 		r3t[i] = _REGION3_ENTRY_EMPTY;
1258 		__gmap_unshadow_sgt(sg, raddr, sgt);
1259 		/* Free segment table */
1260 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1261 		list_del(&page->lru);
1262 		__free_pages(page, CRST_ALLOC_ORDER);
1263 	}
1264 }
1265 
1266 /**
1267  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1268  * @sg: pointer to the shadow guest address space structure
1269  * @raddr: rmap address in the shadow guest address space
1270  *
1271  * Called with the sg->guest_table_lock
1272  */
1273 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1274 {
1275 	unsigned long r2o, *r2e, *r3t;
1276 	struct page *page;
1277 
1278 	BUG_ON(!gmap_is_shadow(sg));
1279 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1280 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1281 		return;
1282 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1283 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1284 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1285 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1286 	*r2e = _REGION2_ENTRY_EMPTY;
1287 	__gmap_unshadow_r3t(sg, raddr, r3t);
1288 	/* Free region 3 table */
1289 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1290 	list_del(&page->lru);
1291 	__free_pages(page, CRST_ALLOC_ORDER);
1292 }
1293 
1294 /**
1295  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1296  * @sg: pointer to the shadow guest address space structure
1297  * @raddr: rmap address in the shadow guest address space
1298  * @r2t: pointer to the start of a shadow region-2 table
1299  *
1300  * Called with the sg->guest_table_lock
1301  */
1302 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1303 				unsigned long *r2t)
1304 {
1305 	unsigned long *r3t;
1306 	struct page *page;
1307 	int i;
1308 
1309 	BUG_ON(!gmap_is_shadow(sg));
1310 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1311 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1312 			continue;
1313 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1314 		r2t[i] = _REGION2_ENTRY_EMPTY;
1315 		__gmap_unshadow_r3t(sg, raddr, r3t);
1316 		/* Free region 3 table */
1317 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1318 		list_del(&page->lru);
1319 		__free_pages(page, CRST_ALLOC_ORDER);
1320 	}
1321 }
1322 
1323 /**
1324  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1325  * @sg: pointer to the shadow guest address space structure
1326  * @raddr: rmap address in the shadow guest address space
1327  *
1328  * Called with the sg->guest_table_lock
1329  */
1330 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1331 {
1332 	unsigned long r1o, *r1e, *r2t;
1333 	struct page *page;
1334 
1335 	BUG_ON(!gmap_is_shadow(sg));
1336 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1337 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1338 		return;
1339 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1340 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1341 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1342 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1343 	*r1e = _REGION1_ENTRY_EMPTY;
1344 	__gmap_unshadow_r2t(sg, raddr, r2t);
1345 	/* Free region 2 table */
1346 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1347 	list_del(&page->lru);
1348 	__free_pages(page, CRST_ALLOC_ORDER);
1349 }
1350 
1351 /**
1352  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1353  * @sg: pointer to the shadow guest address space structure
1354  * @raddr: rmap address in the shadow guest address space
1355  * @r1t: pointer to the start of a shadow region-1 table
1356  *
1357  * Called with the shadow->guest_table_lock
1358  */
1359 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1360 				unsigned long *r1t)
1361 {
1362 	unsigned long asce, *r2t;
1363 	struct page *page;
1364 	int i;
1365 
1366 	BUG_ON(!gmap_is_shadow(sg));
1367 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1368 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1369 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1370 			continue;
1371 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1372 		__gmap_unshadow_r2t(sg, raddr, r2t);
1373 		/* Clear entry and flush translation r1t -> r2t */
1374 		gmap_idte_one(asce, raddr);
1375 		r1t[i] = _REGION1_ENTRY_EMPTY;
1376 		/* Free region 2 table */
1377 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1378 		list_del(&page->lru);
1379 		__free_pages(page, CRST_ALLOC_ORDER);
1380 	}
1381 }
1382 
1383 /**
1384  * gmap_unshadow - remove a shadow page table completely
1385  * @sg: pointer to the shadow guest address space structure
1386  *
1387  * Called with sg->guest_table_lock
1388  */
1389 static void gmap_unshadow(struct gmap *sg)
1390 {
