1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2020 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/pagewalk.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 #include <linux/pgtable.h> 21 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @limit: maximum address of the gmap address space 31 * 32 * Returns a guest address space structure. 33 */ 34 static struct gmap *gmap_alloc(unsigned long limit) 35 { 36 struct gmap *gmap; 37 struct page *page; 38 unsigned long *table; 39 unsigned long etype, atype; 40 41 if (limit < _REGION3_SIZE) { 42 limit = _REGION3_SIZE - 1; 43 atype = _ASCE_TYPE_SEGMENT; 44 etype = _SEGMENT_ENTRY_EMPTY; 45 } else if (limit < _REGION2_SIZE) { 46 limit = _REGION2_SIZE - 1; 47 atype = _ASCE_TYPE_REGION3; 48 etype = _REGION3_ENTRY_EMPTY; 49 } else if (limit < _REGION1_SIZE) { 50 limit = _REGION1_SIZE - 1; 51 atype = _ASCE_TYPE_REGION2; 52 etype = _REGION2_ENTRY_EMPTY; 53 } else { 54 limit = -1UL; 55 atype = _ASCE_TYPE_REGION1; 56 etype = _REGION1_ENTRY_EMPTY; 57 } 58 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT); 59 if (!gmap) 60 goto out; 61 INIT_LIST_HEAD(&gmap->crst_list); 62 INIT_LIST_HEAD(&gmap->children); 63 INIT_LIST_HEAD(&gmap->pt_list); 64 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT); 65 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT); 66 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT); 67 spin_lock_init(&gmap->guest_table_lock); 68 spin_lock_init(&gmap->shadow_lock); 69 refcount_set(&gmap->ref_count, 1); 70 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 71 if (!page) 72 goto out_free; 73 page->index = 0; 74 list_add(&page->lru, &gmap->crst_list); 75 table = (unsigned long *) page_to_phys(page); 76 crst_table_init(table, etype); 77 gmap->table = table; 78 gmap->asce = atype | _ASCE_TABLE_LENGTH | 79 _ASCE_USER_BITS | __pa(table); 80 gmap->asce_end = limit; 81 return gmap; 82 83 out_free: 84 kfree(gmap); 85 out: 86 return NULL; 87 } 88 89 /** 90 * gmap_create - create a guest address space 91 * @mm: pointer to the parent mm_struct 92 * @limit: maximum size of the gmap address space 93 * 94 * Returns a guest address space structure. 95 */ 96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 97 { 98 struct gmap *gmap; 99 unsigned long gmap_asce; 100 101 gmap = gmap_alloc(limit); 102 if (!gmap) 103 return NULL; 104 gmap->mm = mm; 105 spin_lock(&mm->context.lock); 106 list_add_rcu(&gmap->list, &mm->context.gmap_list); 107 if (list_is_singular(&mm->context.gmap_list)) 108 gmap_asce = gmap->asce; 109 else 110 gmap_asce = -1UL; 111 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 112 spin_unlock(&mm->context.lock); 113 return gmap; 114 } 115 EXPORT_SYMBOL_GPL(gmap_create); 116 117 static void gmap_flush_tlb(struct gmap *gmap) 118 { 119 if (MACHINE_HAS_IDTE) 120 __tlb_flush_idte(gmap->asce); 121 else 122 __tlb_flush_global(); 123 } 124 125 static void gmap_radix_tree_free(struct radix_tree_root *root) 126 { 127 struct radix_tree_iter iter; 128 unsigned long indices[16]; 129 unsigned long index; 130 void __rcu **slot; 131 int i, nr; 132 133 /* A radix tree is freed by deleting all of its entries */ 134 index = 0; 135 do { 136 nr = 0; 137 radix_tree_for_each_slot(slot, root, &iter, index) { 138 indices[nr] = iter.index; 139 if (++nr == 16) 140 break; 141 } 142 for (i = 0; i < nr; i++) { 143 index = indices[i]; 144 radix_tree_delete(root, index); 145 } 146 } while (nr > 0); 147 } 148 149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 150 { 151 struct gmap_rmap *rmap, *rnext, *head; 152 struct radix_tree_iter iter; 153 unsigned long indices[16]; 154 unsigned long index; 155 void __rcu **slot; 156 int i, nr; 157 158 /* A radix tree is freed by deleting all of its entries */ 159 index = 0; 160 do { 161 nr = 0; 162 radix_tree_for_each_slot(slot, root, &iter, index) { 163 indices[nr] = iter.index; 164 if (++nr == 16) 165 break; 166 } 167 for (i = 0; i < nr; i++) { 168 index = indices[i]; 169 head = radix_tree_delete(root, index); 170 gmap_for_each_rmap_safe(rmap, rnext, head) 171 kfree(rmap); 172 } 173 } while (nr > 0); 174 } 175 176 /** 177 * gmap_free - free a guest address space 178 * @gmap: pointer to the guest address space structure 179 * 180 * No locks required. There are no references to this gmap anymore. 181 */ 182 static void gmap_free(struct gmap *gmap) 183 { 184 struct page *page, *next; 185 186 /* Flush tlb of all gmaps (if not already done for shadows) */ 187 if (!(gmap_is_shadow(gmap) && gmap->removed)) 188 gmap_flush_tlb(gmap); 189 /* Free all segment & region tables. */ 190 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 191 __free_pages(page, CRST_ALLOC_ORDER); 192 gmap_radix_tree_free(&gmap->guest_to_host); 193 gmap_radix_tree_free(&gmap->host_to_guest); 194 195 /* Free additional data for a shadow gmap */ 196 if (gmap_is_shadow(gmap)) { 197 /* Free all page tables. */ 198 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 199 page_table_free_pgste(page); 200 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 201 /* Release reference to the parent */ 202 gmap_put(gmap->parent); 203 } 204 205 kfree(gmap); 206 } 207 208 /** 209 * gmap_get - increase reference counter for guest address space 210 * @gmap: pointer to the guest address space structure 211 * 212 * Returns the gmap pointer 213 */ 214 struct gmap *gmap_get(struct gmap *gmap) 215 { 216 refcount_inc(&gmap->ref_count); 217 return gmap; 218 } 219 EXPORT_SYMBOL_GPL(gmap_get); 220 221 /** 222 * gmap_put - decrease reference counter for guest address space 223 * @gmap: pointer to the guest address space structure 224 * 225 * If the reference counter reaches zero the guest address space is freed. 226 */ 227 void gmap_put(struct gmap *gmap) 228 { 229 if (refcount_dec_and_test(&gmap->ref_count)) 230 gmap_free(gmap); 231 } 232 EXPORT_SYMBOL_GPL(gmap_put); 233 234 /** 235 * gmap_remove - remove a guest address space but do not free it yet 236 * @gmap: pointer to the guest address space structure 237 */ 238 void gmap_remove(struct gmap *gmap) 239 { 240 struct gmap *sg, *next; 241 unsigned long gmap_asce; 242 243 /* Remove all shadow gmaps linked to this gmap */ 244 if (!list_empty(&gmap->children)) { 245 spin_lock(&gmap->shadow_lock); 246 list_for_each_entry_safe(sg, next, &gmap->children, list) { 247 list_del(&sg->list); 248 gmap_put(sg); 249 } 250 spin_unlock(&gmap->shadow_lock); 251 } 252 /* Remove gmap from the pre-mm list */ 253 spin_lock(&gmap->mm->context.lock); 254 list_del_rcu(&gmap->list); 255 if (list_empty(&gmap->mm->context.gmap_list)) 256 gmap_asce = 0; 257 else if (list_is_singular(&gmap->mm->context.gmap_list)) 258 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 259 struct gmap, list)->asce; 260 else 261 gmap_asce = -1UL; 262 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 263 spin_unlock(&gmap->mm->context.lock); 264 synchronize_rcu(); 265 /* Put reference */ 266 gmap_put(gmap); 267 } 268 EXPORT_SYMBOL_GPL(gmap_remove); 269 270 /** 271 * gmap_enable - switch primary space to the guest address space 272 * @gmap: pointer to the guest address space structure 273 */ 274 void gmap_enable(struct gmap *gmap) 275 { 276 S390_lowcore.gmap = (unsigned long) gmap; 277 } 278 EXPORT_SYMBOL_GPL(gmap_enable); 279 280 /** 281 * gmap_disable - switch back to the standard primary address space 282 * @gmap: pointer to the guest address space structure 283 */ 284 void gmap_disable(struct gmap *gmap) 285 { 286 S390_lowcore.gmap = 0UL; 287 } 288 EXPORT_SYMBOL_GPL(gmap_disable); 289 290 /** 291 * gmap_get_enabled - get a pointer to the currently enabled gmap 292 * 293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 294 */ 295 struct gmap *gmap_get_enabled(void) 296 { 297 return (struct gmap *) S390_lowcore.gmap; 298 } 299 EXPORT_SYMBOL_GPL(gmap_get_enabled); 300 301 /* 302 * gmap_alloc_table is assumed to be called with mmap_lock held 303 */ 304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 305 unsigned long init, unsigned long gaddr) 306 { 307 struct page *page; 308 unsigned long *new; 309 310 /* since we dont free the gmap table until gmap_free we can unlock */ 311 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 312 if (!page) 313 return -ENOMEM; 314 new = (unsigned long *) page_to_phys(page); 315 crst_table_init(new, init); 316 spin_lock(&gmap->guest_table_lock); 317 if (*table & _REGION_ENTRY_INVALID) { 318 list_add(&page->lru, &gmap->crst_list); 319 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 320 (*table & _REGION_ENTRY_TYPE_MASK); 321 page->index = gaddr; 322 page = NULL; 323 } 324 spin_unlock(&gmap->guest_table_lock); 325 if (page) 326 __free_pages(page, CRST_ALLOC_ORDER); 327 return 0; 328 } 329 330 /** 331 * __gmap_segment_gaddr - find virtual address from segment pointer 332 * @entry: pointer to a segment table entry in the guest address space 333 * 334 * Returns the virtual address in the guest address space for the segment 335 */ 336 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 337 { 338 struct page *page; 339 unsigned long offset, mask; 340 341 offset = (unsigned long) entry / sizeof(unsigned long); 342 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 343 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 344 page = virt_to_page((void *)((unsigned long) entry & mask)); 345 return page->index + offset; 346 } 347 348 /** 349 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 350 * @gmap: pointer to the guest address space structure 351 * @vmaddr: address in the host process address space 352 * 353 * Returns 1 if a TLB flush is required 354 */ 355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 356 { 357 unsigned long *entry; 358 int flush = 0; 359 360 BUG_ON(gmap_is_shadow(gmap)); 361 spin_lock(&gmap->guest_table_lock); 362 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 363 if (entry) { 364 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 365 *entry = _SEGMENT_ENTRY_EMPTY; 366 } 367 spin_unlock(&gmap->guest_table_lock); 368 return flush; 369 } 370 371 /** 372 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 373 * @gmap: pointer to the guest address space structure 374 * @gaddr: address in the guest address space 375 * 376 * Returns 1 if a TLB flush is required 377 */ 378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 379 { 380 unsigned long vmaddr; 381 382 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 383 gaddr >> PMD_SHIFT); 384 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 385 } 386 387 /** 388 * gmap_unmap_segment - unmap segment from the guest address space 389 * @gmap: pointer to the guest address space structure 390 * @to: address in the guest address space 391 * @len: length of the memory area to unmap 392 * 393 * Returns 0 if the unmap succeeded, -EINVAL if not. 394 */ 395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 396 { 397 unsigned long off; 398 int flush; 399 400 BUG_ON(gmap_is_shadow(gmap)); 401 if ((to | len) & (PMD_SIZE - 1)) 402 return -EINVAL; 403 if (len == 0 || to + len < to) 404 return -EINVAL; 405 406 flush = 0; 407 mmap_write_lock(gmap->mm); 408 for (off = 0; off < len; off += PMD_SIZE) 409 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 410 mmap_write_unlock(gmap->mm); 411 if (flush) 412 gmap_flush_tlb(gmap); 413 return 0; 414 } 415 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 416 417 /** 418 * gmap_map_segment - map a segment to the guest address space 419 * @gmap: pointer to the guest address space structure 420 * @from: source address in the parent address space 421 * @to: target address in the guest address space 422 * @len: length of the memory area to map 423 * 424 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 425 */ 426 int gmap_map_segment(struct gmap *gmap, unsigned long from, 427 unsigned long to, unsigned long len) 428 { 429 unsigned long off; 430 int flush; 431 432 BUG_ON(gmap_is_shadow(gmap)); 433 if ((from | to | len) & (PMD_SIZE - 1)) 434 return -EINVAL; 435 if (len == 0 || from + len < from || to + len < to || 436 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 437 return -EINVAL; 438 439 flush = 0; 440 mmap_write_lock(gmap->mm); 441 for (off = 0; off < len; off += PMD_SIZE) { 442 /* Remove old translation */ 443 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 444 /* Store new translation */ 445 if (radix_tree_insert(&gmap->guest_to_host, 446 (to + off) >> PMD_SHIFT, 447 (void *) from + off)) 448 break; 449 } 450 mmap_write_unlock(gmap->mm); 451 if (flush) 452 gmap_flush_tlb(gmap); 453 if (off >= len) 454 return 0; 455 gmap_unmap_segment(gmap, to, len); 456 return -ENOMEM; 457 } 458 EXPORT_SYMBOL_GPL(gmap_map_segment); 459 460 /** 461 * __gmap_translate - translate a guest address to a user space address 462 * @gmap: pointer to guest mapping meta data structure 463 * @gaddr: guest address 464 * 465 * Returns user space address which corresponds to the guest address or 466 * -EFAULT if no such mapping exists. 