1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2016 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/mm.h> 11 #include <linux/swap.h> 12 #include <linux/smp.h> 13 #include <linux/spinlock.h> 14 #include <linux/slab.h> 15 #include <linux/swapops.h> 16 #include <linux/ksm.h> 17 #include <linux/mman.h> 18 19 #include <asm/pgtable.h> 20 #include <asm/pgalloc.h> 21 #include <asm/gmap.h> 22 #include <asm/tlb.h> 23 24 #define GMAP_SHADOW_FAKE_TABLE 1ULL 25 26 /** 27 * gmap_alloc - allocate and initialize a guest address space 28 * @mm: pointer to the parent mm_struct 29 * @limit: maximum address of the gmap address space 30 * 31 * Returns a guest address space structure. 32 */ 33 static struct gmap *gmap_alloc(unsigned long limit) 34 { 35 struct gmap *gmap; 36 struct page *page; 37 unsigned long *table; 38 unsigned long etype, atype; 39 40 if (limit < _REGION3_SIZE) { 41 limit = _REGION3_SIZE - 1; 42 atype = _ASCE_TYPE_SEGMENT; 43 etype = _SEGMENT_ENTRY_EMPTY; 44 } else if (limit < _REGION2_SIZE) { 45 limit = _REGION2_SIZE - 1; 46 atype = _ASCE_TYPE_REGION3; 47 etype = _REGION3_ENTRY_EMPTY; 48 } else if (limit < _REGION1_SIZE) { 49 limit = _REGION1_SIZE - 1; 50 atype = _ASCE_TYPE_REGION2; 51 etype = _REGION2_ENTRY_EMPTY; 52 } else { 53 limit = -1UL; 54 atype = _ASCE_TYPE_REGION1; 55 etype = _REGION1_ENTRY_EMPTY; 56 } 57 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 58 if (!gmap) 59 goto out; 60 INIT_LIST_HEAD(&gmap->crst_list); 61 INIT_LIST_HEAD(&gmap->children); 62 INIT_LIST_HEAD(&gmap->pt_list); 63 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 64 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 65 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 66 spin_lock_init(&gmap->guest_table_lock); 67 spin_lock_init(&gmap->shadow_lock); 68 atomic_set(&gmap->ref_count, 1); 69 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 70 if (!page) 71 goto out_free; 72 page->index = 0; 73 list_add(&page->lru, &gmap->crst_list); 74 table = (unsigned long *) page_to_phys(page); 75 crst_table_init(table, etype); 76 gmap->table = table; 77 gmap->asce = atype | _ASCE_TABLE_LENGTH | 78 _ASCE_USER_BITS | __pa(table); 79 gmap->asce_end = limit; 80 return gmap; 81 82 out_free: 83 kfree(gmap); 84 out: 85 return NULL; 86 } 87 88 /** 89 * gmap_create - create a guest address space 90 * @mm: pointer to the parent mm_struct 91 * @limit: maximum size of the gmap address space 92 * 93 * Returns a guest address space structure. 94 */ 95 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 96 { 97 struct gmap *gmap; 98 unsigned long gmap_asce; 99 100 gmap = gmap_alloc(limit); 101 if (!gmap) 102 return NULL; 103 gmap->mm = mm; 104 spin_lock(&mm->context.lock); 105 list_add_rcu(&gmap->list, &mm->context.gmap_list); 106 if (list_is_singular(&mm->context.gmap_list)) 107 gmap_asce = gmap->asce; 108 else 109 gmap_asce = -1UL; 110 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 111 spin_unlock(&mm->context.lock); 112 return gmap; 113 } 114 EXPORT_SYMBOL_GPL(gmap_create); 115 116 static void gmap_flush_tlb(struct gmap *gmap) 117 { 118 if (MACHINE_HAS_IDTE) 119 __tlb_flush_idte(gmap->asce); 120 else 121 __tlb_flush_global(); 122 } 123 124 static void gmap_radix_tree_free(struct radix_tree_root *root) 125 { 126 struct radix_tree_iter iter; 127 unsigned long indices[16]; 128 unsigned long index; 129 void __rcu **slot; 130 int i, nr; 131 132 /* A radix tree is freed by deleting all of its entries */ 133 index = 0; 134 do { 135 nr = 0; 136 radix_tree_for_each_slot(slot, root, &iter, index) { 137 indices[nr] = iter.index; 138 if (++nr == 16) 139 break; 140 } 141 for (i = 0; i < nr; i++) { 142 index = indices[i]; 143 radix_tree_delete(root, index); 144 } 145 } while (nr > 0); 146 } 147 148 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 149 { 150 struct gmap_rmap *rmap, *rnext, *head; 151 struct radix_tree_iter iter; 152 unsigned long indices[16]; 153 unsigned long index; 154 void __rcu **slot; 155 int i, nr; 156 157 /* A radix tree is freed by deleting all of its entries */ 158 index = 0; 159 do { 160 nr = 0; 161 radix_tree_for_each_slot(slot, root, &iter, index) { 162 indices[nr] = iter.index; 163 if (++nr == 16) 164 break; 165 } 166 for (i = 0; i < nr; i++) { 167 index = indices[i]; 168 head = radix_tree_delete(root, index); 169 gmap_for_each_rmap_safe(rmap, rnext, head) 170 kfree(rmap); 171 } 172 } while (nr > 0); 173 } 174 175 /** 176 * gmap_free - free a guest address space 177 * @gmap: pointer to the guest address space structure 178 * 179 * No locks required. There are no references to this gmap anymore. 180 */ 181 static void gmap_free(struct gmap *gmap) 182 { 183 struct page *page, *next; 184 185 /* Flush tlb of all gmaps (if not already done for shadows) */ 186 if (!(gmap_is_shadow(gmap) && gmap->removed)) 187 gmap_flush_tlb(gmap); 188 /* Free all segment & region tables. */ 189 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 190 __free_pages(page, CRST_ALLOC_ORDER); 191 gmap_radix_tree_free(&gmap->guest_to_host); 192 gmap_radix_tree_free(&gmap->host_to_guest); 193 194 /* Free additional data for a shadow gmap */ 195 if (gmap_is_shadow(gmap)) { 196 /* Free all page tables. */ 197 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 198 page_table_free_pgste(page); 199 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 200 /* Release reference to the parent */ 201 gmap_put(gmap->parent); 202 } 203 204 kfree(gmap); 205 } 206 207 /** 208 * gmap_get - increase reference counter for guest address space 209 * @gmap: pointer to the guest address space structure 210 * 211 * Returns the gmap pointer 212 */ 213 struct gmap *gmap_get(struct gmap *gmap) 214 { 215 atomic_inc(&gmap->ref_count); 216 return gmap; 217 } 218 EXPORT_SYMBOL_GPL(gmap_get); 219 220 /** 221 * gmap_put - decrease reference counter for guest address space 222 * @gmap: pointer to the guest address space structure 223 * 224 * If the reference counter reaches zero the guest address space is freed. 225 */ 226 void gmap_put(struct gmap *gmap) 227 { 228 if (atomic_dec_return(&gmap->ref_count) == 0) 229 gmap_free(gmap); 230 } 231 EXPORT_SYMBOL_GPL(gmap_put); 232 233 /** 234 * gmap_remove - remove a guest address space but do not free it yet 235 * @gmap: pointer to the guest address space structure 236 */ 237 void gmap_remove(struct gmap *gmap) 238 { 239 struct gmap *sg, *next; 240 unsigned long gmap_asce; 241 242 /* Remove all shadow gmaps linked to this gmap */ 243 if (!list_empty(&gmap->children)) { 244 spin_lock(&gmap->shadow_lock); 245 list_for_each_entry_safe(sg, next, &gmap->children, list) { 246 list_del(&sg->list); 247 gmap_put(sg); 248 } 249 spin_unlock(&gmap->shadow_lock); 250 } 251 /* Remove gmap from the pre-mm list */ 252 spin_lock(&gmap->mm->context.lock); 253 list_del_rcu(&gmap->list); 254 if (list_empty(&gmap->mm->context.gmap_list)) 255 gmap_asce = 0; 256 else if (list_is_singular(&gmap->mm->context.gmap_list)) 257 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 258 struct gmap, list)->asce; 259 else 260 gmap_asce = -1UL; 261 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 262 spin_unlock(&gmap->mm->context.lock); 263 synchronize_rcu(); 264 /* Put reference */ 265 gmap_put(gmap); 266 } 267 EXPORT_SYMBOL_GPL(gmap_remove); 268 269 /** 270 * gmap_enable - switch primary space to the guest address space 271 * @gmap: pointer to the guest address space structure 272 */ 273 void gmap_enable(struct gmap *gmap) 274 { 275 S390_lowcore.gmap = (unsigned long) gmap; 276 } 277 EXPORT_SYMBOL_GPL(gmap_enable); 278 279 /** 280 * gmap_disable - switch back to the standard primary address space 281 * @gmap: pointer to the guest address space structure 282 */ 283 void gmap_disable(struct gmap *gmap) 284 { 285 S390_lowcore.gmap = 0UL; 286 } 287 EXPORT_SYMBOL_GPL(gmap_disable); 288 289 /** 290 * gmap_get_enabled - get a pointer to the currently enabled gmap 291 * 292 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 293 */ 294 struct gmap *gmap_get_enabled(void) 295 { 296 return (struct gmap *) S390_lowcore.gmap; 297 } 298 EXPORT_SYMBOL_GPL(gmap_get_enabled); 299 300 /* 301 * gmap_alloc_table is assumed to be called with mmap_sem held 302 */ 303 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 304 unsigned long init, unsigned long gaddr) 305 { 306 struct page *page; 307 unsigned long *new; 308 309 /* since we dont free the gmap table until gmap_free we can unlock */ 310 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 311 if (!page) 312 return -ENOMEM; 313 new = (unsigned long *) page_to_phys(page); 314 crst_table_init(new, init); 315 spin_lock(&gmap->guest_table_lock); 316 if (*table & _REGION_ENTRY_INVALID) { 317 list_add(&page->lru, &gmap->crst_list); 318 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 319 (*table & _REGION_ENTRY_TYPE_MASK); 320 page->index = gaddr; 321 page = NULL; 322 } 323 spin_unlock(&gmap->guest_table_lock); 