1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2020 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/pagewalk.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 #include <linux/pgtable.h> 21 #include <asm/page-states.h> 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/page.h> 25 #include <asm/tlb.h> 26 27 #define GMAP_SHADOW_FAKE_TABLE 1ULL 28 29 static struct page *gmap_alloc_crst(void) 30 { 31 struct page *page; 32 33 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 34 if (!page) 35 return NULL; 36 __arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER); 37 return page; 38 } 39 40 /** 41 * gmap_alloc - allocate and initialize a guest address space 42 * @limit: maximum address of the gmap address space 43 * 44 * Returns a guest address space structure. 45 */ 46 static struct gmap *gmap_alloc(unsigned long limit) 47 { 48 struct gmap *gmap; 49 struct page *page; 50 unsigned long *table; 51 unsigned long etype, atype; 52 53 if (limit < _REGION3_SIZE) { 54 limit = _REGION3_SIZE - 1; 55 atype = _ASCE_TYPE_SEGMENT; 56 etype = _SEGMENT_ENTRY_EMPTY; 57 } else if (limit < _REGION2_SIZE) { 58 limit = _REGION2_SIZE - 1; 59 atype = _ASCE_TYPE_REGION3; 60 etype = _REGION3_ENTRY_EMPTY; 61 } else if (limit < _REGION1_SIZE) { 62 limit = _REGION1_SIZE - 1; 63 atype = _ASCE_TYPE_REGION2; 64 etype = _REGION2_ENTRY_EMPTY; 65 } else { 66 limit = -1UL; 67 atype = _ASCE_TYPE_REGION1; 68 etype = _REGION1_ENTRY_EMPTY; 69 } 70 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT); 71 if (!gmap) 72 goto out; 73 INIT_LIST_HEAD(&gmap->crst_list); 74 INIT_LIST_HEAD(&gmap->children); 75 INIT_LIST_HEAD(&gmap->pt_list); 76 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT); 77 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT); 78 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT); 79 spin_lock_init(&gmap->guest_table_lock); 80 spin_lock_init(&gmap->shadow_lock); 81 refcount_set(&gmap->ref_count, 1); 82 page = gmap_alloc_crst(); 83 if (!page) 84 goto out_free; 85 page->index = 0; 86 list_add(&page->lru, &gmap->crst_list); 87 table = page_to_virt(page); 88 crst_table_init(table, etype); 89 gmap->table = table; 90 gmap->asce = atype | _ASCE_TABLE_LENGTH | 91 _ASCE_USER_BITS | __pa(table); 92 gmap->asce_end = limit; 93 return gmap; 94 95 out_free: 96 kfree(gmap); 97 out: 98 return NULL; 99 } 100 101 /** 102 * gmap_create - create a guest address space 103 * @mm: pointer to the parent mm_struct 104 * @limit: maximum size of the gmap address space 105 * 106 * Returns a guest address space structure. 107 */ 108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 109 { 110 struct gmap *gmap; 111 unsigned long gmap_asce; 112 113 gmap = gmap_alloc(limit); 114 if (!gmap) 115 return NULL; 116 gmap->mm = mm; 117 spin_lock(&mm->context.lock); 118 list_add_rcu(&gmap->list, &mm->context.gmap_list); 119 if (list_is_singular(&mm->context.gmap_list)) 120 gmap_asce = gmap->asce; 121 else 122 gmap_asce = -1UL; 123 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 124 spin_unlock(&mm->context.lock); 125 return gmap; 126 } 127 EXPORT_SYMBOL_GPL(gmap_create); 128 129 static void gmap_flush_tlb(struct gmap *gmap) 130 { 131 if (MACHINE_HAS_IDTE) 132 __tlb_flush_idte(gmap->asce); 133 else 134 __tlb_flush_global(); 135 } 136 137 static void gmap_radix_tree_free(struct radix_tree_root *root) 138 { 139 struct radix_tree_iter iter; 140 unsigned long indices[16]; 141 unsigned long index; 142 void __rcu **slot; 143 int i, nr; 144 145 /* A radix tree is freed by deleting all of its entries */ 146 index = 0; 147 do { 148 nr = 0; 149 radix_tree_for_each_slot(slot, root, &iter, index) { 150 indices[nr] = iter.index; 151 if (++nr == 16) 152 break; 153 } 154 for (i = 0; i < nr; i++) { 155 index = indices[i]; 156 radix_tree_delete(root, index); 157 } 158 } while (nr > 0); 159 } 160 161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 162 { 163 struct gmap_rmap *rmap, *rnext, *head; 164 struct radix_tree_iter iter; 165 unsigned long indices[16]; 166 unsigned long index; 167 void __rcu **slot; 168 int i, nr; 169 170 /* A radix tree is freed by deleting all of its entries */ 171 index = 0; 172 do { 173 nr = 0; 174 radix_tree_for_each_slot(slot, root, &iter, index) { 175 indices[nr] = iter.index; 176 if (++nr == 16) 177 break; 178 } 179 for (i = 0; i < nr; i++) { 180 index = indices[i]; 181 head = radix_tree_delete(root, index); 182 gmap_for_each_rmap_safe(rmap, rnext, head) 183 kfree(rmap); 184 } 185 } while (nr > 0); 186 } 187 188 /** 189 * gmap_free - free a guest address space 190 * @gmap: pointer to the guest address space structure 191 * 192 * No locks required. There are no references to this gmap anymore. 193 */ 194 static void gmap_free(struct gmap *gmap) 195 { 196 struct page *page, *next; 197 198 /* Flush tlb of all gmaps (if not already done for shadows) */ 199 if (!(gmap_is_shadow(gmap) && gmap->removed)) 200 gmap_flush_tlb(gmap); 201 /* Free all segment & region tables. */ 202 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 203 __free_pages(page, CRST_ALLOC_ORDER); 204 gmap_radix_tree_free(&gmap->guest_to_host); 205 gmap_radix_tree_free(&gmap->host_to_guest); 206 207 /* Free additional data for a shadow gmap */ 208 if (gmap_is_shadow(gmap)) { 209 struct ptdesc *ptdesc, *n; 210 211 /* Free all page tables. */ 212 list_for_each_entry_safe(ptdesc, n, &gmap->pt_list, pt_list) 213 page_table_free_pgste(ptdesc); 214 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 215 /* Release reference to the parent */ 216 gmap_put(gmap->parent); 217 } 218 219 kfree(gmap); 220 } 221 222 /** 223 * gmap_get - increase reference counter for guest address space 224 * @gmap: pointer to the guest address space structure 225 * 226 * Returns the gmap pointer 227 */ 228 struct gmap *gmap_get(struct gmap *gmap) 229 { 230 refcount_inc(&gmap->ref_count); 231 return gmap; 232 } 233 EXPORT_SYMBOL_GPL(gmap_get); 234 235 /** 236 * gmap_put - decrease reference counter for guest address space 237 * @gmap: pointer to the guest address space structure 238 * 239 * If the reference counter reaches zero the guest address space is freed. 240 */ 241 void gmap_put(struct gmap *gmap) 242 { 243 if (refcount_dec_and_test(&gmap->ref_count)) 244 gmap_free(gmap); 245 } 246 EXPORT_SYMBOL_GPL(gmap_put); 247 248 /** 249 * gmap_remove - remove a guest address space but do not free it yet 250 * @gmap: pointer to the guest address space structure 251 */ 252 void gmap_remove(struct gmap *gmap) 253 { 254 struct gmap *sg, *next; 255 unsigned long gmap_asce; 256 257 /* Remove all shadow gmaps linked to this gmap */ 258 if (!list_empty(&gmap->children)) { 259 spin_lock(&gmap->shadow_lock); 260 list_for_each_entry_safe(sg, next, &gmap->children, list) { 261 list_del(&sg->list); 262 gmap_put(sg); 263 } 264 spin_unlock(&gmap->shadow_lock); 265 } 266 /* Remove gmap from the pre-mm list */ 267 spin_lock(&gmap->mm->context.lock); 268 list_del_rcu(&gmap->list); 269 if (list_empty(&gmap->mm->context.gmap_list)) 270 gmap_asce = 0; 271 else if (list_is_singular(&gmap->mm->context.gmap_list)) 272 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 273 struct gmap, list)->asce; 274 else 275 gmap_asce = -1UL; 276 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 277 spin_unlock(&gmap->mm->context.lock); 278 synchronize_rcu(); 279 /* Put reference */ 280 gmap_put(gmap); 281 } 282 EXPORT_SYMBOL_GPL(gmap_remove); 283 284 /* 285 * gmap_alloc_table is assumed to be called with mmap_lock held 286 */ 287 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 288 unsigned long init, unsigned long gaddr) 289 { 290 struct page *page; 291 unsigned long *new; 292 293 /* since we dont free the gmap table until gmap_free we can unlock */ 294 page = gmap_alloc_crst(); 295 if (!page) 296 return -ENOMEM; 297 new = page_to_virt(page); 298 crst_table_init(new, init); 299 spin_lock(&gmap->guest_table_lock); 300 if (*table & _REGION_ENTRY_INVALID) { 301 list_add(&page->lru, &gmap->crst_list); 302 *table = __pa(new) | _REGION_ENTRY_LENGTH | 303 (*table & _REGION_ENTRY_TYPE_MASK); 304 page->index = gaddr; 305 page = NULL; 306 } 307 spin_unlock(&gmap->guest_table_lock); 308 if (page) 309 __free_pages(page, CRST_ALLOC_ORDER); 310 return 0; 311 } 312 313 /** 314 * __gmap_segment_gaddr - find virtual address from segment pointer 315 * @entry: pointer to a segment table entry in the guest address space 316 * 317 * Returns the virtual address in the guest address space for the segment 318 */ 319 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 320 { 321 struct page *page; 322 unsigned long offset; 323 324 offset = (unsigned long) entry / sizeof(unsigned long); 325 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 326 page = pmd_pgtable_page((pmd_t *) entry); 327 return page->index + offset; 328 } 329 330 /** 331 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 332 * @gmap: pointer to the guest address space structure 333 * @vmaddr: address in the host process address space 334 * 335 * Returns 1 if a TLB flush is required 336 */ 337 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 338 { 339 unsigned long *entry; 340 int flush = 0; 341 342 BUG_ON(gmap_is_shadow(gmap)); 343 spin_lock(&gmap->guest_table_lock); 344 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 345 if (entry) { 346 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 347 *entry = _SEGMENT_ENTRY_EMPTY; 348 } 349 spin_unlock(&gmap->guest_table_lock); 350 return flush; 351 } 352 353 /** 354 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 355 * @gmap: pointer to the guest address space structure 356 * @gaddr: address in the guest address space 357 * 358 * Returns 1 if a TLB flush is required 359 */ 360 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 361 { 362 unsigned long vmaddr; 363 364 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 365 gaddr >> PMD_SHIFT); 366 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 367 } 368 369 /** 370 * gmap_unmap_segment - unmap segment from the guest address space 371 * @gmap: pointer to the guest address space structure 372 * @to: address in the guest address space 373 * @len: length of the memory area to unmap 374 * 375 * Returns 0 if the unmap succeeded, -EINVAL if not. 376 */ 377 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 378 { 379 unsigned long off; 380 int flush; 381 382 BUG_ON(gmap_is_shadow(gmap)); 383 if ((to | len) & (PMD_SIZE - 1)) 384 return -EINVAL; 385 if (len == 0 || to + len < to) 386 return -EINVAL; 387 388 flush = 0; 389 mmap_write_lock(gmap->mm); 390 for (off = 0; off < len; off += PMD_SIZE) 391 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 392 mmap_write_unlock(gmap->mm); 393 if (flush) 394 gmap_flush_tlb(gmap); 395 return 0; 396 } 397 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 398 399 /** 400 * gmap_map_segment - map a segment to the guest address space 401 * @gmap: pointer to the guest address space structure 402 * @from: source address in the parent address space 403 * @to: target address in the guest address space 404 * @len: length of the memory area to map 405 * 406 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 407 */ 408 int gmap_map_segment(struct gmap *gmap, unsigned long from, 409 unsigned long to, unsigned long len) 410 { 411 unsigned long off; 412 int flush; 413 414 BUG_ON(gmap_is_shadow(gmap)); 415 if ((from | to | len) & (PMD_SIZE - 1)) 416 return -EINVAL; 417 if (len == 0 || from + len < from || to + len < to || 418 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 419 return -EINVAL; 420 421 flush = 0; 422 mmap_write_lock(gmap->mm); 423 for (off = 0; off < len; off += PMD_SIZE) { 424 /* Remove old translation */ 425 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 426 /* Store new translation */ 427 if (radix_tree_insert(&gmap->guest_to_host, 428 (to + off) >> PMD_SHIFT, 429 (void *) from + off)) 430 break; 431 } 432 mmap_write_unlock(gmap->mm); 433 if (flush) 434 gmap_flush_tlb(gmap); 435 if (off >= len) 436 return 0; 437 gmap_unmap_segment(gmap, to, len); 438 return -ENOMEM; 439 } 440 EXPORT_SYMBOL_GPL(gmap_map_segment); 441 442 /** 443 * __gmap_translate - translate a guest address to a user space address 444 * @gmap: pointer to guest mapping meta data structure 445 * @gaddr: guest address 446 * 447 * Returns user space address which corresponds to the guest address or 448 * -EFAULT if no such mapping exists. 