1391 	unsigned long *table;
1392 
1393 	BUG_ON(!gmap_is_shadow(sg));
1394 	if (sg->removed)
1395 		return;
1396 	sg->removed = 1;
1397 	gmap_call_notifier(sg, 0, -1UL);
1398 	gmap_flush_tlb(sg);
1399 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1400 	switch (sg->asce & _ASCE_TYPE_MASK) {
1401 	case _ASCE_TYPE_REGION1:
1402 		__gmap_unshadow_r1t(sg, 0, table);
1403 		break;
1404 	case _ASCE_TYPE_REGION2:
1405 		__gmap_unshadow_r2t(sg, 0, table);
1406 		break;
1407 	case _ASCE_TYPE_REGION3:
1408 		__gmap_unshadow_r3t(sg, 0, table);
1409 		break;
1410 	case _ASCE_TYPE_SEGMENT:
1411 		__gmap_unshadow_sgt(sg, 0, table);
1412 		break;
1413 	}
1414 }
1415 
1416 /**
1417  * gmap_find_shadow - find a specific asce in the list of shadow tables
1418  * @parent: pointer to the parent gmap
1419  * @asce: ASCE for which the shadow table is created
1420  * @edat_level: edat level to be used for the shadow translation
1421  *
1422  * Returns the pointer to a gmap if a shadow table with the given asce is
1423  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1424  * otherwise NULL
1425  */
1426 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1427 				     int edat_level)
1428 {
1429 	struct gmap *sg;
1430 
1431 	list_for_each_entry(sg, &parent->children, list) {
1432 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1433 		    sg->removed)
1434 			continue;
1435 		if (!sg->initialized)
1436 			return ERR_PTR(-EAGAIN);
1437 		atomic_inc(&sg->ref_count);
1438 		return sg;
1439 	}
1440 	return NULL;
1441 }
1442 
1443 /**
1444  * gmap_shadow_valid - check if a shadow guest address space matches the
1445  *                     given properties and is still valid
1446  * @sg: pointer to the shadow guest address space structure
1447  * @asce: ASCE for which the shadow table is requested
1448  * @edat_level: edat level to be used for the shadow translation
1449  *
1450  * Returns 1 if the gmap shadow is still valid and matches the given
1451  * properties, the caller can continue using it. Returns 0 otherwise, the
1452  * caller has to request a new shadow gmap in this case.
1453  *
1454  */
1455 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1456 {
1457 	if (sg->removed)
1458 		return 0;
1459 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1460 }
1461 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1462 
1463 /**
1464  * gmap_shadow - create/find a shadow guest address space
1465  * @parent: pointer to the parent gmap
1466  * @asce: ASCE for which the shadow table is created
1467  * @edat_level: edat level to be used for the shadow translation
1468  *
1469  * The pages of the top level page table referred by the asce parameter
1470  * will be set to read-only and marked in the PGSTEs of the kvm process.
1471  * The shadow table will be removed automatically on any change to the
1472  * PTE mapping for the source table.
1473  *
1474  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1475  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1476  * parent gmap table could not be protected.
1477  */
1478 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1479 			 int edat_level)
1480 {
1481 	struct gmap *sg, *new;
1482 	unsigned long limit;
1483 	int rc;
1484 
1485 	BUG_ON(gmap_is_shadow(parent));
1486 	spin_lock(&parent->shadow_lock);
1487 	sg = gmap_find_shadow(parent, asce, edat_level);
1488 	spin_unlock(&parent->shadow_lock);
1489 	if (sg)
1490 		return sg;
1491 	/* Create a new shadow gmap */
1492 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1493 	if (asce & _ASCE_REAL_SPACE)
1494 		limit = -1UL;
1495 	new = gmap_alloc(limit);
1496 	if (!new)
1497 		return ERR_PTR(-ENOMEM);
1498 	new->mm = parent->mm;
1499 	new->parent = gmap_get(parent);
1500 	new->orig_asce = asce;
1501 	new->edat_level = edat_level;
1502 	new->initialized = false;
1503 	spin_lock(&parent->shadow_lock);
1504 	/* Recheck if another CPU created the same shadow */
1505 	sg = gmap_find_shadow(parent, asce, edat_level);
1506 	if (sg) {
1507 		spin_unlock(&parent->shadow_lock);
1508 		gmap_free(new);
1509 		return sg;
1510 	}
1511 	if (asce & _ASCE_REAL_SPACE) {
1512 		/* only allow one real-space gmap shadow */
1513 		list_for_each_entry(sg, &parent->children, list) {
1514 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1515 				spin_lock(&sg->guest_table_lock);
1516 				gmap_unshadow(sg);
1517 				spin_unlock(&sg->guest_table_lock);
1518 				list_del(&sg->list);
1519 				gmap_put(sg);
1520 				break;
1521 			}
1522 		}
1523 	}
1524 	atomic_set(&new->ref_count, 2);
1525 	list_add(&new->list, &parent->children);
1526 	if (asce & _ASCE_REAL_SPACE) {
1527 		/* nothing to protect, return right away */
1528 		new->initialized = true;
1529 		spin_unlock(&parent->shadow_lock);