324 if (page) 325 __free_pages(page, CRST_ALLOC_ORDER); 326 return 0; 327 } 328 329 /** 330 * __gmap_segment_gaddr - find virtual address from segment pointer 331 * @entry: pointer to a segment table entry in the guest address space 332 * 333 * Returns the virtual address in the guest address space for the segment 334 */ 335 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 336 { 337 struct page *page; 338 unsigned long offset, mask; 339 340 offset = (unsigned long) entry / sizeof(unsigned long); 341 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 342 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 343 page = virt_to_page((void *)((unsigned long) entry & mask)); 344 return page->index + offset; 345 } 346 347 /** 348 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 349 * @gmap: pointer to the guest address space structure 350 * @vmaddr: address in the host process address space 351 * 352 * Returns 1 if a TLB flush is required 353 */ 354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 355 { 356 unsigned long *entry; 357 int flush = 0; 358 359 BUG_ON(gmap_is_shadow(gmap)); 360 spin_lock(&gmap->guest_table_lock); 361 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 362 if (entry) { 363 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 364 *entry = _SEGMENT_ENTRY_EMPTY; 365 } 366 spin_unlock(&gmap->guest_table_lock); 367 return flush; 368 } 369 370 /** 371 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 372 * @gmap: pointer to the guest address space structure 373 * @gaddr: address in the guest address space 374 * 375 * Returns 1 if a TLB flush is required 376 */ 377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 378 { 379 unsigned long vmaddr; 380 381 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 382 gaddr >> PMD_SHIFT); 383 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 384 } 385 386 /** 387 * gmap_unmap_segment - unmap segment from the guest address space 388 * @gmap: pointer to the guest address space structure 389 * @to: address in the guest address space 390 * @len: length of the memory area to unmap 391 * 392 * Returns 0 if the unmap succeeded, -EINVAL if not. 393 */ 394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 395 { 396 unsigned long off; 397 int flush; 398 399 BUG_ON(gmap_is_shadow(gmap)); 400 if ((to | len) & (PMD_SIZE - 1)) 401 return -EINVAL; 402 if (len == 0 || to + len < to) 403 return -EINVAL; 404 405 flush = 0; 406 down_write(&gmap->mm->mmap_sem); 407 for (off = 0; off < len; off += PMD_SIZE) 408 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 409 up_write(&gmap->mm->mmap_sem); 410 if (flush) 411 gmap_flush_tlb(gmap); 412 return 0; 413 } 414 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 415 416 /** 417 * gmap_map_segment - map a segment to the guest address space 418 * @gmap: pointer to the guest address space structure 419 * @from: source address in the parent address space 420 * @to: target address in the guest address space 421 * @len: length of the memory area to map 422 * 423 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 424 */ 425 int gmap_map_segment(struct gmap *gmap, unsigned long from, 426 unsigned long to, unsigned long len) 427 { 428 unsigned long off; 429 int flush; 430 431 BUG_ON(gmap_is_shadow(gmap)); 432 if ((from | to | len) & (PMD_SIZE - 1)) 433 return -EINVAL; 434 if (len == 0 || from + len < from || to + len < to || 435 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 436 return -EINVAL; 437 438 flush = 0; 439 down_write(&gmap->mm->mmap_sem); 440 for (off = 0; off < len; off += PMD_SIZE) { 441 /* Remove old translation */ 442 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 443 /* Store new translation */ 444 if (radix_tree_insert(&gmap->guest_to_host, 445 (to + off) >> PMD_SHIFT, 446 (void *) from + off)) 447 break; 448 } 449 up_write(&gmap->mm->mmap_sem); 450 if (flush) 451 gmap_flush_tlb(gmap); 452 if (off >= len) 453 return 0; 454 gmap_unmap_segment(gmap, to, len); 455 return -ENOMEM; 456 } 457 EXPORT_SYMBOL_GPL(gmap_map_segment); 458 459 /** 460 * __gmap_translate - translate a guest address to a user space address 461 * @gmap: pointer to guest mapping meta data structure 462 * @gaddr: guest address 463 * 464 * Returns user space address which corresponds to the guest address or 465 * -EFAULT if no such mapping exists. 466 * This function does not establish potentially missing page table entries. 467 * The mmap_sem of the mm that belongs to the address space must be held 468 * when this function gets called. 469 * 470 * Note: Can also be called for shadow gmaps. 471 */ 472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 473 { 474 unsigned long vmaddr; 475 476 vmaddr = (unsigned long) 477 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 478 /* Note: guest_to_host is empty for a shadow gmap */ 479 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 480 } 481 EXPORT_SYMBOL_GPL(__gmap_translate); 482 483 /** 484 * gmap_translate - translate a guest address to a user space address 485 * @gmap: pointer to guest mapping meta data structure 486 * @gaddr: guest address 487 * 488 * Returns user space address which corresponds to the guest address or 489 * -EFAULT if no such mapping exists. 490 * This function does not establish potentially missing page table entries. 491 */ 492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 493 { 494 unsigned long rc; 495 496 down_read(&gmap->mm->mmap_sem); 497 rc = __gmap_translate(gmap, gaddr); 498 up_read(&gmap->mm->mmap_sem); 499 return rc; 500 } 501 EXPORT_SYMBOL_GPL(gmap_translate); 502 503 /** 504 * gmap_unlink - disconnect a page table from the gmap shadow tables 505 * @gmap: pointer to guest mapping meta data structure 506 * @table: pointer to the host page table 507 * @vmaddr: vm address associated with the host page table 508 */ 509 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 510 unsigned long vmaddr) 511 { 512 struct gmap *gmap; 513 int flush; 514 515 rcu_read_lock(); 516 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 517 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 518 if (flush) 519 gmap_flush_tlb(gmap); 520 } 521 rcu_read_unlock(); 522 } 523 524 /** 525 * gmap_link - set up shadow page tables to connect a host to a guest address 526 * @gmap: pointer to guest mapping meta data structure 527 * @gaddr: guest address 528 * @vmaddr: vm address 529 * 530 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 531 * if the vm address is already mapped to a different guest segment. 532 * The mmap_sem of the mm that belongs to the address space must be held 533 * when this function gets called. 534 */ 535 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 536 { 537 struct mm_struct *mm; 538 unsigned long *table; 539 spinlock_t *ptl; 540 pgd_t *pgd; 541 p4d_t *p4d; 542 pud_t *pud; 543 pmd_t *pmd; 544 int rc; 545 546 BUG_ON(gmap_is_shadow(gmap)); 547 /* Create higher level tables in the gmap page table */ 548 table = gmap->table; 549 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 550 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 551 if ((*table & _REGION_ENTRY_INVALID) && 552 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 553 gaddr & _REGION1_MASK)) 554 return -ENOMEM; 555 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 556 } 557 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 558 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 559 if ((*table & _REGION_ENTRY_INVALID) && 560 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 561 gaddr & _REGION2_MASK)) 562 return -ENOMEM; 563 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 564 } 565 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 566 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 567 if ((*table & _REGION_ENTRY_INVALID) && 568 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 569 gaddr & _REGION3_MASK)) 570 return -ENOMEM; 571 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 572 } 573 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 574 /* Walk the parent mm page table */ 575 mm = gmap->mm; 576 pgd = pgd_offset(mm, vmaddr); 577 VM_BUG_ON(pgd_none(*pgd)); 578 p4d = p4d_offset(pgd, vmaddr); 579 VM_BUG_ON(p4d_none(*p4d)); 580 pud = pud_offset(p4d, vmaddr); 581 VM_BUG_ON(pud_none(*pud)); 582 /* large puds cannot yet be handled */ 583 if (pud_large(*pud)) 584 return -EFAULT; 585 pmd = pmd_offset(pud, vmaddr); 586 VM_BUG_ON(pmd_none(*pmd)); 587 /* large pmds cannot yet be handled */ 588 if (pmd_large(*pmd)) 589 return -EFAULT; 590 /* Link gmap segment table entry location to page table. */ 591 rc = radix_tree_preload(GFP_KERNEL); 592 if (rc) 593 return rc; 594 ptl = pmd_lock(mm, pmd); 595 spin_lock(&gmap->guest_table_lock); 596 if (*table == _SEGMENT_ENTRY_EMPTY) { 597 rc = radix_tree_insert(&gmap->host_to_guest, 598 vmaddr >> PMD_SHIFT, table); 599 if (!rc) 600 *table = pmd_val(*pmd); 601 } else 602 rc = 0; 603 spin_unlock(&gmap->guest_table_lock); 604 spin_unlock(ptl); 605 radix_tree_preload_end(); 606 return rc; 607 } 608 609 /** 610 * gmap_fault - resolve a fault on a guest address 611 * @gmap: pointer to guest mapping meta data structure 612 * @gaddr: guest address 613 * @fault_flags: flags to pass down to handle_mm_fault() 614 * 615 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 616 * if the vm address is already mapped to a different guest segment. 