449 * This function does not establish potentially missing page table entries. 450 * The mmap_lock of the mm that belongs to the address space must be held 451 * when this function gets called. 452 * 453 * Note: Can also be called for shadow gmaps. 454 */ 455 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 456 { 457 unsigned long vmaddr; 458 459 vmaddr = (unsigned long) 460 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 461 /* Note: guest_to_host is empty for a shadow gmap */ 462 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 463 } 464 EXPORT_SYMBOL_GPL(__gmap_translate); 465 466 /** 467 * gmap_translate - translate a guest address to a user space address 468 * @gmap: pointer to guest mapping meta data structure 469 * @gaddr: guest address 470 * 471 * Returns user space address which corresponds to the guest address or 472 * -EFAULT if no such mapping exists. 473 * This function does not establish potentially missing page table entries. 474 */ 475 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 476 { 477 unsigned long rc; 478 479 mmap_read_lock(gmap->mm); 480 rc = __gmap_translate(gmap, gaddr); 481 mmap_read_unlock(gmap->mm); 482 return rc; 483 } 484 EXPORT_SYMBOL_GPL(gmap_translate); 485 486 /** 487 * gmap_unlink - disconnect a page table from the gmap shadow tables 488 * @mm: pointer to the parent mm_struct 489 * @table: pointer to the host page table 490 * @vmaddr: vm address associated with the host page table 491 */ 492 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 493 unsigned long vmaddr) 494 { 495 struct gmap *gmap; 496 int flush; 497 498 rcu_read_lock(); 499 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 500 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 501 if (flush) 502 gmap_flush_tlb(gmap); 503 } 504 rcu_read_unlock(); 505 } 506 507 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 508 unsigned long gaddr); 509 510 /** 511 * __gmap_link - set up shadow page tables to connect a host to a guest address 512 * @gmap: pointer to guest mapping meta data structure 513 * @gaddr: guest address 514 * @vmaddr: vm address 515 * 516 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 517 * if the vm address is already mapped to a different guest segment. 518 * The mmap_lock of the mm that belongs to the address space must be held 519 * when this function gets called. 520 */ 521 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 522 { 523 struct mm_struct *mm; 524 unsigned long *table; 525 spinlock_t *ptl; 526 pgd_t *pgd; 527 p4d_t *p4d; 528 pud_t *pud; 529 pmd_t *pmd; 530 u64 unprot; 531 int rc; 532 533 BUG_ON(gmap_is_shadow(gmap)); 534 /* Create higher level tables in the gmap page table */ 535 table = gmap->table; 536 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 537 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 538 if ((*table & _REGION_ENTRY_INVALID) && 539 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 540 gaddr & _REGION1_MASK)) 541 return -ENOMEM; 542 table = __va(*table & _REGION_ENTRY_ORIGIN); 543 } 544 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 545 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 546 if ((*table & _REGION_ENTRY_INVALID) && 547 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 548 gaddr & _REGION2_MASK)) 549 return -ENOMEM; 550 table = __va(*table & _REGION_ENTRY_ORIGIN); 551 } 552 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 553 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 554 if ((*table & _REGION_ENTRY_INVALID) && 555 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 556 gaddr & _REGION3_MASK)) 557 return -ENOMEM; 558 table = __va(*table & _REGION_ENTRY_ORIGIN); 559 } 560 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 561 /* Walk the parent mm page table */ 562 mm = gmap->mm; 563 pgd = pgd_offset(mm, vmaddr); 564 VM_BUG_ON(pgd_none(*pgd)); 565 p4d = p4d_offset(pgd, vmaddr); 566 VM_BUG_ON(p4d_none(*p4d)); 567 pud = pud_offset(p4d, vmaddr); 568 VM_BUG_ON(pud_none(*pud)); 569 /* large puds cannot yet be handled */ 570 if (pud_leaf(*pud)) 571 return -EFAULT; 572 pmd = pmd_offset(pud, vmaddr); 573 VM_BUG_ON(pmd_none(*pmd)); 574 /* Are we allowed to use huge pages? */ 575 if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 576 return -EFAULT; 577 /* Link gmap segment table entry location to page table. */ 578 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 579 if (rc) 580 return rc; 581 ptl = pmd_lock(mm, pmd); 582 spin_lock(&gmap->guest_table_lock); 583 if (*table == _SEGMENT_ENTRY_EMPTY) { 584 rc = radix_tree_insert(&gmap->host_to_guest, 585 vmaddr >> PMD_SHIFT, table); 586 if (!rc) { 587 if (pmd_leaf(*pmd)) { 588 *table = (pmd_val(*pmd) & 589 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 590 | _SEGMENT_ENTRY_GMAP_UC; 591 } else 592 *table = pmd_val(*pmd) & 593 _SEGMENT_ENTRY_HARDWARE_BITS; 594 } 595 } else if (*table & _SEGMENT_ENTRY_PROTECT && 596 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 597 unprot = (u64)*table; 598 unprot &= ~_SEGMENT_ENTRY_PROTECT; 599 unprot |= _SEGMENT_ENTRY_GMAP_UC; 600 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 601 } 602 spin_unlock(&gmap->guest_table_lock); 603 spin_unlock(ptl); 604 radix_tree_preload_end(); 605 return rc; 606 } 607 608 /** 609 * fixup_user_fault_nowait - manually resolve a user page fault without waiting 610 * @mm: mm_struct of target mm 611 * @address: user address 612 * @fault_flags:flags to pass down to handle_mm_fault() 613 * @unlocked: did we unlock the mmap_lock while retrying 614 * 615 * This function behaves similarly to fixup_user_fault(), but it guarantees 616 * that the fault will be resolved without waiting. The function might drop 617 * and re-acquire the mm lock, in which case @unlocked will be set to true. 618 * 619 * The guarantee is that the fault is handled without waiting, but the 620 * function itself might sleep, due to the lock. 621 * 622 * Context: Needs to be called with mm->mmap_lock held in read mode, and will 623 * return with the lock held in read mode; @unlocked will indicate whether 624 * the lock has been dropped and re-acquired. This is the same behaviour as 625 * fixup_user_fault(). 626 * 627 * Return: 0 on success, -EAGAIN if the fault cannot be resolved without 628 * waiting, -EFAULT if the fault cannot be resolved, -ENOMEM if out of 629 * memory. 630 */ 631 static int fixup_user_fault_nowait(struct mm_struct *mm, unsigned long address, 632 unsigned int fault_flags, bool *unlocked) 633 { 634 struct vm_area_struct *vma; 635 unsigned int test_flags; 636 vm_fault_t fault; 637 int rc; 638 639 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 640 test_flags = fault_flags & FAULT_FLAG_WRITE ? VM_WRITE : VM_READ; 641 642 vma = find_vma(mm, address); 643 if (unlikely(!vma || address < vma->vm_start)) 644 return -EFAULT; 645 if (unlikely(!(vma->vm_flags & test_flags))) 646 return -EFAULT; 647 648 fault = handle_mm_fault(vma, address, fault_flags, NULL); 649 /* the mm lock has been dropped, take it again */ 650 if (fault & VM_FAULT_COMPLETED) { 651 *unlocked = true; 652 mmap_read_lock(mm); 653 return 0; 654 } 655 /* the mm lock has not been dropped */ 656 if (fault & VM_FAULT_ERROR) { 657 rc = vm_fault_to_errno(fault, 0); 658 BUG_ON(!rc); 659 return rc; 660 } 661 /* the mm lock has not been dropped because of FAULT_FLAG_RETRY_NOWAIT */ 662 if (fault & VM_FAULT_RETRY) 663 return -EAGAIN; 664 /* nothing needed to be done and the mm lock has not been dropped */ 665 return 0; 666 } 667 668 /** 669 * __gmap_fault - resolve a fault on a guest address 670 * @gmap: pointer to guest mapping meta data structure 671 * @gaddr: guest address 672 * @fault_flags: flags to pass down to handle_mm_fault() 673 * 674 * Context: Needs to be called with mm->mmap_lock held in read mode. Might 675 * drop and re-acquire the lock. Will always return with the lock held. 676 */ 677 static int __gmap_fault(struct gmap *gmap, unsigned long gaddr, unsigned int fault_flags) 678 { 679 unsigned long vmaddr; 680 bool unlocked; 681 int rc = 0; 682 683 retry: 684 unlocked = false; 685 686 vmaddr = __gmap_translate(gmap, gaddr); 687 if (IS_ERR_VALUE(vmaddr)) 688 return vmaddr; 689 690 if (fault_flags & FAULT_FLAG_RETRY_NOWAIT) 691 rc = fixup_user_fault_nowait(gmap->mm, vmaddr, fault_flags, &unlocked); 692 else 693 rc = fixup_user_fault(gmap->mm, vmaddr, fault_flags, &unlocked); 694 if (rc) 695 return rc; 696 /* 697 * In the case that fixup_user_fault unlocked the mmap_lock during 698 * fault-in, redo __gmap_translate() to avoid racing with a 699 * map/unmap_segment. 700 * In particular, __gmap_translate(), fixup_user_fault{,_nowait}(), 701 * and __gmap_link() must all be called atomically in one go; if the 702 * lock had been dropped in between, a retry is needed. 703 */ 704 if (unlocked) 705 goto retry; 706 707 return __gmap_link(gmap, gaddr, vmaddr); 708 } 709 710 /** 711 * gmap_fault - resolve a fault on a guest address 712 * @gmap: pointer to guest mapping meta data structure 713 * @gaddr: guest address 714 * @fault_flags: flags to pass down to handle_mm_fault() 715 * 716 * Returns 0 on success, -ENOMEM for out of memory conditions, -EFAULT if the 717 * vm address is already mapped to a different guest segment, and -EAGAIN if 718 * FAULT_FLAG_RETRY_NOWAIT was specified and the fault could not be processed 719 * immediately. 720 */ 721 int gmap_fault(struct gmap *gmap, unsigned long gaddr, unsigned int fault_flags) 722 { 723 int rc; 724 725 mmap_read_lock(gmap->mm); 726 rc = __gmap_fault(gmap, gaddr, fault_flags); 727 mmap_read_unlock(gmap->mm); 728 return rc; 729 } 730 EXPORT_SYMBOL_GPL(gmap_fault); 731 732 /* 733 * this function is assumed to be called with mmap_lock held 734 */ 735 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 736 { 737 struct vm_area_struct *vma; 738 unsigned long vmaddr; 739 spinlock_t *ptl; 740 pte_t *ptep; 741 742 /* Find the vm address for the guest address */ 743 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 744 gaddr >> PMD_SHIFT); 745 if (vmaddr) { 746 vmaddr |= gaddr & ~PMD_MASK; 747 748 vma = vma_lookup(gmap->mm, vmaddr); 749 if (!vma || is_vm_hugetlb_page(vma)) 750 return; 751 752 /* Get pointer to the page table entry */ 753 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 754 if (likely(ptep)) { 755 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 756 pte_unmap_unlock(ptep, ptl); 757 } 758 } 759 } 760 EXPORT_SYMBOL_GPL(__gmap_zap); 761 762 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 763 { 764 unsigned long gaddr, vmaddr, size; 765 struct vm_area_struct *vma; 766 767 mmap_read_lock(gmap->mm); 768 for (gaddr = from; gaddr < to; 769 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 770 /* Find the vm address for the guest address */ 771 vmaddr = (unsigned long) 772 radix_tree_lookup(&gmap->guest_to_host, 773 gaddr >> PMD_SHIFT); 774 if (!vmaddr) 775 continue; 776 vmaddr |= gaddr & ~PMD_MASK; 777 /* Find vma in the parent mm */ 778 vma = find_vma(gmap->mm, vmaddr); 779 if (!vma) 780 continue; 781 /* 782 * We do not discard pages that are backed by 783 * hugetlbfs, so we don't have to refault them. 784 */ 785 if (is_vm_hugetlb_page(vma)) 786 continue; 787 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 788 zap_page_range_single(vma, vmaddr, size, NULL); 789 } 790 mmap_read_unlock(gmap->mm); 791 } 792 EXPORT_SYMBOL_GPL(gmap_discard); 793 794 static LIST_HEAD(gmap_notifier_list); 795 static DEFINE_SPINLOCK(gmap_notifier_lock); 796 797 /** 798 * gmap_register_pte_notifier - register a pte invalidation callback 799 * @nb: pointer to the gmap notifier block 800 */ 801 void gmap_register_pte_notifier(struct gmap_notifier *nb) 802 { 803 spin_lock(&gmap_notifier_lock); 804 list_add_rcu(&nb->list, &gmap_notifier_list); 805 spin_unlock(&gmap_notifier_lock); 806 } 807 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 808 809 /** 810 * gmap_unregister_pte_notifier - remove a pte invalidation callback 811 * @nb: pointer to the gmap notifier block 812 */ 813 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 814 { 815 spin_lock(&gmap_notifier_lock); 816 list_del_rcu(&nb->list); 817 spin_unlock(&gmap_notifier_lock); 818 synchronize_rcu(); 819 } 820 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 821 822 /** 823 * gmap_call_notifier - call all registered invalidation callbacks 824 * @gmap: pointer to guest mapping meta data structure 825 * @start: start virtual address in the guest address space 826 * @end: end virtual address in the guest address space 827 */ 828 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 829 unsigned long end) 830 { 831 struct gmap_notifier *nb; 832 833 list_for_each_entry(nb, &gmap_notifier_list, list) 834 nb->notifier_call(gmap, start, end); 835 } 836 837 /** 838 * gmap_table_walk - walk the gmap page tables 839 * @gmap: pointer to guest mapping meta data structure 840 * @gaddr: virtual address in the guest address space 841 * @level: page table level to stop at 842 * 843 * Returns a table entry pointer for the given guest address and @level 844 * @level=0 : returns a pointer to a page table table entry (or NULL) 845 * @level=1 : returns a pointer to a segment table entry (or NULL) 846 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 847 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 848 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 849 * 850 * Returns NULL if the gmap page tables could not be walked to the 851 * requested level. 