xref: /linux/arch/s390/mm/gmap.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @mm: pointer to the parent mm_struct
31  * @limit: maximum address of the gmap address space
32  *
33  * Returns a guest address space structure.
34  */
35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 	struct gmap *gmap;
38 	struct page *page;
39 	unsigned long *table;
40 	unsigned long etype, atype;
41 
42 	if (limit < _REGION3_SIZE) {
43 		limit = _REGION3_SIZE - 1;
44 		atype = _ASCE_TYPE_SEGMENT;
45 		etype = _SEGMENT_ENTRY_EMPTY;
46 	} else if (limit < _REGION2_SIZE) {
47 		limit = _REGION2_SIZE - 1;
48 		atype = _ASCE_TYPE_REGION3;
49 		etype = _REGION3_ENTRY_EMPTY;
50 	} else if (limit < _REGION1_SIZE) {
51 		limit = _REGION1_SIZE - 1;
52 		atype = _ASCE_TYPE_REGION2;
53 		etype = _REGION2_ENTRY_EMPTY;
54 	} else {
55 		limit = -1UL;
56 		atype = _ASCE_TYPE_REGION1;
57 		etype = _REGION1_ENTRY_EMPTY;
58 	}
59 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
60 	if (!gmap)
61 		goto out;
62 	INIT_LIST_HEAD(&gmap->crst_list);
63 	INIT_LIST_HEAD(&gmap->children);
64 	INIT_LIST_HEAD(&gmap->pt_list);
65 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
67 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
68 	spin_lock_init(&gmap->guest_table_lock);
69 	spin_lock_init(&gmap->shadow_lock);
70 	refcount_set(&gmap->ref_count, 1);
71 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
72 	if (!page)
73 		goto out_free;
74 	page->index = 0;
75 	list_add(&page->lru, &gmap->crst_list);
76 	table = (unsigned long *) page_to_phys(page);
77 	crst_table_init(table, etype);
78 	gmap->table = table;
79 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 		_ASCE_USER_BITS | __pa(table);
81 	gmap->asce_end = limit;
82 	return gmap;
83 
84 out_free:
85 	kfree(gmap);
86 out:
87 	return NULL;
88 }
89 
90 /**
91  * gmap_create - create a guest address space
92  * @mm: pointer to the parent mm_struct
93  * @limit: maximum size of the gmap address space
94  *
95  * Returns a guest address space structure.
96  */
97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 	struct gmap *gmap;
100 	unsigned long gmap_asce;
101 
102 	gmap = gmap_alloc(limit);
103 	if (!gmap)
104 		return NULL;
105 	gmap->mm = mm;
106 	spin_lock(&mm->context.lock);
107 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 	if (list_is_singular(&mm->context.gmap_list))
109 		gmap_asce = gmap->asce;
110 	else
111 		gmap_asce = -1UL;
112 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 	spin_unlock(&mm->context.lock);
114 	return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117 
118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 	if (MACHINE_HAS_IDTE)
121 		__tlb_flush_idte(gmap->asce);
122 	else
123 		__tlb_flush_global();
124 }
125 
126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 	struct radix_tree_iter iter;
129 	unsigned long indices[16];
130 	unsigned long index;
131 	void __rcu **slot;
132 	int i, nr;
133 
134 	/* A radix tree is freed by deleting all of its entries */
135 	index = 0;
136 	do {
137 		nr = 0;
138 		radix_tree_for_each_slot(slot, root, &iter, index) {
139 			indices[nr] = iter.index;
140 			if (++nr == 16)
141 				break;
142 		}
143 		for (i = 0; i < nr; i++) {
144 			index = indices[i];
145 			radix_tree_delete(root, index);
146 		}
147 	} while (nr > 0);
148 }
149 
150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 	struct gmap_rmap *rmap, *rnext, *head;
153 	struct radix_tree_iter iter;
154 	unsigned long indices[16];
155 	unsigned long index;
156 	void __rcu **slot;
157 	int i, nr;
158 
159 	/* A radix tree is freed by deleting all of its entries */
160 	index = 0;
161 	do {
162 		nr = 0;
163 		radix_tree_for_each_slot(slot, root, &iter, index) {
164 			indices[nr] = iter.index;
165 			if (++nr == 16)
166 				break;
167 		}
168 		for (i = 0; i < nr; i++) {
169 			index = indices[i];
170 			head = radix_tree_delete(root, index);
171 			gmap_for_each_rmap_safe(rmap, rnext, head)
172 				kfree(rmap);
173 		}
174 	} while (nr > 0);
175 }
176 
177 /**
178  * gmap_free - free a guest address space
179  * @gmap: pointer to the guest address space structure
180  *
181  * No locks required. There are no references to this gmap anymore.
182  */
183 static void gmap_free(struct gmap *gmap)
184 {
185 	struct page *page, *next;
186 
187 	/* Flush tlb of all gmaps (if not already done for shadows) */
188 	if (!(gmap_is_shadow(gmap) && gmap->removed))
189 		gmap_flush_tlb(gmap);
190 	/* Free all segment & region tables. */
191 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 		__free_pages(page, CRST_ALLOC_ORDER);
193 	gmap_radix_tree_free(&gmap->guest_to_host);
194 	gmap_radix_tree_free(&gmap->host_to_guest);
195 
196 	/* Free additional data for a shadow gmap */
197 	if (gmap_is_shadow(gmap)) {
198 		/* Free all page tables. */
199 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 			page_table_free_pgste(page);
201 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 		/* Release reference to the parent */
203 		gmap_put(gmap->parent);
204 	}
205 
206 	kfree(gmap);
207 }
208 
209 /**
210  * gmap_get - increase reference counter for guest address space
211  * @gmap: pointer to the guest address space structure
212  *
213  * Returns the gmap pointer
214  */
215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 	refcount_inc(&gmap->ref_count);
218 	return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221 
222 /**
223  * gmap_put - decrease reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * If the reference counter reaches zero the guest address space is freed.
227  */
228 void gmap_put(struct gmap *gmap)
229 {
230 	if (refcount_dec_and_test(&gmap->ref_count))
231 		gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234 
235 /**
236  * gmap_remove - remove a guest address space but do not free it yet
237  * @gmap: pointer to the guest address space structure
238  */
239 void gmap_remove(struct gmap *gmap)
240 {
241 	struct gmap *sg, *next;
242 	unsigned long gmap_asce;
243 
244 	/* Remove all shadow gmaps linked to this gmap */
245 	if (!list_empty(&gmap->children)) {
246 		spin_lock(&gmap->shadow_lock);
247 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 			list_del(&sg->list);
249 			gmap_put(sg);
250 		}
251 		spin_unlock(&gmap->shadow_lock);
252 	}
253 	/* Remove gmap from the pre-mm list */
254 	spin_lock(&gmap->mm->context.lock);
255 	list_del_rcu(&gmap->list);
256 	if (list_empty(&gmap->mm->context.gmap_list))
257 		gmap_asce = 0;
258 	else if (list_is_singular(&gmap->mm->context.gmap_list))
259 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 					     struct gmap, list)->asce;
261 	else
262 		gmap_asce = -1UL;
263 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 	spin_unlock(&gmap->mm->context.lock);
265 	synchronize_rcu();
266 	/* Put reference */
267 	gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270 
271 /**
272  * gmap_enable - switch primary space to the guest address space
273  * @gmap: pointer to the guest address space structure
274  */
275 void gmap_enable(struct gmap *gmap)
276 {
277 	S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280 
281 /**
282  * gmap_disable - switch back to the standard primary address space
283  * @gmap: pointer to the guest address space structure
284  */
285 void gmap_disable(struct gmap *gmap)
286 {
287 	S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290 
291 /**
292  * gmap_get_enabled - get a pointer to the currently enabled gmap
293  *
294  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295  */
296 struct gmap *gmap_get_enabled(void)
297 {
298 	return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301 
302 /*
303  * gmap_alloc_table is assumed to be called with mmap_lock held
304  */
305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 			    unsigned long init, unsigned long gaddr)
307 {
308 	struct page *page;
309 	unsigned long *new;
310 
311 	/* since we dont free the gmap table until gmap_free we can unlock */
312 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
313 	if (!page)
314 		return -ENOMEM;
315 	new = (unsigned long *) page_to_phys(page);
316 	crst_table_init(new, init);
317 	spin_lock(&gmap->guest_table_lock);
318 	if (*table & _REGION_ENTRY_INVALID) {
319 		list_add(&page->lru, &gmap->crst_list);
320 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 			(*table & _REGION_ENTRY_TYPE_MASK);
322 		page->index = gaddr;
323 		page = NULL;
324 	}
325 	spin_unlock(&gmap->guest_table_lock);
326 	if (page)
327 		__free_pages(page, CRST_ALLOC_ORDER);
328 	return 0;
329 }
330 
331 /**
332  * __gmap_segment_gaddr - find virtual address from segment pointer
333  * @entry: pointer to a segment table entry in the guest address space
334  *
335  * Returns the virtual address in the guest address space for the segment
336  */
337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 	struct page *page;
340 	unsigned long offset, mask;
341 
342 	offset = (unsigned long) entry / sizeof(unsigned long);
343 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 	page = virt_to_page((void *)((unsigned long) entry & mask));
346 	return page->index + offset;
347 }
348 
349 /**
350  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351  * @gmap: pointer to the guest address space structure
352  * @vmaddr: address in the host process address space
353  *
354  * Returns 1 if a TLB flush is required
355  */
356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 	unsigned long *entry;
359 	int flush = 0;
360 
361 	BUG_ON(gmap_is_shadow(gmap));
362 	spin_lock(&gmap->guest_table_lock);
363 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 	if (entry) {
365 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 		*entry = _SEGMENT_ENTRY_EMPTY;
367 	}
368 	spin_unlock(&gmap->guest_table_lock);
369 	return flush;
370 }
371 
372 /**
373  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374  * @gmap: pointer to the guest address space structure
375  * @gaddr: address in the guest address space
376  *
377  * Returns 1 if a TLB flush is required
378  */
379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 	unsigned long vmaddr;
382 
383 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 						   gaddr >> PMD_SHIFT);
385 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387 
388 /**
389  * gmap_unmap_segment - unmap segment from the guest address space
390  * @gmap: pointer to the guest address space structure
391  * @to: address in the guest address space
392  * @len: length of the memory area to unmap
393  *
394  * Returns 0 if the unmap succeeded, -EINVAL if not.