617 */ 618 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 619 unsigned int fault_flags) 620 { 621 unsigned long vmaddr; 622 int rc; 623 bool unlocked; 624 625 down_read(&gmap->mm->mmap_sem); 626 627 retry: 628 unlocked = false; 629 vmaddr = __gmap_translate(gmap, gaddr); 630 if (IS_ERR_VALUE(vmaddr)) { 631 rc = vmaddr; 632 goto out_up; 633 } 634 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags, 635 &unlocked)) { 636 rc = -EFAULT; 637 goto out_up; 638 } 639 /* 640 * In the case that fixup_user_fault unlocked the mmap_sem during 641 * faultin redo __gmap_translate to not race with a map/unmap_segment. 642 */ 643 if (unlocked) 644 goto retry; 645 646 rc = __gmap_link(gmap, gaddr, vmaddr); 647 out_up: 648 up_read(&gmap->mm->mmap_sem); 649 return rc; 650 } 651 EXPORT_SYMBOL_GPL(gmap_fault); 652 653 /* 654 * this function is assumed to be called with mmap_sem held 655 */ 656 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 657 { 658 unsigned long vmaddr; 659 spinlock_t *ptl; 660 pte_t *ptep; 661 662 /* Find the vm address for the guest address */ 663 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 664 gaddr >> PMD_SHIFT); 665 if (vmaddr) { 666 vmaddr |= gaddr & ~PMD_MASK; 667 /* Get pointer to the page table entry */ 668 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 669 if (likely(ptep)) 670 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 671 pte_unmap_unlock(ptep, ptl); 672 } 673 } 674 EXPORT_SYMBOL_GPL(__gmap_zap); 675 676 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 677 { 678 unsigned long gaddr, vmaddr, size; 679 struct vm_area_struct *vma; 680 681 down_read(&gmap->mm->mmap_sem); 682 for (gaddr = from; gaddr < to; 683 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 684 /* Find the vm address for the guest address */ 685 vmaddr = (unsigned long) 686 radix_tree_lookup(&gmap->guest_to_host, 687 gaddr >> PMD_SHIFT); 688 if (!vmaddr) 689 continue; 690 vmaddr |= gaddr & ~PMD_MASK; 691 /* Find vma in the parent mm */ 692 vma = find_vma(gmap->mm, vmaddr); 693 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 694 zap_page_range(vma, vmaddr, size); 695 } 696 up_read(&gmap->mm->mmap_sem); 697 } 698 EXPORT_SYMBOL_GPL(gmap_discard); 699 700 static LIST_HEAD(gmap_notifier_list); 701 static DEFINE_SPINLOCK(gmap_notifier_lock); 702 703 /** 704 * gmap_register_pte_notifier - register a pte invalidation callback 705 * @nb: pointer to the gmap notifier block 706 */ 707 void gmap_register_pte_notifier(struct gmap_notifier *nb) 708 { 709 spin_lock(&gmap_notifier_lock); 710 list_add_rcu(&nb->list, &gmap_notifier_list); 711 spin_unlock(&gmap_notifier_lock); 712 } 713 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 714 715 /** 716 * gmap_unregister_pte_notifier - remove a pte invalidation callback 717 * @nb: pointer to the gmap notifier block 718 */ 719 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 720 { 721 spin_lock(&gmap_notifier_lock); 722 list_del_rcu(&nb->list); 723 spin_unlock(&gmap_notifier_lock); 724 synchronize_rcu(); 725 } 726 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 727 728 /** 729 * gmap_call_notifier - call all registered invalidation callbacks 730 * @gmap: pointer to guest mapping meta data structure 731 * @start: start virtual address in the guest address space 732 * @end: end virtual address in the guest address space 733 */ 734 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 735 unsigned long end) 736 { 737 struct gmap_notifier *nb; 738 739 list_for_each_entry(nb, &gmap_notifier_list, list) 740 nb->notifier_call(gmap, start, end); 741 } 742 743 /** 744 * gmap_table_walk - walk the gmap page tables 745 * @gmap: pointer to guest mapping meta data structure 746 * @gaddr: virtual address in the guest address space 747 * @level: page table level to stop at 748 * 749 * Returns a table entry pointer for the given guest address and @level 750 * @level=0 : returns a pointer to a page table table entry (or NULL) 751 * @level=1 : returns a pointer to a segment table entry (or NULL) 752 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 753 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 754 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 755 * 756 * Returns NULL if the gmap page tables could not be walked to the 757 * requested level. 758 * 759 * Note: Can also be called for shadow gmaps. 760 */ 761 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 762 unsigned long gaddr, int level) 763 { 764 unsigned long *table; 765 766 if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4)) 767 return NULL; 768 if (gmap_is_shadow(gmap) && gmap->removed) 769 return NULL; 770 if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11))) 771 return NULL; 772 table = gmap->table; 773 switch (gmap->asce & _ASCE_TYPE_MASK) { 774 case _ASCE_TYPE_REGION1: 775 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 776 if (level == 4) 777 break; 778 if (*table & _REGION_ENTRY_INVALID) 779 return NULL; 780 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 781 /* Fallthrough */ 782 case _ASCE_TYPE_REGION2: 783 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 784 if (level == 3) 785 break; 786 if (*table & _REGION_ENTRY_INVALID) 787 return NULL; 788 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 789 /* Fallthrough */ 790 case _ASCE_TYPE_REGION3: 791 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 792 if (level == 2) 793 break; 794 if (*table & _REGION_ENTRY_INVALID) 795 return NULL; 796 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 797 /* Fallthrough */ 798 case _ASCE_TYPE_SEGMENT: 799 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 800 if (level == 1) 801 break; 802 if (*table & _REGION_ENTRY_INVALID) 803 return NULL; 804 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 805 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 806 } 807 return table; 808 } 809 810 /** 811 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 812 * and return the pte pointer 813 * @gmap: pointer to guest mapping meta data structure 814 * @gaddr: virtual address in the guest address space 815 * @ptl: pointer to the spinlock pointer 816 * 817 * Returns a pointer to the locked pte for a guest address, or NULL 818 * 819 * Note: Can also be called for shadow gmaps. 820 */ 821 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 822 spinlock_t **ptl) 823 { 824 unsigned long *table; 825 826 if (gmap_is_shadow(gmap)) 827 spin_lock(&gmap->guest_table_lock); 828 /* Walk the gmap page table, lock and get pte pointer */ 829 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 830 if (!table || *table & _SEGMENT_ENTRY_INVALID) { 831 if (gmap_is_shadow(gmap)) 832 spin_unlock(&gmap->guest_table_lock); 833 return NULL; 834 } 835 if (gmap_is_shadow(gmap)) { 836 *ptl = &gmap->guest_table_lock; 837 return pte_offset_map((pmd_t *) table, gaddr); 838 } 839 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 840 } 841 842 /** 843 * gmap_pte_op_fixup - force a page in and connect the gmap page table 844 * @gmap: pointer to guest mapping meta data structure 845 * @gaddr: virtual address in the guest address space 846 * @vmaddr: address in the host process address space 847 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 848 * 849 * Returns 0 if the caller can retry __gmap_translate (might fail again), 850 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 851 * up or connecting the gmap page table. 852 */ 853 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 854 unsigned long vmaddr, int prot) 855 { 856 struct mm_struct *mm = gmap->mm; 857 unsigned int fault_flags; 858 bool unlocked = false; 859 860 BUG_ON(gmap_is_shadow(gmap)); 861 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 862 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked)) 863 return -EFAULT; 864 if (unlocked) 865 /* lost mmap_sem, caller has to retry __gmap_translate */ 866 return 0; 867 /* Connect the page tables */ 868 return __gmap_link(gmap, gaddr, vmaddr); 869 } 870 871 /** 872 * gmap_pte_op_end - release the page table lock 873 * @ptl: pointer to the spinlock pointer 874 */ 875 static void gmap_pte_op_end(spinlock_t *ptl) 876 { 877 spin_unlock(ptl); 878 } 879 880 /* 881 * gmap_protect_range - remove access rights to memory and set pgste bits 882 * @gmap: pointer to guest mapping meta data structure 883 * @gaddr: virtual address in the guest address space 884 * @len: size of area 885 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 886 * @bits: pgste notification bits to set 887 * 888 * Returns 0 if successfully protected, -ENOMEM if out of memory and 889 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 890 * 891 * Called with sg->mm->mmap_sem in read. 892 * 893 * Note: Can also be called for shadow gmaps. 