852 * 853 * Note: Can also be called for shadow gmaps. 854 */ 855 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 856 unsigned long gaddr, int level) 857 { 858 const int asce_type = gmap->asce & _ASCE_TYPE_MASK; 859 unsigned long *table = gmap->table; 860 861 if (gmap_is_shadow(gmap) && gmap->removed) 862 return NULL; 863 864 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1)) 865 return NULL; 866 867 if (asce_type != _ASCE_TYPE_REGION1 && 868 gaddr & (-1UL << (31 + (asce_type >> 2) * 11))) 869 return NULL; 870 871 switch (asce_type) { 872 case _ASCE_TYPE_REGION1: 873 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 874 if (level == 4) 875 break; 876 if (*table & _REGION_ENTRY_INVALID) 877 return NULL; 878 table = __va(*table & _REGION_ENTRY_ORIGIN); 879 fallthrough; 880 case _ASCE_TYPE_REGION2: 881 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 882 if (level == 3) 883 break; 884 if (*table & _REGION_ENTRY_INVALID) 885 return NULL; 886 table = __va(*table & _REGION_ENTRY_ORIGIN); 887 fallthrough; 888 case _ASCE_TYPE_REGION3: 889 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 890 if (level == 2) 891 break; 892 if (*table & _REGION_ENTRY_INVALID) 893 return NULL; 894 table = __va(*table & _REGION_ENTRY_ORIGIN); 895 fallthrough; 896 case _ASCE_TYPE_SEGMENT: 897 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 898 if (level == 1) 899 break; 900 if (*table & _REGION_ENTRY_INVALID) 901 return NULL; 902 table = __va(*table & _SEGMENT_ENTRY_ORIGIN); 903 table += (gaddr & _PAGE_INDEX) >> PAGE_SHIFT; 904 } 905 return table; 906 } 907 908 /** 909 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 910 * and return the pte pointer 911 * @gmap: pointer to guest mapping meta data structure 912 * @gaddr: virtual address in the guest address space 913 * @ptl: pointer to the spinlock pointer 914 * 915 * Returns a pointer to the locked pte for a guest address, or NULL 916 */ 917 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 918 spinlock_t **ptl) 919 { 920 unsigned long *table; 921 922 BUG_ON(gmap_is_shadow(gmap)); 923 /* Walk the gmap page table, lock and get pte pointer */ 924 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 925 if (!table || *table & _SEGMENT_ENTRY_INVALID) 926 return NULL; 927 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 928 } 929 930 /** 931 * gmap_pte_op_fixup - force a page in and connect the gmap page table 932 * @gmap: pointer to guest mapping meta data structure 933 * @gaddr: virtual address in the guest address space 934 * @vmaddr: address in the host process address space 935 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 936 * 937 * Returns 0 if the caller can retry __gmap_translate (might fail again), 938 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 939 * up or connecting the gmap page table. 940 */ 941 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 942 unsigned long vmaddr, int prot) 943 { 944 struct mm_struct *mm = gmap->mm; 945 unsigned int fault_flags; 946 bool unlocked = false; 947 948 BUG_ON(gmap_is_shadow(gmap)); 949 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 950 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked)) 951 return -EFAULT; 952 if (unlocked) 953 /* lost mmap_lock, caller has to retry __gmap_translate */ 954 return 0; 955 /* Connect the page tables */ 956 return __gmap_link(gmap, gaddr, vmaddr); 957 } 958 959 /** 960 * gmap_pte_op_end - release the page table lock 961 * @ptep: pointer to the locked pte 962 * @ptl: pointer to the page table spinlock 963 */ 964 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl) 965 { 966 pte_unmap_unlock(ptep, ptl); 967 } 968 969 /** 970 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 971 * and return the pmd pointer 972 * @gmap: pointer to guest mapping meta data structure 973 * @gaddr: virtual address in the guest address space 974 * 975 * Returns a pointer to the pmd for a guest address, or NULL 976 */ 977 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 978 { 979 pmd_t *pmdp; 980 981 BUG_ON(gmap_is_shadow(gmap)); 982 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 983 if (!pmdp) 984 return NULL; 985 986 /* without huge pages, there is no need to take the table lock */ 987 if (!gmap->mm->context.allow_gmap_hpage_1m) 988 return pmd_none(*pmdp) ? NULL : pmdp; 989 990 spin_lock(&gmap->guest_table_lock); 991 if (pmd_none(*pmdp)) { 992 spin_unlock(&gmap->guest_table_lock); 993 return NULL; 994 } 995 996 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 997 if (!pmd_leaf(*pmdp)) 998 spin_unlock(&gmap->guest_table_lock); 999 return pmdp; 1000 } 1001 1002 /** 1003 * gmap_pmd_op_end - release the guest_table_lock if needed 1004 * @gmap: pointer to the guest mapping meta data structure 1005 * @pmdp: pointer to the pmd 1006 */ 1007 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 1008 { 1009 if (pmd_leaf(*pmdp)) 1010 spin_unlock(&gmap->guest_table_lock); 1011 } 1012 1013 /* 1014 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 1015 * @pmdp: pointer to the pmd to be protected 1016 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1017 * @bits: notification bits to set 1018 * 1019 * Returns: 1020 * 0 if successfully protected 1021 * -EAGAIN if a fixup is needed 1022 * -EINVAL if unsupported notifier bits have been specified 1023 * 1024 * Expected to be called with sg->mm->mmap_lock in read and 1025 * guest_table_lock held. 1026 */ 1027 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 1028 pmd_t *pmdp, int prot, unsigned long bits) 1029 { 1030 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 1031 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 1032 pmd_t new = *pmdp; 1033 1034 /* Fixup needed */ 1035 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 1036 return -EAGAIN; 1037 1038 if (prot == PROT_NONE && !pmd_i) { 1039 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID)); 1040 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 1041 } 1042 1043 if (prot == PROT_READ && !pmd_p) { 1044 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID)); 1045 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1046 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 1047 } 1048 1049 if (bits & GMAP_NOTIFY_MPROT) 1050 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN))); 1051 1052 /* Shadow GMAP protection needs split PMDs */ 1053 if (bits & GMAP_NOTIFY_SHADOW) 1054 return -EINVAL; 1055 1056 return 0; 1057 } 1058 1059 /* 1060 * gmap_protect_pte - remove access rights to memory and set pgste bits 1061 * @gmap: pointer to guest mapping meta data structure 1062 * @gaddr: virtual address in the guest address space 1063 * @pmdp: pointer to the pmd associated with the pte 1064 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1065 * @bits: notification bits to set 1066 * 1067 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1068 * -EAGAIN if a fixup is needed. 1069 * 1070 * Expected to be called with sg->mm->mmap_lock in read 1071 */ 1072 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1073 pmd_t *pmdp, int prot, unsigned long bits) 1074 { 1075 int rc; 1076 pte_t *ptep; 1077 spinlock_t *ptl; 1078 unsigned long pbits = 0; 1079 1080 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1081 return -EAGAIN; 1082 1083 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1084 if (!ptep) 1085 return -ENOMEM; 1086 1087 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1088 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1089 /* Protect and unlock. */ 1090 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1091 gmap_pte_op_end(ptep, ptl); 1092 return rc; 1093 } 1094 1095 /* 1096 * gmap_protect_range - remove access rights to memory and set pgste bits 1097 * @gmap: pointer to guest mapping meta data structure 1098 * @gaddr: virtual address in the guest address space 1099 * @len: size of area 1100 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1101 * @bits: pgste notification bits to set 1102 * 1103 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1104 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1105 * 1106 * Called with sg->mm->mmap_lock in read. 1107 */ 1108 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1109 unsigned long len, int prot, unsigned long bits) 1110 { 1111 unsigned long vmaddr, dist; 1112 pmd_t *pmdp; 1113 int rc; 1114 1115 BUG_ON(gmap_is_shadow(gmap)); 1116 while (len) { 1117 rc = -EAGAIN; 1118 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1119 if (pmdp) { 1120 if (!pmd_leaf(*pmdp)) { 1121 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1122 bits); 1123 if (!rc) { 1124 len -= PAGE_SIZE; 1125 gaddr += PAGE_SIZE; 1126 } 1127 } else { 1128 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1129 bits); 1130 if (!rc) { 1131 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1132 len = len < dist ? 0 : len - dist; 1133 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1134 } 1135 } 1136 gmap_pmd_op_end(gmap, pmdp); 1137 } 1138 if (rc) { 1139 if (rc == -EINVAL) 1140 return rc; 1141 1142 /* -EAGAIN, fixup of userspace mm and gmap */ 1143 vmaddr = __gmap_translate(gmap, gaddr); 1144 if (IS_ERR_VALUE(vmaddr)) 1145 return vmaddr; 1146 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1147 if (rc) 1148 return rc; 1149 } 1150 } 1151 return 0; 1152 } 1153 1154 /** 1155 * gmap_mprotect_notify - change access rights for a range of ptes and 1156 * call the notifier if any pte changes again 1157 * @gmap: pointer to guest mapping meta data structure 1158 * @gaddr: virtual address in the guest address space 1159 * @len: size of area 1160 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1161 * 1162 * Returns 0 if for each page in the given range a gmap mapping exists, 1163 * the new access rights could be set and the notifier could be armed. 1164 * If the gmap mapping is missing for one or more pages -EFAULT is 1165 * returned. If no memory could be allocated -ENOMEM is returned. 1166 * This function establishes missing page table entries. 1167 */ 1168 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1169 unsigned long len, int prot) 1170 { 1171 int rc; 1172 1173 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1174 return -EINVAL; 1175 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1176 return -EINVAL; 1177 mmap_read_lock(gmap->mm); 1178 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1179 mmap_read_unlock(gmap->mm); 1180 return rc; 1181 } 1182 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1183 1184 /** 1185 * gmap_read_table - get an unsigned long value from a guest page table using 1186 * absolute addressing, without marking the page referenced. 