395  */
396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 	unsigned long off;
399 	int flush;
400 
401 	BUG_ON(gmap_is_shadow(gmap));
402 	if ((to | len) & (PMD_SIZE - 1))
403 		return -EINVAL;
404 	if (len == 0 || to + len < to)
405 		return -EINVAL;
406 
407 	flush = 0;
408 	mmap_write_lock(gmap->mm);
409 	for (off = 0; off < len; off += PMD_SIZE)
410 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 	mmap_write_unlock(gmap->mm);
412 	if (flush)
413 		gmap_flush_tlb(gmap);
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417 
418 /**
419  * gmap_map_segment - map a segment to the guest address space
420  * @gmap: pointer to the guest address space structure
421  * @from: source address in the parent address space
422  * @to: target address in the guest address space
423  * @len: length of the memory area to map
424  *
425  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426  */
427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 		     unsigned long to, unsigned long len)
429 {
430 	unsigned long off;
431 	int flush;
432 
433 	BUG_ON(gmap_is_shadow(gmap));
434 	if ((from | to | len) & (PMD_SIZE - 1))
435 		return -EINVAL;
436 	if (len == 0 || from + len < from || to + len < to ||
437 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 		return -EINVAL;
439 
440 	flush = 0;
441 	mmap_write_lock(gmap->mm);
442 	for (off = 0; off < len; off += PMD_SIZE) {
443 		/* Remove old translation */
444 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 		/* Store new translation */
446 		if (radix_tree_insert(&gmap->guest_to_host,
447 				      (to + off) >> PMD_SHIFT,
448 				      (void *) from + off))
449 			break;
450 	}
451 	mmap_write_unlock(gmap->mm);
452 	if (flush)
453 		gmap_flush_tlb(gmap);
454 	if (off >= len)
455 		return 0;
456 	gmap_unmap_segment(gmap, to, len);
457 	return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460 
461 /**
462  * __gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  * The mmap_lock of the mm that belongs to the address space must be held
470  * when this function gets called.
471  *
472  * Note: Can also be called for shadow gmaps.
473  */
474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 	unsigned long vmaddr;
477 
478 	vmaddr = (unsigned long)
479 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 	/* Note: guest_to_host is empty for a shadow gmap */
481 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484 
485 /**
486  * gmap_translate - translate a guest address to a user space address
487  * @gmap: pointer to guest mapping meta data structure
488  * @gaddr: guest address
489  *
490  * Returns user space address which corresponds to the guest address or
491  * -EFAULT if no such mapping exists.
492  * This function does not establish potentially missing page table entries.
493  */
494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 	unsigned long rc;
497 
498 	mmap_read_lock(gmap->mm);
499 	rc = __gmap_translate(gmap, gaddr);
500 	mmap_read_unlock(gmap->mm);
501 	return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504 
505 /**
506  * gmap_unlink - disconnect a page table from the gmap shadow tables
507  * @gmap: pointer to guest mapping meta data structure
508  * @table: pointer to the host page table
509  * @vmaddr: vm address associated with the host page table
510  */
511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 		 unsigned long vmaddr)
513 {
514 	struct gmap *gmap;
515 	int flush;
516 
517 	rcu_read_lock();
518 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 		if (flush)
521 			gmap_flush_tlb(gmap);
522 	}
523 	rcu_read_unlock();
524 }
525 
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 			   unsigned long gaddr);
528 
529 /**
530  * gmap_link - set up shadow page tables to connect a host to a guest address
531  * @gmap: pointer to guest mapping meta data structure
532  * @gaddr: guest address
533  * @vmaddr: vm address
534  *
535  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536  * if the vm address is already mapped to a different guest segment.
537  * The mmap_lock of the mm that belongs to the address space must be held
538  * when this function gets called.
539  */
540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 	struct mm_struct *mm;
543 	unsigned long *table;
544 	spinlock_t *ptl;
545 	pgd_t *pgd;
546 	p4d_t *p4d;
547 	pud_t *pud;
548 	pmd_t *pmd;
549 	u64 unprot;
550 	int rc;
551 
552 	BUG_ON(gmap_is_shadow(gmap));
553 	/* Create higher level tables in the gmap page table */
554 	table = gmap->table;
555 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 		if ((*table & _REGION_ENTRY_INVALID) &&
558 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 				     gaddr & _REGION1_MASK))
560 			return -ENOMEM;
561 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 	}
563 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 		if ((*table & _REGION_ENTRY_INVALID) &&
566 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 				     gaddr & _REGION2_MASK))
568 			return -ENOMEM;
569 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 	}
571 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 		if ((*table & _REGION_ENTRY_INVALID) &&
574 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 				     gaddr & _REGION3_MASK))
576 			return -ENOMEM;
577 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 	}
579 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 	/* Walk the parent mm page table */
581 	mm = gmap->mm;
582 	pgd = pgd_offset(mm, vmaddr);
583 	VM_BUG_ON(pgd_none(*pgd));
584 	p4d = p4d_offset(pgd, vmaddr);
585 	VM_BUG_ON(p4d_none(*p4d));
586 	pud = pud_offset(p4d, vmaddr);
587 	VM_BUG_ON(pud_none(*pud));
588 	/* large puds cannot yet be handled */
589 	if (pud_large(*pud))
590 		return -EFAULT;
591 	pmd = pmd_offset(pud, vmaddr);
592 	VM_BUG_ON(pmd_none(*pmd));
593 	/* Are we allowed to use huge pages? */
594 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 		return -EFAULT;
596 	/* Link gmap segment table entry location to page table. */
597 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
598 	if (rc)
599 		return rc;
600 	ptl = pmd_lock(mm, pmd);
601 	spin_lock(&gmap->guest_table_lock);
602 	if (*table == _SEGMENT_ENTRY_EMPTY) {
603 		rc = radix_tree_insert(&gmap->host_to_guest,
604 				       vmaddr >> PMD_SHIFT, table);
605 		if (!rc) {
606 			if (pmd_large(*pmd)) {
607 				*table = (pmd_val(*pmd) &
608 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 					| _SEGMENT_ENTRY_GMAP_UC;
610 			} else
611 				*table = pmd_val(*pmd) &
612 					_SEGMENT_ENTRY_HARDWARE_BITS;
613 		}
614 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 		unprot = (u64)*table;
617 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 	}
621 	spin_unlock(&gmap->guest_table_lock);
622 	spin_unlock(ptl);
623 	radix_tree_preload_end();
624 	return rc;
625 }
626 
627 /**
628  * gmap_fault - resolve a fault on a guest address
629  * @gmap: pointer to guest mapping meta data structure
630  * @gaddr: guest address
631  * @fault_flags: flags to pass down to handle_mm_fault()
632  *
633  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634  * if the vm address is already mapped to a different guest segment.
635  */
636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 	       unsigned int fault_flags)
638 {
639 	unsigned long vmaddr;
640 	int rc;
641 	bool unlocked;
642 
643 	mmap_read_lock(gmap->mm);
644 
645 retry:
646 	unlocked = false;
647 	vmaddr = __gmap_translate(gmap, gaddr);
648 	if (IS_ERR_VALUE(vmaddr)) {
649 		rc = vmaddr;
650 		goto out_up;
651 	}
652 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
653 			     &unlocked)) {
654 		rc = -EFAULT;
655 		goto out_up;
656 	}
657 	/*
658 	 * In the case that fixup_user_fault unlocked the mmap_lock during
659 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 	 */
661 	if (unlocked)
662 		goto retry;
663 
664 	rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 	mmap_read_unlock(gmap->mm);
667 	return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670 
671 /*
672  * this function is assumed to be called with mmap_lock held
673  */
674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 		/* Get pointer to the page table entry */
686 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 		if (likely(ptep))
688 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 		pte_unmap_unlock(ptep, ptl);
690 	}
691 }
692 EXPORT_SYMBOL_GPL(__gmap_zap);
693 
694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
695 {
696 	unsigned long gaddr, vmaddr, size;
697 	struct vm_area_struct *vma;
698 
699 	mmap_read_lock(gmap->mm);
700 	for (gaddr = from; gaddr < to;
701 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
702 		/* Find the vm address for the guest address */
703 		vmaddr = (unsigned long)
704 			radix_tree_lookup(&gmap->guest_to_host,
705 					  gaddr >> PMD_SHIFT);
706 		if (!vmaddr)
707 			continue;
708 		vmaddr |= gaddr & ~PMD_MASK;
709 		/* Find vma in the parent mm */
710 		vma = find_vma(gmap->mm, vmaddr);
711 		if (!vma)
712 			continue;
713 		/*
714 		 * We do not discard pages that are backed by
715 		 * hugetlbfs, so we don't have to refault them.
716 		 */
717 		if (is_vm_hugetlb_page(vma))
718 			continue;
719 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
720 		zap_page_range(vma, vmaddr, size);
721 	}
722 	mmap_read_unlock(gmap->mm);
723 }
724 EXPORT_SYMBOL_GPL(gmap_discard);
725 
726 static LIST_HEAD(gmap_notifier_list);
727 static DEFINE_SPINLOCK(gmap_notifier_lock);
728 
729 /**
730  * gmap_register_pte_notifier - register a pte invalidation callback
731  * @nb: pointer to the gmap notifier block
732  */
733 void gmap_register_pte_notifier(struct gmap_notifier *nb)
734 {
735 	spin_lock(&gmap_notifier_lock);
736 	list_add_rcu(&nb->list, &gmap_notifier_list);
737 	spin_unlock(&gmap_notifier_lock);
738 }
739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
740 
741 /**
742  * gmap_unregister_pte_notifier - remove a pte invalidation callback
743  * @nb: pointer to the gmap notifier block
744  */
745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
746 {
747 	spin_lock(&gmap_notifier_lock);
748 	list_del_rcu(&nb->list);
749 	spin_unlock(&gmap_notifier_lock);
750 	synchronize_rcu();
751 }
752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
753 
754 /**
755  * gmap_call_notifier - call all registered invalidation callbacks
756  * @gmap: pointer to guest mapping meta data structure
757  * @start: start virtual address in the guest address space
758  * @end: end virtual address in the guest address space
759  */
760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
761 			       unsigned long end)
762 {
763 	struct gmap_notifier *nb;
764 
765 	list_for_each_entry(nb, &gmap_notifier_list, list)
766 		nb->notifier_call(gmap, start, end);
767 }
768 
769 /**
770  * gmap_table_walk - walk the gmap page tables
771  * @gmap: pointer to guest mapping meta data structure
772  * @gaddr: virtual address in the guest address space
773  * @level: page table level to stop at
774  *
775  * Returns a table entry pointer for the given guest address and @level
776  * @level=0 : returns a pointer to a page table table entry (or NULL)
777  * @level=1 : returns a pointer to a segment table entry (or NULL)
778  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
779  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
780  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
781  *
782  * Returns NULL if the gmap page tables could not be walked to the
783  * requested level.