467 * This function does not establish potentially missing page table entries. 468 * The mmap_lock of the mm that belongs to the address space must be held 469 * when this function gets called. 470 * 471 * Note: Can also be called for shadow gmaps. 472 */ 473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 474 { 475 unsigned long vmaddr; 476 477 vmaddr = (unsigned long) 478 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 479 /* Note: guest_to_host is empty for a shadow gmap */ 480 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 481 } 482 EXPORT_SYMBOL_GPL(__gmap_translate); 483 484 /** 485 * gmap_translate - translate a guest address to a user space address 486 * @gmap: pointer to guest mapping meta data structure 487 * @gaddr: guest address 488 * 489 * Returns user space address which corresponds to the guest address or 490 * -EFAULT if no such mapping exists. 491 * This function does not establish potentially missing page table entries. 492 */ 493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 494 { 495 unsigned long rc; 496 497 mmap_read_lock(gmap->mm); 498 rc = __gmap_translate(gmap, gaddr); 499 mmap_read_unlock(gmap->mm); 500 return rc; 501 } 502 EXPORT_SYMBOL_GPL(gmap_translate); 503 504 /** 505 * gmap_unlink - disconnect a page table from the gmap shadow tables 506 * @mm: pointer to the parent mm_struct 507 * @table: pointer to the host page table 508 * @vmaddr: vm address associated with the host page table 509 */ 510 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 511 unsigned long vmaddr) 512 { 513 struct gmap *gmap; 514 int flush; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 518 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 519 if (flush) 520 gmap_flush_tlb(gmap); 521 } 522 rcu_read_unlock(); 523 } 524 525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 526 unsigned long gaddr); 527 528 /** 529 * __gmap_link - set up shadow page tables to connect a host to a guest address 530 * @gmap: pointer to guest mapping meta data structure 531 * @gaddr: guest address 532 * @vmaddr: vm address 533 * 534 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 535 * if the vm address is already mapped to a different guest segment. 536 * The mmap_lock of the mm that belongs to the address space must be held 537 * when this function gets called. 538 */ 539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 540 { 541 struct mm_struct *mm; 542 unsigned long *table; 543 spinlock_t *ptl; 544 pgd_t *pgd; 545 p4d_t *p4d; 546 pud_t *pud; 547 pmd_t *pmd; 548 u64 unprot; 549 int rc; 550 551 BUG_ON(gmap_is_shadow(gmap)); 552 /* Create higher level tables in the gmap page table */ 553 table = gmap->table; 554 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 555 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 556 if ((*table & _REGION_ENTRY_INVALID) && 557 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 558 gaddr & _REGION1_MASK)) 559 return -ENOMEM; 560 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 561 } 562 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 563 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 564 if ((*table & _REGION_ENTRY_INVALID) && 565 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 566 gaddr & _REGION2_MASK)) 567 return -ENOMEM; 568 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 569 } 570 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 571 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 572 if ((*table & _REGION_ENTRY_INVALID) && 573 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 574 gaddr & _REGION3_MASK)) 575 return -ENOMEM; 576 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 577 } 578 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 579 /* Walk the parent mm page table */ 580 mm = gmap->mm; 581 pgd = pgd_offset(mm, vmaddr); 582 VM_BUG_ON(pgd_none(*pgd)); 583 p4d = p4d_offset(pgd, vmaddr); 584 VM_BUG_ON(p4d_none(*p4d)); 585 pud = pud_offset(p4d, vmaddr); 586 VM_BUG_ON(pud_none(*pud)); 587 /* large puds cannot yet be handled */ 588 if (pud_large(*pud)) 589 return -EFAULT; 590 pmd = pmd_offset(pud, vmaddr); 591 VM_BUG_ON(pmd_none(*pmd)); 592 /* Are we allowed to use huge pages? */ 593 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 594 return -EFAULT; 595 /* Link gmap segment table entry location to page table. */ 596 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 597 if (rc) 598 return rc; 599 ptl = pmd_lock(mm, pmd); 600 spin_lock(&gmap->guest_table_lock); 601 if (*table == _SEGMENT_ENTRY_EMPTY) { 602 rc = radix_tree_insert(&gmap->host_to_guest, 603 vmaddr >> PMD_SHIFT, table); 604 if (!rc) { 605 if (pmd_large(*pmd)) { 606 *table = (pmd_val(*pmd) & 607 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 608 | _SEGMENT_ENTRY_GMAP_UC; 609 } else 610 *table = pmd_val(*pmd) & 611 _SEGMENT_ENTRY_HARDWARE_BITS; 612 } 613 } else if (*table & _SEGMENT_ENTRY_PROTECT && 614 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 615 unprot = (u64)*table; 616 unprot &= ~_SEGMENT_ENTRY_PROTECT; 617 unprot |= _SEGMENT_ENTRY_GMAP_UC; 618 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 619 } 620 spin_unlock(&gmap->guest_table_lock); 621 spin_unlock(ptl); 622 radix_tree_preload_end(); 623 return rc; 624 } 625 626 /** 627 * gmap_fault - resolve a fault on a guest address 628 * @gmap: pointer to guest mapping meta data structure 629 * @gaddr: guest address 630 * @fault_flags: flags to pass down to handle_mm_fault() 631 * 632 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 633 * if the vm address is already mapped to a different guest segment. 634 */ 635 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 636 unsigned int fault_flags) 637 { 638 unsigned long vmaddr; 639 int rc; 640 bool unlocked; 641 642 mmap_read_lock(gmap->mm); 643 644 retry: 645 unlocked = false; 646 vmaddr = __gmap_translate(gmap, gaddr); 647 if (IS_ERR_VALUE(vmaddr)) { 648 rc = vmaddr; 649 goto out_up; 650 } 651 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags, 652 &unlocked)) { 653 rc = -EFAULT; 654 goto out_up; 655 } 656 /* 657 * In the case that fixup_user_fault unlocked the mmap_lock during 658 * faultin redo __gmap_translate to not race with a map/unmap_segment. 659 */ 660 if (unlocked) 661 goto retry; 662 663 rc = __gmap_link(gmap, gaddr, vmaddr); 664 out_up: 665 mmap_read_unlock(gmap->mm); 666 return rc; 667 } 668 EXPORT_SYMBOL_GPL(gmap_fault); 669 670 /* 671 * this function is assumed to be called with mmap_lock held 672 */ 673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 674 { 675 struct vm_area_struct *vma; 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 686 vma = vma_lookup(gmap->mm, vmaddr); 687 if (!vma || is_vm_hugetlb_page(vma)) 688 return; 689 690 /* Get pointer to the page table entry */ 691 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 692 if (likely(ptep)) { 693 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 694 pte_unmap_unlock(ptep, ptl); 695 } 696 } 697 } 698 EXPORT_SYMBOL_GPL(__gmap_zap); 699 700 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 701 { 702 unsigned long gaddr, vmaddr, size; 703 struct vm_area_struct *vma; 704 705 mmap_read_lock(gmap->mm); 706 for (gaddr = from; gaddr < to; 707 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 708 /* Find the vm address for the guest address */ 709 vmaddr = (unsigned long) 710 radix_tree_lookup(&gmap->guest_to_host, 711 gaddr >> PMD_SHIFT); 712 if (!vmaddr) 713 continue; 714 vmaddr |= gaddr & ~PMD_MASK; 715 /* Find vma in the parent mm */ 716 vma = find_vma(gmap->mm, vmaddr); 717 if (!vma) 718 continue; 719 /* 720 * We do not discard pages that are backed by 721 * hugetlbfs, so we don't have to refault them. 722 */ 723 if (is_vm_hugetlb_page(vma)) 724 continue; 725 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 726 zap_page_range(vma, vmaddr, size); 727 } 728 mmap_read_unlock(gmap->mm); 729 } 730 EXPORT_SYMBOL_GPL(gmap_discard); 731 732 static LIST_HEAD(gmap_notifier_list); 733 static DEFINE_SPINLOCK(gmap_notifier_lock); 734 735 /** 736 * gmap_register_pte_notifier - register a pte invalidation callback 737 * @nb: pointer to the gmap notifier block 738 */ 739 void gmap_register_pte_notifier(struct gmap_notifier *nb) 740 { 741 spin_lock(&gmap_notifier_lock); 742 list_add_rcu(&nb->list, &gmap_notifier_list); 743 spin_unlock(&gmap_notifier_lock); 744 } 745 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 746 747 /** 748 * gmap_unregister_pte_notifier - remove a pte invalidation callback 749 * @nb: pointer to the gmap notifier block 750 */ 751 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 752 { 753 spin_lock(&gmap_notifier_lock); 754 list_del_rcu(&nb->list); 755 spin_unlock(&gmap_notifier_lock); 756 synchronize_rcu(); 757 } 758 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 759 760 /** 761 * gmap_call_notifier - call all registered invalidation callbacks 762 * @gmap: pointer to guest mapping meta data structure 763 * @start: start virtual address in the guest address space 764 * @end: end virtual address in the guest address space 765 */ 766 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 767 unsigned long end) 768 { 769 struct gmap_notifier *nb; 770 771 list_for_each_entry(nb, &gmap_notifier_list, list) 772 nb->notifier_call(gmap, start, end); 773 } 774 775 /** 776 * gmap_table_walk - walk the gmap page tables 777 * @gmap: pointer to guest mapping meta data structure 778 * @gaddr: virtual address in the guest address space 779 * @level: page table level to stop at 780 * 781 * Returns a table entry pointer for the given guest address and @level 782 * @level=0 : returns a pointer to a page table table entry (or NULL) 783 * @level=1 : returns a pointer to a segment table entry (or NULL) 784 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 785 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 786 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 787 * 788 * Returns NULL if the gmap page tables could not be walked to the 789 * requested level. 