1187 * @gmap: pointer to guest mapping meta data structure 1188 * @gaddr: virtual address in the guest address space 1189 * @val: pointer to the unsigned long value to return 1190 * 1191 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1192 * if reading using the virtual address failed. -EINVAL if called on a gmap 1193 * shadow. 1194 * 1195 * Called with gmap->mm->mmap_lock in read. 1196 */ 1197 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1198 { 1199 unsigned long address, vmaddr; 1200 spinlock_t *ptl; 1201 pte_t *ptep, pte; 1202 int rc; 1203 1204 if (gmap_is_shadow(gmap)) 1205 return -EINVAL; 1206 1207 while (1) { 1208 rc = -EAGAIN; 1209 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1210 if (ptep) { 1211 pte = *ptep; 1212 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1213 address = pte_val(pte) & PAGE_MASK; 1214 address += gaddr & ~PAGE_MASK; 1215 *val = *(unsigned long *)__va(address); 1216 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG))); 1217 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1218 rc = 0; 1219 } 1220 gmap_pte_op_end(ptep, ptl); 1221 } 1222 if (!rc) 1223 break; 1224 vmaddr = __gmap_translate(gmap, gaddr); 1225 if (IS_ERR_VALUE(vmaddr)) { 1226 rc = vmaddr; 1227 break; 1228 } 1229 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1230 if (rc) 1231 break; 1232 } 1233 return rc; 1234 } 1235 EXPORT_SYMBOL_GPL(gmap_read_table); 1236 1237 /** 1238 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1239 * @sg: pointer to the shadow guest address space structure 1240 * @vmaddr: vm address associated with the rmap 1241 * @rmap: pointer to the rmap structure 1242 * 1243 * Called with the sg->guest_table_lock 1244 */ 1245 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1246 struct gmap_rmap *rmap) 1247 { 1248 struct gmap_rmap *temp; 1249 void __rcu **slot; 1250 1251 BUG_ON(!gmap_is_shadow(sg)); 1252 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1253 if (slot) { 1254 rmap->next = radix_tree_deref_slot_protected(slot, 1255 &sg->guest_table_lock); 1256 for (temp = rmap->next; temp; temp = temp->next) { 1257 if (temp->raddr == rmap->raddr) { 1258 kfree(rmap); 1259 return; 1260 } 1261 } 1262 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1263 } else { 1264 rmap->next = NULL; 1265 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1266 rmap); 1267 } 1268 } 1269 1270 /** 1271 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1272 * @sg: pointer to the shadow guest address space structure 1273 * @raddr: rmap address in the shadow gmap 1274 * @paddr: address in the parent guest address space 1275 * @len: length of the memory area to protect 1276 * 1277 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1278 * if out of memory and -EFAULT if paddr is invalid. 1279 */ 1280 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1281 unsigned long paddr, unsigned long len) 1282 { 1283 struct gmap *parent; 1284 struct gmap_rmap *rmap; 1285 unsigned long vmaddr; 1286 spinlock_t *ptl; 1287 pte_t *ptep; 1288 int rc; 1289 1290 BUG_ON(!gmap_is_shadow(sg)); 1291 parent = sg->parent; 1292 while (len) { 1293 vmaddr = __gmap_translate(parent, paddr); 1294 if (IS_ERR_VALUE(vmaddr)) 1295 return vmaddr; 1296 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 1297 if (!rmap) 1298 return -ENOMEM; 1299 rmap->raddr = raddr; 1300 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 1301 if (rc) { 1302 kfree(rmap); 1303 return rc; 1304 } 1305 rc = -EAGAIN; 1306 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1307 if (ptep) { 1308 spin_lock(&sg->guest_table_lock); 1309 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1310 PGSTE_VSIE_BIT); 1311 if (!rc) 1312 gmap_insert_rmap(sg, vmaddr, rmap); 1313 spin_unlock(&sg->guest_table_lock); 1314 gmap_pte_op_end(ptep, ptl); 1315 } 1316 radix_tree_preload_end(); 1317 if (rc) { 1318 kfree(rmap); 1319 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1320 if (rc) 1321 return rc; 1322 continue; 1323 } 1324 paddr += PAGE_SIZE; 1325 len -= PAGE_SIZE; 1326 } 1327 return 0; 1328 } 1329 1330 #define _SHADOW_RMAP_MASK 0x7 1331 #define _SHADOW_RMAP_REGION1 0x5 1332 #define _SHADOW_RMAP_REGION2 0x4 1333 #define _SHADOW_RMAP_REGION3 0x3 1334 #define _SHADOW_RMAP_SEGMENT 0x2 1335 #define _SHADOW_RMAP_PGTABLE 0x1 1336 1337 /** 1338 * gmap_idte_one - invalidate a single region or segment table entry 1339 * @asce: region or segment table *origin* + table-type bits 1340 * @vaddr: virtual address to identify the table entry to flush 1341 * 1342 * The invalid bit of a single region or segment table entry is set 1343 * and the associated TLB entries depending on the entry are flushed. 1344 * The table-type of the @asce identifies the portion of the @vaddr 1345 * that is used as the invalidation index. 1346 */ 1347 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1348 { 1349 asm volatile( 1350 " idte %0,0,%1" 1351 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1352 } 1353 1354 /** 1355 * gmap_unshadow_page - remove a page from a shadow page table 1356 * @sg: pointer to the shadow guest address space structure 1357 * @raddr: rmap address in the shadow guest address space 1358 * 1359 * Called with the sg->guest_table_lock 1360 */ 1361 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1362 { 1363 unsigned long *table; 1364 1365 BUG_ON(!gmap_is_shadow(sg)); 1366 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1367 if (!table || *table & _PAGE_INVALID) 1368 return; 1369 gmap_call_notifier(sg, raddr, raddr + PAGE_SIZE - 1); 1370 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1371 } 1372 1373 /** 1374 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1375 * @sg: pointer to the shadow guest address space structure 1376 * @raddr: rmap address in the shadow guest address space 1377 * @pgt: pointer to the start of a shadow page table 1378 * 1379 * Called with the sg->guest_table_lock 1380 */ 1381 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1382 unsigned long *pgt) 1383 { 1384 int i; 1385 1386 BUG_ON(!gmap_is_shadow(sg)); 1387 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += PAGE_SIZE) 1388 pgt[i] = _PAGE_INVALID; 1389 } 1390 1391 /** 1392 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1393 * @sg: pointer to the shadow guest address space structure 1394 * @raddr: address in the shadow guest address space 1395 * 1396 * Called with the sg->guest_table_lock 1397 */ 1398 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1399 { 1400 unsigned long *ste; 1401 phys_addr_t sto, pgt; 1402 struct ptdesc *ptdesc; 1403 1404 BUG_ON(!gmap_is_shadow(sg)); 1405 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1406 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1407 return; 1408 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1409 sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1410 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1411 pgt = *ste & _SEGMENT_ENTRY_ORIGIN; 1412 *ste = _SEGMENT_ENTRY_EMPTY; 1413 __gmap_unshadow_pgt(sg, raddr, __va(pgt)); 1414 /* Free page table */ 1415 ptdesc = page_ptdesc(phys_to_page(pgt)); 1416 list_del(&ptdesc->pt_list); 1417 page_table_free_pgste(ptdesc); 1418 } 1419 1420 /** 1421 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1422 * @sg: pointer to the shadow guest address space structure 1423 * @raddr: rmap address in the shadow guest address space 1424 * @sgt: pointer to the start of a shadow segment table 1425 * 1426 * Called with the sg->guest_table_lock 1427 */ 1428 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1429 unsigned long *sgt) 1430 { 1431 struct ptdesc *ptdesc; 1432 phys_addr_t pgt; 1433 int i; 1434 1435 BUG_ON(!gmap_is_shadow(sg)); 1436 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1437 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1438 continue; 1439 pgt = sgt[i] & _REGION_ENTRY_ORIGIN; 1440 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1441 __gmap_unshadow_pgt(sg, raddr, __va(pgt)); 1442 /* Free page table */ 1443 ptdesc = page_ptdesc(phys_to_page(pgt)); 1444 list_del(&ptdesc->pt_list); 1445 page_table_free_pgste(ptdesc); 1446 } 1447 } 1448 1449 /** 1450 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1451 * @sg: pointer to the shadow guest address space structure 1452 * @raddr: rmap address in the shadow guest address space 1453 * 1454 * Called with the shadow->guest_table_lock 1455 */ 1456 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1457 { 1458 unsigned long r3o, *r3e; 1459 phys_addr_t sgt; 1460 struct page *page; 1461 1462 BUG_ON(!gmap_is_shadow(sg)); 1463 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1464 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1465 return; 1466 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1467 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1468 gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr); 1469 sgt = *r3e & _REGION_ENTRY_ORIGIN; 1470 *r3e = _REGION3_ENTRY_EMPTY; 1471 __gmap_unshadow_sgt(sg, raddr, __va(sgt)); 1472 /* Free segment table */ 1473 page = phys_to_page(sgt); 1474 list_del(&page->lru); 1475 __free_pages(page, CRST_ALLOC_ORDER); 1476 } 1477 1478 /** 1479 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1480 * @sg: pointer to the shadow guest address space structure 1481 * @raddr: address in the shadow guest address space 1482 * @r3t: pointer to the start of a shadow region-3 table 1483 * 1484 * Called with the sg->guest_table_lock 1485 */ 1486 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1487 unsigned long *r3t) 1488 { 1489 struct page *page; 1490 phys_addr_t sgt; 1491 int i; 1492 1493 BUG_ON(!gmap_is_shadow(sg)); 1494 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1495 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1496 continue; 1497 sgt = r3t[i] & _REGION_ENTRY_ORIGIN; 1498 r3t[i] = _REGION3_ENTRY_EMPTY; 1499 __gmap_unshadow_sgt(sg, raddr, __va(sgt)); 1500 /* Free segment table */ 1501 page = phys_to_page(sgt); 1502 list_del(&page->lru); 1503 __free_pages(page, CRST_ALLOC_ORDER); 1504 } 1505 } 1506 1507 /** 1508 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1509 * @sg: pointer to the shadow guest address space structure 1510 * @raddr: rmap address in the shadow guest address space 1511 * 1512 * Called with the sg->guest_table_lock 1513 */ 1514 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1515 { 1516 unsigned long r2o, *r2e; 1517 phys_addr_t r3t; 1518 struct page *page; 1519 1520 BUG_ON(!gmap_is_shadow(sg)); 1521 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1522 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1523 return; 1524 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1525 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1526 gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr); 1527 r3t = *r2e & _REGION_ENTRY_ORIGIN; 1528 *r2e = _REGION2_ENTRY_EMPTY; 1529 __gmap_unshadow_r3t(sg, raddr, __va(r3t)); 1530 /* Free region 3 table */ 1531 page = phys_to_page(r3t); 1532 list_del(&page->lru); 1533 __free_pages(page, CRST_ALLOC_ORDER); 1534 } 1535 1536 /** 1537 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1538 * @sg: pointer to the shadow guest address space structure 1539 * @raddr: rmap address in the shadow guest address space 1540 * @r2t: pointer to the start of a shadow region-2 table 1541 * 1542 * Called with the sg->guest_table_lock 1543 */ 1544 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1545 unsigned long *r2t) 1546 { 1547 phys_addr_t r3t; 1548 struct page *page; 1549 int i; 1550 1551 BUG_ON(!gmap_is_shadow(sg)); 1552 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1553 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1554 continue; 1555 r3t = r2t[i] & _REGION_ENTRY_ORIGIN; 1556 r2t[i] = _REGION2_ENTRY_EMPTY; 1557 __gmap_unshadow_r3t(sg, raddr, __va(r3t)); 1558 /* Free region 3 table */ 1559 page = phys_to_page(r3t); 1560 list_del(&page->lru); 1561 __free_pages(page, CRST_ALLOC_ORDER); 1562 } 1563 } 1564 1565 /** 1566 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1567 * @sg: pointer to the shadow guest address space structure 1568 * @raddr: rmap address in the shadow guest address space 1569 * 1570 * Called with the sg->guest_table_lock 1571 */ 1572 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1573 { 1574 unsigned long r1o, *r1e; 1575 struct page *page; 1576 phys_addr_t r2t; 1577 1578 BUG_ON(!gmap_is_shadow(sg)); 1579 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1580 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1581 return; 1582 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1583 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1584 gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr); 1585 r2t = *r1e & _REGION_ENTRY_ORIGIN; 1586 *r1e = _REGION1_ENTRY_EMPTY; 1587 __gmap_unshadow_r2t(sg, raddr, __va(r2t)); 1588 /* Free region 2 table */ 1589 page = phys_to_page(r2t); 1590 list_del(&page->lru); 1591 __free_pages(page, CRST_ALLOC_ORDER); 1592 } 1593 1594 /** 1595 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1596 * @sg: pointer to the shadow guest address space structure 1597 * @raddr: rmap address in the shadow guest address space 1598 * @r1t: pointer to the start of a shadow region-1 table 1599 * 1600 * Called with the shadow->guest_table_lock 1601 */ 1602 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1603 unsigned long *r1t) 1604 { 1605 unsigned long asce; 1606 struct page *page; 1607 phys_addr_t r2t; 1608 int i; 1609 1610 BUG_ON(!gmap_is_shadow(sg)); 1611 asce = __pa(r1t) | _ASCE_TYPE_REGION1; 1612 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1613 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1614 continue; 1615 r2t = r1t[i] & _REGION_ENTRY_ORIGIN; 1616 __gmap_unshadow_r2t(sg, raddr, __va(r2t)); 1617 /* Clear entry and flush translation r1t -> r2t */ 1618 gmap_idte_one(asce, raddr); 1619 r1t[i] = _REGION1_ENTRY_EMPTY; 1620 /* Free region 2 table */ 1621 page = phys_to_page(r2t); 1622 list_del(&page->lru); 1623 __free_pages(page, CRST_ALLOC_ORDER); 1624 } 1625 } 1626 1627 /** 1628 * gmap_unshadow - remove a shadow page table completely 1629 * @sg: pointer to the shadow guest address space structure 1630 * 1631 * Called with sg->guest_table_lock 1632 */ 1633 static void gmap_unshadow(struct gmap *sg) 1634 { 1635 unsigned long *table; 1636 1637 BUG_ON(!gmap_is_shadow(sg)); 1638 if (sg->removed) 1639 return; 1640 sg->removed = 1; 1641 gmap_call_notifier(sg, 0, -1UL); 1642 gmap_flush_tlb(sg); 1643 table = __va(sg->asce & _ASCE_ORIGIN); 1644 switch (sg->asce & _ASCE_TYPE_MASK) { 1645 case _ASCE_TYPE_REGION1: 1646 __gmap_unshadow_r1t(sg, 0, table); 1647 break; 1648 case _ASCE_TYPE_REGION2: 1649 __gmap_unshadow_r2t(sg, 0, table); 1650 break; 1651 case _ASCE_TYPE_REGION3: 1652 __gmap_unshadow_r3t(sg, 0, table); 1653 break; 1654 case _ASCE_TYPE_SEGMENT: 1655 __gmap_unshadow_sgt(sg, 0, table); 1656 break; 1657 } 1658 } 1659 1660 /** 1661 * gmap_find_shadow - find a specific asce in the list of shadow tables 1662 * @parent: pointer to the parent gmap 1663 * @asce: ASCE for which the shadow table is created 1664 * @edat_level: edat level to be used for the shadow translation 1665 * 1666 * Returns the pointer to a gmap if a shadow table with the given asce is 1667 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1668 * otherwise NULL 1669 */ 1670 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1671 int edat_level) 1672 { 1673 struct gmap *sg; 1674 1675 list_for_each_entry(sg, &parent->children, list) { 1676 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1677 sg->removed) 1678 continue; 1679 if (!sg->initialized) 1680 return ERR_PTR(-EAGAIN); 1681 refcount_inc(&sg->ref_count); 1682 return sg; 1683 } 1684 return NULL; 1685 } 1686 1687 /** 1688 * gmap_shadow_valid - check if a shadow guest address space matches the 1689 * given properties and is still valid 1690 * @sg: pointer to the shadow guest address space structure 1691 * @asce: ASCE for which the shadow table is requested 1692 * @edat_level: edat level to be used for the shadow translation 1693 * 1694 * Returns 1 if the gmap shadow is still valid and matches the given 1695 * properties, the caller can continue using it. Returns 0 otherwise, the 1696 * caller has to request a new shadow gmap in this case. 1697 * 1698 */ 1699 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1700 { 1701 if (sg->removed) 1702 return 0; 1703 return sg->orig_asce == asce && sg->edat_level == edat_level; 1704 } 1705 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1706 1707 /** 1708 * gmap_shadow - create/find a shadow guest address space 1709 * @parent: pointer to the parent gmap 1710 * @asce: ASCE for which the shadow table is created 1711 * @edat_level: edat level to be used for the shadow translation 1712 * 1713 * The pages of the top level page table referred by the asce parameter 1714 * will be set to read-only and marked in the PGSTEs of the kvm process. 1715 * The shadow table will be removed automatically on any change to the 1716 * PTE mapping for the source table. 1717 * 1718 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1719 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1720 * parent gmap table could not be protected. 1721 */ 1722 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1723 int edat_level) 1724 { 1725 struct gmap *sg, *new; 1726 unsigned long limit; 1727 int rc; 1728 1729 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1730 BUG_ON(gmap_is_shadow(parent)); 1731 spin_lock(&parent->shadow_lock); 1732 sg = gmap_find_shadow(parent, asce, edat_level); 1733 spin_unlock(&parent->shadow_lock); 1734 if (sg) 1735 return sg; 1736 /* Create a new shadow gmap */ 1737 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1738 if (asce & _ASCE_REAL_SPACE) 1739 limit = -1UL; 1740 new = gmap_alloc(limit); 1741 if (!new) 1742 return ERR_PTR(-ENOMEM); 1743 new->mm = parent->mm; 1744 new->parent = gmap_get(parent); 1745 new->private = parent->private; 1746 new->orig_asce = asce; 1747 new->edat_level = edat_level; 1748 new->initialized = false; 1749 spin_lock(&parent->shadow_lock); 1750 /* Recheck if another CPU created the same shadow */ 1751 sg = gmap_find_shadow(parent, asce, edat_level); 1752 if (sg) { 1753 spin_unlock(&parent->shadow_lock); 1754 gmap_free(new); 1755 return sg; 1756 } 1757 if (asce & _ASCE_REAL_SPACE) { 1758 /* only allow one real-space gmap shadow */ 1759 list_for_each_entry(sg, &parent->children, list) { 1760 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1761 spin_lock(&sg->guest_table_lock); 1762 gmap_unshadow(sg); 1763 spin_unlock(&sg->guest_table_lock); 1764 list_del(&sg->list); 1765 gmap_put(sg); 1766 break; 1767 } 1768 } 1769 } 1770 refcount_set(&new->ref_count, 2); 1771 list_add(&new->list, &parent->children); 1772 if (asce & _ASCE_REAL_SPACE) { 1773 /* nothing to protect, return right away */ 1774 new->initialized = true; 1775 spin_unlock(&parent->shadow_lock); 1776 return new; 1777 } 1778 spin_unlock(&parent->shadow_lock); 1779 /* protect after insertion, so it will get properly invalidated */ 1780 mmap_read_lock(parent->mm); 1781 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1782 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1783 PROT_READ, GMAP_NOTIFY_SHADOW); 1784 mmap_read_unlock(parent->mm); 1785 spin_lock(&parent->shadow_lock); 1786 new->initialized = true; 1787 if (rc) { 1788 list_del(&new->list); 1789 gmap_free(new); 1790 new = ERR_PTR(rc); 1791 } 1792 spin_unlock(&parent->shadow_lock); 1793 return new; 1794 } 1795 EXPORT_SYMBOL_GPL(gmap_shadow); 1796 1797 /** 1798 * gmap_shadow_r2t - create an empty shadow region 2 table 1799 * @sg: pointer to the shadow guest address space structure 1800 * @saddr: faulting address in the shadow gmap 1801 * @r2t: parent gmap address of the region 2 table to get shadowed 1802 * @fake: r2t references contiguous guest memory block, not a r2t 1803 * 1804 * The r2t parameter specifies the address of the source table. The 1805 * four pages of the source table are made read-only in the parent gmap 1806 * address space. A write to the source table area @r2t will automatically 1807 * remove the shadow r2 table and all of its descendants. 1808 * 1809 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1810 * shadow table structure is incomplete, -ENOMEM if out of memory and 1811 * -EFAULT if an address in the parent gmap could not be resolved. 1812 * 1813 * Called with sg->mm->mmap_lock in read. 1814 */ 1815 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1816 int fake) 1817 { 1818 unsigned long raddr, origin, offset, len; 1819 unsigned long *table; 1820 phys_addr_t s_r2t; 1821 struct page *page; 1822 int rc; 1823 1824 BUG_ON(!gmap_is_shadow(sg)); 1825 /* Allocate a shadow region second table */ 1826 page = gmap_alloc_crst(); 1827 if (!page) 1828 return -ENOMEM; 1829 page->index = r2t & _REGION_ENTRY_ORIGIN; 1830 if (fake) 1831 page->index |= GMAP_SHADOW_FAKE_TABLE; 1832 s_r2t = page_to_phys(page); 1833 /* Install shadow region second table */ 1834 spin_lock(&sg->guest_table_lock); 1835 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1836 if (!table) { 1837 rc = -EAGAIN; /* Race with unshadow */ 1838 goto out_free; 1839 } 1840 if (!(*table & _REGION_ENTRY_INVALID)) { 1841 rc = 0; /* Already established */ 1842 goto out_free; 1843 } else if (*table & _REGION_ENTRY_ORIGIN) { 1844 rc = -EAGAIN; /* Race with shadow */ 1845 goto out_free; 1846 } 1847 crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY); 1848 /* mark as invalid as long as the parent table is not protected */ 1849 *table = s_r2t | _REGION_ENTRY_LENGTH | 1850 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1851 if (sg->edat_level >= 1) 1852 *table |= (r2t & _REGION_ENTRY_PROTECT); 1853 list_add(&page->lru, &sg->crst_list); 1854 if (fake) { 1855 /* nothing to protect for fake tables */ 1856 *table &= ~_REGION_ENTRY_INVALID; 1857 spin_unlock(&sg->guest_table_lock); 1858 return 0; 1859 } 1860 spin_unlock(&sg->guest_table_lock); 1861 /* Make r2t read-only in parent gmap page table */ 1862 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1863 origin = r2t & _REGION_ENTRY_ORIGIN; 1864 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1865 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1866 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1867 spin_lock(&sg->guest_table_lock); 1868 if (!rc) { 1869 table = gmap_table_walk(sg, saddr, 4); 1870 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t) 1871 rc = -EAGAIN; /* Race with unshadow */ 1872 else 1873 *table &= ~_REGION_ENTRY_INVALID; 1874 } else { 1875 gmap_unshadow_r2t(sg, raddr); 1876 } 1877 spin_unlock(&sg->guest_table_lock); 1878 return rc; 1879 out_free: 1880 spin_unlock(&sg->guest_table_lock); 1881 __free_pages(page, CRST_ALLOC_ORDER); 1882 return rc; 1883 } 1884 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1885 1886 /** 1887 * gmap_shadow_r3t - create a shadow region 3 table 1888 * @sg: pointer to the shadow guest address space structure 1889 * @saddr: faulting address in the shadow gmap 1890 * @r3t: parent gmap address of the region 3 table to get shadowed 1891 * @fake: r3t references contiguous guest memory block, not a r3t 1892 * 1893 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1894 * shadow table structure is incomplete, -ENOMEM if out of memory and 1895 * -EFAULT if an address in the parent gmap could not be resolved. 1896 * 1897 * Called with sg->mm->mmap_lock in read. 1898 */ 1899 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1900 int fake) 1901 { 1902 unsigned long raddr, origin, offset, len; 1903 unsigned long *table; 1904 phys_addr_t s_r3t; 1905 struct page *page; 1906 int rc; 1907 1908 BUG_ON(!gmap_is_shadow(sg)); 1909 /* Allocate a shadow region second table */ 1910 page = gmap_alloc_crst(); 1911 if (!page) 1912 return -ENOMEM; 1913 page->index = r3t & _REGION_ENTRY_ORIGIN; 1914 if (fake) 1915 page->index |= GMAP_SHADOW_FAKE_TABLE; 1916 s_r3t = page_to_phys(page); 1917 /* Install shadow region second table */ 1918 spin_lock(&sg->guest_table_lock); 1919 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1920 if (!table) { 1921 rc = -EAGAIN; /* Race with unshadow */ 1922 goto out_free; 1923 } 1924 if (!