894 */ 895 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 896 unsigned long len, int prot, unsigned long bits) 897 { 898 unsigned long vmaddr; 899 spinlock_t *ptl; 900 pte_t *ptep; 901 int rc; 902 903 while (len) { 904 rc = -EAGAIN; 905 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 906 if (ptep) { 907 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits); 908 gmap_pte_op_end(ptl); 909 } 910 if (rc) { 911 vmaddr = __gmap_translate(gmap, gaddr); 912 if (IS_ERR_VALUE(vmaddr)) 913 return vmaddr; 914 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 915 if (rc) 916 return rc; 917 continue; 918 } 919 gaddr += PAGE_SIZE; 920 len -= PAGE_SIZE; 921 } 922 return 0; 923 } 924 925 /** 926 * gmap_mprotect_notify - change access rights for a range of ptes and 927 * call the notifier if any pte changes again 928 * @gmap: pointer to guest mapping meta data structure 929 * @gaddr: virtual address in the guest address space 930 * @len: size of area 931 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 932 * 933 * Returns 0 if for each page in the given range a gmap mapping exists, 934 * the new access rights could be set and the notifier could be armed. 935 * If the gmap mapping is missing for one or more pages -EFAULT is 936 * returned. If no memory could be allocated -ENOMEM is returned. 937 * This function establishes missing page table entries. 938 */ 939 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 940 unsigned long len, int prot) 941 { 942 int rc; 943 944 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 945 return -EINVAL; 946 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 947 return -EINVAL; 948 down_read(&gmap->mm->mmap_sem); 949 rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT); 950 up_read(&gmap->mm->mmap_sem); 951 return rc; 952 } 953 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 954 955 /** 956 * gmap_read_table - get an unsigned long value from a guest page table using 957 * absolute addressing, without marking the page referenced. 958 * @gmap: pointer to guest mapping meta data structure 959 * @gaddr: virtual address in the guest address space 960 * @val: pointer to the unsigned long value to return 961 * 962 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 963 * if reading using the virtual address failed. 964 * 965 * Called with gmap->mm->mmap_sem in read. 966 */ 967 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 968 { 969 unsigned long address, vmaddr; 970 spinlock_t *ptl; 971 pte_t *ptep, pte; 972 int rc; 973 974 while (1) { 975 rc = -EAGAIN; 976 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 977 if (ptep) { 978 pte = *ptep; 979 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 980 address = pte_val(pte) & PAGE_MASK; 981 address += gaddr & ~PAGE_MASK; 982 *val = *(unsigned long *) address; 983 pte_val(*ptep) |= _PAGE_YOUNG; 984 /* Do *NOT* clear the _PAGE_INVALID bit! */ 985 rc = 0; 986 } 987 gmap_pte_op_end(ptl); 988 } 989 if (!rc) 990 break; 991 vmaddr = __gmap_translate(gmap, gaddr); 992 if (IS_ERR_VALUE(vmaddr)) { 993 rc = vmaddr; 994 break; 995 } 996 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 997 if (rc) 998 break; 999 } 1000 return rc; 1001 } 1002 EXPORT_SYMBOL_GPL(gmap_read_table); 1003 1004 /** 1005 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1006 * @sg: pointer to the shadow guest address space structure 1007 * @vmaddr: vm address associated with the rmap 1008 * @rmap: pointer to the rmap structure 1009 * 1010 * Called with the sg->guest_table_lock 1011 */ 1012 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1013 struct gmap_rmap *rmap) 1014 { 1015 void __rcu **slot; 1016 1017 BUG_ON(!gmap_is_shadow(sg)); 1018 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1019 if (slot) { 1020 rmap->next = radix_tree_deref_slot_protected(slot, 1021 &sg->guest_table_lock); 1022 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1023 } else { 1024 rmap->next = NULL; 1025 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1026 rmap); 1027 } 1028 } 1029 1030 /** 1031 * gmap_protect_rmap - modify access rights to memory and create an rmap 1032 * @sg: pointer to the shadow guest address space structure 1033 * @raddr: rmap address in the shadow gmap 1034 * @paddr: address in the parent guest address space 1035 * @len: length of the memory area to protect 1036 * @prot: indicates access rights: none, read-only or read-write 1037 * 1038 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1039 * if out of memory and -EFAULT if paddr is invalid. 1040 */ 1041 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1042 unsigned long paddr, unsigned long len, int prot) 1043 { 1044 struct gmap *parent; 1045 struct gmap_rmap *rmap; 1046 unsigned long vmaddr; 1047 spinlock_t *ptl; 1048 pte_t *ptep; 1049 int rc; 1050 1051 BUG_ON(!gmap_is_shadow(sg)); 1052 parent = sg->parent; 1053 while (len) { 1054 vmaddr = __gmap_translate(parent, paddr); 1055 if (IS_ERR_VALUE(vmaddr)) 1056 return vmaddr; 1057 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1058 if (!rmap) 1059 return -ENOMEM; 1060 rmap->raddr = raddr; 1061 rc = radix_tree_preload(GFP_KERNEL); 1062 if (rc) { 1063 kfree(rmap); 1064 return rc; 1065 } 1066 rc = -EAGAIN; 1067 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1068 if (ptep) { 1069 spin_lock(&sg->guest_table_lock); 1070 rc = ptep_force_prot(parent->mm, paddr, ptep, prot, 1071 PGSTE_VSIE_BIT); 1072 if (!rc) 1073 gmap_insert_rmap(sg, vmaddr, rmap); 1074 spin_unlock(&sg->guest_table_lock); 1075 gmap_pte_op_end(ptl); 1076 } 1077 radix_tree_preload_end(); 1078 if (rc) { 1079 kfree(rmap); 1080 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 1081 if (rc) 1082 return rc; 1083 continue; 1084 } 1085 paddr += PAGE_SIZE; 1086 len -= PAGE_SIZE; 1087 } 1088 return 0; 1089 } 1090 1091 #define _SHADOW_RMAP_MASK 0x7 1092 #define _SHADOW_RMAP_REGION1 0x5 1093 #define _SHADOW_RMAP_REGION2 0x4 1094 #define _SHADOW_RMAP_REGION3 0x3 1095 #define _SHADOW_RMAP_SEGMENT 0x2 1096 #define _SHADOW_RMAP_PGTABLE 0x1 1097 1098 /** 1099 * gmap_idte_one - invalidate a single region or segment table entry 1100 * @asce: region or segment table *origin* + table-type bits 1101 * @vaddr: virtual address to identify the table entry to flush 1102 * 1103 * The invalid bit of a single region or segment table entry is set 1104 * and the associated TLB entries depending on the entry are flushed. 1105 * The table-type of the @asce identifies the portion of the @vaddr 1106 * that is used as the invalidation index. 1107 */ 1108 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1109 { 1110 asm volatile( 1111 " .insn rrf,0xb98e0000,%0,%1,0,0" 1112 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1113 } 1114 1115 /** 1116 * gmap_unshadow_page - remove a page from a shadow page table 1117 * @sg: pointer to the shadow guest address space structure 1118 * @raddr: rmap address in the shadow guest address space 1119 * 1120 * Called with the sg->guest_table_lock 1121 */ 1122 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1123 { 1124 unsigned long *table; 1125 1126 BUG_ON(!gmap_is_shadow(sg)); 1127 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1128 if (!table || *table & _PAGE_INVALID) 1129 return; 1130 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1131 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1132 } 1133 1134 /** 1135 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1136 * @sg: pointer to the shadow guest address space structure 1137 * @raddr: rmap address in the shadow guest address space 1138 * @pgt: pointer to the start of a shadow page table 1139 * 1140 * Called with the sg->guest_table_lock 1141 */ 1142 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1143 unsigned long *pgt) 1144 { 1145 int i; 1146 1147 BUG_ON(!gmap_is_shadow(sg)); 1148 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1149 pgt[i] = _PAGE_INVALID; 1150 } 1151 1152 /** 1153 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1154 * @sg: pointer to the shadow guest address space structure 1155 * @raddr: address in the shadow guest address space 1156 * 1157 * Called with the sg->guest_table_lock 1158 */ 1159 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1160 { 1161 unsigned long sto, *ste, *pgt; 1162 struct page *page; 1163 1164 BUG_ON(!gmap_is_shadow(sg)); 1165 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1166 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1167 return; 1168 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1169 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1170 