1530 		return new;
1531 	}
1532 	spin_unlock(&parent->shadow_lock);
1533 	/* protect after insertion, so it will get properly invalidated */
1534 	down_read(&parent->mm->mmap_sem);
1535 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1536 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1537 				PROT_READ, PGSTE_VSIE_BIT);
1538 	up_read(&parent->mm->mmap_sem);
1539 	spin_lock(&parent->shadow_lock);
1540 	new->initialized = true;
1541 	if (rc) {
1542 		list_del(&new->list);
1543 		gmap_free(new);
1544 		new = ERR_PTR(rc);
1545 	}
1546 	spin_unlock(&parent->shadow_lock);
1547 	return new;
1548 }
1549 EXPORT_SYMBOL_GPL(gmap_shadow);
1550 
1551 /**
1552  * gmap_shadow_r2t - create an empty shadow region 2 table
1553  * @sg: pointer to the shadow guest address space structure
1554  * @saddr: faulting address in the shadow gmap
1555  * @r2t: parent gmap address of the region 2 table to get shadowed
1556  * @fake: r2t references contiguous guest memory block, not a r2t
1557  *
1558  * The r2t parameter specifies the address of the source table. The
1559  * four pages of the source table are made read-only in the parent gmap
1560  * address space. A write to the source table area @r2t will automatically
1561  * remove the shadow r2 table and all of its decendents.
1562  *
1563  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1564  * shadow table structure is incomplete, -ENOMEM if out of memory and
1565  * -EFAULT if an address in the parent gmap could not be resolved.
1566  *
1567  * Called with sg->mm->mmap_sem in read.
1568  */
1569 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1570 		    int fake)
1571 {
1572 	unsigned long raddr, origin, offset, len;
1573 	unsigned long *s_r2t, *table;
1574 	struct page *page;
1575 	int rc;
1576 
1577 	BUG_ON(!gmap_is_shadow(sg));
1578 	/* Allocate a shadow region second table */
1579 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1580 	if (!page)
1581 		return -ENOMEM;
1582 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1583 	if (fake)
1584 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1585 	s_r2t = (unsigned long *) page_to_phys(page);
1586 	/* Install shadow region second table */
1587 	spin_lock(&sg->guest_table_lock);
1588 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1589 	if (!table) {
1590 		rc = -EAGAIN;		/* Race with unshadow */
1591 		goto out_free;
1592 	}
1593 	if (!(*table & _REGION_ENTRY_INVALID)) {
1594 		rc = 0;			/* Already established */
1595 		goto out_free;
1596 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1597 		rc = -EAGAIN;		/* Race with shadow */
1598 		goto out_free;
1599 	}
1600 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1601 	/* mark as invalid as long as the parent table is not protected */
1602 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1603 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1604 	if (sg->edat_level >= 1)
1605 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1606 	list_add(&page->lru, &sg->crst_list);
1607 	if (fake) {
1608 		/* nothing to protect for fake tables */
1609 		*table &= ~_REGION_ENTRY_INVALID;
1610 		spin_unlock(&sg->guest_table_lock);
1611 		return 0;
1612 	}
1613 	spin_unlock(&sg->guest_table_lock);
1614 	/* Make r2t read-only in parent gmap page table */
1615 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1616 	origin = r2t & _REGION_ENTRY_ORIGIN;
1617 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1618 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1619 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1620 	spin_lock(&sg->guest_table_lock);
1621 	if (!rc) {
1622 		table = gmap_table_walk(sg, saddr, 4);
1623 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1624 			      (unsigned long) s_r2t)
1625 			rc = -EAGAIN;		/* Race with unshadow */
1626 		else
1627 			*table &= ~_REGION_ENTRY_INVALID;
1628 	} else {
1629 		gmap_unshadow_r2t(sg, raddr);
1630 	}
1631 	spin_unlock(&sg->guest_table_lock);
1632 	return rc;
1633 out_free:
1634 	spin_unlock(&sg->guest_table_lock);
1635 	__free_pages(page, CRST_ALLOC_ORDER);
1636 	return rc;
1637 }
1638 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1639 
1640 /**
1641  * gmap_shadow_r3t - create a shadow region 3 table
1642  * @sg: pointer to the shadow guest address space structure
1643  * @saddr: faulting address in the shadow gmap
1644  * @r3t: parent gmap address of the region 3 table to get shadowed
1645  * @fake: r3t references contiguous guest memory block, not a r3t
1646  *
1647  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1648  * shadow table structure is incomplete, -ENOMEM if out of memory and
1649  * -EFAULT if an address in the parent gmap could not be resolved.