(*table & _REGION_ENTRY_INVALID)) { 1925 rc = 0; /* Already established */ 1926 goto out_free; 1927 } else if (*table & _REGION_ENTRY_ORIGIN) { 1928 rc = -EAGAIN; /* Race with shadow */ 1929 goto out_free; 1930 } 1931 crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY); 1932 /* mark as invalid as long as the parent table is not protected */ 1933 *table = s_r3t | _REGION_ENTRY_LENGTH | 1934 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1935 if (sg->edat_level >= 1) 1936 *table |= (r3t & _REGION_ENTRY_PROTECT); 1937 list_add(&page->lru, &sg->crst_list); 1938 if (fake) { 1939 /* nothing to protect for fake tables */ 1940 *table &= ~_REGION_ENTRY_INVALID; 1941 spin_unlock(&sg->guest_table_lock); 1942 return 0; 1943 } 1944 spin_unlock(&sg->guest_table_lock); 1945 /* Make r3t read-only in parent gmap page table */ 1946 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1947 origin = r3t & _REGION_ENTRY_ORIGIN; 1948 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1949 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1950 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1951 spin_lock(&sg->guest_table_lock); 1952 if (!rc) { 1953 table = gmap_table_walk(sg, saddr, 3); 1954 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t) 1955 rc = -EAGAIN; /* Race with unshadow */ 1956 else 1957 *table &= ~_REGION_ENTRY_INVALID; 1958 } else { 1959 gmap_unshadow_r3t(sg, raddr); 1960 } 1961 spin_unlock(&sg->guest_table_lock); 1962 return rc; 1963 out_free: 1964 spin_unlock(&sg->guest_table_lock); 1965 __free_pages(page, CRST_ALLOC_ORDER); 1966 return rc; 1967 } 1968 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1969 1970 /** 1971 * gmap_shadow_sgt - create a shadow segment table 1972 * @sg: pointer to the shadow guest address space structure 1973 * @saddr: faulting address in the shadow gmap 1974 * @sgt: parent gmap address of the segment table to get shadowed 1975 * @fake: sgt references contiguous guest memory block, not a sgt 1976 * 1977 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1978 * shadow table structure is incomplete, -ENOMEM if out of memory and 1979 * -EFAULT if an address in the parent gmap could not be resolved. 1980 * 1981 * Called with sg->mm->mmap_lock in read. 1982 */ 1983 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1984 int fake) 1985 { 1986 unsigned long raddr, origin, offset, len; 1987 unsigned long *table; 1988 phys_addr_t s_sgt; 1989 struct page *page; 1990 int rc; 1991 1992 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1993 /* Allocate a shadow segment table */ 1994 page = gmap_alloc_crst(); 1995 if (!page) 1996 return -ENOMEM; 1997 page->index = sgt & _REGION_ENTRY_ORIGIN; 1998 if (fake) 1999 page->index |= GMAP_SHADOW_FAKE_TABLE; 2000 s_sgt = page_to_phys(page); 2001 /* Install shadow region second table */ 2002 spin_lock(&sg->guest_table_lock); 2003 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 2004 if (!table) { 2005 rc = -EAGAIN; /* Race with unshadow */ 2006 goto out_free; 2007 } 2008 if (!(*table & _REGION_ENTRY_INVALID)) { 2009 rc = 0; /* Already established */ 2010 goto out_free; 2011 } else if (*table & _REGION_ENTRY_ORIGIN) { 2012 rc = -EAGAIN; /* Race with shadow */ 2013 goto out_free; 2014 } 2015 crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY); 2016 /* mark as invalid as long as the parent table is not protected */ 2017 *table = s_sgt | _REGION_ENTRY_LENGTH | 2018 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 2019 if (sg->edat_level >= 1) 2020 *table |= sgt & _REGION_ENTRY_PROTECT; 2021 list_add(&page->lru, &sg->crst_list); 2022 if (fake) { 2023 /* nothing to protect for fake tables */ 2024 *table &= ~_REGION_ENTRY_INVALID; 2025 spin_unlock(&sg->guest_table_lock); 2026 return 0; 2027 } 2028 spin_unlock(&sg->guest_table_lock); 2029 /* Make sgt read-only in parent gmap page table */ 2030 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 2031 origin = sgt & _REGION_ENTRY_ORIGIN; 2032 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 2033 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 2034 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 2035 spin_lock(&sg->guest_table_lock); 2036 if (!rc) { 2037 table = gmap_table_walk(sg, saddr, 2); 2038 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt) 2039 rc = -EAGAIN; /* Race with unshadow */ 2040 else 2041 *table &= ~_REGION_ENTRY_INVALID; 2042 } else { 2043 gmap_unshadow_sgt(sg, raddr); 2044 } 2045 spin_unlock(&sg->guest_table_lock); 2046 return rc; 2047 out_free: 2048 spin_unlock(&sg->guest_table_lock); 2049 __free_pages(page, CRST_ALLOC_ORDER); 2050 return rc; 2051 } 2052 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 2053 2054 /** 2055 * gmap_shadow_pgt_lookup - find a shadow page table 2056 * @sg: pointer to the shadow guest address space structure 2057 * @saddr: the address in the shadow aguest address space 2058 * @pgt: parent gmap address of the page table to get shadowed 2059 * @dat_protection: if the pgtable is marked as protected by dat 2060 * @fake: pgt references contiguous guest memory block, not a pgtable 2061 * 2062 * Returns 0 if the shadow page table was found and -EAGAIN if the page 2063 * table was not found. 2064 * 2065 * Called with sg->mm->mmap_lock in read. 2066 */ 2067 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 2068 unsigned long *pgt, int *dat_protection, 2069 int *fake) 2070 { 2071 unsigned long *table; 2072 struct page *page; 2073 int rc; 2074 2075 BUG_ON(!gmap_is_shadow(sg)); 2076 spin_lock(&sg->guest_table_lock); 2077 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2078 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 2079 /* Shadow page tables are full pages (pte+pgste) */ 2080 page = pfn_to_page(*table >> PAGE_SHIFT); 2081 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 2082 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 2083 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 2084 rc = 0; 2085 } else { 2086 rc = -EAGAIN; 2087 } 2088 spin_unlock(&sg->guest_table_lock); 2089 return rc; 2090 2091 } 2092 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2093 2094 /** 2095 * gmap_shadow_pgt - instantiate a shadow page table 2096 * @sg: pointer to the shadow guest address space structure 2097 * @saddr: faulting address in the shadow gmap 2098 * @pgt: parent gmap address of the page table to get shadowed 2099 * @fake: pgt references contiguous guest memory block, not a pgtable 2100 * 2101 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2102 * shadow table structure is incomplete, -ENOMEM if out of memory, 2103 * -EFAULT if an address in the parent gmap could not be resolved and 2104 * 2105 * Called with gmap->mm->mmap_lock in read 2106 */ 2107 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2108 int fake) 2109 { 2110 unsigned long raddr, origin; 2111 unsigned long *table; 2112 struct ptdesc *ptdesc; 2113 phys_addr_t s_pgt; 2114 int rc; 2115 2116 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2117 /* Allocate a shadow page table */ 2118 ptdesc = page_table_alloc_pgste(sg->mm); 2119 if (!ptdesc) 2120 return -ENOMEM; 2121 ptdesc->pt_index = pgt & _SEGMENT_ENTRY_ORIGIN; 2122 if (fake) 2123 ptdesc->pt_index |= GMAP_SHADOW_FAKE_TABLE; 2124 s_pgt = page_to_phys(ptdesc_page(ptdesc)); 2125 /* Install shadow page table */ 2126 spin_lock(&sg->guest_table_lock); 2127 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2128 if (!table) { 2129 rc = -EAGAIN; /* Race with unshadow */ 2130 goto out_free; 2131 } 2132 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2133 rc = 0; /* Already established */ 2134 goto out_free; 2135 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2136 rc = -EAGAIN; /* Race with shadow */ 2137 goto out_free; 2138 } 2139 /* mark as invalid as long as the parent table is not protected */ 2140 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2141 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2142 list_add(&ptdesc->pt_list, &sg->pt_list); 2143 if (fake) { 2144 /* nothing to protect for fake tables */ 2145 *table &= ~_SEGMENT_ENTRY_INVALID; 2146 spin_unlock(&sg->guest_table_lock); 2147 return 0; 2148 } 2149 spin_unlock(&sg->guest_table_lock); 2150 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2151 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2152 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2153 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2154 spin_lock(&sg->guest_table_lock); 2155 if (!rc) { 2156 table = gmap_table_walk(sg, saddr, 1); 2157 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt) 2158 rc = -EAGAIN; /* Race with unshadow */ 2159 else 2160 *table &= ~_SEGMENT_ENTRY_INVALID; 2161 } else { 2162 gmap_unshadow_pgt(sg, raddr); 2163 } 2164 spin_unlock(&sg->guest_table_lock); 2165 return rc; 2166 out_free: 2167 spin_unlock(&sg->guest_table_lock); 2168 page_table_free_pgste(ptdesc); 2169 return rc; 2170 2171 } 2172 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2173 2174 /** 2175 * gmap_shadow_page - create a shadow page mapping 2176 * @sg: pointer to the shadow guest address space structure 2177 * @saddr: faulting address in the shadow gmap 2178 * @pte: pte in parent gmap address space to get shadowed 2179 * 2180 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2181 * shadow table structure is incomplete, -ENOMEM if out of memory and 2182 * -EFAULT if an address in the parent gmap could not be resolved. 2183 * 2184 * Called with sg->mm->mmap_lock in read. 2185 */ 2186 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2187 { 2188 struct gmap *parent; 2189 struct gmap_rmap *rmap; 2190 unsigned long vmaddr, paddr; 2191 spinlock_t *ptl; 2192 pte_t *sptep, *tptep; 2193 int prot; 2194 int rc; 2195 2196 BUG_ON(!gmap_is_shadow(sg)); 2197 parent = sg->parent; 2198 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2199 2200 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 2201 if (!rmap) 2202 return -ENOMEM; 2203 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2204 2205 while (1) { 2206 paddr = pte_val(pte) & PAGE_MASK; 2207 vmaddr = __gmap_translate(parent, paddr); 2208 if (IS_ERR_VALUE(vmaddr)) { 2209 rc = vmaddr; 2210 break; 2211 } 2212 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 2213 if (rc) 2214 break; 2215 rc = -EAGAIN; 2216 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2217 if (sptep) { 2218 spin_lock(&sg->guest_table_lock); 2219 /* Get page table pointer */ 2220 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2221 if (!tptep) { 2222 spin_unlock(&sg->guest_table_lock); 2223 gmap_pte_op_end(sptep, ptl); 2224 radix_tree_preload_end(); 2225 break; 2226 } 2227 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2228 if (rc > 0) { 2229 /* Success and a new mapping */ 2230 gmap_insert_rmap(sg, vmaddr, rmap); 2231 rmap = NULL; 2232 rc = 0; 2233 } 2234 gmap_pte_op_end(sptep, ptl); 2235 spin_unlock(&sg->guest_table_lock); 2236 } 2237 radix_tree_preload_end(); 2238 if (!rc) 2239 break; 2240 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2241 if (rc) 2242 break; 2243 } 2244 kfree(rmap); 2245 return rc; 2246 } 2247 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2248 2249 /* 2250 * gmap_shadow_notify - handle notifications for shadow gmap 2251 * 2252 * Called with sg->parent->shadow_lock. 2253 */ 2254 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2255 unsigned long gaddr) 2256 { 2257 struct gmap_rmap *rmap, *rnext, *head; 2258 unsigned long start, end, bits, raddr; 2259 2260 BUG_ON(!gmap_is_shadow(sg)); 2261 2262 spin_lock(&sg->guest_table_lock); 2263 if (sg->removed) { 2264 spin_unlock(&sg->guest_table_lock); 2265 return; 2266 } 2267 /* Check for top level table */ 2268 start = sg->orig_asce & _ASCE_ORIGIN; 2269 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2270 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2271 gaddr < end) { 2272 /* The complete shadow table has to go */ 2273 gmap_unshadow(sg); 2274 spin_unlock(&sg->guest_table_lock); 2275 list_del(&sg->list); 2276 gmap_put(sg); 2277 return; 2278 } 2279 /* Remove the page table tree from on specific entry */ 2280 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2281 gmap_for_each_rmap_safe(rmap, rnext, head) { 2282 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2283 raddr = rmap->raddr ^ bits; 2284 switch (bits) { 2285 case _SHADOW_RMAP_REGION1: 2286 gmap_unshadow_r2t(sg, raddr); 2287 break; 2288 case _SHADOW_RMAP_REGION2: 2289 gmap_unshadow_r3t(sg, raddr); 2290 break; 2291 case _SHADOW_RMAP_REGION3: 2292 gmap_unshadow_sgt(sg, raddr); 2293 break; 2294 case _SHADOW_RMAP_SEGMENT: 2295 gmap_unshadow_pgt(sg, raddr); 2296 break; 2297 case _SHADOW_RMAP_PGTABLE: 2298 gmap_unshadow_page(sg, raddr); 2299 break; 2300 } 2301 kfree(rmap); 2302 } 2303 spin_unlock(&sg->guest_table_lock); 2304 } 2305 2306 /** 2307 * ptep_notify - call all invalidation callbacks for a specific pte. 2308 * @mm: pointer to the process mm_struct 2309 * @vmaddr: virtual address in the process address space 2310 * @pte: pointer to the page table entry 2311 * @bits: bits from the pgste that caused the notify call 2312 * 2313 * This function is assumed to be called with the page table lock held 2314 * for the pte to notify. 