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1171 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1172 *ste = _SEGMENT_ENTRY_EMPTY; 1173 __gmap_unshadow_pgt(sg, raddr, pgt); 1174 /* Free page table */ 1175 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1176 list_del(&page->lru); 1177 page_table_free_pgste(page); 1178 } 1179 1180 /** 1181 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1182 * @sg: pointer to the shadow guest address space structure 1183 * @raddr: rmap address in the shadow guest address space 1184 * @sgt: pointer to the start of a shadow segment table 1185 * 1186 * Called with the sg->guest_table_lock 1187 */ 1188 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1189 unsigned long *sgt) 1190 { 1191 unsigned long *pgt; 1192 struct page *page; 1193 int i; 1194 1195 BUG_ON(!gmap_is_shadow(sg)); 1196 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1197 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1198 continue; 1199 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1200 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1201 __gmap_unshadow_pgt(sg, raddr, pgt); 1202 /* Free page table */ 1203 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1204 list_del(&page->lru); 1205 page_table_free_pgste(page); 1206 } 1207 } 1208 1209 /** 1210 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1211 * @sg: pointer to the shadow guest address space structure 1212 * @raddr: rmap address in the shadow guest address space 1213 * 1214 * Called with the shadow->guest_table_lock 1215 */ 1216 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1217 { 1218 unsigned long r3o, *r3e, *sgt; 1219 struct page *page; 1220 1221 BUG_ON(!gmap_is_shadow(sg)); 1222 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1223 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1224 return; 1225 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1226 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1227 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1228 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1229 *r3e = _REGION3_ENTRY_EMPTY; 1230 __gmap_unshadow_sgt(sg, raddr, sgt); 1231 /* Free segment table */ 1232 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1233 list_del(&page->lru); 1234 __free_pages(page, CRST_ALLOC_ORDER); 1235 } 1236 1237 /** 1238 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1239 * @sg: pointer to the shadow guest address space structure 1240 * @raddr: address in the shadow guest address space 1241 * @r3t: pointer to the start of a shadow region-3 table 1242 * 1243 * Called with the sg->guest_table_lock 1244 */ 1245 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1246 unsigned long *r3t) 1247 { 1248 unsigned long *sgt; 1249 struct page *page; 1250 int i; 1251 1252 BUG_ON(!gmap_is_shadow(sg)); 1253 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1254 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1255 continue; 1256 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1257 r3t[i] = _REGION3_ENTRY_EMPTY; 1258 __gmap_unshadow_sgt(sg, raddr, sgt); 1259 /* Free segment table */ 1260 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1261 list_del(&page->lru); 1262 __free_pages(page, CRST_ALLOC_ORDER); 1263 } 1264 } 1265 1266 /** 1267 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1268 * @sg: pointer to the shadow guest address space structure 1269 * @raddr: rmap address in the shadow guest address space 1270 * 1271 * Called with the sg->guest_table_lock 1272 */ 1273 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1274 { 1275 unsigned long r2o, *r2e, *r3t; 1276 struct page *page; 1277 1278 BUG_ON(!gmap_is_shadow(sg)); 1279 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1280 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1281 return; 1282 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1283 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1284 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1285 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1286 *r2e = _REGION2_ENTRY_EMPTY; 1287 __gmap_unshadow_r3t(sg, raddr, r3t); 1288 /* Free region 3 table */ 1289 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1290 list_del(&page->lru); 1291 __free_pages(page, CRST_ALLOC_ORDER); 1292 } 1293 1294 /** 1295 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1296 * @sg: pointer to the shadow guest address space structure 1297 * @raddr: rmap address in the shadow guest address space 1298 * @r2t: pointer to the start of a shadow region-2 table 1299 * 1300 * Called with the sg->guest_table_lock 1301 */ 1302 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1303 unsigned long *r2t) 1304 { 1305 unsigned long *r3t; 1306 struct page *page; 1307 int i; 1308 1309 BUG_ON(!gmap_is_shadow(sg)); 1310 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1311 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1312 continue; 1313 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1314 r2t[i] = _REGION2_ENTRY_EMPTY; 1315 __gmap_unshadow_r3t(sg, raddr, r3t); 1316 /* Free region 3 table */ 1317 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1318 list_del(&page->lru); 1319 __free_pages(page, CRST_ALLOC_ORDER); 1320 } 1321 } 1322 1323 /** 1324 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1325 * @sg: pointer to the shadow guest address space structure 1326 * @raddr: rmap address in the shadow guest address space 1327 * 1328 * Called with the sg->guest_table_lock 1329 */ 1330 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1331 { 1332 unsigned long r1o, *r1e, *r2t; 1333 struct page *page; 1334 1335 BUG_ON(!gmap_is_shadow(sg)); 1336 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1337 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1338 return; 1339 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1340 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1341 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1342 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1343 *r1e = _REGION1_ENTRY_EMPTY; 1344 __gmap_unshadow_r2t(sg, raddr, r2t); 1345 /* Free region 2 table */ 1346 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1347 list_del(&page->lru); 1348 __free_pages(page, CRST_ALLOC_ORDER); 1349 } 1350 1351 /** 1352 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1353 * @sg: pointer to the shadow guest address space structure 1354 * @raddr: rmap address in the shadow guest address space 1355 * @r1t: pointer to the start of a shadow region-1 table 1356 * 1357 * Called with the shadow->guest_table_lock 1358 */ 1359 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1360 unsigned long *r1t) 1361 { 1362 unsigned long asce, *r2t; 1363 struct page *page; 1364 int i; 1365 1366 BUG_ON(!gmap_is_shadow(sg)); 1367 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1368 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1369 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1370 continue; 1371 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1372 __gmap_unshadow_r2t(sg, raddr, r2t); 1373 /* Clear entry and flush translation r1t -> r2t */ 1374 gmap_idte_one(asce, raddr); 1375 r1t[i] = _REGION1_ENTRY_EMPTY; 1376 /* Free region 2 table */ 1377 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1378 list_del(&page->lru); 1379 __free_pages(page, CRST_ALLOC_ORDER); 1380 } 1381 } 1382 1383 /** 1384 * gmap_unshadow - remove a shadow page table completely 1385 * @sg: pointer to the shadow guest address space structure 1386 * 1387 * Called with sg->guest_table_lock 1388 */ 1389 static void gmap_unshadow(struct gmap *sg) 1390 { 1391 unsigned long *table; 1392 1393 BUG_ON(!gmap_is_shadow(sg)); 1394 if (sg->removed) 1395 return; 1396 sg->removed = 1; 1397 gmap_call_notifier(sg, 0, -1UL); 1398 gmap_flush_tlb(sg); 1399 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1400 switch (sg->asce & _ASCE_TYPE_MASK) { 1401 case _ASCE_TYPE_REGION1: 1402 __gmap_unshadow_r1t(sg, 0, table); 1403 break; 1404 case _ASCE_TYPE_REGION2: 1405 __gmap_unshadow_r2t(sg, 0, table); 1406 break; 1407 case _ASCE_TYPE_REGION3: 1408 __gmap_unshadow_r3t(sg, 0, table); 1409 break; 1410 case _ASCE_TYPE_SEGMENT: 1411 __gmap_unshadow_sgt(sg, 0, table); 1412 break; 1413 } 1414 } 1415 1416 /** 1417 * gmap_find_shadow - find a specific asce in the list of shadow tables 1418 * @parent: pointer to the parent gmap 1419 * @asce: ASCE for which the shadow table is created 1420 * @edat_level: edat level to be used for the shadow translation 1421 * 1422 * Returns the pointer to a gmap if a shadow table with the given asce is 1423 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1424 * otherwise NULL 1425 */ 1426 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1427 int edat_level) 1428 { 1429 struct gmap *sg; 1430 1431 list_for_each_entry(sg, &parent->children, list) { 1432 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1433 sg->removed) 1434 