784  *
785  * Note: Can also be called for shadow gmaps.
786  */
787 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
788 					     unsigned long gaddr, int level)
789 {
790 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
791 	unsigned long *table = gmap->table;
792 
793 	if (gmap_is_shadow(gmap) && gmap->removed)
794 		return NULL;
795 
796 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
797 		return NULL;
798 
799 	if (asce_type != _ASCE_TYPE_REGION1 &&
800 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
801 		return NULL;
802 
803 	switch (asce_type) {
804 	case _ASCE_TYPE_REGION1:
805 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
806 		if (level == 4)
807 			break;
808 		if (*table & _REGION_ENTRY_INVALID)
809 			return NULL;
810 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
811 		fallthrough;
812 	case _ASCE_TYPE_REGION2:
813 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
814 		if (level == 3)
815 			break;
816 		if (*table & _REGION_ENTRY_INVALID)
817 			return NULL;
818 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
819 		fallthrough;
820 	case _ASCE_TYPE_REGION3:
821 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
822 		if (level == 2)
823 			break;
824 		if (*table & _REGION_ENTRY_INVALID)
825 			return NULL;
826 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
827 		fallthrough;
828 	case _ASCE_TYPE_SEGMENT:
829 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
830 		if (level == 1)
831 			break;
832 		if (*table & _REGION_ENTRY_INVALID)
833 			return NULL;
834 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
835 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
836 	}
837 	return table;
838 }
839 
840 /**
841  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
842  *		      and return the pte pointer
843  * @gmap: pointer to guest mapping meta data structure
844  * @gaddr: virtual address in the guest address space
845  * @ptl: pointer to the spinlock pointer
846  *
847  * Returns a pointer to the locked pte for a guest address, or NULL
848  */
849 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
850 			       spinlock_t **ptl)
851 {
852 	unsigned long *table;
853 
854 	BUG_ON(gmap_is_shadow(gmap));
855 	/* Walk the gmap page table, lock and get pte pointer */
856 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
857 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
858 		return NULL;
859 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
860 }
861 
862 /**
863  * gmap_pte_op_fixup - force a page in and connect the gmap page table
864  * @gmap: pointer to guest mapping meta data structure
865  * @gaddr: virtual address in the guest address space
866  * @vmaddr: address in the host process address space
867  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
868  *
869  * Returns 0 if the caller can retry __gmap_translate (might fail again),
870  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
871  * up or connecting the gmap page table.
872  */
873 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
874 			     unsigned long vmaddr, int prot)
875 {
876 	struct mm_struct *mm = gmap->mm;
877 	unsigned int fault_flags;
878 	bool unlocked = false;
879 
880 	BUG_ON(gmap_is_shadow(gmap));
881 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
882 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
883 		return -EFAULT;
884 	if (unlocked)
885 		/* lost mmap_lock, caller has to retry __gmap_translate */
886 		return 0;
887 	/* Connect the page tables */
888 	return __gmap_link(gmap, gaddr, vmaddr);
889 }
890 
891 /**
892  * gmap_pte_op_end - release the page table lock
893  * @ptl: pointer to the spinlock pointer
894  */
895 static void gmap_pte_op_end(spinlock_t *ptl)
896 {
897 	if (ptl)
898 		spin_unlock(ptl);
899 }
900 
901 /**
902  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
903  *		      and return the pmd pointer
904  * @gmap: pointer to guest mapping meta data structure
905  * @gaddr: virtual address in the guest address space
906  *
907  * Returns a pointer to the pmd for a guest address, or NULL
908  */
909 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
910 {
911 	pmd_t *pmdp;
912 
913 	BUG_ON(gmap_is_shadow(gmap));
914 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
915 	if (!pmdp)
916 		return NULL;
917 
918 	/* without huge pages, there is no need to take the table lock */
919 	if (!gmap->mm->context.allow_gmap_hpage_1m)
920 		return pmd_none(*pmdp) ? NULL : pmdp;
921 
922 	spin_lock(&gmap->guest_table_lock);
923 	if (pmd_none(*pmdp)) {
924 		spin_unlock(&gmap->guest_table_lock);
925 		return NULL;
926 	}
927 
928 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
929 	if (!pmd_large(*pmdp))
930 		spin_unlock(&gmap->guest_table_lock);
931 	return pmdp;
932 }
933 
934 /**
935  * gmap_pmd_op_end - release the guest_table_lock if needed
936  * @gmap: pointer to the guest mapping meta data structure
937  * @pmdp: pointer to the pmd
938  */
939 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
940 {
941 	if (pmd_large(*pmdp))
942 		spin_unlock(&gmap->guest_table_lock);
943 }
944 
945 /*
946  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
947  * @pmdp: pointer to the pmd to be protected
948  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
949  * @bits: notification bits to set
950  *
951  * Returns:
952  * 0 if successfully protected
953  * -EAGAIN if a fixup is needed
954  * -EINVAL if unsupported notifier bits have been specified
955  *
956  * Expected to be called with sg->mm->mmap_lock in read and
957  * guest_table_lock held.
958  */
959 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
960 			    pmd_t *pmdp, int prot, unsigned long bits)
961 {
962 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
963 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
964 	pmd_t new = *pmdp;
965 
966 	/* Fixup needed */
967 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
968 		return -EAGAIN;
969 
970 	if (prot == PROT_NONE && !pmd_i) {
971 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
972 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
973 	}
974 
975 	if (prot == PROT_READ && !pmd_p) {
976 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
977 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
978 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
979 	}
980 
981 	if (bits & GMAP_NOTIFY_MPROT)
982 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
983 
984 	/* Shadow GMAP protection needs split PMDs */
985 	if (bits & GMAP_NOTIFY_SHADOW)
986 		return -EINVAL;
987 
988 	return 0;
989 }
990 
991 /*
992  * gmap_protect_pte - remove access rights to memory and set pgste bits
993  * @gmap: pointer to guest mapping meta data structure
994  * @gaddr: virtual address in the guest address space
995  * @pmdp: pointer to the pmd associated with the pte
996  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
997  * @bits: notification bits to set
998  *
999  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1000  * -EAGAIN if a fixup is needed.
1001  *
1002  * Expected to be called with sg->mm->mmap_lock in read
1003  */
1004 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1005 			    pmd_t *pmdp, int prot, unsigned long bits)
1006 {
1007 	int rc;
1008 	pte_t *ptep;
1009 	spinlock_t *ptl = NULL;
1010 	unsigned long pbits = 0;
1011 
1012 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1013 		return -EAGAIN;
1014 
1015 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1016 	if (!ptep)
1017 		return -ENOMEM;
1018 
1019 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1020 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1021 	/* Protect and unlock. */
1022 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1023 	gmap_pte_op_end(ptl);
1024 	return rc;
1025 }
1026 
1027 /*
1028  * gmap_protect_range - remove access rights to memory and set pgste bits
1029  * @gmap: pointer to guest mapping meta data structure
1030  * @gaddr: virtual address in the guest address space
1031  * @len: size of area
1032  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1033  * @bits: pgste notification bits to set
1034  *
1035  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1036  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1037  *
1038  * Called with sg->mm->mmap_lock in read.
1039  */
1040 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1041 			      unsigned long len, int prot, unsigned long bits)
1042 {
1043 	unsigned long vmaddr, dist;
1044 	pmd_t *pmdp;
1045 	int rc;
1046 
1047 	BUG_ON(gmap_is_shadow(gmap));
1048 	while (len) {
1049 		rc = -EAGAIN;
1050 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1051 		if (pmdp) {
1052 			if (!pmd_large(*pmdp)) {
1053 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1054 						      bits);
1055 				if (!rc) {
1056 					len -= PAGE_SIZE;
1057 					gaddr += PAGE_SIZE;
1058 				}
1059 			} else {
1060 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1061 						      bits);
1062 				if (!rc) {
1063 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1064 					len = len < dist ? 0 : len - dist;
1065 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1066 				}
1067 			}
1068 			gmap_pmd_op_end(gmap, pmdp);
1069 		}
1070 		if (rc) {
1071 			if (rc == -EINVAL)
1072 				return rc;
1073 
1074 			/* -EAGAIN, fixup of userspace mm and gmap */
1075 			vmaddr = __gmap_translate(gmap, gaddr);
1076 			if (IS_ERR_VALUE(vmaddr))
1077 				return vmaddr;
1078 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1079 			if (rc)
1080 				return rc;
1081 		}
1082 	}
1083 	return 0;
1084 }
1085 
1086 /**
1087  * gmap_mprotect_notify - change access rights for a range of ptes and
1088  *                        call the notifier if any pte changes again
1089  * @gmap: pointer to guest mapping meta data structure
1090  * @gaddr: virtual address in the guest address space
1091  * @len: size of area
1092  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1093  *
1094  * Returns 0 if for each page in the given range a gmap mapping exists,
1095  * the new access rights could be set and the notifier could be armed.
1096  * If the gmap mapping is missing for one or more pages -EFAULT is
1097  * returned. If no memory could be allocated -ENOMEM is returned.
1098  * This function establishes missing page table entries.
1099  */
1100 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1101 			 unsigned long len, int prot)
1102 {
1103 	int rc;
1104 
1105 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1106 		return -EINVAL;
1107 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1108 		return -EINVAL;
1109 	mmap_read_lock(gmap->mm);
1110 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1111 	mmap_read_unlock(gmap->mm);
1112 	return rc;
1113 }
1114 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1115 
1116 /**
1117  * gmap_read_table - get an unsigned long value from a guest page table using
1118  *                   absolute addressing, without marking the page referenced.