2315 */ 2316 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2317 pte_t *pte, unsigned long bits) 2318 { 2319 unsigned long offset, gaddr = 0; 2320 unsigned long *table; 2321 struct gmap *gmap, *sg, *next; 2322 2323 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2324 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2325 rcu_read_lock(); 2326 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2327 spin_lock(&gmap->guest_table_lock); 2328 table = radix_tree_lookup(&gmap->host_to_guest, 2329 vmaddr >> PMD_SHIFT); 2330 if (table) 2331 gaddr = __gmap_segment_gaddr(table) + offset; 2332 spin_unlock(&gmap->guest_table_lock); 2333 if (!table) 2334 continue; 2335 2336 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2337 spin_lock(&gmap->shadow_lock); 2338 list_for_each_entry_safe(sg, next, 2339 &gmap->children, list) 2340 gmap_shadow_notify(sg, vmaddr, gaddr); 2341 spin_unlock(&gmap->shadow_lock); 2342 } 2343 if (bits & PGSTE_IN_BIT) 2344 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2345 } 2346 rcu_read_unlock(); 2347 } 2348 EXPORT_SYMBOL_GPL(ptep_notify); 2349 2350 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2351 unsigned long gaddr) 2352 { 2353 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN))); 2354 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2355 } 2356 2357 /** 2358 * gmap_pmdp_xchg - exchange a gmap pmd with another 2359 * @gmap: pointer to the guest address space structure 2360 * @pmdp: pointer to the pmd entry 2361 * @new: replacement entry 2362 * @gaddr: the affected guest address 2363 * 2364 * This function is assumed to be called with the guest_table_lock 2365 * held. 2366 */ 2367 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2368 unsigned long gaddr) 2369 { 2370 gaddr &= HPAGE_MASK; 2371 pmdp_notify_gmap(gmap, pmdp, gaddr); 2372 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN)); 2373 if (MACHINE_HAS_TLB_GUEST) 2374 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2375 IDTE_GLOBAL); 2376 else if (MACHINE_HAS_IDTE) 2377 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2378 else 2379 __pmdp_csp(pmdp); 2380 set_pmd(pmdp, new); 2381 } 2382 2383 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2384 int purge) 2385 { 2386 pmd_t *pmdp; 2387 struct gmap *gmap; 2388 unsigned long gaddr; 2389 2390 rcu_read_lock(); 2391 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2392 spin_lock(&gmap->guest_table_lock); 2393 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2394 vmaddr >> PMD_SHIFT); 2395 if (pmdp) { 2396 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2397 pmdp_notify_gmap(gmap, pmdp, gaddr); 2398 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2399 _SEGMENT_ENTRY_GMAP_UC)); 2400 if (purge) 2401 __pmdp_csp(pmdp); 2402 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 2403 } 2404 spin_unlock(&gmap->guest_table_lock); 2405 } 2406 rcu_read_unlock(); 2407 } 2408 2409 /** 2410 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2411 * flushing 2412 * @mm: pointer to the process mm_struct 2413 * @vmaddr: virtual address in the process address space 2414 */ 2415 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2416 { 2417 gmap_pmdp_clear(mm, vmaddr, 0); 2418 } 2419 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2420 2421 /** 2422 * gmap_pmdp_csp - csp all affected guest pmd entries 2423 * @mm: pointer to the process mm_struct 2424 * @vmaddr: virtual address in the process address space 2425 */ 2426 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2427 { 2428 gmap_pmdp_clear(mm, vmaddr, 1); 2429 } 2430 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2431 2432 /** 2433 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2434 * @mm: pointer to the process mm_struct 2435 * @vmaddr: virtual address in the process address space 2436 */ 2437 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2438 { 2439 unsigned long *entry, gaddr; 2440 struct gmap *gmap; 2441 pmd_t *pmdp; 2442 2443 rcu_read_lock(); 2444 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2445 spin_lock(&gmap->guest_table_lock); 2446 entry = radix_tree_delete(&gmap->host_to_guest, 2447 vmaddr >> PMD_SHIFT); 2448 if (entry) { 2449 pmdp = (pmd_t *)entry; 2450 gaddr = __gmap_segment_gaddr(entry); 2451 pmdp_notify_gmap(gmap, pmdp, gaddr); 2452 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2453 _SEGMENT_ENTRY_GMAP_UC)); 2454 if (MACHINE_HAS_TLB_GUEST) 2455 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2456 gmap->asce, IDTE_LOCAL); 2457 else if (MACHINE_HAS_IDTE) 2458 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2459 *entry = _SEGMENT_ENTRY_EMPTY; 2460 } 2461 spin_unlock(&gmap->guest_table_lock); 2462 } 2463 rcu_read_unlock(); 2464 } 2465 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2466 2467 /** 2468 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2469 * @mm: pointer to the process mm_struct 2470 * @vmaddr: virtual address in the process address space 2471 */ 2472 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2473 { 2474 unsigned long *entry, gaddr; 2475 struct gmap *gmap; 2476 pmd_t *pmdp; 2477 2478 rcu_read_lock(); 2479 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2480 spin_lock(&gmap->guest_table_lock); 2481 entry = radix_tree_delete(&gmap->host_to_guest, 2482 vmaddr >> PMD_SHIFT); 2483 if (entry) { 2484 pmdp = (pmd_t *)entry; 2485 gaddr = __gmap_segment_gaddr(entry); 2486 pmdp_notify_gmap(gmap, pmdp, gaddr); 2487 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2488 _SEGMENT_ENTRY_GMAP_UC)); 2489 if (MACHINE_HAS_TLB_GUEST) 2490 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2491 gmap->asce, IDTE_GLOBAL); 2492 else if (MACHINE_HAS_IDTE) 2493 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2494 else 2495 __pmdp_csp(pmdp); 2496 *entry = _SEGMENT_ENTRY_EMPTY; 2497 } 2498 spin_unlock(&gmap->guest_table_lock); 2499 } 2500 rcu_read_unlock(); 2501 } 2502 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2503 2504 /** 2505 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2506 * @gmap: pointer to guest address space 2507 * @pmdp: pointer to the pmd to be tested 2508 * @gaddr: virtual address in the guest address space 2509 * 2510 * This function is assumed to be called with the guest_table_lock 2511 * held. 2512 */ 2513 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2514 unsigned long gaddr) 2515 { 2516 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2517 return false; 2518 2519 /* Already protected memory, which did not change is clean */ 2520 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2521 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2522 return false; 2523 2524 /* Clear UC indication and reset protection */ 2525 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC))); 2526 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2527 return true; 2528 } 2529 2530 /** 2531 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2532 * @gmap: pointer to guest address space 2533 * @bitmap: dirty bitmap for this pmd 2534 * @gaddr: virtual address in the guest address space 2535 * @vmaddr: virtual address in the host address space 2536 * 2537 * This function is assumed to be called with the guest_table_lock 2538 * held. 2539 */ 2540 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2541 unsigned long gaddr, unsigned long vmaddr) 2542 { 2543 int i; 2544 pmd_t *pmdp; 2545 pte_t *ptep; 2546 spinlock_t *ptl; 2547 2548 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2549 if (!pmdp) 2550 return; 2551 2552 if (pmd_leaf(*pmdp)) { 2553 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2554 bitmap_fill(bitmap, _PAGE_ENTRIES); 2555 } else { 2556 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2557 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2558 if (!ptep) 2559 continue; 2560 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2561 set_bit(i, bitmap); 2562 pte_unmap_unlock(ptep, ptl); 2563 } 2564 } 2565 gmap_pmd_op_end(gmap, pmdp); 2566 } 2567 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2568 2569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2570 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr, 2571 unsigned long end, struct mm_walk *walk) 2572 { 2573 struct vm_area_struct *vma = walk->vma; 2574 2575 split_huge_pmd(vma, pmd, addr); 2576 return 0; 2577 } 2578 2579 static const struct mm_walk_ops thp_split_walk_ops = { 2580 .pmd_entry = thp_split_walk_pmd_entry, 2581 .walk_lock = PGWALK_WRLOCK_VERIFY, 2582 }; 2583 2584 static inline void thp_split_mm(struct mm_struct *mm) 2585 { 2586 struct vm_area_struct *vma; 2587 VMA_ITERATOR(vmi, mm, 0); 2588 2589 for_each_vma(vmi, vma) { 2590 vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE); 2591 walk_page_vma(vma, &thp_split_walk_ops, NULL); 2592 } 2593 mm->def_flags |= VM_NOHUGEPAGE; 2594 } 2595 #else 2596 static inline void thp_split_mm(struct mm_struct *mm) 2597 { 2598 } 2599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2600 2601 /* 2602 * switch on pgstes for its userspace process (for kvm) 2603 */ 2604 int s390_enable_sie(void) 2605 { 2606 struct mm_struct *mm = current->mm; 2607 2608 /* Do we have pgstes? if yes, we are done */ 2609 if (mm_has_pgste(mm)) 2610 return 0; 2611 /* Fail if the page tables are 2K */ 2612 if (!mm_alloc_pgste(mm)) 2613 return -EINVAL; 2614 mmap_write_lock(mm); 2615 mm->context.has_pgste = 1; 2616 /* split thp mappings and disable thp for future mappings */ 2617 thp_split_mm(mm); 2618 mmap_write_unlock(mm); 2619 return 0; 2620 } 2621 EXPORT_SYMBOL_GPL(s390_enable_sie); 2622 2623 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr, 2624 unsigned long end, struct mm_walk *walk) 2625 { 2626 unsigned long *found_addr = walk->private; 2627 2628 /* Return 1 of the page is a zeropage. */ 2629 if (is_zero_pfn(pte_pfn(*pte))) { 2630 /* 2631 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the 2632 * right thing and likely don't care: FAULT_FLAG_UNSHARE 2633 * currently only works in COW mappings, which is also where 2634 * mm_forbids_zeropage() is checked. 2635 */ 2636 if (!is_cow_mapping(walk->vma->vm_flags)) 2637 return -EFAULT; 2638 2639 *found_addr = addr; 2640 return 1; 2641 } 2642 return 0; 2643 } 2644 2645 static const struct mm_walk_ops find_zeropage_ops = { 2646 .pte_entry = find_zeropage_pte_entry, 2647 .walk_lock = PGWALK_WRLOCK, 2648 }; 2649 2650 /* 2651 * Unshare all shared zeropages, replacing them by anonymous pages. Note that 2652 * we cannot simply zap all shared zeropages, because this could later 2653 * trigger unexpected userfaultfd missing events. 2654 * 2655 * This must be called after mm->context.allow_cow_sharing was 2656 * set to 0, to avoid future mappings of shared zeropages. 2657 * 2658 * mm contracts with s390, that even if mm were to remove a page table, 2659 * and racing with walk_page_range_vma() calling pte_offset_map_lock() 2660 * would fail, it will never insert a page table containing empty zero 2661 * pages once mm_forbids_zeropage(mm) i.e. 2662 * mm->context.allow_cow_sharing is set to 0. 