1650  *
1651  * Called with sg->mm->mmap_sem in read.
1652  */
1653 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1654 		    int fake)
1655 {
1656 	unsigned long raddr, origin, offset, len;
1657 	unsigned long *s_r3t, *table;
1658 	struct page *page;
1659 	int rc;
1660 
1661 	BUG_ON(!gmap_is_shadow(sg));
1662 	/* Allocate a shadow region second table */
1663 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1664 	if (!page)
1665 		return -ENOMEM;
1666 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1667 	if (fake)
1668 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1669 	s_r3t = (unsigned long *) page_to_phys(page);
1670 	/* Install shadow region second table */
1671 	spin_lock(&sg->guest_table_lock);
1672 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1673 	if (!table) {
1674 		rc = -EAGAIN;		/* Race with unshadow */
1675 		goto out_free;
1676 	}
1677 	if (!(*table & _REGION_ENTRY_INVALID)) {
1678 		rc = 0;			/* Already established */
1679 		goto out_free;
1680 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1681 		rc = -EAGAIN;		/* Race with shadow */
1682 	}
1683 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1684 	/* mark as invalid as long as the parent table is not protected */
1685 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1686 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1687 	if (sg->edat_level >= 1)
1688 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1689 	list_add(&page->lru, &sg->crst_list);
1690 	if (fake) {
1691 		/* nothing to protect for fake tables */
1692 		*table &= ~_REGION_ENTRY_INVALID;
1693 		spin_unlock(&sg->guest_table_lock);
1694 		return 0;
1695 	}
1696 	spin_unlock(&sg->guest_table_lock);
1697 	/* Make r3t read-only in parent gmap page table */
1698 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1699 	origin = r3t & _REGION_ENTRY_ORIGIN;
1700 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1701 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1702 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1703 	spin_lock(&sg->guest_table_lock);
1704 	if (!rc) {
1705 		table = gmap_table_walk(sg, saddr, 3);
1706 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1707 			      (unsigned long) s_r3t)
1708 			rc = -EAGAIN;		/* Race with unshadow */
1709 		else
1710 			*table &= ~_REGION_ENTRY_INVALID;
1711 	} else {
1712 		gmap_unshadow_r3t(sg, raddr);
1713 	}
1714 	spin_unlock(&sg->guest_table_lock);
1715 	return rc;
1716 out_free:
1717 	spin_unlock(&sg->guest_table_lock);
1718 	__free_pages(page, CRST_ALLOC_ORDER);
1719 	return rc;
1720 }
1721 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1722 
1723 /**
1724  * gmap_shadow_sgt - create a shadow segment table
1725  * @sg: pointer to the shadow guest address space structure
1726  * @saddr: faulting address in the shadow gmap
1727  * @sgt: parent gmap address of the segment table to get shadowed
1728  * @fake: sgt references contiguous guest memory block, not a sgt
1729  *
1730  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1731  * shadow table structure is incomplete, -ENOMEM if out of memory and
1732  * -EFAULT if an address in the parent gmap could not be resolved.
1733  *
1734  * Called with sg->mm->mmap_sem in read.