1119  * @gmap: pointer to guest mapping meta data structure
1120  * @gaddr: virtual address in the guest address space
1121  * @val: pointer to the unsigned long value to return
1122  *
1123  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1124  * if reading using the virtual address failed. -EINVAL if called on a gmap
1125  * shadow.
1126  *
1127  * Called with gmap->mm->mmap_lock in read.
1128  */
1129 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1130 {
1131 	unsigned long address, vmaddr;
1132 	spinlock_t *ptl;
1133 	pte_t *ptep, pte;
1134 	int rc;
1135 
1136 	if (gmap_is_shadow(gmap))
1137 		return -EINVAL;
1138 
1139 	while (1) {
1140 		rc = -EAGAIN;
1141 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1142 		if (ptep) {
1143 			pte = *ptep;
1144 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1145 				address = pte_val(pte) & PAGE_MASK;
1146 				address += gaddr & ~PAGE_MASK;
1147 				*val = *(unsigned long *) address;
1148 				pte_val(*ptep) |= _PAGE_YOUNG;
1149 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1150 				rc = 0;
1151 			}
1152 			gmap_pte_op_end(ptl);
1153 		}
1154 		if (!rc)
1155 			break;
1156 		vmaddr = __gmap_translate(gmap, gaddr);
1157 		if (IS_ERR_VALUE(vmaddr)) {
1158 			rc = vmaddr;
1159 			break;
1160 		}
1161 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1162 		if (rc)
1163 			break;
1164 	}
1165 	return rc;
1166 }
1167 EXPORT_SYMBOL_GPL(gmap_read_table);
1168 
1169 /**
1170  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1171  * @sg: pointer to the shadow guest address space structure
1172  * @vmaddr: vm address associated with the rmap
1173  * @rmap: pointer to the rmap structure
1174  *
1175  * Called with the sg->guest_table_lock
1176  */
1177 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1178 				    struct gmap_rmap *rmap)
1179 {
1180 	void __rcu **slot;
1181 
1182 	BUG_ON(!gmap_is_shadow(sg));
1183 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1184 	if (slot) {
1185 		rmap->next = radix_tree_deref_slot_protected(slot,
1186 							&sg->guest_table_lock);
1187 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1188 	} else {
1189 		rmap->next = NULL;
1190 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1191 				  rmap);
1192 	}
1193 }
1194 
1195 /**
1196  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1197  * @sg: pointer to the shadow guest address space structure
1198  * @raddr: rmap address in the shadow gmap
1199  * @paddr: address in the parent guest address space
1200  * @len: length of the memory area to protect
1201  *
1202  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1203  * if out of memory and -EFAULT if paddr is invalid.
1204  */
1205 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1206 			     unsigned long paddr, unsigned long len)
1207 {
1208 	struct gmap *parent;
1209 	struct gmap_rmap *rmap;
1210 	unsigned long vmaddr;
1211 	spinlock_t *ptl;
1212 	pte_t *ptep;
1213 	int rc;
1214 
1215 	BUG_ON(!gmap_is_shadow(sg));
1216 	parent = sg->parent;
1217 	while (len) {
1218 		vmaddr = __gmap_translate(parent, paddr);
1219 		if (IS_ERR_VALUE(vmaddr))
1220 			return vmaddr;
1221 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1222 		if (!rmap)
1223 			return -ENOMEM;
1224 		rmap->raddr = raddr;
1225 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1226 		if (rc) {
1227 			kfree(rmap);
1228 			return rc;
1229 		}
1230 		rc = -EAGAIN;
1231 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1232 		if (ptep) {
1233 			spin_lock(&sg->guest_table_lock);
1234 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1235 					     PGSTE_VSIE_BIT);
1236 			if (!rc)
1237 				gmap_insert_rmap(sg, vmaddr, rmap);
1238 			spin_unlock(&sg->guest_table_lock);
1239 			gmap_pte_op_end(ptl);
1240 		}
1241 		radix_tree_preload_end();
1242 		if (rc) {
1243 			kfree(rmap);
1244 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1245 			if (rc)
1246 				return rc;
1247 			continue;
1248 		}
1249 		paddr += PAGE_SIZE;
1250 		len -= PAGE_SIZE;
1251 	}
1252 	return 0;
1253 }
1254 
1255 #define _SHADOW_RMAP_MASK	0x7
1256 #define _SHADOW_RMAP_REGION1	0x5
1257 #define _SHADOW_RMAP_REGION2	0x4
1258 #define _SHADOW_RMAP_REGION3	0x3
1259 #define _SHADOW_RMAP_SEGMENT	0x2
1260 #define _SHADOW_RMAP_PGTABLE	0x1
1261 
1262 /**
1263  * gmap_idte_one - invalidate a single region or segment table entry
1264  * @asce: region or segment table *origin* + table-type bits
1265  * @vaddr: virtual address to identify the table entry to flush
1266  *
1267  * The invalid bit of a single region or segment table entry is set
1268  * and the associated TLB entries depending on the entry are flushed.
1269  * The table-type of the @asce identifies the portion of the @vaddr
1270  * that is used as the invalidation index.
1271  */
1272 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1273 {
1274 	asm volatile(
1275 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1276 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1277 }
1278 
1279 /**
1280  * gmap_unshadow_page - remove a page from a shadow page table
1281  * @sg: pointer to the shadow guest address space structure
1282  * @raddr: rmap address in the shadow guest address space
1283  *
1284  * Called with the sg->guest_table_lock
1285  */
1286 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1287 {
1288 	unsigned long *table;
1289 
1290 	BUG_ON(!gmap_is_shadow(sg));
1291 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1292 	if (!table || *table & _PAGE_INVALID)
1293 		return;
1294 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1295 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1296 }
1297 
1298 /**
1299  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1300  * @sg: pointer to the shadow guest address space structure
1301  * @raddr: rmap address in the shadow guest address space
1302  * @pgt: pointer to the start of a shadow page table
1303  *
1304  * Called with the sg->guest_table_lock
1305  */
1306 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1307 				unsigned long *pgt)
1308 {
1309 	int i;
1310 
1311 	BUG_ON(!gmap_is_shadow(sg));
1312 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1313 		pgt[i] = _PAGE_INVALID;
1314 }
1315 
1316 /**
1317  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1318  * @sg: pointer to the shadow guest address space structure
1319  * @raddr: address in the shadow guest address space
1320  *
1321  * Called with the sg->guest_table_lock
1322  */
1323 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1324 {
1325 	unsigned long sto, *ste, *pgt;
1326 	struct page *page;
1327 
1328 	BUG_ON(!gmap_is_shadow(sg));
1329 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1330 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1331 		return;
1332 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1333 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1334 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1335 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1336 	*ste = _SEGMENT_ENTRY_EMPTY;
1337 	__gmap_unshadow_pgt(sg, raddr, pgt);
1338 	/* Free page table */
1339 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1340 	list_del(&page->lru);
1341 	page_table_free_pgste(page);
1342 }
1343 
1344 /**
1345  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1346  * @sg: pointer to the shadow guest address space structure
1347  * @raddr: rmap address in the shadow guest address space
1348  * @sgt: pointer to the start of a shadow segment table
1349  *
1350  * Called with the sg->guest_table_lock
1351  */
1352 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1353 				unsigned long *sgt)
1354 {
1355 	unsigned long *pgt;
1356 	struct page *page;
1357 	int i;
1358 
1359 	BUG_ON(!gmap_is_shadow(sg));
1360 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1361 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1362 			continue;
1363 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1364 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1365 		__gmap_unshadow_pgt(sg, raddr, pgt);
1366 		/* Free page table */
1367 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1368 		list_del(&page->lru);
1369 		page_table_free_pgste(page);
1370 	}
1371 }
1372 
1373 /**
1374  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1375  * @sg: pointer to the shadow guest address space structure
1376  * @raddr: rmap address in the shadow guest address space
1377  *
1378  * Called with the shadow->guest_table_lock
1379  */
1380 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1381 {
1382 	unsigned long r3o, *r3e, *sgt;
1383 	struct page *page;
1384 
1385 	BUG_ON(!gmap_is_shadow(sg));
1386 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1387 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1388 		return;
1389 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1390 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1391 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1392 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1393 	*r3e = _REGION3_ENTRY_EMPTY;
1394 	__gmap_unshadow_sgt(sg, raddr, sgt);
1395 	/* Free segment table */
1396 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1397 	list_del(&page->lru);
1398 	__free_pages(page, CRST_ALLOC_ORDER);
1399 }
1400 
1401 /**
1402  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1403  * @sg: pointer to the shadow guest address space structure
1404  * @raddr: address in the shadow guest address space
1405  * @r3t: pointer to the start of a shadow region-3 table
1406  *
1407  * Called with the sg->guest_table_lock
1408  */
1409 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1410 				unsigned long *r3t)
1411 {
1412 	unsigned long *sgt;
1413 	struct page *page;
1414 	int i;
1415 
1416 	BUG_ON(!gmap_is_shadow(sg));
1417 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1418 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1419 			continue;
1420 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1421 		r3t[i] = _REGION3_ENTRY_EMPTY;
1422 		__gmap_unshadow_sgt(sg, raddr, sgt);
1423 		/* Free segment table */
1424 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1425 		list_del(&page->lru);
1426 		__free_pages(page, CRST_ALLOC_ORDER);
1427 	}
1428 }
1429 
1430 /**
1431  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1432  * @sg: pointer to the shadow guest address space structure
1433  * @raddr: rmap address in the shadow guest address space
1434  *
1435  * Called with the sg->guest_table_lock
1436  */