2663 */ 2664 static int __s390_unshare_zeropages(struct mm_struct *mm) 2665 { 2666 struct vm_area_struct *vma; 2667 VMA_ITERATOR(vmi, mm, 0); 2668 unsigned long addr; 2669 vm_fault_t fault; 2670 int rc; 2671 2672 for_each_vma(vmi, vma) { 2673 /* 2674 * We could only look at COW mappings, but it's more future 2675 * proof to catch unexpected zeropages in other mappings and 2676 * fail. 2677 */ 2678 if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma)) 2679 continue; 2680 addr = vma->vm_start; 2681 2682 retry: 2683 rc = walk_page_range_vma(vma, addr, vma->vm_end, 2684 &find_zeropage_ops, &addr); 2685 if (rc < 0) 2686 return rc; 2687 else if (!rc) 2688 continue; 2689 2690 /* addr was updated by find_zeropage_pte_entry() */ 2691 fault = handle_mm_fault(vma, addr, 2692 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 2693 NULL); 2694 if (fault & VM_FAULT_OOM) 2695 return -ENOMEM; 2696 /* 2697 * See break_ksm(): even after handle_mm_fault() returned 0, we 2698 * must start the lookup from the current address, because 2699 * handle_mm_fault() may back out if there's any difficulty. 2700 * 2701 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but 2702 * maybe they could trigger in the future on concurrent 2703 * truncation. In that case, the shared zeropage would be gone 2704 * and we can simply retry and make progress. 2705 */ 2706 cond_resched(); 2707 goto retry; 2708 } 2709 2710 return 0; 2711 } 2712 2713 static int __s390_disable_cow_sharing(struct mm_struct *mm) 2714 { 2715 int rc; 2716 2717 if (!mm->context.allow_cow_sharing) 2718 return 0; 2719 2720 mm->context.allow_cow_sharing = 0; 2721 2722 /* Replace all shared zeropages by anonymous pages. */ 2723 rc = __s390_unshare_zeropages(mm); 2724 /* 2725 * Make sure to disable KSM (if enabled for the whole process or 2726 * individual VMAs). Note that nothing currently hinders user space 2727 * from re-enabling it. 2728 */ 2729 if (!rc) 2730 rc = ksm_disable(mm); 2731 if (rc) 2732 mm->context.allow_cow_sharing = 1; 2733 return rc; 2734 } 2735 2736 /* 2737 * Disable most COW-sharing of memory pages for the whole process: 2738 * (1) Disable KSM and unmerge/unshare any KSM pages. 2739 * (2) Disallow shared zeropages and unshare any zerpages that are mapped. 2740 * 2741 * Not that we currently don't bother with COW-shared pages that are shared 2742 * with parent/child processes due to fork(). 2743 */ 2744 int s390_disable_cow_sharing(void) 2745 { 2746 int rc; 2747 2748 mmap_write_lock(current->mm); 2749 rc = __s390_disable_cow_sharing(current->mm); 2750 mmap_write_unlock(current->mm); 2751 return rc; 2752 } 2753 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing); 2754 2755 /* 2756 * Enable storage key handling from now on and initialize the storage 2757 * keys with the default key. 2758 */ 2759 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2760 unsigned long next, struct mm_walk *walk) 2761 { 2762 /* Clear storage key */ 2763 ptep_zap_key(walk->mm, addr, pte); 2764 return 0; 2765 } 2766 2767 /* 2768 * Give a chance to schedule after setting a key to 256 pages. 2769 * We only hold the mm lock, which is a rwsem and the kvm srcu. 2770 * Both can sleep. 2771 */ 2772 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr, 2773 unsigned long next, struct mm_walk *walk) 2774 { 2775 cond_resched(); 2776 return 0; 2777 } 2778 2779 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2780 unsigned long hmask, unsigned long next, 2781 struct mm_walk *walk) 2782 { 2783 pmd_t *pmd = (pmd_t *)pte; 2784 unsigned long start, end; 2785 struct folio *folio = page_folio(pmd_page(*pmd)); 2786 2787 /* 2788 * The write check makes sure we do not set a key on shared 2789 * memory. This is needed as the walker does not differentiate 2790 * between actual guest memory and the process executable or 2791 * shared libraries. 2792 */ 2793 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2794 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2795 return 0; 2796 2797 start = pmd_val(*pmd) & HPAGE_MASK; 2798 end = start + HPAGE_SIZE; 2799 __storage_key_init_range(start, end); 2800 set_bit(PG_arch_1, &folio->flags); 2801 cond_resched(); 2802 return 0; 2803 } 2804 2805 static const struct mm_walk_ops enable_skey_walk_ops = { 2806 .hugetlb_entry = __s390_enable_skey_hugetlb, 2807 .pte_entry = __s390_enable_skey_pte, 2808 .pmd_entry = __s390_enable_skey_pmd, 2809 .walk_lock = PGWALK_WRLOCK, 2810 }; 2811 2812 int s390_enable_skey(void) 2813 { 2814 struct mm_struct *mm = current->mm; 2815 int rc = 0; 2816 2817 mmap_write_lock(mm); 2818 if (mm_uses_skeys(mm)) 2819 goto out_up; 2820 2821 mm->context.uses_skeys = 1; 2822 rc = __s390_disable_cow_sharing(mm); 2823 if (rc) { 2824 mm->context.uses_skeys = 0; 2825 goto out_up; 2826 } 2827 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL); 2828 2829 out_up: 2830 mmap_write_unlock(mm); 2831 return rc; 2832 } 2833 EXPORT_SYMBOL_GPL(s390_enable_skey); 2834 2835 /* 2836 * Reset CMMA state, make all pages stable again. 2837 */ 2838 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2839 unsigned long next, struct mm_walk *walk) 2840 { 2841 ptep_zap_unused(walk->mm, addr, pte, 1); 2842 return 0; 2843 } 2844 2845 static const struct mm_walk_ops reset_cmma_walk_ops = { 2846 .pte_entry = __s390_reset_cmma, 2847 .walk_lock = PGWALK_WRLOCK, 2848 }; 2849 2850 void s390_reset_cmma(struct mm_struct *mm) 2851 { 2852 mmap_write_lock(mm); 2853 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL); 2854 mmap_write_unlock(mm); 2855 } 2856 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2857 2858 #define GATHER_GET_PAGES 32 2859 2860 struct reset_walk_state { 2861 unsigned long next; 2862 unsigned long count; 2863 unsigned long pfns[GATHER_GET_PAGES]; 2864 }; 2865 2866 static int s390_gather_pages(pte_t *ptep, unsigned long addr, 2867 unsigned long next, struct mm_walk *walk) 2868 { 2869 struct reset_walk_state *p = walk->private; 2870 pte_t pte = READ_ONCE(*ptep); 2871 2872 if (pte_present(pte)) { 2873 /* we have a reference from the mapping, take an extra one */ 2874 get_page(phys_to_page(pte_val(pte))); 2875 p->pfns[p->count] = phys_to_pfn(pte_val(pte)); 2876 p->next = next; 2877 p->count++; 2878 } 2879 return p->count >= GATHER_GET_PAGES; 2880 } 2881 2882 static const struct mm_walk_ops gather_pages_ops = { 2883 .pte_entry = s390_gather_pages, 2884 .walk_lock = PGWALK_RDLOCK, 2885 }; 2886 2887 /* 2888 * Call the Destroy secure page UVC on each page in the given array of PFNs. 2889 * Each page needs to have an extra reference, which will be released here. 2890 */ 2891 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns) 2892 { 2893 struct folio *folio; 2894 unsigned long i; 2895 2896 for (i = 0; i < count; i++) { 2897 folio = pfn_folio(pfns[i]); 2898 /* we always have an extra reference */ 2899 uv_destroy_folio(folio); 2900 /* get rid of the extra reference */ 2901 folio_put(folio); 2902 cond_resched(); 2903 } 2904 } 2905 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns); 2906 2907 /** 2908 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page 2909 * in the given range of the given address space. 2910 * @mm: the mm to operate on 2911 * @start: the start of the range 2912 * @end: the end of the range 2913 * @interruptible: if not 0, stop when a fatal signal is received 2914 * 2915 * Walk the given range of the given address space and call the destroy 2916 * secure page UVC on each page. Optionally exit early if a fatal signal is 2917 * pending. 2918 * 2919 * Return: 0 on success, -EINTR if the function stopped before completing 2920 */ 2921 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start, 2922 unsigned long end, bool interruptible) 2923 { 2924 struct reset_walk_state state = { .next = start }; 2925 int r = 1; 2926 2927 while (r > 0) { 2928 state.count = 0; 2929 mmap_read_lock(mm); 2930 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state); 2931 mmap_read_unlock(mm); 2932 cond_resched(); 2933 s390_uv_destroy_pfns(state.count, state.pfns); 2934 if (interruptible && fatal_signal_pending(current)) 2935 return -EINTR; 2936 } 2937 return 0; 2938 } 2939 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range); 2940 2941 /** 2942 * s390_unlist_old_asce - Remove the topmost level of page tables from the 2943 * list of page tables of the gmap. 2944 * @gmap: the gmap whose table is to be removed 2945 * 2946 * On s390x, KVM keeps a list of all pages containing the page tables of the 2947 * gmap (the CRST list). This list is used at tear down time to free all 2948 * pages that are now not needed anymore. 2949 * 2950 * This function removes the topmost page of the tree (the one pointed to by 2951 * the ASCE) from the CRST list. 2952 * 2953 * This means that it will not be freed when the VM is torn down, and needs 2954 * to be handled separately by the caller, unless a leak is actually 2955 * intended. Notice that this function will only remove the page from the 2956 * list, the page will still be used as a top level page table (and ASCE). 2957 */ 2958 void s390_unlist_old_asce(struct gmap *gmap) 2959 { 2960 struct page *old; 2961 2962 old = virt_to_page(gmap->table); 2963 spin_lock(&gmap->guest_table_lock); 2964 list_del(&old->lru); 2965 /* 2966 * Sometimes the topmost page might need to be "removed" multiple 2967 * times, for example if the VM is rebooted into secure mode several 2968 * times concurrently, or if s390_replace_asce fails after calling 2969 * s390_remove_old_asce and is attempted again later. In that case 2970 * the old asce has been removed from the list, and therefore it 2971 * will not be freed when the VM terminates, but the ASCE is still 2972 * in use and still pointed to. 2973 * A subsequent call to replace_asce will follow the pointer and try 2974 * to remove the same page from the list again. 2975 * Therefore it's necessary that the page of the ASCE has valid 2976 * pointers, so list_del can work (and do nothing) without 2977 * dereferencing stale or invalid pointers. 2978 */ 2979 INIT_LIST_HEAD(&old->lru); 2980 spin_unlock(&gmap->guest_table_lock); 2981 } 2982 EXPORT_SYMBOL_GPL(s390_unlist_old_asce); 2983 2984 /** 2985 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy 2986 * @gmap: the gmap whose ASCE needs to be replaced 2987 * 2988 * If the ASCE is a SEGMENT type then this function will return -EINVAL, 2989 * otherwise the pointers in the host_to_guest radix tree will keep pointing 2990 * to the wrong pages, causing use-after-free and memory corruption. 2991 * If the allocation of the new top level page table fails, the ASCE is not 2992 * replaced. 2993 * In any case, the old ASCE is always removed from the gmap CRST list. 2994 * Therefore the caller has to make sure to save a pointer to it 2995 * beforehand, unless a leak is actually intended. 2996 */ 2997 int s390_replace_asce(struct gmap *gmap) 2998 { 2999 unsigned long asce; 3000 struct page *page; 3001 void *table; 3002 3003 s390_unlist_old_asce(gmap); 3004 3005 /* Replacing segment type ASCEs would cause serious issues */ 3006 if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT) 3007 return -EINVAL; 3008 3009 page = gmap_alloc_crst(); 3010 if (!page) 3011 return -ENOMEM; 3012 page->index = 0; 3013 table = page_to_virt(page); 3014 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT)); 3015 3016 /* 3017 * The caller has to deal with the old ASCE, but here we make sure 3018 * the new one is properly added to the CRST list, so that 3019 * it will be freed when the VM is torn down. 3020 */ 3021 spin_lock(&gmap->guest_table_lock); 3022 list_add(&page->lru, &gmap->crst_list); 3023 spin_unlock(&gmap->guest_table_lock); 3024 3025 /* Set new table origin while preserving existing ASCE control bits */ 3026 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table); 3027 WRITE_ONCE(gmap->asce, asce); 3028 WRITE_ONCE(gmap->mm->context.gmap_asce, asce); 3029 WRITE_ONCE(gmap->table, table); 3030 3031 return 0; 3032 } 3033 EXPORT_SYMBOL_GPL(s390_replace_asce); 3034