790 * 791 * Note: Can also be called for shadow gmaps. 792 */ 793 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 794 unsigned long gaddr, int level) 795 { 796 const int asce_type = gmap->asce & _ASCE_TYPE_MASK; 797 unsigned long *table = gmap->table; 798 799 if (gmap_is_shadow(gmap) && gmap->removed) 800 return NULL; 801 802 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1)) 803 return NULL; 804 805 if (asce_type != _ASCE_TYPE_REGION1 && 806 gaddr & (-1UL << (31 + (asce_type >> 2) * 11))) 807 return NULL; 808 809 switch (asce_type) { 810 case _ASCE_TYPE_REGION1: 811 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 812 if (level == 4) 813 break; 814 if (*table & _REGION_ENTRY_INVALID) 815 return NULL; 816 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 817 fallthrough; 818 case _ASCE_TYPE_REGION2: 819 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 820 if (level == 3) 821 break; 822 if (*table & _REGION_ENTRY_INVALID) 823 return NULL; 824 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 825 fallthrough; 826 case _ASCE_TYPE_REGION3: 827 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 828 if (level == 2) 829 break; 830 if (*table & _REGION_ENTRY_INVALID) 831 return NULL; 832 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 833 fallthrough; 834 case _ASCE_TYPE_SEGMENT: 835 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 836 if (level == 1) 837 break; 838 if (*table & _REGION_ENTRY_INVALID) 839 return NULL; 840 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 841 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 842 } 843 return table; 844 } 845 846 /** 847 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 848 * and return the pte pointer 849 * @gmap: pointer to guest mapping meta data structure 850 * @gaddr: virtual address in the guest address space 851 * @ptl: pointer to the spinlock pointer 852 * 853 * Returns a pointer to the locked pte for a guest address, or NULL 854 */ 855 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 856 spinlock_t **ptl) 857 { 858 unsigned long *table; 859 860 BUG_ON(gmap_is_shadow(gmap)); 861 /* Walk the gmap page table, lock and get pte pointer */ 862 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 863 if (!table || *table & _SEGMENT_ENTRY_INVALID) 864 return NULL; 865 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 866 } 867 868 /** 869 * gmap_pte_op_fixup - force a page in and connect the gmap page table 870 * @gmap: pointer to guest mapping meta data structure 871 * @gaddr: virtual address in the guest address space 872 * @vmaddr: address in the host process address space 873 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 874 * 875 * Returns 0 if the caller can retry __gmap_translate (might fail again), 876 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 877 * up or connecting the gmap page table. 878 */ 879 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 880 unsigned long vmaddr, int prot) 881 { 882 struct mm_struct *mm = gmap->mm; 883 unsigned int fault_flags; 884 bool unlocked = false; 885 886 BUG_ON(gmap_is_shadow(gmap)); 887 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 888 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked)) 889 return -EFAULT; 890 if (unlocked) 891 /* lost mmap_lock, caller has to retry __gmap_translate */ 892 return 0; 893 /* Connect the page tables */ 894 return __gmap_link(gmap, gaddr, vmaddr); 895 } 896 897 /** 898 * gmap_pte_op_end - release the page table lock 899 * @ptl: pointer to the spinlock pointer 900 */ 901 static void gmap_pte_op_end(spinlock_t *ptl) 902 { 903 if (ptl) 904 spin_unlock(ptl); 905 } 906 907 /** 908 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 909 * and return the pmd pointer 910 * @gmap: pointer to guest mapping meta data structure 911 * @gaddr: virtual address in the guest address space 912 * 913 * Returns a pointer to the pmd for a guest address, or NULL 914 */ 915 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 916 { 917 pmd_t *pmdp; 918 919 BUG_ON(gmap_is_shadow(gmap)); 920 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 921 if (!pmdp) 922 return NULL; 923 924 /* without huge pages, there is no need to take the table lock */ 925 if (!gmap->mm->context.allow_gmap_hpage_1m) 926 return pmd_none(*pmdp) ? NULL : pmdp; 927 928 spin_lock(&gmap->guest_table_lock); 929 if (pmd_none(*pmdp)) { 930 spin_unlock(&gmap->guest_table_lock); 931 return NULL; 932 } 933 934 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 935 if (!pmd_large(*pmdp)) 936 spin_unlock(&gmap->guest_table_lock); 937 return pmdp; 938 } 939 940 /** 941 * gmap_pmd_op_end - release the guest_table_lock if needed 942 * @gmap: pointer to the guest mapping meta data structure 943 * @pmdp: pointer to the pmd 944 */ 945 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 946 { 947 if (pmd_large(*pmdp)) 948 spin_unlock(&gmap->guest_table_lock); 949 } 950 951 /* 952 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 953 * @pmdp: pointer to the pmd to be protected 954 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 955 * @bits: notification bits to set 956 * 957 * Returns: 958 * 0 if successfully protected 959 * -EAGAIN if a fixup is needed 960 * -EINVAL if unsupported notifier bits have been specified 961 * 962 * Expected to be called with sg->mm->mmap_lock in read and 963 * guest_table_lock held. 964 */ 965 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 966 pmd_t *pmdp, int prot, unsigned long bits) 967 { 968 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 969 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 970 pmd_t new = *pmdp; 971 972 /* Fixup needed */ 973 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 974 return -EAGAIN; 975 976 if (prot == PROT_NONE && !pmd_i) { 977 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID)); 978 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 979 } 980 981 if (prot == PROT_READ && !pmd_p) { 982 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID)); 983 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT)); 984 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 985 } 986 987 if (bits & GMAP_NOTIFY_MPROT) 988 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN))); 989 990 /* Shadow GMAP protection needs split PMDs */ 991 if (bits & GMAP_NOTIFY_SHADOW) 992 return -EINVAL; 993 994 return 0; 995 } 996 997 /* 998 * gmap_protect_pte - remove access rights to memory and set pgste bits 999 * @gmap: pointer to guest mapping meta data structure 1000 * @gaddr: virtual address in the guest address space 1001 * @pmdp: pointer to the pmd associated with the pte 1002 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1003 * @bits: notification bits to set 1004 * 1005 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1006 * -EAGAIN if a fixup is needed. 1007 * 1008 * Expected to be called with sg->mm->mmap_lock in read 1009 */ 1010 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1011 pmd_t *pmdp, int prot, unsigned long bits) 1012 { 1013 int rc; 1014 pte_t *ptep; 1015 spinlock_t *ptl = NULL; 1016 unsigned long pbits = 0; 1017 1018 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1019 return -EAGAIN; 1020 1021 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1022 if (!ptep) 1023 return -ENOMEM; 1024 1025 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1026 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1027 /* Protect and unlock. */ 1028 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1029 gmap_pte_op_end(ptl); 1030 return rc; 1031 } 1032 1033 /* 1034 * gmap_protect_range - remove access rights to memory and set pgste bits 1035 * @gmap: pointer to guest mapping meta data structure 1036 * @gaddr: virtual address in the guest address space 1037 * @len: size of area 1038 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1039 * @bits: pgste notification bits to set 1040 * 1041 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1042 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1043 * 1044 * Called with sg->mm->mmap_lock in read. 1045 */ 1046 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1047 unsigned long len, int prot, unsigned long bits) 1048 { 1049 unsigned long vmaddr, dist; 1050 pmd_t *pmdp; 1051 int rc; 1052 1053 BUG_ON(gmap_is_shadow(gmap)); 1054 while (len) { 1055 rc = -EAGAIN; 1056 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1057 if (pmdp) { 1058 if (!pmd_large(*pmdp)) { 1059 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1060 bits); 1061 if (!rc) { 1062 len -= PAGE_SIZE; 1063 gaddr += PAGE_SIZE; 1064 } 1065 } else { 1066 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1067 bits); 1068 if (!rc) { 1069 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1070 len = len < dist ? 0 : len - dist; 1071 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1072 } 1073 } 1074 gmap_pmd_op_end(gmap, pmdp); 1075 } 1076 if (rc) { 1077 if (rc == -EINVAL) 1078 return rc; 1079 1080 /* -EAGAIN, fixup of userspace mm and gmap */ 1081 vmaddr = __gmap_translate(gmap, gaddr); 1082 if (IS_ERR_VALUE(vmaddr)) 1083 return vmaddr; 1084 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1085 if (rc) 1086 return rc; 1087 } 1088 } 1089 return 0; 1090 } 1091 1092 /** 1093 * gmap_mprotect_notify - change access rights for a range of ptes and 1094 * call the notifier if any pte changes again 1095 * @gmap: pointer to guest mapping meta data structure 1096 * @gaddr: virtual address in the guest address space 1097 * @len: size of area 1098 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1099 * 1100 * Returns 0 if for each page in the given range a gmap mapping exists, 1101 * the new access rights could be set and the notifier could be armed. 1102 * If the gmap mapping is missing for one or more pages -EFAULT is 1103 * returned. If no memory could be allocated -ENOMEM is returned. 1104 * This function establishes missing page table entries. 1105 */ 1106 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1107 unsigned long len, int prot) 1108 { 1109 int rc; 1110 1111 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1112 return -EINVAL; 1113 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1114 return -EINVAL; 1115 mmap_read_lock(gmap->mm); 1116 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1117 mmap_read_unlock(gmap->mm); 1118 return rc; 1119 } 1120 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1121 1122 /** 1123 * gmap_read_table - get an unsigned long value from a guest page table using 1124 * absolute addressing, without marking the page referenced. 1125 * @gmap: pointer to guest mapping meta data structure 1126 * @gaddr: virtual address in the guest address space 1127 * @val: pointer to the unsigned long value to return 1128 * 1129 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1130 * if reading using the virtual address failed. -EINVAL if called on a gmap 1131 * shadow. 