1437 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1438 {
1439 	unsigned long r2o, *r2e, *r3t;
1440 	struct page *page;
1441 
1442 	BUG_ON(!gmap_is_shadow(sg));
1443 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1444 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1445 		return;
1446 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1447 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1448 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1449 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1450 	*r2e = _REGION2_ENTRY_EMPTY;
1451 	__gmap_unshadow_r3t(sg, raddr, r3t);
1452 	/* Free region 3 table */
1453 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1454 	list_del(&page->lru);
1455 	__free_pages(page, CRST_ALLOC_ORDER);
1456 }
1457 
1458 /**
1459  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1460  * @sg: pointer to the shadow guest address space structure
1461  * @raddr: rmap address in the shadow guest address space
1462  * @r2t: pointer to the start of a shadow region-2 table
1463  *
1464  * Called with the sg->guest_table_lock
1465  */
1466 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1467 				unsigned long *r2t)
1468 {
1469 	unsigned long *r3t;
1470 	struct page *page;
1471 	int i;
1472 
1473 	BUG_ON(!gmap_is_shadow(sg));
1474 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1475 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1476 			continue;
1477 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1478 		r2t[i] = _REGION2_ENTRY_EMPTY;
1479 		__gmap_unshadow_r3t(sg, raddr, r3t);
1480 		/* Free region 3 table */
1481 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1482 		list_del(&page->lru);
1483 		__free_pages(page, CRST_ALLOC_ORDER);
1484 	}
1485 }
1486 
1487 /**
1488  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1489  * @sg: pointer to the shadow guest address space structure
1490  * @raddr: rmap address in the shadow guest address space
1491  *
1492  * Called with the sg->guest_table_lock
1493  */
1494 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1495 {
1496 	unsigned long r1o, *r1e, *r2t;
1497 	struct page *page;
1498 
1499 	BUG_ON(!gmap_is_shadow(sg));
1500 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1501 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1502 		return;
1503 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1504 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1505 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1506 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1507 	*r1e = _REGION1_ENTRY_EMPTY;
1508 	__gmap_unshadow_r2t(sg, raddr, r2t);
1509 	/* Free region 2 table */
1510 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1511 	list_del(&page->lru);
1512 	__free_pages(page, CRST_ALLOC_ORDER);
1513 }
1514 
1515 /**
1516  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1517  * @sg: pointer to the shadow guest address space structure
1518  * @raddr: rmap address in the shadow guest address space
1519  * @r1t: pointer to the start of a shadow region-1 table
1520  *
1521  * Called with the shadow->guest_table_lock
1522  */
1523 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1524 				unsigned long *r1t)
1525 {
1526 	unsigned long asce, *r2t;
1527 	struct page *page;
1528 	int i;
1529 
1530 	BUG_ON(!gmap_is_shadow(sg));
1531 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1532 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1533 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1534 			continue;
1535 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1536 		__gmap_unshadow_r2t(sg, raddr, r2t);
1537 		/* Clear entry and flush translation r1t -> r2t */
1538 		gmap_idte_one(asce, raddr);
1539 		r1t[i] = _REGION1_ENTRY_EMPTY;
1540 		/* Free region 2 table */
1541 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1542 		list_del(&page->lru);
1543 		__free_pages(page, CRST_ALLOC_ORDER);
1544 	}
1545 }
1546 
1547 /**
1548  * gmap_unshadow - remove a shadow page table completely
1549  * @sg: pointer to the shadow guest address space structure
1550  *
1551  * Called with sg->guest_table_lock
1552  */
1553 static void gmap_unshadow(struct gmap *sg)
1554 {
1555 	unsigned long *table;
1556 
1557 	BUG_ON(!gmap_is_shadow(sg));
1558 	if (sg->removed)
1559 		return;
1560 	sg->removed = 1;
1561 	gmap_call_notifier(sg, 0, -1UL);
1562 	gmap_flush_tlb(sg);
1563 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1564 	switch (sg->asce & _ASCE_TYPE_MASK) {
1565 	case _ASCE_TYPE_REGION1:
1566 		__gmap_unshadow_r1t(sg, 0, table);
1567 		break;
1568 	case _ASCE_TYPE_REGION2:
1569 		__gmap_unshadow_r2t(sg, 0, table);
1570 		break;
1571 	case _ASCE_TYPE_REGION3:
1572 		__gmap_unshadow_r3t(sg, 0, table);
1573 		break;
1574 	case _ASCE_TYPE_SEGMENT:
1575 		__gmap_unshadow_sgt(sg, 0, table);
1576 		break;
1577 	}
1578 }
1579 
1580 /**
1581  * gmap_find_shadow - find a specific asce in the list of shadow tables
1582  * @parent: pointer to the parent gmap
1583  * @asce: ASCE for which the shadow table is created
1584  * @edat_level: edat level to be used for the shadow translation
1585  *
1586  * Returns the pointer to a gmap if a shadow table with the given asce is
1587  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1588  * otherwise NULL
1589  */
1590 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1591 				     int edat_level)
1592 {
1593 	struct gmap *sg;
1594 
1595 	list_for_each_entry(sg, &parent->children, list) {
1596 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1597 		    sg->removed)
1598 			continue;
1599 		if (!sg->initialized)
1600 			return ERR_PTR(-EAGAIN);
1601 		refcount_inc(&sg->ref_count);
1602 		return sg;
1603 	}
1604 	return NULL;
1605 }
1606 
1607 /**
1608  * gmap_shadow_valid - check if a shadow guest address space matches the
1609  *                     given properties and is still valid
1610  * @sg: pointer to the shadow guest address space structure
1611  * @asce: ASCE for which the shadow table is requested
1612  * @edat_level: edat level to be used for the shadow translation
1613  *
1614  * Returns 1 if the gmap shadow is still valid and matches the given
1615  * properties, the caller can continue using it. Returns 0 otherwise, the
1616  * caller has to request a new shadow gmap in this case.
1617  *
1618  */
1619 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1620 {
1621 	if (sg->removed)
1622 		return 0;
1623 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1624 }
1625 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1626 
1627 /**
1628  * gmap_shadow - create/find a shadow guest address space
1629  * @parent: pointer to the parent gmap
1630  * @asce: ASCE for which the shadow table is created
1631  * @edat_level: edat level to be used for the shadow translation
1632  *
1633  * The pages of the top level page table referred by the asce parameter
1634  * will be set to read-only and marked in the PGSTEs of the kvm process.
1635  * The shadow table will be removed automatically on any change to the
1636  * PTE mapping for the source table.
1637  *
1638  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1639  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1640  * parent gmap table could not be protected.
1641  */
1642 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1643 			 int edat_level)
1644 {
1645 	struct gmap *sg, *new;
1646 	unsigned long limit;
1647 	int rc;
1648 
1649 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1650 	BUG_ON(gmap_is_shadow(parent));
1651 	spin_lock(&parent->shadow_lock);
1652 	sg = gmap_find_shadow(parent, asce, edat_level);
1653 	spin_unlock(&parent->shadow_lock);
1654 	if (sg)
1655 		return sg;
1656 	/* Create a new shadow gmap */
1657 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1658 	if (asce & _ASCE_REAL_SPACE)
1659 		limit = -1UL;
1660 	new = gmap_alloc(limit);
1661 	if (!new)
1662 		return ERR_PTR(-ENOMEM);
1663 	new->mm = parent->mm;
1664 	new->parent = gmap_get(parent);
1665 	new->orig_asce = asce;
1666 	new->edat_level = edat_level;
1667 	new->initialized = false;
1668 	spin_lock(&parent->shadow_lock);
1669 	/* Recheck if another CPU created the same shadow */
1670 	sg = gmap_find_shadow(parent, asce, edat_level);
1671 	if (sg) {
1672 		spin_unlock(&parent->shadow_lock);
1673 		gmap_free(new);
1674 		return sg;
1675 	}
1676 	if (asce & _ASCE_REAL_SPACE) {
1677 		/* only allow one real-space gmap shadow */
1678 		list_for_each_entry(sg, &parent->children, list) {
1679 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1680 				spin_lock(&sg->guest_table_lock);
1681 				gmap_unshadow(sg);
1682 				spin_unlock(&sg->guest_table_lock);
1683 				list_del(&sg->list);
1684 				gmap_put(sg);
1685 				break;
1686 			}
1687 		}
1688 	}
1689 	refcount_set(&new->ref_count, 2);
1690 	list_add(&new->list, &parent->children);
1691 	if (asce & _ASCE_REAL_SPACE) {
1692 		/* nothing to protect, return right away */
1693 		new->initialized = true;
1694 		spin_unlock(&parent->shadow_lock);
1695 		return new;
1696 	}
1697 	spin_unlock(&parent->shadow_lock);
1698 	/* protect after insertion, so it will get properly invalidated */
1699 	mmap_read_lock(parent->mm);
1700 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1701 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1702 				PROT_READ, GMAP_NOTIFY_SHADOW);
1703 	mmap_read_unlock(parent->mm);
1704 	spin_lock(&parent->shadow_lock);
1705 	new->initialized = true;
1706 	if (rc) {
1707 		list_del(&new->list);
1708 		gmap_free(new);
1709 		new = ERR_PTR(rc);
1710 	}
1711 	spin_unlock(&parent->shadow_lock);
1712 	return new;
1713 }
1714 EXPORT_SYMBOL_GPL(gmap_shadow);
1715 
1716 /**
1717  * gmap_shadow_r2t - create an empty shadow region 2 table
1718  * @sg: pointer to the shadow guest address space structure
1719  * @saddr: faulting address in the shadow gmap
1720  * @r2t: parent gmap address of the region 2 table to get shadowed
1721  * @fake: r2t references contiguous guest memory block, not a r2t
1722  *
1723  * The r2t parameter specifies the address of the source table. The
1724  * four pages of the source table are made read-only in the parent gmap
1725  * address space. A write to the source table area @r2t will automatically
1726  * remove the shadow r2 table and all of its decendents.
1727  *
1728  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1729  * shadow table structure is incomplete, -ENOMEM if out of memory and
1730  * -EFAULT if an address in the parent gmap could not be resolved.
1731  *
1732  * Called with sg->mm->mmap_lock in read.