1735  */
1736 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1737 		    int fake)
1738 {
1739 	unsigned long raddr, origin, offset, len;
1740 	unsigned long *s_sgt, *table;
1741 	struct page *page;
1742 	int rc;
1743 
1744 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1745 	/* Allocate a shadow segment table */
1746 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1747 	if (!page)
1748 		return -ENOMEM;
1749 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1750 	if (fake)
1751 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1752 	s_sgt = (unsigned long *) page_to_phys(page);
1753 	/* Install shadow region second table */
1754 	spin_lock(&sg->guest_table_lock);
1755 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1756 	if (!table) {
1757 		rc = -EAGAIN;		/* Race with unshadow */
1758 		goto out_free;
1759 	}
1760 	if (!(*table & _REGION_ENTRY_INVALID)) {
1761 		rc = 0;			/* Already established */
1762 		goto out_free;
1763 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1764 		rc = -EAGAIN;		/* Race with shadow */
1765 		goto out_free;
1766 	}
1767 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1768 	/* mark as invalid as long as the parent table is not protected */
1769 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1770 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1771 	if (sg->edat_level >= 1)
1772 		*table |= sgt & _REGION_ENTRY_PROTECT;
1773 	list_add(&page->lru, &sg->crst_list);
1774 	if (fake) {
1775 		/* nothing to protect for fake tables */
1776 		*table &= ~_REGION_ENTRY_INVALID;
1777 		spin_unlock(&sg->guest_table_lock);
1778 		return 0;
1779 	}
1780 	spin_unlock(&sg->guest_table_lock);
1781 	/* Make sgt read-only in parent gmap page table */
1782 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1783 	origin = sgt & _REGION_ENTRY_ORIGIN;
1784 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1785 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1786 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1787 	spin_lock(&sg->guest_table_lock);
1788 	if (!rc) {
1789 		table = gmap_table_walk(sg, saddr, 2);
1790 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1791 			      (unsigned long) s_sgt)
1792 			rc = -EAGAIN;		/* Race with unshadow */
1793 		else
1794 			*table &= ~_REGION_ENTRY_INVALID;
1795 	} else {
1796 		gmap_unshadow_sgt(sg, raddr);
1797 	}
1798 	spin_unlock(&sg->guest_table_lock);
1799 	return rc;
1800 out_free:
1801 	spin_unlock(&sg->guest_table_lock);
1802 	__free_pages(page, CRST_ALLOC_ORDER);
1803 	return rc;
1804 }
1805 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1806 
1807 /**
1808  * gmap_shadow_lookup_pgtable - find a shadow page table
1809  * @sg: pointer to the shadow guest address space structure
1810  * @saddr: the address in the shadow aguest address space
1811  * @pgt: parent gmap address of the page table to get shadowed
1812  * @dat_protection: if the pgtable is marked as protected by dat
1813  * @fake: pgt references contiguous guest memory block, not a pgtable
1814  *
1815  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1816  * table was not found.
1817  *
1818  * Called with sg->mm->mmap_sem in read.
1819  */
1820 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1821 			   unsigned long *pgt, int *dat_protection,
1822 			   int *fake)
1823 {
1824 	unsigned long *table;
1825 	struct page *page;
1826 	int rc;
1827 
1828 	BUG_ON(!gmap_is_shadow(sg));
1829 	spin_lock(&sg->guest_table_lock);
1830 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1831 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1832 		/* Shadow page tables are full pages (pte+pgste) */
1833 		page = pfn_to_page(*table >> PAGE_SHIFT);
1834 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1835 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1836 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1837 		rc = 0;
1838 	} else  {
1839 		rc = -EAGAIN;
1840 	}
1841 	spin_unlock(&sg->guest_table_lock);
1842 	return rc;
1843 
1844 }
1845 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
1846 
1847 /**
1848  * gmap_shadow_pgt - instantiate a shadow page table
1849  * @sg: pointer to the shadow guest address space structure
1850  * @saddr: faulting address in the shadow gmap
1851  * @pgt: parent gmap address of the page table to get shadowed
1852  * @fake: pgt references contiguous guest memory block, not a pgtable
1853  *
1854  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1855  * shadow table structure is incomplete, -ENOMEM if out of memory,
1856  * -EFAULT if an address in the parent gmap could not be resolved and
1857  *
1858  * Called with gmap->mm->mmap_sem in read
1859  */
1860 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1861 		    int fake)