1132 * 1133 * Called with gmap->mm->mmap_lock in read. 1134 */ 1135 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1136 { 1137 unsigned long address, vmaddr; 1138 spinlock_t *ptl; 1139 pte_t *ptep, pte; 1140 int rc; 1141 1142 if (gmap_is_shadow(gmap)) 1143 return -EINVAL; 1144 1145 while (1) { 1146 rc = -EAGAIN; 1147 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1148 if (ptep) { 1149 pte = *ptep; 1150 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1151 address = pte_val(pte) & PAGE_MASK; 1152 address += gaddr & ~PAGE_MASK; 1153 *val = *(unsigned long *) address; 1154 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG))); 1155 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1156 rc = 0; 1157 } 1158 gmap_pte_op_end(ptl); 1159 } 1160 if (!rc) 1161 break; 1162 vmaddr = __gmap_translate(gmap, gaddr); 1163 if (IS_ERR_VALUE(vmaddr)) { 1164 rc = vmaddr; 1165 break; 1166 } 1167 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1168 if (rc) 1169 break; 1170 } 1171 return rc; 1172 } 1173 EXPORT_SYMBOL_GPL(gmap_read_table); 1174 1175 /** 1176 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1177 * @sg: pointer to the shadow guest address space structure 1178 * @vmaddr: vm address associated with the rmap 1179 * @rmap: pointer to the rmap structure 1180 * 1181 * Called with the sg->guest_table_lock 1182 */ 1183 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1184 struct gmap_rmap *rmap) 1185 { 1186 struct gmap_rmap *temp; 1187 void __rcu **slot; 1188 1189 BUG_ON(!gmap_is_shadow(sg)); 1190 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1191 if (slot) { 1192 rmap->next = radix_tree_deref_slot_protected(slot, 1193 &sg->guest_table_lock); 1194 for (temp = rmap->next; temp; temp = temp->next) { 1195 if (temp->raddr == rmap->raddr) { 1196 kfree(rmap); 1197 return; 1198 } 1199 } 1200 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1201 } else { 1202 rmap->next = NULL; 1203 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1204 rmap); 1205 } 1206 } 1207 1208 /** 1209 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1210 * @sg: pointer to the shadow guest address space structure 1211 * @raddr: rmap address in the shadow gmap 1212 * @paddr: address in the parent guest address space 1213 * @len: length of the memory area to protect 1214 * 1215 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1216 * if out of memory and -EFAULT if paddr is invalid. 1217 */ 1218 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1219 unsigned long paddr, unsigned long len) 1220 { 1221 struct gmap *parent; 1222 struct gmap_rmap *rmap; 1223 unsigned long vmaddr; 1224 spinlock_t *ptl; 1225 pte_t *ptep; 1226 int rc; 1227 1228 BUG_ON(!gmap_is_shadow(sg)); 1229 parent = sg->parent; 1230 while (len) { 1231 vmaddr = __gmap_translate(parent, paddr); 1232 if (IS_ERR_VALUE(vmaddr)) 1233 return vmaddr; 1234 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 1235 if (!rmap) 1236 return -ENOMEM; 1237 rmap->raddr = raddr; 1238 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 1239 if (rc) { 1240 kfree(rmap); 1241 return rc; 1242 } 1243 rc = -EAGAIN; 1244 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1245 if (ptep) { 1246 spin_lock(&sg->guest_table_lock); 1247 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1248 PGSTE_VSIE_BIT); 1249 if (!rc) 1250 gmap_insert_rmap(sg, vmaddr, rmap); 1251 spin_unlock(&sg->guest_table_lock); 1252 gmap_pte_op_end(ptl); 1253 } 1254 radix_tree_preload_end(); 1255 if (rc) { 1256 kfree(rmap); 1257 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1258 if (rc) 1259 return rc; 1260 continue; 1261 } 1262 paddr += PAGE_SIZE; 1263 len -= PAGE_SIZE; 1264 } 1265 return 0; 1266 } 1267 1268 #define _SHADOW_RMAP_MASK 0x7 1269 #define _SHADOW_RMAP_REGION1 0x5 1270 #define _SHADOW_RMAP_REGION2 0x4 1271 #define _SHADOW_RMAP_REGION3 0x3 1272 #define _SHADOW_RMAP_SEGMENT 0x2 1273 #define _SHADOW_RMAP_PGTABLE 0x1 1274 1275 /** 1276 * gmap_idte_one - invalidate a single region or segment table entry 1277 * @asce: region or segment table *origin* + table-type bits 1278 * @vaddr: virtual address to identify the table entry to flush 1279 * 1280 * The invalid bit of a single region or segment table entry is set 1281 * and the associated TLB entries depending on the entry are flushed. 1282 * The table-type of the @asce identifies the portion of the @vaddr 1283 * that is used as the invalidation index. 1284 */ 1285 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1286 { 1287 asm volatile( 1288 " idte %0,0,%1" 1289 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1290 } 1291 1292 /** 1293 * gmap_unshadow_page - remove a page from a shadow page table 1294 * @sg: pointer to the shadow guest address space structure 1295 * @raddr: rmap address in the shadow guest address space 1296 * 1297 * Called with the sg->guest_table_lock 1298 */ 1299 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1300 { 1301 unsigned long *table; 1302 1303 BUG_ON(!gmap_is_shadow(sg)); 1304 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1305 if (!table || *table & _PAGE_INVALID) 1306 return; 1307 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1308 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1309 } 1310 1311 /** 1312 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1313 * @sg: pointer to the shadow guest address space structure 1314 * @raddr: rmap address in the shadow guest address space 1315 * @pgt: pointer to the start of a shadow page table 1316 * 1317 * Called with the sg->guest_table_lock 1318 */ 1319 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1320 unsigned long *pgt) 1321 { 1322 int i; 1323 1324 BUG_ON(!gmap_is_shadow(sg)); 1325 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1326 pgt[i] = _PAGE_INVALID; 1327 } 1328 1329 /** 1330 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1331 * @sg: pointer to the shadow guest address space structure 1332 * @raddr: address in the shadow guest address space 1333 * 1334 * Called with the sg->guest_table_lock 1335 */ 1336 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1337 { 1338 unsigned long sto, *ste, *pgt; 1339 struct page *page; 1340 1341 BUG_ON(!gmap_is_shadow(sg)); 1342 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1343 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1344 return; 1345 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1346 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1347 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1348 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1349 *ste = _SEGMENT_ENTRY_EMPTY; 1350 __gmap_unshadow_pgt(sg, raddr, pgt); 1351 /* Free page table */ 1352 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1353 list_del(&page->lru); 1354 page_table_free_pgste(page); 1355 } 1356 1357 /** 1358 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1359 * @sg: pointer to the shadow guest address space structure 1360 * @raddr: rmap address in the shadow guest address space 1361 * @sgt: pointer to the start of a shadow segment table 1362 * 1363 * Called with the sg->guest_table_lock 1364 */ 1365 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1366 unsigned long *sgt) 1367 { 1368 unsigned long *pgt; 1369 struct page *page; 1370 int i; 1371 1372 BUG_ON(!gmap_is_shadow(sg)); 1373 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1374 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1375 continue; 1376 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1377 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1378 __gmap_unshadow_pgt(sg, raddr, pgt); 1379 /* Free page table */ 1380 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1381 list_del(&page->lru); 1382 page_table_free_pgste(page); 1383 } 1384 } 1385 1386 /** 1387 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1388 * @sg: pointer to the shadow guest address space structure 1389 * @raddr: rmap address in the shadow guest address space 1390 * 1391 * Called with the shadow->guest_table_lock 1392 */ 1393 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1394 { 1395 unsigned long r3o, *r3e, *sgt; 1396 struct page *page; 1397 1398 BUG_ON(!gmap_is_shadow(sg)); 1399 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1400 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1401 return; 1402 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1403 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1404 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1405 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1406 *r3e = _REGION3_ENTRY_EMPTY; 1407 __gmap_unshadow_sgt(sg, raddr, sgt); 1408 /* Free segment table */ 1409 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1410 list_del(&page->lru); 1411 __free_pages(page, CRST_ALLOC_ORDER); 1412 } 1413 1414 /** 1415 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1416 * @sg: pointer to the shadow guest address space structure 1417 * @raddr: address in the shadow guest address space 1418 * @r3t: pointer to the start of a shadow region-3 table 1419 * 1420 * Called with the sg->guest_table_lock 1421 */ 1422 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1423 unsigned long *r3t) 1424 { 1425 unsigned long *sgt; 1426 struct page *page; 1427 int i; 1428 1429 BUG_ON(!gmap_is_shadow(sg)); 1430 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1431 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1432 continue; 1433 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1434 r3t[i] = _REGION3_ENTRY_EMPTY; 1435 __gmap_unshadow_sgt(sg, raddr, sgt); 1436 /* Free segment table */ 1437 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1438 list_del(&page->lru); 1439 __free_pages(page, CRST_ALLOC_ORDER); 1440 } 1441 } 1442 1443 /** 1444 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1445 * @sg: pointer to the shadow guest address space structure 1446 * @raddr: rmap address in the shadow guest address space 1447 * 1448 * Called with the sg->guest_table_lock 1449 */ 1450 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1451 { 1452 unsigned long r2o, *r2e, *r3t; 1453 struct page *page; 1454 1455 BUG_ON(!gmap_is_shadow(sg)); 1456 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1457 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1458 return; 1459 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1460 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1461 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1462 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1463 *r2e = _REGION2_ENTRY_EMPTY; 1464 __gmap_unshadow_r3t(sg, raddr, r3t); 1465 /* Free region 3 table */ 1466 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1467 list_del(&page->lru); 1468 __free_pages(page, CRST_ALLOC_ORDER); 1469 } 1470 1471 /** 1472 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1473 * @sg: pointer to the shadow guest address space structure 1474 * @raddr: rmap address in the shadow guest address space 1475 * @r2t: pointer to the start of a shadow region-2 table 1476 * 1477 * Called with the sg->guest_table_lock 1478 */ 1479 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1480 unsigned long *r2t) 1481 { 1482 unsigned long *r3t; 1483 struct page *page; 1484 int i; 1485 1486 BUG_ON(!gmap_is_shadow(sg)); 1487 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1488 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1489 continue; 1490 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1491 r2t[i] = _REGION2_ENTRY_EMPTY; 1492 __gmap_unshadow_r3t(sg, raddr, r3t); 1493 /* Free region 3 table */ 1494 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1495 list_del(&page->lru); 1496 __free_pages(page, CRST_ALLOC_ORDER); 1497 } 1498 } 1499 1500 /** 1501 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1502 * @sg: pointer to the shadow guest address space structure 1503 * @raddr: rmap address in the shadow guest address space 1504 * 1505 * Called with the sg->guest_table_lock 1506 */ 1507 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1508 { 1509 unsigned long r1o, *r1e, *r2t; 1510 struct page *page; 1511 1512 BUG_ON(!gmap_is_shadow(sg)); 1513 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1514 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1515 return; 1516 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1517 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1518 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1519 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1520 *r1e = _REGION1_ENTRY_EMPTY; 1521 __gmap_unshadow_r2t(sg, raddr, r2t); 1522 /* Free region 2 table */ 1523 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1524 list_del(&page->lru); 1525 __free_pages(page, CRST_ALLOC_ORDER); 1526 } 1527 1528 /** 1529 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1530 * @sg: pointer to the shadow guest address space structure 1531 * @raddr: rmap address in the shadow guest address space 1532 * @r1t: pointer to the start of a shadow region-1 table 1533 * 1534 * Called with the shadow->guest_table_lock 1535 */ 1536 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1537 unsigned long *r1t) 1538 { 1539 unsigned long asce, *r2t; 1540 struct page *page; 1541 int i; 1542 1543 BUG_ON(!gmap_is_shadow(sg)); 1544 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1545 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1546 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1547 continue; 1548 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1549 __gmap_unshadow_r2t(sg, raddr, r2t); 1550 /* Clear entry and flush translation r1t -> r2t */ 1551 gmap_idte_one(asce, raddr); 1552 r1t[i] = _REGION1_ENTRY_EMPTY; 1553 /* Free region 2 table */ 1554 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1555 list_del(&page->lru); 1556 __free_pages(page, CRST_ALLOC_ORDER); 1557 } 1558 } 1559 1560 /** 1561 * gmap_unshadow - remove a shadow page table completely 1562 * @sg: pointer to the shadow guest address space structure 1563 * 1564 * Called with sg->guest_table_lock 1565 */ 1566 static void gmap_unshadow(struct gmap *sg) 1567 { 1568 unsigned long *table; 1569 1570 BUG_ON(!gmap_is_shadow(sg)); 1571 if (sg->removed) 1572 return; 1573 sg->removed = 1; 1574 gmap_call_notifier(sg, 0, -1UL); 1575 gmap_flush_tlb(sg); 1576 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1577 switch (sg->asce & _ASCE_TYPE_MASK) { 1578 case _ASCE_TYPE_REGION1: 1579 __gmap_unshadow_r1t(sg, 0, table); 1580 break; 1581 case _ASCE_TYPE_REGION2: 1582 __gmap_unshadow_r2t(sg, 0, table); 1583 break; 1584 case _ASCE_TYPE_REGION3: 1585 __gmap_unshadow_r3t(sg, 0, table); 1586 break; 1587 case _ASCE_TYPE_SEGMENT: 1588 __gmap_unshadow_sgt(sg, 0, table); 1589 break; 1590 } 1591 } 1592 1593 /** 1594 * gmap_find_shadow - find a specific asce in the list of shadow tables 1595 * @parent: pointer to the parent gmap 1596 * @asce: ASCE for which the shadow table is created 1597 * @edat_level: edat level to be used for the shadow translation 1598 * 1599 * Returns the pointer to a gmap if a shadow table with the given asce is 1600 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1601 * otherwise NULL 1602 */ 1603 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1604 int edat_level) 1605 { 1606 struct gmap *sg; 1607 1608 list_for_each_entry(sg, &parent->children, list) { 1609 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1610 sg->removed) 1611 continue; 1612 if (!sg->initialized) 1613 return ERR_PTR(-EAGAIN); 1614 refcount_inc(&sg->ref_count); 1615 return sg; 1616 } 1617 return NULL; 1618 } 1619 1620 /** 1621 * gmap_shadow_valid - check if a shadow guest address space matches the 1622 * given properties and is still valid 1623 * @sg: pointer to the shadow guest address space structure 1624 * @asce: ASCE for which the shadow table is requested 1625 * @edat_level: edat level to be used for the shadow translation 1626 * 1627 * Returns 1 if the gmap shadow is still valid and matches the given 1628 * properties, the caller can continue using it. Returns 0 otherwise, the 1629 * caller has to request a new shadow gmap in this case. 1630 * 1631 */ 1632 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1633 { 1634 if (sg->removed) 1635 return 0; 1636 return sg->orig_asce == asce && sg->edat_level == edat_level; 1637 } 1638 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1639 1640 /** 1641 * gmap_shadow - create/find a shadow guest address space 1642 * @parent: pointer to the parent gmap 1643 * @asce: ASCE for which the shadow table is created 1644 * @edat_level: edat level to be used for the shadow translation 1645 * 1646 * The pages of the top level page table referred by the asce parameter 1647 * will be set to read-only and marked in the PGSTEs of the kvm process. 1648 * The shadow table will be removed automatically on any change to the 1649 * PTE mapping for the source table. 1650 * 1651 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1652 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1653 * parent gmap table could not be protected. 1654 */ 1655 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1656 int edat_level) 1657 { 1658 struct gmap *sg, *new; 1659 unsigned long limit; 1660 int rc; 1661 1662 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1663 BUG_ON(gmap_is_shadow(parent)); 1664 spin_lock(&parent->shadow_lock); 1665 sg = gmap_find_shadow(parent, asce, edat_level); 1666 spin_unlock(&parent->shadow_lock); 1667 if (sg) 1668 return sg; 1669 /* Create a new shadow gmap */ 1670 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1671 if (asce & _ASCE_REAL_SPACE) 1672 limit = -1UL; 1673 new = gmap_alloc(limit); 1674 if (!new) 1675 return ERR_PTR(-ENOMEM); 1676 new->mm = parent->mm; 1677 new->parent = gmap_get(parent); 1678 new->orig_asce = asce; 1679 new->edat_level = edat_level; 1680 new->initialized = false; 1681 spin_lock(&parent->shadow_lock); 1682 /* Recheck if another CPU created the same shadow */ 1683 sg = gmap_find_shadow(parent, asce, edat_level); 1684 if (sg) { 1685 spin_unlock(&parent->shadow_lock); 1686 gmap_free(new); 1687 return sg; 1688 } 1689 if (asce & _ASCE_REAL_SPACE) { 1690 /* only allow one real-space gmap shadow */ 1691 list_for_each_entry(sg, &parent->children, list) { 1692 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1693 spin_lock(&sg->guest_table_lock); 1694 gmap_unshadow(sg); 1695 spin_unlock(&sg->guest_table_lock); 1696 list_del(&sg->list); 1697 gmap_put(sg); 1698 break; 1699 } 1700 } 1701 } 1702 refcount_set(&new->ref_count, 2); 1703 list_add(&new->list, &parent->children); 1704 if (asce & _ASCE_REAL_SPACE) { 1705 /* nothing to protect, return right away */ 1706 new->initialized = true; 1707 spin_unlock(&parent->shadow_lock); 1708 return new; 1709 } 1710 spin_unlock(&parent->shadow_lock); 1711 /* protect after insertion, so it will get properly invalidated */ 1712 mmap_read_lock(parent->mm); 1713 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1714 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1715 PROT_READ, GMAP_NOTIFY_SHADOW); 1716 mmap_read_unlock(parent->mm); 1717 spin_lock(&parent->shadow_lock); 1718 new->initialized = true; 1719 if (rc) { 1720 list_del(&new->list); 1721 gmap_free(new); 1722 new = ERR_PTR(rc); 1723 } 1724 spin_unlock(&parent->shadow_lock); 1725 return new; 1726 } 1727 EXPORT_SYMBOL_GPL(gmap_shadow); 1728 1729 /** 1730 * gmap_shadow_r2t - create an empty shadow region 2 table 1731 * @sg: pointer to the shadow guest address space structure 1732 * @saddr: faulting address in the shadow gmap 1733 * @r2t: parent gmap address of the region 2 table to get shadowed 1734 * @fake: r2t references contiguous guest memory block, not a r2t 1735 * 1736 * The r2t parameter specifies the address of the source table. The 1737 * four pages of the source table are made read-only in the parent gmap 1738 * address space. A write to the source table area @r2t will automatically 1739 * remove the shadow r2 table and all of its decendents. 1740 * 1741 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1742 * shadow table structure is incomplete, -ENOMEM if out of memory and 1743 * -EFAULT if an address in the parent gmap could not be resolved. 1744 * 1745 * Called with sg->mm->mmap_lock in read. 1746 */ 1747 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1748 int fake) 1749 { 1750 unsigned long raddr, origin, offset, len; 1751 unsigned long *s_r2t, *table; 1752 struct page *page; 1753 int rc; 1754 1755 BUG_ON(!gmap_is_shadow(sg)); 1756 /* Allocate a shadow region second table */ 1757 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1758 if (!page) 1759 return -ENOMEM; 1760 page->index = r2t & _REGION_ENTRY_ORIGIN; 1761 if (fake) 1762 page->index |= GMAP_SHADOW_FAKE_TABLE; 1763 s_r2t = (unsigned long *) page_to_phys(page); 1764 /* Install shadow region second table */ 1765 spin_lock(&sg->guest_table_lock); 1766 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1767 if (!table) { 1768 rc = -EAGAIN; /* Race with unshadow */ 1769 goto out_free; 1770 } 1771 if (!(*table & _REGION_ENTRY_INVALID)) { 1772 rc = 0; /* Already established */ 1773 goto out_free; 1774 } else if (*table & _REGION_ENTRY_ORIGIN) { 1775 rc = -EAGAIN; /* Race with shadow */ 1776 goto out_free; 1777 } 1778 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1779 /* mark as invalid as long as the parent table is not protected */ 1780 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1781 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1782 if (sg->edat_level >= 1) 1783 *table |= (r2t & _REGION_ENTRY_PROTECT); 1784 list_add(&page->lru, &sg->crst_list); 1785 if (fake) { 1786 /* nothing to protect for fake tables */ 1787 *table &= ~_REGION_ENTRY_INVALID; 1788 spin_unlock(&sg->guest_table_lock); 1789 return 0; 1790 } 1791 spin_unlock(&sg->guest_table_lock); 1792 /* Make r2t read-only in parent gmap page table */ 1793 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1794 origin = r2t & _REGION_ENTRY_ORIGIN; 1795 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1796 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1797 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1798 spin_lock(&sg->guest_table_lock); 1799 if (!rc) { 1800 table = gmap_table_walk(sg, saddr, 4); 1801 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1802 (unsigned long) s_r2t) 1803 rc = -EAGAIN; /* Race with unshadow */ 1804 else 1805 *table &= ~_REGION_ENTRY_INVALID; 1806 } else { 1807 gmap_unshadow_r2t(sg, raddr); 1808 } 1809 spin_unlock(&sg->guest_table_lock); 1810 return rc; 1811 out_free: 1812 spin_unlock(&sg->guest_table_lock); 1813 __free_pages(page, CRST_ALLOC_ORDER); 1814 return rc; 1815 } 1816 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1817 1818 /** 1819 * gmap_shadow_r3t - create a shadow region 3 table 1820 * @sg: pointer to the shadow guest address space structure 1821 * @saddr: faulting address in the shadow gmap 1822 * @r3t: parent gmap address of the region 3 table to get shadowed 1823 * @fake: r3t references contiguous guest memory block, not a r3t 1824 * 1825 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1826 * shadow table structure is incomplete, -ENOMEM if out of memory and 1827 * -EFAULT if an address in the parent gmap could not be resolved. 