1733  */
1734 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1735 		    int fake)
1736 {
1737 	unsigned long raddr, origin, offset, len;
1738 	unsigned long *s_r2t, *table;
1739 	struct page *page;
1740 	int rc;
1741 
1742 	BUG_ON(!gmap_is_shadow(sg));
1743 	/* Allocate a shadow region second table */
1744 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1745 	if (!page)
1746 		return -ENOMEM;
1747 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1748 	if (fake)
1749 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1750 	s_r2t = (unsigned long *) page_to_phys(page);
1751 	/* Install shadow region second table */
1752 	spin_lock(&sg->guest_table_lock);
1753 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1754 	if (!table) {
1755 		rc = -EAGAIN;		/* Race with unshadow */
1756 		goto out_free;
1757 	}
1758 	if (!(*table & _REGION_ENTRY_INVALID)) {
1759 		rc = 0;			/* Already established */
1760 		goto out_free;
1761 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1762 		rc = -EAGAIN;		/* Race with shadow */
1763 		goto out_free;
1764 	}
1765 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1766 	/* mark as invalid as long as the parent table is not protected */
1767 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1768 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1769 	if (sg->edat_level >= 1)
1770 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1771 	list_add(&page->lru, &sg->crst_list);
1772 	if (fake) {
1773 		/* nothing to protect for fake tables */
1774 		*table &= ~_REGION_ENTRY_INVALID;
1775 		spin_unlock(&sg->guest_table_lock);
1776 		return 0;
1777 	}
1778 	spin_unlock(&sg->guest_table_lock);
1779 	/* Make r2t read-only in parent gmap page table */
1780 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1781 	origin = r2t & _REGION_ENTRY_ORIGIN;
1782 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1783 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1784 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1785 	spin_lock(&sg->guest_table_lock);
1786 	if (!rc) {
1787 		table = gmap_table_walk(sg, saddr, 4);
1788 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1789 			      (unsigned long) s_r2t)
1790 			rc = -EAGAIN;		/* Race with unshadow */
1791 		else
1792 			*table &= ~_REGION_ENTRY_INVALID;
1793 	} else {
1794 		gmap_unshadow_r2t(sg, raddr);
1795 	}
1796 	spin_unlock(&sg->guest_table_lock);
1797 	return rc;
1798 out_free:
1799 	spin_unlock(&sg->guest_table_lock);
1800 	__free_pages(page, CRST_ALLOC_ORDER);
1801 	return rc;
1802 }
1803 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1804 
1805 /**
1806  * gmap_shadow_r3t - create a shadow region 3 table
1807  * @sg: pointer to the shadow guest address space structure
1808  * @saddr: faulting address in the shadow gmap
1809  * @r3t: parent gmap address of the region 3 table to get shadowed
1810  * @fake: r3t references contiguous guest memory block, not a r3t
1811  *
1812  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1813  * shadow table structure is incomplete, -ENOMEM if out of memory and
1814  * -EFAULT if an address in the parent gmap could not be resolved.
1815  *
1816  * Called with sg->mm->mmap_lock in read.
1817  */
1818 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1819 		    int fake)
1820 {
1821 	unsigned long raddr, origin, offset, len;
1822 	unsigned long *s_r3t, *table;
1823 	struct page *page;
1824 	int rc;
1825 
1826 	BUG_ON(!gmap_is_shadow(sg));
1827 	/* Allocate a shadow region second table */
1828 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1829 	if (!page)
1830 		return -ENOMEM;
1831 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1832 	if (fake)
1833 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1834 	s_r3t = (unsigned long *) page_to_phys(page);
1835 	/* Install shadow region second table */
1836 	spin_lock(&sg->guest_table_lock);
1837 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1838 	if (!table) {
1839 		rc = -EAGAIN;		/* Race with unshadow */
1840 		goto out_free;
1841 	}
1842 	if (!(*table & _REGION_ENTRY_INVALID)) {
1843 		rc = 0;			/* Already established */
1844 		goto out_free;
1845 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1846 		rc = -EAGAIN;		/* Race with shadow */
1847 		goto out_free;
1848 	}
1849 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1850 	/* mark as invalid as long as the parent table is not protected */
1851 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1852 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1853 	if (sg->edat_level >= 1)
1854 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1855 	list_add(&page->lru, &sg->crst_list);
1856 	if (fake) {
1857 		/* nothing to protect for fake tables */
1858 		*table &= ~_REGION_ENTRY_INVALID;
1859 		spin_unlock(&sg->guest_table_lock);
1860 		return 0;
1861 	}
1862 	spin_unlock(&sg->guest_table_lock);
1863 	/* Make r3t read-only in parent gmap page table */
1864 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1865 	origin = r3t & _REGION_ENTRY_ORIGIN;
1866 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1867 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1868 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1869 	spin_lock(&sg->guest_table_lock);
1870 	if (!rc) {
1871 		table = gmap_table_walk(sg, saddr, 3);
1872 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1873 			      (unsigned long) s_r3t)
1874 			rc = -EAGAIN;		/* Race with unshadow */
1875 		else
1876 			*table &= ~_REGION_ENTRY_INVALID;
1877 	} else {
1878 		gmap_unshadow_r3t(sg, raddr);
1879 	}
1880 	spin_unlock(&sg->guest_table_lock);
1881 	return rc;
1882 out_free:
1883 	spin_unlock(&sg->guest_table_lock);
1884 	__free_pages(page, CRST_ALLOC_ORDER);
1885 	return rc;
1886 }
1887 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1888 
1889 /**
1890  * gmap_shadow_sgt - create a shadow segment table
1891  * @sg: pointer to the shadow guest address space structure
1892  * @saddr: faulting address in the shadow gmap
1893  * @sgt: parent gmap address of the segment table to get shadowed
1894  * @fake: sgt references contiguous guest memory block, not a sgt
1895  *
1896  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1897  * shadow table structure is incomplete, -ENOMEM if out of memory and
1898  * -EFAULT if an address in the parent gmap could not be resolved.
1899  *
1900  * Called with sg->mm->mmap_lock in read.
1901  */
1902 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1903 		    int fake)
1904 {
1905 	unsigned long raddr, origin, offset, len;
1906 	unsigned long *s_sgt, *table;
1907 	struct page *page;
1908 	int rc;
1909 
1910 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1911 	/* Allocate a shadow segment table */
1912 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1913 	if (!page)
1914 		return -ENOMEM;
1915 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1916 	if (fake)
1917 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1918 	s_sgt = (unsigned long *) page_to_phys(page);
1919 	/* Install shadow region second table */
1920 	spin_lock(&sg->guest_table_lock);
1921 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1922 	if (!table) {
1923 		rc = -EAGAIN;		/* Race with unshadow */
1924 		goto out_free;
1925 	}
1926 	if (!(*table & _REGION_ENTRY_INVALID)) {
1927 		rc = 0;			/* Already established */
1928 		goto out_free;
1929 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1930 		rc = -EAGAIN;		/* Race with shadow */
1931 		goto out_free;
1932 	}
1933 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1934 	/* mark as invalid as long as the parent table is not protected */
1935 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1936 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1937 	if (sg->edat_level >= 1)
1938 		*table |= sgt & _REGION_ENTRY_PROTECT;
1939 	list_add(&page->lru, &sg->crst_list);
1940 	if (fake) {
1941 		/* nothing to protect for fake tables */
1942 		*table &= ~_REGION_ENTRY_INVALID;
1943 		spin_unlock(&sg->guest_table_lock);
1944 		return 0;
1945 	}
1946 	spin_unlock(&sg->guest_table_lock);
1947 	/* Make sgt read-only in parent gmap page table */
1948 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1949 	origin = sgt & _REGION_ENTRY_ORIGIN;
1950 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1951 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1952 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1953 	spin_lock(&sg->guest_table_lock);
1954 	if (!rc) {
1955 		table = gmap_table_walk(sg, saddr, 2);
1956 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1957 			      (unsigned long) s_sgt)
1958 			rc = -EAGAIN;		/* Race with unshadow */
1959 		else
1960 			*table &= ~_REGION_ENTRY_INVALID;
1961 	} else {
1962 		gmap_unshadow_sgt(sg, raddr);
1963 	}
1964 	spin_unlock(&sg->guest_table_lock);
1965 	return rc;
1966 out_free:
1967 	spin_unlock(&sg->guest_table_lock);
1968 	__free_pages(page, CRST_ALLOC_ORDER);
1969 	return rc;
1970 }
1971 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1972 
1973 /**
1974  * gmap_shadow_lookup_pgtable - find a shadow page table
1975  * @sg: pointer to the shadow guest address space structure
1976  * @saddr: the address in the shadow aguest address space
1977  * @pgt: parent gmap address of the page table to get shadowed
1978  * @dat_protection: if the pgtable is marked as protected by dat
1979  * @fake: pgt references contiguous guest memory block, not a pgtable
1980  *
1981  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1982  * table was not found.
1983  *
1984  * Called with sg->mm->mmap_lock in read.
1985  */
1986 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1987 			   unsigned long *pgt, int *dat_protection,
1988 			   int *fake)
1989 {
1990 	unsigned long *table;
1991 	struct page *page;
1992 	int rc;
1993 
1994 	BUG_ON(!gmap_is_shadow(sg));
1995 	spin_lock(&sg->guest_table_lock);
1996 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1997 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1998 		/* Shadow page tables are full pages (pte+pgste) */
1999 		page = pfn_to_page(*table >> PAGE_SHIFT);
2000 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2001 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2002 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2003 		rc = 0;
2004 	} else  {
2005 		rc = -EAGAIN;
2006 	}
2007 	spin_unlock(&sg->guest_table_lock);
2008 	return rc;
2009 
2010 }
2011 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2012 
2013 /**
2014  * gmap_shadow_pgt - instantiate a shadow page table
2015  * @sg: pointer to the shadow guest address space structure
2016  * @saddr: faulting address in the shadow gmap
2017  * @pgt: parent gmap address of the page table to get shadowed
2018  * @fake: pgt references contiguous guest memory block, not a pgtable
2019  *
2020  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2021  * shadow table structure is incomplete, -ENOMEM if out of memory,
2022  * -EFAULT if an address in the parent gmap could not be resolved and
2023  *
2024  * Called with gmap->mm->mmap_lock in read
2025  */
2026 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2027 		    int fake)
2028 {
2029 	unsigned long raddr, origin;
2030 	unsigned long *s_pgt, *table;
2031 	struct page *page;
2032 	int rc;
2033 
2034 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2035 	/* Allocate a shadow page table */
2036 	page = page_table_alloc_pgste(sg->mm);
2037 	if (!page)
2038 		return -ENOMEM;
2039 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2040 	if (fake)
2041 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2042 	s_pgt = (unsigned long *) page_to_phys(page);
2043 	/* Install shadow page table */
2044 	spin_lock(&sg->guest_table_lock);
2045 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2046 	if (!table) {
2047 		rc = -EAGAIN;		/* Race with unshadow */
2048 		goto out_free;
2049 	}
2050 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2051 		rc = 0;			/* Already established */
2052 		goto out_free;
2053 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2054 		rc = -EAGAIN;		/* Race with shadow */
2055 		goto out_free;
2056 	}
2057 	/* mark as invalid as long as the parent table is not protected */
2058 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2059 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2060 	list_add(&page->lru, &sg->pt_list);
2061 	if (fake) {
2062 		/* nothing to protect for fake tables */
2063 		*table &= ~_SEGMENT_ENTRY_INVALID;
2064 		spin_unlock(&sg->guest_table_lock);
2065 		return 0;
2066 	}
2067 	spin_unlock(&sg->guest_table_lock);
2068 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2069 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2070 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2071 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2072 	spin_lock(&sg->guest_table_lock);
2073 	if (!rc) {
2074 		table = gmap_table_walk(sg, saddr, 1);
2075 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2076 			      (unsigned long) s_pgt)
2077 			rc = -EAGAIN;		/* Race with unshadow */
2078 		else
2079 			*table &= ~_SEGMENT_ENTRY_INVALID;
2080 	} else {
2081 		gmap_unshadow_pgt(sg, raddr);
2082 	}
2083 	spin_unlock(&sg->guest_table_lock);
2084 	return rc;
2085 out_free:
2086 	spin_unlock(&sg->guest_table_lock);
2087 	page_table_free_pgste(page);
2088 	return rc;
2089 
2090 }
2091 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2092 
2093 /**
2094  * gmap_shadow_page - create a shadow page mapping
2095  * @sg: pointer to the shadow guest address space structure
2096  * @saddr: faulting address in the shadow gmap
2097  * @pte: pte in parent gmap address space to get shadowed
2098  *
2099  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2100  * shadow table structure is incomplete, -ENOMEM if out of memory and
2101  * -EFAULT if an address in the parent gmap could not be resolved.