1862 {
1863 	unsigned long raddr, origin;
1864 	unsigned long *s_pgt, *table;
1865 	struct page *page;
1866 	int rc;
1867 
1868 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1869 	/* Allocate a shadow page table */
1870 	page = page_table_alloc_pgste(sg->mm);
1871 	if (!page)
1872 		return -ENOMEM;
1873 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
1874 	if (fake)
1875 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1876 	s_pgt = (unsigned long *) page_to_phys(page);
1877 	/* Install shadow page table */
1878 	spin_lock(&sg->guest_table_lock);
1879 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1880 	if (!table) {
1881 		rc = -EAGAIN;		/* Race with unshadow */
1882 		goto out_free;
1883 	}
1884 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1885 		rc = 0;			/* Already established */
1886 		goto out_free;
1887 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1888 		rc = -EAGAIN;		/* Race with shadow */
1889 		goto out_free;
1890 	}
1891 	/* mark as invalid as long as the parent table is not protected */
1892 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1893 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1894 	list_add(&page->lru, &sg->pt_list);
1895 	if (fake) {
1896 		/* nothing to protect for fake tables */
1897 		*table &= ~_SEGMENT_ENTRY_INVALID;
1898 		spin_unlock(&sg->guest_table_lock);
1899 		return 0;
1900 	}
1901 	spin_unlock(&sg->guest_table_lock);
1902 	/* Make pgt read-only in parent gmap page table (not the pgste) */
1903 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1904 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1905 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE, PROT_READ);
1906 	spin_lock(&sg->guest_table_lock);
1907 	if (!rc) {
1908 		table = gmap_table_walk(sg, saddr, 1);
1909 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
1910 			      (unsigned long) s_pgt)
1911 			rc = -EAGAIN;		/* Race with unshadow */
1912 		else
1913 			*table &= ~_SEGMENT_ENTRY_INVALID;
1914 	} else {
1915 		gmap_unshadow_pgt(sg, raddr);
1916 	}
1917 	spin_unlock(&sg->guest_table_lock);
1918 	return rc;
1919 out_free:
1920 	spin_unlock(&sg->guest_table_lock);
1921 	page_table_free_pgste(page);
1922 	return rc;
1923 
1924 }
1925 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1926 
1927 /**
1928  * gmap_shadow_page - create a shadow page mapping
1929  * @sg: pointer to the shadow guest address space structure
1930  * @saddr: faulting address in the shadow gmap
1931  * @pte: pte in parent gmap address space to get shadowed
1932  *
1933  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1934  * shadow table structure is incomplete, -ENOMEM if out of memory and
1935  * -EFAULT if an address in the parent gmap could not be resolved.
1936  *
1937  * Called with sg->mm->mmap_sem in read.
1938  */
1939 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1940 {
1941 	struct gmap *parent;
1942 	struct gmap_rmap *rmap;
1943 	unsigned long vmaddr, paddr;
1944 	spinlock_t *ptl;
1945 	pte_t *sptep, *tptep;
1946 	int prot;
1947 	int rc;
1948 
1949 	BUG_ON(!gmap_is_shadow(sg));
1950 	parent = sg->parent;
1951 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1952 
1953 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1954 	if (!rmap)
1955 		return -ENOMEM;
1956 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1957 
1958 	while (1) {
1959 		paddr = pte_val(pte) & PAGE_MASK;
1960 		vmaddr = __gmap_translate(parent, paddr);
1961 		if (IS_ERR_VALUE(vmaddr)) {
1962 			rc = vmaddr;
1963 			break;
1964 		}
1965 		rc = radix_tree_preload(GFP_KERNEL);
1966 		if (rc)
1967 			break;
1968 		rc = -EAGAIN;
1969 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1970 		if (sptep) {
1971 			spin_lock(&sg->guest_table_lock);
1972 			/* Get page table pointer */
1973 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1974 			if (!tptep) {
1975 				spin_unlock(&sg->guest_table_lock);
1976 				gmap_pte_op_end(ptl);
1977 				radix_tree_preload_end();
1978 				break;
1979 			}
1980 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1981 			if (rc > 0) {
1982 				/* Success and a new mapping */
1983 				gmap_insert_rmap(sg, vmaddr, rmap);
1984 				rmap = NULL;
1985 				rc = 0;
1986 			}
1987 			gmap_pte_op_end(ptl);
1988 			spin_unlock(&sg->guest_table_lock);
1989 		}
1990 		radix_tree_preload_end();
1991 		if (!rc)
1992 			break;
1993 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1994 		if (rc)
1995 			break;
1996 	}
1997 	kfree(rmap);
1998 	return rc;
1999 }
2000 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2001 
2002 /**
2003  * gmap_shadow_notify - handle notifications for shadow gmap
2004  *
2005  * Called with sg->parent->shadow_lock.