1828 * 1829 * Called with sg->mm->mmap_lock in read. 1830 */ 1831 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1832 int fake) 1833 { 1834 unsigned long raddr, origin, offset, len; 1835 unsigned long *s_r3t, *table; 1836 struct page *page; 1837 int rc; 1838 1839 BUG_ON(!gmap_is_shadow(sg)); 1840 /* Allocate a shadow region second table */ 1841 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1842 if (!page) 1843 return -ENOMEM; 1844 page->index = r3t & _REGION_ENTRY_ORIGIN; 1845 if (fake) 1846 page->index |= GMAP_SHADOW_FAKE_TABLE; 1847 s_r3t = (unsigned long *) page_to_phys(page); 1848 /* Install shadow region second table */ 1849 spin_lock(&sg->guest_table_lock); 1850 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1851 if (!table) { 1852 rc = -EAGAIN; /* Race with unshadow */ 1853 goto out_free; 1854 } 1855 if (!(*table & _REGION_ENTRY_INVALID)) { 1856 rc = 0; /* Already established */ 1857 goto out_free; 1858 } else if (*table & _REGION_ENTRY_ORIGIN) { 1859 rc = -EAGAIN; /* Race with shadow */ 1860 goto out_free; 1861 } 1862 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1863 /* mark as invalid as long as the parent table is not protected */ 1864 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1865 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1866 if (sg->edat_level >= 1) 1867 *table |= (r3t & _REGION_ENTRY_PROTECT); 1868 list_add(&page->lru, &sg->crst_list); 1869 if (fake) { 1870 /* nothing to protect for fake tables */ 1871 *table &= ~_REGION_ENTRY_INVALID; 1872 spin_unlock(&sg->guest_table_lock); 1873 return 0; 1874 } 1875 spin_unlock(&sg->guest_table_lock); 1876 /* Make r3t read-only in parent gmap page table */ 1877 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1878 origin = r3t & _REGION_ENTRY_ORIGIN; 1879 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1880 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1881 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1882 spin_lock(&sg->guest_table_lock); 1883 if (!rc) { 1884 table = gmap_table_walk(sg, saddr, 3); 1885 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1886 (unsigned long) s_r3t) 1887 rc = -EAGAIN; /* Race with unshadow */ 1888 else 1889 *table &= ~_REGION_ENTRY_INVALID; 1890 } else { 1891 gmap_unshadow_r3t(sg, raddr); 1892 } 1893 spin_unlock(&sg->guest_table_lock); 1894 return rc; 1895 out_free: 1896 spin_unlock(&sg->guest_table_lock); 1897 __free_pages(page, CRST_ALLOC_ORDER); 1898 return rc; 1899 } 1900 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1901 1902 /** 1903 * gmap_shadow_sgt - create a shadow segment table 1904 * @sg: pointer to the shadow guest address space structure 1905 * @saddr: faulting address in the shadow gmap 1906 * @sgt: parent gmap address of the segment table to get shadowed 1907 * @fake: sgt references contiguous guest memory block, not a sgt 1908 * 1909 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1910 * shadow table structure is incomplete, -ENOMEM if out of memory and 1911 * -EFAULT if an address in the parent gmap could not be resolved. 1912 * 1913 * Called with sg->mm->mmap_lock in read. 1914 */ 1915 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1916 int fake) 1917 { 1918 unsigned long raddr, origin, offset, len; 1919 unsigned long *s_sgt, *table; 1920 struct page *page; 1921 int rc; 1922 1923 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1924 /* Allocate a shadow segment table */ 1925 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1926 if (!page) 1927 return -ENOMEM; 1928 page->index = sgt & _REGION_ENTRY_ORIGIN; 1929 if (fake) 1930 page->index |= GMAP_SHADOW_FAKE_TABLE; 1931 s_sgt = (unsigned long *) page_to_phys(page); 1932 /* Install shadow region second table */ 1933 spin_lock(&sg->guest_table_lock); 1934 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1935 if (!table) { 1936 rc = -EAGAIN; /* Race with unshadow */ 1937 goto out_free; 1938 } 1939 if (!(*table & _REGION_ENTRY_INVALID)) { 1940 rc = 0; /* Already established */ 1941 goto out_free; 1942 } else if (*table & _REGION_ENTRY_ORIGIN) { 1943 rc = -EAGAIN; /* Race with shadow */ 1944 goto out_free; 1945 } 1946 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1947 /* mark as invalid as long as the parent table is not protected */ 1948 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1949 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1950 if (sg->edat_level >= 1) 1951 *table |= sgt & _REGION_ENTRY_PROTECT; 1952 list_add(&page->lru, &sg->crst_list); 1953 if (fake) { 1954 /* nothing to protect for fake tables */ 1955 *table &= ~_REGION_ENTRY_INVALID; 1956 spin_unlock(&sg->guest_table_lock); 1957 return 0; 1958 } 1959 spin_unlock(&sg->guest_table_lock); 1960 /* Make sgt read-only in parent gmap page table */ 1961 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1962 origin = sgt & _REGION_ENTRY_ORIGIN; 1963 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1964 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1965 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1966 spin_lock(&sg->guest_table_lock); 1967 if (!rc) { 1968 table = gmap_table_walk(sg, saddr, 2); 1969 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1970 (unsigned long) s_sgt) 1971 rc = -EAGAIN; /* Race with unshadow */ 1972 else 1973 *table &= ~_REGION_ENTRY_INVALID; 1974 } else { 1975 gmap_unshadow_sgt(sg, raddr); 1976 } 1977 spin_unlock(&sg->guest_table_lock); 1978 return rc; 1979 out_free: 1980 spin_unlock(&sg->guest_table_lock); 1981 __free_pages(page, CRST_ALLOC_ORDER); 1982 return rc; 1983 } 1984 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1985 1986 /** 1987 * gmap_shadow_pgt_lookup - find a shadow page table 1988 * @sg: pointer to the shadow guest address space structure 1989 * @saddr: the address in the shadow aguest address space 1990 * @pgt: parent gmap address of the page table to get shadowed 1991 * @dat_protection: if the pgtable is marked as protected by dat 1992 * @fake: pgt references contiguous guest memory block, not a pgtable 1993 * 1994 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1995 * table was not found. 1996 * 1997 * Called with sg->mm->mmap_lock in read. 1998 */ 1999 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 2000 unsigned long *pgt, int *dat_protection, 2001 int *fake) 2002 { 2003 unsigned long *table; 2004 struct page *page; 2005 int rc; 2006 2007 BUG_ON(!gmap_is_shadow(sg)); 2008 spin_lock(&sg->guest_table_lock); 2009 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2010 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 2011 /* Shadow page tables are full pages (pte+pgste) */ 2012 page = pfn_to_page(*table >> PAGE_SHIFT); 2013 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 2014 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 2015 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 2016 rc = 0; 2017 } else { 2018 rc = -EAGAIN; 2019 } 2020 spin_unlock(&sg->guest_table_lock); 2021 return rc; 2022 2023 } 2024 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2025 2026 /** 2027 * gmap_shadow_pgt - instantiate a shadow page table 2028 * @sg: pointer to the shadow guest address space structure 2029 * @saddr: faulting address in the shadow gmap 2030 * @pgt: parent gmap address of the page table to get shadowed 2031 * @fake: pgt references contiguous guest memory block, not a pgtable 2032 * 2033 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2034 * shadow table structure is incomplete, -ENOMEM if out of memory, 2035 * -EFAULT if an address in the parent gmap could not be resolved and 2036 * 2037 * Called with gmap->mm->mmap_lock in read 2038 */ 2039 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2040 int fake) 2041 { 2042 unsigned long raddr, origin; 2043 unsigned long *s_pgt, *table; 2044 struct page *page; 2045 int rc; 2046 2047 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2048 /* Allocate a shadow page table */ 2049 page = page_table_alloc_pgste(sg->mm); 2050 if (!page) 2051 return -ENOMEM; 2052 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2053 if (fake) 2054 page->index |= GMAP_SHADOW_FAKE_TABLE; 2055 s_pgt = (unsigned long *) page_to_phys(page); 2056 /* Install shadow page table */ 2057 spin_lock(&sg->guest_table_lock); 2058 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2059 if (!table) { 2060 rc = -EAGAIN; /* Race with unshadow */ 2061 goto out_free; 2062 } 2063 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2064 rc = 0; /* Already established */ 2065 goto out_free; 2066 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2067 rc = -EAGAIN; /* Race with shadow */ 2068 goto out_free; 2069 } 2070 /* mark as invalid as long as the parent table is not protected */ 2071 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2072 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2073 list_add(&page->lru, &sg->pt_list); 2074 if (fake) { 2075 /* nothing to protect for fake tables */ 2076 *table &= ~_SEGMENT_ENTRY_INVALID; 2077 spin_unlock(&sg->guest_table_lock); 2078 return 0; 2079 } 2080 spin_unlock(&sg->guest_table_lock); 2081 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2082 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2083 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2084 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2085 spin_lock(&sg->guest_table_lock); 2086 if (!rc) { 2087 table = gmap_table_walk(sg, saddr, 1); 2088 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2089 (unsigned long) s_pgt) 2090 rc = -EAGAIN; /* Race with unshadow */ 2091 else 2092 *table &= ~_SEGMENT_ENTRY_INVALID; 2093 } else { 2094 gmap_unshadow_pgt(sg, raddr); 2095 } 2096 spin_unlock(&sg->guest_table_lock); 2097 return rc; 2098 out_free: 2099 spin_unlock(&sg->guest_table_lock); 2100 page_table_free_pgste(page); 2101 return rc; 2102 2103 } 2104 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2105 2106 /** 2107 * gmap_shadow_page - create a shadow page mapping 2108 * @sg: pointer to the shadow guest address space structure 2109 * @saddr: faulting address in the shadow gmap 2110 * @pte: pte in parent gmap address space to get shadowed 2111 * 2112 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2113 * shadow table structure is incomplete, -ENOMEM if out of memory and 2114 * -EFAULT if an address in the parent gmap could not be resolved. 