2102  *
2103  * Called with sg->mm->mmap_lock in read.
2104  */
2105 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2106 {
2107 	struct gmap *parent;
2108 	struct gmap_rmap *rmap;
2109 	unsigned long vmaddr, paddr;
2110 	spinlock_t *ptl;
2111 	pte_t *sptep, *tptep;
2112 	int prot;
2113 	int rc;
2114 
2115 	BUG_ON(!gmap_is_shadow(sg));
2116 	parent = sg->parent;
2117 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2118 
2119 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2120 	if (!rmap)
2121 		return -ENOMEM;
2122 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2123 
2124 	while (1) {
2125 		paddr = pte_val(pte) & PAGE_MASK;
2126 		vmaddr = __gmap_translate(parent, paddr);
2127 		if (IS_ERR_VALUE(vmaddr)) {
2128 			rc = vmaddr;
2129 			break;
2130 		}
2131 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2132 		if (rc)
2133 			break;
2134 		rc = -EAGAIN;
2135 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2136 		if (sptep) {
2137 			spin_lock(&sg->guest_table_lock);
2138 			/* Get page table pointer */
2139 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2140 			if (!tptep) {
2141 				spin_unlock(&sg->guest_table_lock);
2142 				gmap_pte_op_end(ptl);
2143 				radix_tree_preload_end();
2144 				break;
2145 			}
2146 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2147 			if (rc > 0) {
2148 				/* Success and a new mapping */
2149 				gmap_insert_rmap(sg, vmaddr, rmap);
2150 				rmap = NULL;
2151 				rc = 0;
2152 			}
2153 			gmap_pte_op_end(ptl);
2154 			spin_unlock(&sg->guest_table_lock);
2155 		}
2156 		radix_tree_preload_end();
2157 		if (!rc)
2158 			break;
2159 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2160 		if (rc)
2161 			break;
2162 	}
2163 	kfree(rmap);
2164 	return rc;
2165 }
2166 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2167 
2168 /**
2169  * gmap_shadow_notify - handle notifications for shadow gmap
2170  *
2171  * Called with sg->parent->shadow_lock.
2172  */
2173 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2174 			       unsigned long gaddr)
2175 {
2176 	struct gmap_rmap *rmap, *rnext, *head;
2177 	unsigned long start, end, bits, raddr;
2178 
2179 	BUG_ON(!gmap_is_shadow(sg));
2180 
2181 	spin_lock(&sg->guest_table_lock);
2182 	if (sg->removed) {
2183 		spin_unlock(&sg->guest_table_lock);
2184 		return;
2185 	}
2186 	/* Check for top level table */
2187 	start = sg->orig_asce & _ASCE_ORIGIN;
2188 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2189 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2190 	    gaddr < end) {
2191 		/* The complete shadow table has to go */
2192 		gmap_unshadow(sg);
2193 		spin_unlock(&sg->guest_table_lock);
2194 		list_del(&sg->list);
2195 		gmap_put(sg);
2196 		return;
2197 	}
2198 	/* Remove the page table tree from on specific entry */
2199 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2200 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2201 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2202 		raddr = rmap->raddr ^ bits;
2203 		switch (bits) {
2204 		case _SHADOW_RMAP_REGION1:
2205 			gmap_unshadow_r2t(sg, raddr);
2206 			break;
2207 		case _SHADOW_RMAP_REGION2:
2208 			gmap_unshadow_r3t(sg, raddr);
2209 			break;
2210 		case _SHADOW_RMAP_REGION3:
2211 			gmap_unshadow_sgt(sg, raddr);
2212 			break;
2213 		case _SHADOW_RMAP_SEGMENT:
2214 			gmap_unshadow_pgt(sg, raddr);
2215 			break;
2216 		case _SHADOW_RMAP_PGTABLE:
2217 			gmap_unshadow_page(sg, raddr);
2218 			break;
2219 		}
2220 		kfree(rmap);
2221 	}
2222 	spin_unlock(&sg->guest_table_lock);
2223 }
2224 
2225 /**
2226  * ptep_notify - call all invalidation callbacks for a specific pte.
2227  * @mm: pointer to the process mm_struct
2228  * @addr: virtual address in the process address space
2229  * @pte: pointer to the page table entry
2230  * @bits: bits from the pgste that caused the notify call
2231  *
2232  * This function is assumed to be called with the page table lock held
2233  * for the pte to notify.
2234  */
2235 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2236 		 pte_t *pte, unsigned long bits)
2237 {
2238 	unsigned long offset, gaddr = 0;
2239 	unsigned long *table;
2240 	struct gmap *gmap, *sg, *next;
2241 
2242 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2243 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2244 	rcu_read_lock();
2245 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2246 		spin_lock(&gmap->guest_table_lock);
2247 		table = radix_tree_lookup(&gmap->host_to_guest,
2248 					  vmaddr >> PMD_SHIFT);
2249 		if (table)
2250 			gaddr = __gmap_segment_gaddr(table) + offset;
2251 		spin_unlock(&gmap->guest_table_lock);
2252 		if (!table)
2253 			continue;
2254 
2255 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2256 			spin_lock(&gmap->shadow_lock);
2257 			list_for_each_entry_safe(sg, next,
2258 						 &gmap->children, list)
2259 				gmap_shadow_notify(sg, vmaddr, gaddr);
2260 			spin_unlock(&gmap->shadow_lock);
2261 		}
2262 		if (bits & PGSTE_IN_BIT)
2263 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2264 	}
2265 	rcu_read_unlock();
2266 }
2267 EXPORT_SYMBOL_GPL(ptep_notify);
2268 
2269 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2270 			     unsigned long gaddr)
2271 {
2272 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2273 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2274 }
2275 
2276 /**
2277  * gmap_pmdp_xchg - exchange a gmap pmd with another
2278  * @gmap: pointer to the guest address space structure
2279  * @pmdp: pointer to the pmd entry
2280  * @new: replacement entry
2281  * @gaddr: the affected guest address
2282  *
2283  * This function is assumed to be called with the guest_table_lock
2284  * held.
2285  */
2286 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2287 			   unsigned long gaddr)
2288 {
2289 	gaddr &= HPAGE_MASK;
2290 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2291 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2292 	if (MACHINE_HAS_TLB_GUEST)
2293 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2294 			    IDTE_GLOBAL);
2295 	else if (MACHINE_HAS_IDTE)
2296 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2297 	else
2298 		__pmdp_csp(pmdp);
2299 	*pmdp = new;
2300 }
2301 
2302 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2303 			    int purge)
2304 {
2305 	pmd_t *pmdp;
2306 	struct gmap *gmap;
2307 	unsigned long gaddr;
2308 
2309 	rcu_read_lock();
2310 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2311 		spin_lock(&gmap->guest_table_lock);
2312 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2313 						  vmaddr >> PMD_SHIFT);
2314 		if (pmdp) {
2315 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2316 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2317 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2318 						   _SEGMENT_ENTRY_GMAP_UC));
2319 			if (purge)
2320 				__pmdp_csp(pmdp);
2321 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2322 		}
2323 		spin_unlock(&gmap->guest_table_lock);
2324 	}
2325 	rcu_read_unlock();
2326 }
2327 
2328 /**
2329  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2330  *                        flushing
2331  * @mm: pointer to the process mm_struct
2332  * @vmaddr: virtual address in the process address space
2333  */
2334 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2335 {
2336 	gmap_pmdp_clear(mm, vmaddr, 0);
2337 }
2338 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2339 
2340 /**
2341  * gmap_pmdp_csp - csp all affected guest pmd entries
2342  * @mm: pointer to the process mm_struct
2343  * @vmaddr: virtual address in the process address space
2344  */
2345 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2346 {
2347 	gmap_pmdp_clear(mm, vmaddr, 1);
2348 }
2349 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2350 
2351 /**
2352  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2353  * @mm: pointer to the process mm_struct
2354  * @vmaddr: virtual address in the process address space
2355  */
2356 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2357 {
2358 	unsigned long *entry, gaddr;
2359 	struct gmap *gmap;
2360 	pmd_t *pmdp;
2361 
2362 	rcu_read_lock();
2363 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2364 		spin_lock(&gmap->guest_table_lock);
2365 		entry = radix_tree_delete(&gmap->host_to_guest,
2366 					  vmaddr >> PMD_SHIFT);
2367 		if (entry) {
2368 			pmdp = (pmd_t *)entry;
2369 			gaddr = __gmap_segment_gaddr(entry);
2370 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2371 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2372 					   _SEGMENT_ENTRY_GMAP_UC));
2373 			if (MACHINE_HAS_TLB_GUEST)
2374 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2375 					    gmap->asce, IDTE_LOCAL);
2376 			else if (MACHINE_HAS_IDTE)
2377 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2378 			*entry = _SEGMENT_ENTRY_EMPTY;
2379 		}
2380 		spin_unlock(&gmap->guest_table_lock);
2381 	}
2382 	rcu_read_unlock();
2383 }
2384 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2385 
2386 /**
2387  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2388  * @mm: pointer to the process mm_struct
2389  * @vmaddr: virtual address in the process address space
2390  */
2391 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2392 {
2393 	unsigned long *entry, gaddr;
2394 	struct gmap *gmap;
2395 	pmd_t *pmdp;
2396 
2397 	rcu_read_lock();
2398 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2399 		spin_lock(&gmap->guest_table_lock);
2400 		entry = radix_tree_delete(&gmap->host_to_guest,
2401 					  vmaddr >> PMD_SHIFT);
2402 		if (entry) {
2403 			pmdp = (pmd_t *)entry;
2404 			gaddr = __gmap_segment_gaddr(entry);
2405 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2406 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2407 					   _SEGMENT_ENTRY_GMAP_UC));
2408 			if (MACHINE_HAS_TLB_GUEST)
2409 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2410 					    gmap->asce, IDTE_GLOBAL);
2411 			else if (MACHINE_HAS_IDTE)
2412 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2413 			else
2414 				__pmdp_csp(pmdp);
2415 			*entry = _SEGMENT_ENTRY_EMPTY;
2416 		}
2417 		spin_unlock(&gmap->guest_table_lock);
2418 	}
2419 	rcu_read_unlock();
2420 }
2421 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2422 
2423 /**
2424  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2425  * @gmap: pointer to guest address space
2426  * @pmdp: pointer to the pmd to be tested
2427  * @gaddr: virtual address in the guest address space
2428  *
2429  * This function is assumed to be called with the guest_table_lock
2430  * held.