2006  */
2007 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2008 			       unsigned long gaddr, pte_t *pte)
2009 {
2010 	struct gmap_rmap *rmap, *rnext, *head;
2011 	unsigned long start, end, bits, raddr;
2012 
2013 	BUG_ON(!gmap_is_shadow(sg));
2014 
2015 	spin_lock(&sg->guest_table_lock);
2016 	if (sg->removed) {
2017 		spin_unlock(&sg->guest_table_lock);
2018 		return;
2019 	}
2020 	/* Check for top level table */
2021 	start = sg->orig_asce & _ASCE_ORIGIN;
2022 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2023 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2024 	    gaddr < end) {
2025 		/* The complete shadow table has to go */
2026 		gmap_unshadow(sg);
2027 		spin_unlock(&sg->guest_table_lock);
2028 		list_del(&sg->list);
2029 		gmap_put(sg);
2030 		return;
2031 	}
2032 	/* Remove the page table tree from on specific entry */
2033 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2034 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2035 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2036 		raddr = rmap->raddr ^ bits;
2037 		switch (bits) {
2038 		case _SHADOW_RMAP_REGION1:
2039 			gmap_unshadow_r2t(sg, raddr);
2040 			break;
2041 		case _SHADOW_RMAP_REGION2:
2042 			gmap_unshadow_r3t(sg, raddr);
2043 			break;
2044 		case _SHADOW_RMAP_REGION3:
2045 			gmap_unshadow_sgt(sg, raddr);
2046 			break;
2047 		case _SHADOW_RMAP_SEGMENT:
2048 			gmap_unshadow_pgt(sg, raddr);
2049 			break;
2050 		case _SHADOW_RMAP_PGTABLE:
2051 			gmap_unshadow_page(sg, raddr);
2052 			break;
2053 		}
2054 		kfree(rmap);
2055 	}
2056 	spin_unlock(&sg->guest_table_lock);
2057 }
2058 
2059 /**
2060  * ptep_notify - call all invalidation callbacks for a specific pte.
2061  * @mm: pointer to the process mm_struct
2062  * @addr: virtual address in the process address space
2063  * @pte: pointer to the page table entry
2064  * @bits: bits from the pgste that caused the notify call
2065  *
2066  * This function is assumed to be called with the page table lock held
2067  * for the pte to notify.
2068  */
2069 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2070 		 pte_t *pte, unsigned long bits)
2071 {
2072 	unsigned long offset, gaddr = 0;
2073 	unsigned long *table;
2074 	struct gmap *gmap, *sg, *next;
2075 
2076 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2077 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2078 	rcu_read_lock();
2079 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2080 		spin_lock(&gmap->guest_table_lock);
2081 		table = radix_tree_lookup(&gmap->host_to_guest,
2082 					  vmaddr >> PMD_SHIFT);
2083 		if (table)
2084 			gaddr = __gmap_segment_gaddr(table) + offset;
2085 		spin_unlock(&gmap->guest_table_lock);
2086 		if (!table)
2087 			continue;
2088 
2089 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2090 			spin_lock(&gmap->shadow_lock);
2091 			list_for_each_entry_safe(sg, next,
2092 						 &gmap->children, list)
2093 				gmap_shadow_notify(sg, vmaddr, gaddr, pte);
2094 			spin_unlock(&gmap->shadow_lock);
2095 		}
2096 		if (bits & PGSTE_IN_BIT)
2097 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2098 	}
2099 	rcu_read_unlock();
2100 }
2101 EXPORT_SYMBOL_GPL(ptep_notify);
2102 
2103 static inline void thp_split_mm(struct mm_struct *mm)
2104 {
2105 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2106 	struct vm_area_struct *vma;
2107 	unsigned long addr;
2108 
2109 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2110 		for (addr = vma->vm_start;
2111 		     addr < vma->vm_end;
2112 		     addr += PAGE_SIZE)