2115 * 2116 * Called with sg->mm->mmap_lock in read. 2117 */ 2118 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2119 { 2120 struct gmap *parent; 2121 struct gmap_rmap *rmap; 2122 unsigned long vmaddr, paddr; 2123 spinlock_t *ptl; 2124 pte_t *sptep, *tptep; 2125 int prot; 2126 int rc; 2127 2128 BUG_ON(!gmap_is_shadow(sg)); 2129 parent = sg->parent; 2130 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2131 2132 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 2133 if (!rmap) 2134 return -ENOMEM; 2135 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2136 2137 while (1) { 2138 paddr = pte_val(pte) & PAGE_MASK; 2139 vmaddr = __gmap_translate(parent, paddr); 2140 if (IS_ERR_VALUE(vmaddr)) { 2141 rc = vmaddr; 2142 break; 2143 } 2144 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 2145 if (rc) 2146 break; 2147 rc = -EAGAIN; 2148 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2149 if (sptep) { 2150 spin_lock(&sg->guest_table_lock); 2151 /* Get page table pointer */ 2152 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2153 if (!tptep) { 2154 spin_unlock(&sg->guest_table_lock); 2155 gmap_pte_op_end(ptl); 2156 radix_tree_preload_end(); 2157 break; 2158 } 2159 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2160 if (rc > 0) { 2161 /* Success and a new mapping */ 2162 gmap_insert_rmap(sg, vmaddr, rmap); 2163 rmap = NULL; 2164 rc = 0; 2165 } 2166 gmap_pte_op_end(ptl); 2167 spin_unlock(&sg->guest_table_lock); 2168 } 2169 radix_tree_preload_end(); 2170 if (!rc) 2171 break; 2172 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2173 if (rc) 2174 break; 2175 } 2176 kfree(rmap); 2177 return rc; 2178 } 2179 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2180 2181 /* 2182 * gmap_shadow_notify - handle notifications for shadow gmap 2183 * 2184 * Called with sg->parent->shadow_lock. 2185 */ 2186 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2187 unsigned long gaddr) 2188 { 2189 struct gmap_rmap *rmap, *rnext, *head; 2190 unsigned long start, end, bits, raddr; 2191 2192 BUG_ON(!gmap_is_shadow(sg)); 2193 2194 spin_lock(&sg->guest_table_lock); 2195 if (sg->removed) { 2196 spin_unlock(&sg->guest_table_lock); 2197 return; 2198 } 2199 /* Check for top level table */ 2200 start = sg->orig_asce & _ASCE_ORIGIN; 2201 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2202 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2203 gaddr < end) { 2204 /* The complete shadow table has to go */ 2205 gmap_unshadow(sg); 2206 spin_unlock(&sg->guest_table_lock); 2207 list_del(&sg->list); 2208 gmap_put(sg); 2209 return; 2210 } 2211 /* Remove the page table tree from on specific entry */ 2212 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2213 gmap_for_each_rmap_safe(rmap, rnext, head) { 2214 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2215 raddr = rmap->raddr ^ bits; 2216 switch (bits) { 2217 case _SHADOW_RMAP_REGION1: 2218 gmap_unshadow_r2t(sg, raddr); 2219 break; 2220 case _SHADOW_RMAP_REGION2: 2221 gmap_unshadow_r3t(sg, raddr); 2222 break; 2223 case _SHADOW_RMAP_REGION3: 2224 gmap_unshadow_sgt(sg, raddr); 2225 break; 2226 case _SHADOW_RMAP_SEGMENT: 2227 gmap_unshadow_pgt(sg, raddr); 2228 break; 2229 case _SHADOW_RMAP_PGTABLE: 2230 gmap_unshadow_page(sg, raddr); 2231 break; 2232 } 2233 kfree(rmap); 2234 } 2235 spin_unlock(&sg->guest_table_lock); 2236 } 2237 2238 /** 2239 * ptep_notify - call all invalidation callbacks for a specific pte. 2240 * @mm: pointer to the process mm_struct 2241 * @vmaddr: virtual address in the process address space 2242 * @pte: pointer to the page table entry 2243 * @bits: bits from the pgste that caused the notify call 2244 * 2245 * This function is assumed to be called with the page table lock held 2246 * for the pte to notify. 2247 */ 2248 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2249 pte_t *pte, unsigned long bits) 2250 { 2251 unsigned long offset, gaddr = 0; 2252 unsigned long *table; 2253 struct gmap *gmap, *sg, *next; 2254 2255 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2256 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2257 rcu_read_lock(); 2258 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2259 spin_lock(&gmap->guest_table_lock); 2260 table = radix_tree_lookup(&gmap->host_to_guest, 2261 vmaddr >> PMD_SHIFT); 2262 if (table) 2263 gaddr = __gmap_segment_gaddr(table) + offset; 2264 spin_unlock(&gmap->guest_table_lock); 2265 if (!table) 2266 continue; 2267 2268 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2269 spin_lock(&gmap->shadow_lock); 2270 list_for_each_entry_safe(sg, next, 2271 &gmap->children, list) 2272 gmap_shadow_notify(sg, vmaddr, gaddr); 2273 spin_unlock(&gmap->shadow_lock); 2274 } 2275 if (bits & PGSTE_IN_BIT) 2276 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2277 } 2278 rcu_read_unlock(); 2279 } 2280 EXPORT_SYMBOL_GPL(ptep_notify); 2281 2282 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2283 unsigned long gaddr) 2284 { 2285 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN))); 2286 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2287 } 2288 2289 /** 2290 * gmap_pmdp_xchg - exchange a gmap pmd with another 2291 * @gmap: pointer to the guest address space structure 2292 * @pmdp: pointer to the pmd entry 2293 * @new: replacement entry 2294 * @gaddr: the affected guest address 2295 * 2296 * This function is assumed to be called with the guest_table_lock 2297 * held. 2298 */ 2299 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2300 unsigned long gaddr) 2301 { 2302 gaddr &= HPAGE_MASK; 2303 pmdp_notify_gmap(gmap, pmdp, gaddr); 2304 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN)); 2305 if (MACHINE_HAS_TLB_GUEST) 2306 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2307 IDTE_GLOBAL); 2308 else if (MACHINE_HAS_IDTE) 2309 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2310 else 2311 __pmdp_csp(pmdp); 2312 set_pmd(pmdp, new); 2313 } 2314 2315 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2316 int purge) 2317 { 2318 pmd_t *pmdp; 2319 struct gmap *gmap; 2320 unsigned long gaddr; 2321 2322 rcu_read_lock(); 2323 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2324 spin_lock(&gmap->guest_table_lock); 2325 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2326 vmaddr >> PMD_SHIFT); 2327 if (pmdp) { 2328 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2329 pmdp_notify_gmap(gmap, pmdp, gaddr); 2330 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2331 _SEGMENT_ENTRY_GMAP_UC)); 2332 if (purge) 2333 __pmdp_csp(pmdp); 2334 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 2335 } 2336 spin_unlock(&gmap->guest_table_lock); 2337 } 2338 rcu_read_unlock(); 2339 } 2340 2341 /** 2342 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2343 * flushing 2344 * @mm: pointer to the process mm_struct 2345 * @vmaddr: virtual address in the process address space 2346 */ 2347 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2348 { 2349 gmap_pmdp_clear(mm, vmaddr, 0); 2350 } 2351 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2352 2353 /** 2354 * gmap_pmdp_csp - csp all affected guest pmd entries 2355 * @mm: pointer to the process mm_struct 2356 * @vmaddr: virtual address in the process address space 2357 */ 2358 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2359 { 2360 gmap_pmdp_clear(mm, vmaddr, 1); 2361 } 2362 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2363 2364 /** 2365 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2366 * @mm: pointer to the process mm_struct 2367 * @vmaddr: virtual address in the process address space 2368 */ 2369 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2370 { 2371 unsigned long *entry, gaddr; 2372 struct gmap *gmap; 2373 pmd_t *pmdp; 2374 2375 rcu_read_lock(); 2376 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2377 spin_lock(&gmap->guest_table_lock); 2378 entry = radix_tree_delete(&gmap->host_to_guest, 2379 vmaddr >> PMD_SHIFT); 2380 if (entry) { 2381 pmdp = (pmd_t *)entry; 2382 gaddr = __gmap_segment_gaddr(entry); 2383 pmdp_notify_gmap(gmap, pmdp, gaddr); 2384 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2385 _SEGMENT_ENTRY_GMAP_UC)); 2386 if (MACHINE_HAS_TLB_GUEST) 2387 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2388 gmap->asce, IDTE_LOCAL); 2389 else if (MACHINE_HAS_IDTE) 2390 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2391 *entry = _SEGMENT_ENTRY_EMPTY; 2392 } 2393 spin_unlock(&gmap->guest_table_lock); 2394 } 2395 rcu_read_unlock(); 2396 } 2397 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2398 2399 /** 2400 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2401 * @mm: pointer to the process mm_struct 2402 * @vmaddr: virtual address in the process address space 2403 */ 2404 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2405 { 2406 unsigned long *entry, gaddr; 2407 struct gmap *gmap; 2408 pmd_t *pmdp; 2409 2410 rcu_read_lock(); 2411 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2412 spin_lock(&gmap->guest_table_lock); 2413 entry = radix_tree_delete(&gmap->host_to_guest, 2414 vmaddr >> PMD_SHIFT); 2415 if (entry) { 2416 pmdp = (pmd_t *)entry; 2417 gaddr = __gmap_segment_gaddr(entry); 2418 pmdp_notify_gmap(gmap, pmdp, gaddr); 2419 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2420 _SEGMENT_ENTRY_GMAP_UC)); 2421 if (MACHINE_HAS_TLB_GUEST) 2422 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2423 gmap->asce, IDTE_GLOBAL); 2424 else if (MACHINE_HAS_IDTE) 2425 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2426 else 2427 __pmdp_csp(pmdp); 2428 *entry = _SEGMENT_ENTRY_EMPTY; 2429 } 2430 spin_unlock(&gmap->guest_table_lock); 2431 } 2432 rcu_read_unlock(); 2433 } 2434 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2435 2436 /** 2437 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2438 * @gmap: pointer to guest address space 2439 * @pmdp: pointer to the pmd to be tested 2440 * @gaddr: virtual address in the guest address space 2441 * 2442 * This function is assumed to be called with the guest_table_lock 2443 * held. 2444 */ 2445 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2446 unsigned long gaddr) 2447 { 2448 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2449 return false; 2450 2451 /* Already protected memory, which did not change is clean */ 2452 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2453 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2454 return false; 2455 2456 /* Clear UC indication and reset protection */ 2457 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC))); 2458 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2459 return true; 2460 } 2461 2462 /** 2463 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2464 * @gmap: pointer to guest address space 2465 * @bitmap: dirty bitmap for this pmd 2466 * @gaddr: virtual address in the guest address space 2467 * @vmaddr: virtual address in the host address space 2468 * 2469 * This function is assumed to be called with the guest_table_lock 2470 * held. 2471 */ 2472 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2473 unsigned long gaddr, unsigned long vmaddr) 2474 { 2475 int i; 2476 pmd_t *pmdp; 2477 pte_t *ptep; 2478 spinlock_t *ptl; 2479 2480 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2481 if (!pmdp) 2482 return; 2483 2484 if (pmd_large(*pmdp)) { 2485 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2486 bitmap_fill(bitmap, _PAGE_ENTRIES); 2487 } else { 2488 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2489 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2490 if (!ptep) 2491 continue; 2492 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2493 set_bit(i, bitmap); 2494 spin_unlock(ptl); 2495 } 2496 } 2497 gmap_pmd_op_end(gmap, pmdp); 2498 } 2499 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2500 2501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2502 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr, 2503 unsigned long end, struct mm_walk *walk) 2504 { 2505 struct vm_area_struct *vma = walk->vma; 2506 2507 split_huge_pmd(vma, pmd, addr); 2508 