2431  */
2432 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2433 					  unsigned long gaddr)
2434 {
2435 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2436 		return false;
2437 
2438 	/* Already protected memory, which did not change is clean */
2439 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2440 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2441 		return false;
2442 
2443 	/* Clear UC indication and reset protection */
2444 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2445 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2446 	return true;
2447 }
2448 
2449 /**
2450  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2451  * @gmap: pointer to guest address space
2452  * @bitmap: dirty bitmap for this pmd
2453  * @gaddr: virtual address in the guest address space
2454  * @vmaddr: virtual address in the host address space
2455  *
2456  * This function is assumed to be called with the guest_table_lock
2457  * held.
2458  */
2459 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2460 			     unsigned long gaddr, unsigned long vmaddr)
2461 {
2462 	int i;
2463 	pmd_t *pmdp;
2464 	pte_t *ptep;
2465 	spinlock_t *ptl;
2466 
2467 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2468 	if (!pmdp)
2469 		return;
2470 
2471 	if (pmd_large(*pmdp)) {
2472 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2473 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2474 	} else {
2475 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2476 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2477 			if (!ptep)
2478 				continue;
2479 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2480 				set_bit(i, bitmap);
2481 			spin_unlock(ptl);
2482 		}
2483 	}
2484 	gmap_pmd_op_end(gmap, pmdp);
2485 }
2486 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2487 
2488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2489 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2490 				    unsigned long end, struct mm_walk *walk)
2491 {
2492 	struct vm_area_struct *vma = walk->vma;
2493 
2494 	split_huge_pmd(vma, pmd, addr);
2495 	return 0;
2496 }
2497 
2498 static const struct mm_walk_ops thp_split_walk_ops = {
2499 	.pmd_entry	= thp_split_walk_pmd_entry,
2500 };
2501 
2502 static inline void thp_split_mm(struct mm_struct *mm)
2503 {
2504 	struct vm_area_struct *vma;
2505 
2506 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2507 		vma->vm_flags &= ~VM_HUGEPAGE;
2508 		vma->vm_flags |= VM_NOHUGEPAGE;
2509 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2510 	}
2511 	mm->def_flags |= VM_NOHUGEPAGE;
2512 }
2513 #else
2514 static inline void thp_split_mm(struct mm_struct *mm)
2515 {
2516 }
2517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2518 
2519 /*
2520  * Remove all empty zero pages from the mapping for lazy refaulting
2521  * - This must be called after mm->context.has_pgste is set, to avoid
2522  *   future creation of zero pages
2523  * - This must be called after THP was enabled
2524  */
2525 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2526 			   unsigned long end, struct mm_walk *walk)
2527 {
2528 	unsigned long addr;
2529 
2530 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2531 		pte_t *ptep;
2532 		spinlock_t *ptl;
2533 
2534 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2535 		if (is_zero_pfn(pte_pfn(*ptep)))
2536 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2537 		pte_unmap_unlock(ptep, ptl);
2538 	}
2539 	return 0;
2540 }
2541 
2542 static const struct mm_walk_ops zap_zero_walk_ops = {
2543 	.pmd_entry	= __zap_zero_pages,
2544 };
2545 
2546 /*
2547  * switch on pgstes for its userspace process (for kvm)
2548  */
2549 int s390_enable_sie(void)
2550 {
2551 	struct mm_struct *mm = current->mm;
2552 
2553 	/* Do we have pgstes? if yes, we are done */
2554 	if (mm_has_pgste(mm))
2555 		return 0;
2556 	/* Fail if the page tables are 2K */
2557 	if (!mm_alloc_pgste(mm))
2558 		return -EINVAL;
2559 	mmap_write_lock(mm);
2560 	mm->context.has_pgste = 1;
2561 	/* split thp mappings and disable thp for future mappings */
2562 	thp_split_mm(mm);
2563 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2564 	mmap_write_unlock(mm);
2565 	return 0;
2566 }
2567 EXPORT_SYMBOL_GPL(s390_enable_sie);
2568 
2569 int gmap_mark_unmergeable(void)
2570 {
2571 	struct mm_struct *mm = current->mm;
2572 	struct vm_area_struct *vma;
2573 	int ret;
2574 
2575 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2577 				  MADV_UNMERGEABLE, &vma->vm_flags);
2578 		if (ret)
2579 			return ret;
2580 	}
2581 	mm->def_flags &= ~VM_MERGEABLE;
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2585 
2586 /*
2587  * Enable storage key handling from now on and initialize the storage
2588  * keys with the default key.
2589  */
2590 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2591 				  unsigned long next, struct mm_walk *walk)
2592 {
2593 	/* Clear storage key */
2594 	ptep_zap_key(walk->mm, addr, pte);
2595 	return 0;
2596 }
2597 
2598 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2599 				      unsigned long hmask, unsigned long next,
2600 				      struct mm_walk *walk)
2601 {
2602 	pmd_t *pmd = (pmd_t *)pte;
2603 	unsigned long start, end;
2604 	struct page *page = pmd_page(*pmd);
2605 
2606 	/*
2607 	 * The write check makes sure we do not set a key on shared
2608 	 * memory. This is needed as the walker does not differentiate
2609 	 * between actual guest memory and the process executable or
2610 	 * shared libraries.
2611 	 */
2612 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2613 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2614 		return 0;
2615 
2616 	start = pmd_val(*pmd) & HPAGE_MASK;
2617 	end = start + HPAGE_SIZE - 1;
2618 	__storage_key_init_range(start, end);
2619 	set_bit(PG_arch_1, &page->flags);
2620 	return 0;
2621 }
2622 
2623 static const struct mm_walk_ops enable_skey_walk_ops = {
2624 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2625 	.pte_entry		= __s390_enable_skey_pte,
2626 };
2627 
2628 int s390_enable_skey(void)
2629 {
2630 	struct mm_struct *mm = current->mm;
2631 	int rc = 0;
2632 
2633 	mmap_write_lock(mm);
2634 	if (mm_uses_skeys(mm))
2635 		goto out_up;
2636 
2637 	mm->context.uses_skeys = 1;
2638 	rc = gmap_mark_unmergeable();
2639 	if (rc) {
2640 		mm->context.uses_skeys = 0;
2641 		goto out_up;
2642 	}
2643 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2644 
2645 out_up:
2646 	mmap_write_unlock(mm);
2647 	return rc;
2648 }
2649 EXPORT_SYMBOL_GPL(s390_enable_skey);
2650 
2651 /*
2652  * Reset CMMA state, make all pages stable again.
2653  */
2654 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2655 			     unsigned long next, struct mm_walk *walk)
2656 {
2657 	ptep_zap_unused(walk->mm, addr, pte, 1);
2658 	return 0;
2659 }
2660 
2661 static const struct mm_walk_ops reset_cmma_walk_ops = {
2662 	.pte_entry		= __s390_reset_cmma,
2663 };
2664 
2665 void s390_reset_cmma(struct mm_struct *mm)
2666 {
2667 	mmap_write_lock(mm);
2668 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2669 	mmap_write_unlock(mm);
2670 }
2671 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2672 
2673 /*
2674  * make inaccessible pages accessible again
2675  */
2676 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2677 			    unsigned long next, struct mm_walk *walk)
2678 {
2679 	pte_t pte = READ_ONCE(*ptep);
2680 
2681 	if (pte_present(pte))
2682 		WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2683 	return 0;
2684 }
2685 
2686 static const struct mm_walk_ops reset_acc_walk_ops = {
2687 	.pte_entry		= __s390_reset_acc,
2688 };
2689 
2690 #include <linux/sched/mm.h>
2691 void s390_reset_acc(struct mm_struct *mm)
2692 {
2693 	if (!mm_is_protected(mm))
2694 		return;
2695 	/*
2696 	 * we might be called during
2697 	 * reset:                             we walk the pages and clear
2698 	 * close of all kvm file descriptors: we walk the pages and clear
2699 	 * exit of process on fd closure:     vma already gone, do nothing
2700 	 */
2701 	if (!mmget_not_zero(mm))
2702 		return;
2703 	mmap_read_lock(mm);
2704 	walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2705 	mmap_read_unlock(mm);
2706 	mmput(mm);
2707 }
2708 EXPORT_SYMBOL_GPL(s390_reset_acc);
2709