continue; 1435 if (!sg->initialized) 1436 return ERR_PTR(-EAGAIN); 1437 atomic_inc(&sg->ref_count); 1438 return sg; 1439 } 1440 return NULL; 1441 } 1442 1443 /** 1444 * gmap_shadow_valid - check if a shadow guest address space matches the 1445 * given properties and is still valid 1446 * @sg: pointer to the shadow guest address space structure 1447 * @asce: ASCE for which the shadow table is requested 1448 * @edat_level: edat level to be used for the shadow translation 1449 * 1450 * Returns 1 if the gmap shadow is still valid and matches the given 1451 * properties, the caller can continue using it. Returns 0 otherwise, the 1452 * caller has to request a new shadow gmap in this case. 1453 * 1454 */ 1455 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1456 { 1457 if (sg->removed) 1458 return 0; 1459 return sg->orig_asce == asce && sg->edat_level == edat_level; 1460 } 1461 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1462 1463 /** 1464 * gmap_shadow - create/find a shadow guest address space 1465 * @parent: pointer to the parent gmap 1466 * @asce: ASCE for which the shadow table is created 1467 * @edat_level: edat level to be used for the shadow translation 1468 * 1469 * The pages of the top level page table referred by the asce parameter 1470 * will be set to read-only and marked in the PGSTEs of the kvm process. 1471 * The shadow table will be removed automatically on any change to the 1472 * PTE mapping for the source table. 1473 * 1474 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1475 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1476 * parent gmap table could not be protected. 1477 */ 1478 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1479 int edat_level) 1480 { 1481 struct gmap *sg, *new; 1482 unsigned long limit; 1483 int rc; 1484 1485 BUG_ON(gmap_is_shadow(parent)); 1486 spin_lock(&parent->shadow_lock); 1487 sg = gmap_find_shadow(parent, asce, edat_level); 1488 spin_unlock(&parent->shadow_lock); 1489 if (sg) 1490 return sg; 1491 /* Create a new shadow gmap */ 1492 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1493 if (asce & _ASCE_REAL_SPACE) 1494 limit = -1UL; 1495 new = gmap_alloc(limit); 1496 if (!new) 1497 return ERR_PTR(-ENOMEM); 1498 new->mm = parent->mm; 1499 new->parent = gmap_get(parent); 1500 new->orig_asce = asce; 1501 new->edat_level = edat_level; 1502 new->initialized = false; 1503 spin_lock(&parent->shadow_lock); 1504 /* Recheck if another CPU created the same shadow */ 1505 sg = gmap_find_shadow(parent, asce, edat_level); 1506 if (sg) { 1507 spin_unlock(&parent->shadow_lock); 1508 gmap_free(new); 1509 return sg; 1510 } 1511 if (asce & _ASCE_REAL_SPACE) { 1512 /* only allow one real-space gmap shadow */ 1513 list_for_each_entry(sg, &parent->children, list) { 1514 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1515 spin_lock(&sg->guest_table_lock); 1516 gmap_unshadow(sg); 1517 spin_unlock(&sg->guest_table_lock); 1518 list_del(&sg->list); 1519 gmap_put(sg); 1520 break; 1521 } 1522 } 1523 } 1524 atomic_set(&new->ref_count, 2); 1525 list_add(&new->list, &parent->children); 1526 if (asce & _ASCE_REAL_SPACE) { 1527 /* nothing to protect, return right away */ 1528 new->initialized = true; 1529 spin_unlock(&parent->shadow_lock); 1530 return new; 1531 } 1532 spin_unlock(&parent->shadow_lock); 1533 /* protect after insertion, so it will get properly invalidated */ 1534 down_read(&parent->mm->mmap_sem); 1535 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1536 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1537 PROT_READ, PGSTE_VSIE_BIT); 1538 up_read(&parent->mm->mmap_sem); 1539 spin_lock(&parent->shadow_lock); 1540 new->initialized = true; 1541 if (rc) { 1542 list_del(&new->list); 1543 gmap_free(new); 1544 new = ERR_PTR(rc); 1545 } 1546 spin_unlock(&parent->shadow_lock); 1547 return new; 1548 } 1549 EXPORT_SYMBOL_GPL(gmap_shadow); 1550 1551 /** 1552 * gmap_shadow_r2t - create an empty shadow region 2 table 1553 * @sg: pointer to the shadow guest address space structure 1554 * @saddr: faulting address in the shadow gmap 1555 * @r2t: parent gmap address of the region 2 table to get shadowed 1556 * @fake: r2t references contiguous guest memory block, not a r2t 1557 * 1558 * The r2t parameter specifies the address of the source table. The 1559 * four pages of the source table are made read-only in the parent gmap 1560 * address space. A write to the source table area @r2t will automatically 1561 * remove the shadow r2 table and all of its decendents. 1562 * 1563 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1564 * shadow table structure is incomplete, -ENOMEM if out of memory and 1565 * -EFAULT if an address in the parent gmap could not be resolved. 1566 * 1567 * Called with sg->mm->mmap_sem in read. 1568 */ 1569 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1570 int fake) 1571 { 1572 unsigned long raddr, origin, offset, len; 1573 unsigned long *s_r2t, *table; 1574 struct page *page; 1575 int rc; 1576 1577 BUG_ON(!gmap_is_shadow(sg)); 1578 /* Allocate a shadow region second table */ 1579 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1580 if (!page) 1581 return -ENOMEM; 1582 page->index = r2t & _REGION_ENTRY_ORIGIN; 1583 if (fake) 1584 page->index |= GMAP_SHADOW_FAKE_TABLE; 1585 s_r2t = (unsigned long *) page_to_phys(page); 1586 /* Install shadow region second table */ 1587 spin_lock(&sg->guest_table_lock); 1588 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1589 if (!table) { 1590 rc = -EAGAIN; /* Race with unshadow */ 1591 goto out_free; 1592 } 1593 if (!(*table & _REGION_ENTRY_INVALID)) { 1594 rc = 0; /* Already established */ 1595 goto out_free; 1596 } else if (*table & _REGION_ENTRY_ORIGIN) { 1597 rc = -EAGAIN; /* Race with shadow */ 1598 goto out_free; 1599 } 1600 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1601 /* mark as invalid as long as the parent table is not protected */ 1602 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1603 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1604 if (sg->edat_level >= 1) 1605 *table |= (r2t & _REGION_ENTRY_PROTECT); 1606 list_add(&page->lru, &sg->crst_list); 1607 if (fake) { 1608 /* nothing to protect for fake tables */ 1609 *table &= ~_REGION_ENTRY_INVALID; 1610 spin_unlock(&sg->guest_table_lock); 1611 return 0; 1612 } 1613 spin_unlock(&sg->guest_table_lock); 1614 /* Make r2t read-only in parent gmap page table */ 1615 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1616 origin = r2t & _REGION_ENTRY_ORIGIN; 1617 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1618 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1619 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1620 spin_lock(&sg->guest_table_lock); 1621 if (!rc) { 1622 table = gmap_table_walk(sg, saddr, 4); 1623 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1624 (unsigned long) s_r2t) 1625 rc = -EAGAIN; /* Race with unshadow */ 1626 else 1627 *table &= ~_REGION_ENTRY_INVALID; 1628 } else { 1629 gmap_unshadow_r2t(sg, raddr); 1630 } 1631 spin_unlock(&sg->guest_table_lock); 1632 return rc; 1633 out_free: 1634 spin_unlock(&sg->guest_table_lock); 1635 __free_pages(page, CRST_ALLOC_ORDER); 1636 return rc; 1637 } 1638 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1639 1640 /** 1641 * gmap_shadow_r3t - create a shadow region 3 table 1642 * @sg: pointer to the shadow guest address space structure 1643 * @saddr: faulting address in the shadow gmap 1644 * @r3t: parent gmap address of the region 3 table to get shadowed 1645 * @fake: r3t references contiguous guest memory block, not a r3t 1646 * 1647 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1648 * shadow table structure is incomplete, -ENOMEM if out of memory and 1649 * -EFAULT if an address in the parent gmap could not be resolved. 1650 * 1651 * Called with sg->mm->mmap_sem in read. 1652 */ 1653 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1654 int fake) 1655 { 1656 unsigned long raddr, origin, offset, len; 1657 unsigned long *s_r3t, *table; 1658 struct page *page; 1659 int rc; 1660 1661 BUG_ON(!gmap_is_shadow(sg)); 1662 /* Allocate a shadow region second table */ 1663 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1664 if (!page) 1665 return -ENOMEM; 1666 page->index = r3t & _REGION_ENTRY_ORIGIN; 1667 if (fake) 1668 page->index |= GMAP_SHADOW_FAKE_TABLE; 1669 s_r3t = (unsigned long *) page_to_phys(page); 1670 /* Install shadow region second table */ 1671 spin_lock(&sg->guest_table_lock); 1672 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1673 if (!table) { 1674 rc = -EAGAIN; /* Race with unshadow */ 1675 goto out_free; 1676 } 1677 if (!