return 0; 2509 } 2510 2511 static const struct mm_walk_ops thp_split_walk_ops = { 2512 .pmd_entry = thp_split_walk_pmd_entry, 2513 }; 2514 2515 static inline void thp_split_mm(struct mm_struct *mm) 2516 { 2517 struct vm_area_struct *vma; 2518 VMA_ITERATOR(vmi, mm, 0); 2519 2520 for_each_vma(vmi, vma) { 2521 vma->vm_flags &= ~VM_HUGEPAGE; 2522 vma->vm_flags |= VM_NOHUGEPAGE; 2523 walk_page_vma(vma, &thp_split_walk_ops, NULL); 2524 } 2525 mm->def_flags |= VM_NOHUGEPAGE; 2526 } 2527 #else 2528 static inline void thp_split_mm(struct mm_struct *mm) 2529 { 2530 } 2531 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2532 2533 /* 2534 * Remove all empty zero pages from the mapping for lazy refaulting 2535 * - This must be called after mm->context.has_pgste is set, to avoid 2536 * future creation of zero pages 2537 * - This must be called after THP was enabled 2538 */ 2539 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2540 unsigned long end, struct mm_walk *walk) 2541 { 2542 unsigned long addr; 2543 2544 for (addr = start; addr != end; addr += PAGE_SIZE) { 2545 pte_t *ptep; 2546 spinlock_t *ptl; 2547 2548 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2549 if (is_zero_pfn(pte_pfn(*ptep))) 2550 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2551 pte_unmap_unlock(ptep, ptl); 2552 } 2553 return 0; 2554 } 2555 2556 static const struct mm_walk_ops zap_zero_walk_ops = { 2557 .pmd_entry = __zap_zero_pages, 2558 }; 2559 2560 /* 2561 * switch on pgstes for its userspace process (for kvm) 2562 */ 2563 int s390_enable_sie(void) 2564 { 2565 struct mm_struct *mm = current->mm; 2566 2567 /* Do we have pgstes? if yes, we are done */ 2568 if (mm_has_pgste(mm)) 2569 return 0; 2570 /* Fail if the page tables are 2K */ 2571 if (!mm_alloc_pgste(mm)) 2572 return -EINVAL; 2573 mmap_write_lock(mm); 2574 mm->context.has_pgste = 1; 2575 /* split thp mappings and disable thp for future mappings */ 2576 thp_split_mm(mm); 2577 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL); 2578 mmap_write_unlock(mm); 2579 return 0; 2580 } 2581 EXPORT_SYMBOL_GPL(s390_enable_sie); 2582 2583 int gmap_mark_unmergeable(void) 2584 { 2585 struct mm_struct *mm = current->mm; 2586 struct vm_area_struct *vma; 2587 int ret; 2588 VMA_ITERATOR(vmi, mm, 0); 2589 2590 for_each_vma(vmi, vma) { 2591 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 2592 MADV_UNMERGEABLE, &vma->vm_flags); 2593 if (ret) 2594 return ret; 2595 } 2596 mm->def_flags &= ~VM_MERGEABLE; 2597 return 0; 2598 } 2599 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable); 2600 2601 /* 2602 * Enable storage key handling from now on and initialize the storage 2603 * keys with the default key. 2604 */ 2605 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2606 unsigned long next, struct mm_walk *walk) 2607 { 2608 /* Clear storage key */ 2609 ptep_zap_key(walk->mm, addr, pte); 2610 return 0; 2611 } 2612 2613 /* 2614 * Give a chance to schedule after setting a key to 256 pages. 2615 * We only hold the mm lock, which is a rwsem and the kvm srcu. 2616 * Both can sleep. 2617 */ 2618 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr, 2619 unsigned long next, struct mm_walk *walk) 2620 { 2621 cond_resched(); 2622 return 0; 2623 } 2624 2625 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2626 unsigned long hmask, unsigned long next, 2627 struct mm_walk *walk) 2628 { 2629 pmd_t *pmd = (pmd_t *)pte; 2630 unsigned long start, end; 2631 struct page *page = pmd_page(*pmd); 2632 2633 /* 2634 * The write check makes sure we do not set a key on shared 2635 * memory. This is needed as the walker does not differentiate 2636 * between actual guest memory and the process executable or 2637 * shared libraries. 2638 */ 2639 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2640 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2641 return 0; 2642 2643 start = pmd_val(*pmd) & HPAGE_MASK; 2644 end = start + HPAGE_SIZE - 1; 2645 __storage_key_init_range(start, end); 2646 set_bit(PG_arch_1, &page->flags); 2647 cond_resched(); 2648 return 0; 2649 } 2650 2651 static const struct mm_walk_ops enable_skey_walk_ops = { 2652 .hugetlb_entry = __s390_enable_skey_hugetlb, 2653 .pte_entry = __s390_enable_skey_pte, 2654 .pmd_entry = __s390_enable_skey_pmd, 2655 }; 2656 2657 int s390_enable_skey(void) 2658 { 2659 struct mm_struct *mm = current->mm; 2660 int rc = 0; 2661 2662 mmap_write_lock(mm); 2663 if (mm_uses_skeys(mm)) 2664 goto out_up; 2665 2666 mm->context.uses_skeys = 1; 2667 rc = gmap_mark_unmergeable(); 2668 if (rc) { 2669 mm->context.uses_skeys = 0; 2670 goto out_up; 2671 } 2672 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL); 2673 2674 out_up: 2675 mmap_write_unlock(mm); 2676 return rc; 2677 } 2678 EXPORT_SYMBOL_GPL(s390_enable_skey); 2679 2680 /* 2681 * Reset CMMA state, make all pages stable again. 2682 */ 2683 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2684 unsigned long next, struct mm_walk *walk) 2685 { 2686 ptep_zap_unused(walk->mm, addr, pte, 1); 2687 return 0; 2688 } 2689 2690 static const struct mm_walk_ops reset_cmma_walk_ops = { 2691 .pte_entry = __s390_reset_cmma, 2692 }; 2693 2694 void s390_reset_cmma(struct mm_struct *mm) 2695 { 2696 mmap_write_lock(mm); 2697 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL); 2698 mmap_write_unlock(mm); 2699 } 2700 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2701 2702 #define GATHER_GET_PAGES 32 2703 2704 struct reset_walk_state { 2705 unsigned long next; 2706 unsigned long count; 2707 unsigned long pfns[GATHER_GET_PAGES]; 2708 }; 2709 2710 static int s390_gather_pages(pte_t *ptep, unsigned long addr, 2711 unsigned long next, struct mm_walk *walk) 2712 { 2713 struct reset_walk_state *p = walk->private; 2714 pte_t pte = READ_ONCE(*ptep); 2715 2716 if (pte_present(pte)) { 2717 /* we have a reference from the mapping, take an extra one */ 2718 get_page(phys_to_page(pte_val(pte))); 2719 p->pfns[p->count] = phys_to_pfn(pte_val(pte)); 2720 p->next = next; 2721 p->count++; 2722 } 2723 return p->count >= GATHER_GET_PAGES; 2724 } 2725 2726 static const struct mm_walk_ops gather_pages_ops = { 2727 .pte_entry = s390_gather_pages, 2728 }; 2729 2730 /* 2731 * Call the Destroy secure page UVC on each page in the given array of PFNs. 2732 * Each page needs to have an extra reference, which will be released here. 2733 */ 2734 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns) 2735 { 2736 unsigned long i; 2737 2738 for (i = 0; i < count; i++) { 2739 /* we always have an extra reference */ 2740 uv_destroy_owned_page(pfn_to_phys(pfns[i])); 2741 /* get rid of the extra reference */ 2742 put_page(pfn_to_page(pfns[i])); 2743 cond_resched(); 2744 } 2745 } 2746 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns); 2747 2748 /** 2749 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page 2750 * in the given range of the given address space. 2751 * @mm: the mm to operate on 2752 * @start: the start of the range 2753 * @end: the end of the range 2754 * @interruptible: if not 0, stop when a fatal signal is received 2755 * 2756 * Walk the given range of the given address space and call the destroy 2757 * secure page UVC on each page. Optionally exit early if a fatal signal is 2758 * pending. 2759 * 2760 * Return: 0 on success, -EINTR if the function stopped before completing 2761 */ 2762 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start, 2763 unsigned long end, bool interruptible) 2764 { 2765 struct reset_walk_state state = { .next = start }; 2766 int r = 1; 2767 2768 while (r > 0) { 2769 state.count = 0; 2770 mmap_read_lock(mm); 2771 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state); 2772 mmap_read_unlock(mm); 2773 cond_resched(); 2774 s390_uv_destroy_pfns(state.count, state.pfns); 2775 if (interruptible && fatal_signal_pending(current)) 2776 return -EINTR; 2777 } 2778 return 0; 2779 } 2780 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range); 2781 2782 /** 2783 * s390_unlist_old_asce - Remove the topmost level of page tables from the 2784 * list of page tables of the gmap. 2785 * @gmap: the gmap whose table is to be removed 2786 * 2787 * On s390x, KVM keeps a list of all pages containing the page tables of the 2788 * gmap (the CRST list). This list is used at tear down time to free all 2789 * pages that are now not needed anymore. 2790 * 2791 * This function removes the topmost page of the tree (the one pointed to by 2792 * the ASCE) from the CRST list. 2793 * 2794 * This means that it will not be freed when the VM is torn down, and needs 2795 * to be handled separately by the caller, unless a leak is actually 2796 * intended. Notice that this function will only remove the page from the 2797 * list, the page will still be used as a top level page table (and ASCE). 2798 */ 2799 void s390_unlist_old_asce(struct gmap *gmap) 2800 { 2801 struct page *old; 2802 2803 old = virt_to_page(gmap->table); 2804 spin_lock(&gmap->guest_table_lock); 2805 list_del(&old->lru); 2806 /* 2807 * Sometimes the topmost page might need to be "removed" multiple 2808 * times, for example if the VM is rebooted into secure mode several 2809 * times concurrently, or if s390_replace_asce fails after calling 2810 * s390_remove_old_asce and is attempted again later. In that case 2811 * the old asce has been removed from the list, and therefore it 2812 * will not be freed when the VM terminates, but the ASCE is still 2813 * in use and still pointed to. 2814 * A subsequent call to replace_asce will follow the pointer and try 2815 * to remove the same page from the list again. 2816 * Therefore it's necessary that the page of the ASCE has valid 2817 * pointers, so list_del can work (and do nothing) without 2818 * dereferencing stale or invalid pointers. 2819 */ 2820 INIT_LIST_HEAD(&old->lru); 2821 spin_unlock(&gmap->guest_table_lock); 2822 } 2823 EXPORT_SYMBOL_GPL(s390_unlist_old_asce); 2824 2825 /** 2826 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy 2827 * @gmap: the gmap whose ASCE needs to be replaced 2828 * 2829 * If the allocation of the new top level page table fails, the ASCE is not 2830 * replaced. 2831 * In any case, the old ASCE is always removed from the gmap CRST list. 2832 * Therefore the caller has to make sure to save a pointer to it 2833 * beforehand, unless a leak is actually intended. 2834 */ 2835 int s390_replace_asce(struct gmap *gmap) 2836 { 2837 unsigned long asce; 2838 struct page *page; 2839 void *table; 2840 2841 s390_unlist_old_asce(gmap); 2842 2843 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 2844 if (!page) 2845 return -ENOMEM; 2846 table = page_to_virt(page); 2847 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT)); 2848 2849 /* 2850 * The caller has to deal with the old ASCE, but here we make sure 2851 * the new one is properly added to the CRST list, so that 2852 * it will be freed when the VM is torn down. 2853 */ 2854 spin_lock(&gmap->guest_table_lock); 2855 list_add(&page->lru, &gmap->crst_list); 2856 spin_unlock(&gmap->guest_table_lock); 2857 2858 /* Set new table origin while preserving existing ASCE control bits */ 2859 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table); 2860 WRITE_ONCE(gmap->asce, asce); 2861 WRITE_ONCE(gmap->mm->context.gmap_asce, asce); 2862 WRITE_ONCE(gmap->table, table); 2863 2864 return 0; 2865 } 2866 EXPORT_SYMBOL_GPL(s390_replace_asce); 2867