2113 			follow_page(vma, addr, FOLL_SPLIT);
2114 		vma->vm_flags &= ~VM_HUGEPAGE;
2115 		vma->vm_flags |= VM_NOHUGEPAGE;
2116 	}
2117 	mm->def_flags |= VM_NOHUGEPAGE;
2118 #endif
2119 }
2120 
2121 /*
2122  * Remove all empty zero pages from the mapping for lazy refaulting
2123  * - This must be called after mm->context.has_pgste is set, to avoid
2124  *   future creation of zero pages
2125  * - This must be called after THP was enabled
2126  */
2127 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2128 			   unsigned long end, struct mm_walk *walk)
2129 {
2130 	unsigned long addr;
2131 
2132 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2133 		pte_t *ptep;
2134 		spinlock_t *ptl;
2135 
2136 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2137 		if (is_zero_pfn(pte_pfn(*ptep)))
2138 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2139 		pte_unmap_unlock(ptep, ptl);
2140 	}
2141 	return 0;
2142 }
2143 
2144 static inline void zap_zero_pages(struct mm_struct *mm)
2145 {
2146 	struct mm_walk walk = { .pmd_entry = __zap_zero_pages };
2147 
2148 	walk.mm = mm;
2149 	walk_page_range(0, TASK_SIZE, &walk);
2150 }
2151 
2152 /*
2153  * switch on pgstes for its userspace process (for kvm)
2154  */
2155 int s390_enable_sie(void)
2156 {
2157 	struct mm_struct *mm = current->mm;
2158 
2159 	/* Do we have pgstes? if yes, we are done */
2160 	if (mm_has_pgste(mm))
2161 		return 0;
2162 	/* Fail if the page tables are 2K */
2163 	if (!mm_alloc_pgste(mm))
2164 		return -EINVAL;
2165 	down_write(&mm->mmap_sem);
2166 	mm->context.has_pgste = 1;
2167 	/* split thp mappings and disable thp for future mappings */
2168 	thp_split_mm(mm);
2169 	zap_zero_pages(mm);
2170 	up_write(&mm->mmap_sem);
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(s390_enable_sie);
2174 
2175 /*
2176  * Enable storage key handling from now on and initialize the storage
2177  * keys with the default key.
2178  */
2179 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
2180 			      unsigned long next, struct mm_walk *walk)
2181 {
2182 	/* Clear storage key */
2183 	ptep_zap_key(walk->mm, addr, pte);
2184 	return 0;
2185 }
2186 
2187 int s390_enable_skey(void)
2188 {
2189 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
2190 	struct mm_struct *mm = current->mm;
2191 	struct vm_area_struct *vma;
2192 	int rc = 0;
2193 
2194 	down_write(&mm->mmap_sem);
2195 	if (mm_use_skey(mm))
2196 		goto out_up;
2197 
2198 	mm->context.use_skey = 1;
2199 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2200 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2201 				MADV_UNMERGEABLE, &vma->vm_flags)) {
2202 			mm->context.use_skey = 0;
2203 			rc = -ENOMEM;
2204 			goto out_up;
2205 		}
2206 	}
2207 	mm->def_flags &= ~VM_MERGEABLE;
2208 
2209 	walk.mm = mm;
2210 	walk_page_range(0, TASK_SIZE, &walk);
2211 
2212 out_up:
2213 	up_write(&mm->mmap_sem);
2214 	return rc;
2215 }
2216 EXPORT_SYMBOL_GPL(s390_enable_skey);
2217 
2218 /*
2219  * Reset CMMA state, make all pages stable again.
2220  */
2221 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2222 			     unsigned long next, struct mm_walk *walk)
2223 {
2224 	ptep_zap_unused(walk->mm, addr, pte, 1);
2225 	return 0;
2226 }
2227 
2228 void s390_reset_cmma(struct mm_struct *mm)
2229 {
2230 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
2231 
2232 	down_write(&mm->mmap_sem);
2233 	walk.mm = mm;
2234 	walk_page_range(0, TASK_SIZE, &walk);
2235 	up_write(&mm->mmap_sem);
2236 }
2237 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2238