(*table & _REGION_ENTRY_INVALID)) { 1678 rc = 0; /* Already established */ 1679 goto out_free; 1680 } else if (*table & _REGION_ENTRY_ORIGIN) { 1681 rc = -EAGAIN; /* Race with shadow */ 1682 } 1683 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1684 /* mark as invalid as long as the parent table is not protected */ 1685 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1686 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1687 if (sg->edat_level >= 1) 1688 *table |= (r3t & _REGION_ENTRY_PROTECT); 1689 list_add(&page->lru, &sg->crst_list); 1690 if (fake) { 1691 /* nothing to protect for fake tables */ 1692 *table &= ~_REGION_ENTRY_INVALID; 1693 spin_unlock(&sg->guest_table_lock); 1694 return 0; 1695 } 1696 spin_unlock(&sg->guest_table_lock); 1697 /* Make r3t read-only in parent gmap page table */ 1698 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1699 origin = r3t & _REGION_ENTRY_ORIGIN; 1700 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1701 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1702 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1703 spin_lock(&sg->guest_table_lock); 1704 if (!rc) { 1705 table = gmap_table_walk(sg, saddr, 3); 1706 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1707 (unsigned long) s_r3t) 1708 rc = -EAGAIN; /* Race with unshadow */ 1709 else 1710 *table &= ~_REGION_ENTRY_INVALID; 1711 } else { 1712 gmap_unshadow_r3t(sg, raddr); 1713 } 1714 spin_unlock(&sg->guest_table_lock); 1715 return rc; 1716 out_free: 1717 spin_unlock(&sg->guest_table_lock); 1718 __free_pages(page, CRST_ALLOC_ORDER); 1719 return rc; 1720 } 1721 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1722 1723 /** 1724 * gmap_shadow_sgt - create a shadow segment table 1725 * @sg: pointer to the shadow guest address space structure 1726 * @saddr: faulting address in the shadow gmap 1727 * @sgt: parent gmap address of the segment table to get shadowed 1728 * @fake: sgt references contiguous guest memory block, not a sgt 1729 * 1730 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1731 * shadow table structure is incomplete, -ENOMEM if out of memory and 1732 * -EFAULT if an address in the parent gmap could not be resolved. 1733 * 1734 * Called with sg->mm->mmap_sem in read. 1735 */ 1736 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1737 int fake) 1738 { 1739 unsigned long raddr, origin, offset, len; 1740 unsigned long *s_sgt, *table; 1741 struct page *page; 1742 int rc; 1743 1744 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1745 /* Allocate a shadow segment table */ 1746 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1747 if (!page) 1748 return -ENOMEM; 1749 page->index = sgt & _REGION_ENTRY_ORIGIN; 1750 if (fake) 1751 page->index |= GMAP_SHADOW_FAKE_TABLE; 1752 s_sgt = (unsigned long *) page_to_phys(page); 1753 /* Install shadow region second table */ 1754 spin_lock(&sg->guest_table_lock); 1755 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1756 if (!table) { 1757 rc = -EAGAIN; /* Race with unshadow */ 1758 goto out_free; 1759 } 1760 if (!(*table & _REGION_ENTRY_INVALID)) { 1761 rc = 0; /* Already established */ 1762 goto out_free; 1763 } else if (*table & _REGION_ENTRY_ORIGIN) { 1764 rc = -EAGAIN; /* Race with shadow */ 1765 goto out_free; 1766 } 1767 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1768 /* mark as invalid as long as the parent table is not protected */ 1769 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1770 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1771 if (sg->edat_level >= 1) 1772 *table |= sgt & _REGION_ENTRY_PROTECT; 1773 list_add(&page->lru, &sg->crst_list); 1774 if (fake) { 1775 /* nothing to protect for fake tables */ 1776 *table &= ~_REGION_ENTRY_INVALID; 1777 spin_unlock(&sg->guest_table_lock); 1778 return 0; 1779 } 1780 spin_unlock(&sg->guest_table_lock); 1781 /* Make sgt read-only in parent gmap page table */ 1782 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1783 origin = sgt & _REGION_ENTRY_ORIGIN; 1784 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1785 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1786 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1787 spin_lock(&sg->guest_table_lock); 1788 if (!rc) { 1789 table = gmap_table_walk(sg, saddr, 2); 1790 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1791 (unsigned long) s_sgt) 1792 rc = -EAGAIN; /* Race with unshadow */ 1793 else 1794 *table &= ~_REGION_ENTRY_INVALID; 1795 } else { 1796 gmap_unshadow_sgt(sg, raddr); 1797 } 1798 spin_unlock(&sg->guest_table_lock); 1799 return rc; 1800 out_free: 1801 spin_unlock(&sg->guest_table_lock); 1802 __free_pages(page, CRST_ALLOC_ORDER); 1803 return rc; 1804 } 1805 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1806 1807 /** 1808 * gmap_shadow_lookup_pgtable - find a shadow page table 1809 * @sg: pointer to the shadow guest address space structure 1810 * @saddr: the address in the shadow aguest address space 1811 * @pgt: parent gmap address of the page table to get shadowed 1812 * @dat_protection: if the pgtable is marked as protected by dat 1813 * @fake: pgt references contiguous guest memory block, not a pgtable 1814 * 1815 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1816 * table was not found. 1817 * 1818 * Called with sg->mm->mmap_sem in read. 1819 */ 1820 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1821 unsigned long *pgt, int *dat_protection, 1822 int *fake) 1823 { 1824 unsigned long *table; 1825 struct page *page; 1826 int rc; 1827 1828 BUG_ON(!gmap_is_shadow(sg)); 1829 spin_lock(&sg->guest_table_lock); 1830 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1831 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1832 /* Shadow page tables are full pages (pte+pgste) */ 1833 page = pfn_to_page(*table >> PAGE_SHIFT); 1834 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 1835 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 1836 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 1837 rc = 0; 1838 } else { 1839 rc = -EAGAIN; 1840 } 1841 spin_unlock(&sg->guest_table_lock); 1842 return rc; 1843 1844 } 1845 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 1846 1847 /** 1848 * gmap_shadow_pgt - instantiate a shadow page table 1849 * @sg: pointer to the shadow guest address space structure 1850 * @saddr: faulting address in the shadow gmap 1851 * @pgt: parent gmap address of the page table to get shadowed 1852 * @fake: pgt references contiguous guest memory block, not a pgtable 1853 * 1854 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1855 * shadow table structure is incomplete, -ENOMEM if out of memory, 1856 * -EFAULT if an address in the parent gmap could not be resolved and 1857 * 1858 * Called with gmap->mm->mmap_sem in read 1859 */ 1860 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 1861 int fake) 1862 { 1863 unsigned long raddr, origin; 1864 unsigned long *s_pgt, *table; 1865 struct page *page; 1866 int rc; 1867 1868 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 1869 /* Allocate a shadow page table */ 1870 page = page_table_alloc_pgste(sg->mm); 1871 if (!page) 1872 return -ENOMEM; 1873 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 1874 if (fake) 1875 page->index |= GMAP_SHADOW_FAKE_TABLE; 1876 s_pgt = (unsigned long *) page_to_phys(page); 1877 /* Install shadow page table */ 1878 spin_lock(&sg->guest_table_lock); 1879 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1880 if (!table) { 1881 rc = -EAGAIN; /* Race with unshadow */ 1882 goto out_free; 1883 } 1884 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 1885 rc = 0; /* Already established */ 1886 goto out_free; 1887 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 1888 rc = -EAGAIN; /* Race with shadow */ 1889 goto out_free; 1890 } 1891 /* mark as invalid as long as the parent table is not protected */ 1892 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 1893 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 1894 list_add(&page->lru, &sg->pt_list); 1895 if (fake) { 1896 /* nothing to protect for fake tables */ 1897 *table &= ~_SEGMENT_ENTRY_INVALID; 1898 spin_unlock(&sg->guest_table_lock); 1899 return 0; 1900 } 1901 spin_unlock(&sg->guest_table_lock); 1902 /* Make pgt read-only in parent gmap page table (not the pgste) */ 1903 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 1904 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 1905 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE, PROT_READ); 1906 spin_lock(&sg->guest_table_lock); 1907 if (!rc) { 1908 table = gmap_table_walk(sg, saddr, 1); 1909 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 1910 (unsigned long) s_pgt) 1911 rc = -EAGAIN; /* Race with unshadow */ 1912 else 1913 *table &= ~_SEGMENT_ENTRY_INVALID; 1914 } else { 1915 gmap_unshadow_pgt(sg, raddr); 1916 } 1917 spin_unlock(&sg->guest_table_lock); 1918 return rc; 1919 out_free: 1920 spin_unlock(&sg->guest_table_lock); 1921 page_table_free_pgste(page); 1922 return rc; 1923 1924 } 1925 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 1926 1927 /** 1928 * gmap_shadow_page - create a shadow page mapping 1929 * @sg: pointer to the shadow guest address space structure 1930 * @saddr: faulting address in the shadow gmap 1931 * @pte: pte in parent gmap address space to get shadowed 1932 * 1933 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1934 * shadow table structure is incomplete, -ENOMEM if out of memory and 1935 * -EFAULT if an address in the parent gmap could not be resolved. 1936 * 1937 * Called with sg->mm->mmap_sem in read. 1938 */ 1939 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 1940 { 1941 struct gmap *parent; 1942 struct gmap_rmap *rmap; 1943 unsigned long vmaddr, paddr; 1944 spinlock_t *ptl; 1945 pte_t *sptep, *tptep; 1946 int prot; 1947 int rc; 1948 1949 BUG_ON(!gmap_is_shadow(sg)); 1950 parent = sg->parent; 1951 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 1952 1953 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1954 if (!rmap) 1955 return -ENOMEM; 1956 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 1957 1958 while (1) { 1959 paddr = pte_val(pte) & PAGE_MASK; 1960 vmaddr = __gmap_translate(parent, paddr); 1961 if (IS_ERR_VALUE(vmaddr)) { 1962 rc = vmaddr; 1963 break; 1964 } 1965 rc = radix_tree_preload(GFP_KERNEL); 1966 if (rc) 1967 break; 1968 rc = -EAGAIN; 1969 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 1970 if (sptep) { 1971 spin_lock(&sg->guest_table_lock); 1972 /* Get page table pointer */ 1973 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 1974 if (!tptep) { 1975 spin_unlock(&sg->guest_table_lock); 1976 gmap_pte_op_end(ptl); 1977 radix_tree_preload_end(); 1978 break; 1979 } 1980 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 1981 if (rc > 0) { 1982 /* Success and a new mapping */ 1983 gmap_insert_rmap(sg, vmaddr, rmap); 1984 rmap = NULL; 1985 rc = 0; 1986 } 1987 gmap_pte_op_end(ptl); 1988 spin_unlock(&sg->guest_table_lock); 1989 } 1990 radix_tree_preload_end(); 1991 if (!rc) 1992 break; 1993 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 1994 if (rc) 1995 break; 1996 } 1997 kfree(rmap); 1998 return rc; 1999 } 2000 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2001 2002 /** 2003 * gmap_shadow_notify - handle notifications for shadow gmap 2004 * 2005 * Called with sg->parent->shadow_lock. 2006 */ 2007 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2008 unsigned long gaddr, pte_t *pte) 2009 { 2010 struct gmap_rmap *rmap, *rnext, *head; 2011 unsigned long start, end, bits, raddr; 2012 2013 BUG_ON(!gmap_is_shadow(sg)); 2014 2015 spin_lock(&sg->guest_table_lock); 2016 if (sg->removed) { 2017 spin_unlock(&sg->guest_table_lock); 2018 return; 2019 } 2020 /* Check for top level table */ 2021 start = sg->orig_asce & _ASCE_ORIGIN; 2022 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2023 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2024 gaddr < end) { 2025 /* The complete shadow table has to go */ 2026 gmap_unshadow(sg); 2027 spin_unlock(&sg->guest_table_lock); 2028 list_del(&sg->list); 2029 gmap_put(sg); 2030 return; 2031 } 2032 /* Remove the page table tree from on specific entry */ 2033 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2034 gmap_for_each_rmap_safe(rmap, rnext, head) { 2035 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2036 raddr = rmap->raddr ^ bits; 2037 switch (bits) { 2038 case _SHADOW_RMAP_REGION1: 2039 gmap_unshadow_r2t(sg, raddr); 2040 break; 2041 case _SHADOW_RMAP_REGION2: 2042 gmap_unshadow_r3t(sg, raddr); 2043 break; 2044 case _SHADOW_RMAP_REGION3: 2045 gmap_unshadow_sgt(sg, raddr); 2046 break; 2047 case _SHADOW_RMAP_SEGMENT: 2048 gmap_unshadow_pgt(sg, raddr); 2049 break; 2050 case _SHADOW_RMAP_PGTABLE: 2051 gmap_unshadow_page(sg, raddr); 2052 break; 2053 } 2054 kfree(rmap); 2055 } 2056 spin_unlock(&sg->guest_table_lock); 2057 } 2058 2059 /** 2060 * ptep_notify - call all invalidation callbacks for a specific pte. 2061 * @mm: pointer to the process mm_struct 2062 * @addr: virtual address in the process address space 2063 * @pte: pointer to the page table entry 2064 * @bits: bits from the pgste that caused the notify call 2065 * 2066 * This function is assumed to be called with the page table lock held 2067 * for the pte to notify. 2068 */ 2069 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2070 pte_t *pte, unsigned long bits) 2071 { 2072 unsigned long offset, gaddr = 0; 2073 unsigned long *table; 2074 struct gmap *gmap, *sg, *next; 2075 2076 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2077 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2078 rcu_read_lock(); 2079 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2080 spin_lock(&gmap->guest_table_lock); 2081 table = radix_tree_lookup(&gmap->host_to_guest, 2082 vmaddr >> PMD_SHIFT); 2083 if (table) 2084 gaddr = __gmap_segment_gaddr(table) + offset; 2085 spin_unlock(&gmap->guest_table_lock); 2086 if (!table) 2087 continue; 2088 2089 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2090 spin_lock(&gmap->shadow_lock); 2091 list_for_each_entry_safe(sg, next, 2092 &gmap->children, list) 2093 gmap_shadow_notify(sg, vmaddr, gaddr, pte); 2094 spin_unlock(&gmap->shadow_lock); 2095 } 2096 if (bits & PGSTE_IN_BIT) 2097 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2098 } 2099 rcu_read_unlock(); 2100 } 2101 EXPORT_SYMBOL_GPL(ptep_notify); 2102 2103 static inline void thp_split_mm(struct mm_struct *mm) 2104 { 2105 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2106 struct vm_area_struct *vma; 2107 unsigned long addr; 2108 2109 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2110 for (addr = vma->vm_start; 2111 addr < vma->vm_end; 2112 addr += PAGE_SIZE) 2113 follow_page(vma, addr, FOLL_SPLIT); 2114 vma->vm_flags &= ~VM_HUGEPAGE; 2115 vma->vm_flags |= VM_NOHUGEPAGE; 2116 } 2117 mm->def_flags |= VM_NOHUGEPAGE; 2118 #endif 2119 } 2120 2121 /* 2122 * Remove all empty zero pages from the mapping for lazy refaulting 2123 * - This must be called after mm->context.has_pgste is set, to avoid 2124 * future creation of zero pages 2125 * - This must be called after THP was enabled 2126 */ 2127 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2128 unsigned long end, struct mm_walk *walk) 2129 { 2130 unsigned long addr; 2131 2132 for (addr = start; addr != end; addr += PAGE_SIZE) { 2133 pte_t *ptep; 2134 spinlock_t *ptl; 2135 2136 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2137 if (is_zero_pfn(pte_pfn(*ptep))) 2138 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2139 pte_unmap_unlock(ptep, ptl); 2140 } 2141 return 0; 2142 } 2143 2144 static inline void zap_zero_pages(struct mm_struct *mm) 2145 { 2146 struct mm_walk walk = { .pmd_entry = __zap_zero_pages }; 2147 2148 walk.mm = mm; 2149 walk_page_range(0, TASK_SIZE, &walk); 2150 } 2151 2152 /* 2153 * switch on pgstes for its userspace process (for kvm) 2154 */ 2155 int s390_enable_sie(void) 2156 { 2157 struct mm_struct *mm = current->mm; 2158 2159 /* Do we have pgstes? if yes, we are done */ 2160 if (mm_has_pgste(mm)) 2161 return 0; 2162 /* Fail if the page tables are 2K */ 2163 if (!mm_alloc_pgste(mm)) 2164 return -EINVAL; 2165 down_write(&mm->mmap_sem); 2166 mm->context.has_pgste = 1; 2167 /* split thp mappings and disable thp for future mappings */ 2168 thp_split_mm(mm); 2169 zap_zero_pages(mm); 2170 up_write(&mm->mmap_sem); 2171 return 0; 2172 } 2173 EXPORT_SYMBOL_GPL(s390_enable_sie); 2174 2175 /* 2176 * Enable storage key handling from now on and initialize the storage 2177 * keys with the default key. 2178 */ 2179 static int __s390_enable_skey(pte_t *pte, unsigned long addr, 2180 unsigned long next, struct mm_walk *walk) 2181 { 2182 /* Clear storage key */ 2183 ptep_zap_key(walk->mm, addr, pte); 2184 return 0; 2185 } 2186 2187 int s390_enable_skey(void) 2188 { 2189 struct mm_walk walk = { .pte_entry = __s390_enable_skey }; 2190 struct mm_struct *mm = current->mm; 2191 struct vm_area_struct *vma; 2192 int rc = 0; 2193 2194 down_write(&mm->mmap_sem); 2195 if (mm_use_skey(mm)) 2196 goto out_up; 2197 2198 mm->context.use_skey = 1; 2199 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2200 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 2201 MADV_UNMERGEABLE, &vma->vm_flags)) { 2202 mm->context.use_skey = 0; 2203 rc = -ENOMEM; 2204 goto out_up; 2205 } 2206 } 2207 mm->def_flags &= ~VM_MERGEABLE; 2208 2209 walk.mm = mm; 2210 walk_page_range(0, TASK_SIZE, &walk); 2211 2212 out_up: 2213 up_write(&mm->mmap_sem); 2214 return rc; 2215 } 2216 EXPORT_SYMBOL_GPL(s390_enable_skey); 2217 2218 /* 2219 * Reset CMMA state, make all pages stable again. 2220 */ 2221 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2222 unsigned long next, struct mm_walk *walk) 2223 { 2224 ptep_zap_unused(walk->mm, addr, pte, 1); 2225 return 0; 2226 } 2227 2228 void s390_reset_cmma(struct mm_struct *mm) 2229 { 2230 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 2231 2232 down_write(&mm->mmap_sem); 2233 walk.mm = mm; 2234 walk_page_range(0, TASK_SIZE, &walk); 2235 up_write(&mm->mmap_sem); 2236 } 2237 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2238