xref: /linux/arch/s390/mm/gmap.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 #include <asm/page-states.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/page.h>
25 #include <asm/tlb.h>
26 
27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
28 
29 static struct page *gmap_alloc_crst(void)
30 {
31 	struct page *page;
32 
33 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
34 	if (!page)
35 		return NULL;
36 	__arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
37 	return page;
38 }
39 
40 /**
41  * gmap_alloc - allocate and initialize a guest address space
42  * @limit: maximum address of the gmap address space
43  *
44  * Returns a guest address space structure.
45  */
46 static struct gmap *gmap_alloc(unsigned long limit)
47 {
48 	struct gmap *gmap;
49 	struct page *page;
50 	unsigned long *table;
51 	unsigned long etype, atype;
52 
53 	if (limit < _REGION3_SIZE) {
54 		limit = _REGION3_SIZE - 1;
55 		atype = _ASCE_TYPE_SEGMENT;
56 		etype = _SEGMENT_ENTRY_EMPTY;
57 	} else if (limit < _REGION2_SIZE) {
58 		limit = _REGION2_SIZE - 1;
59 		atype = _ASCE_TYPE_REGION3;
60 		etype = _REGION3_ENTRY_EMPTY;
61 	} else if (limit < _REGION1_SIZE) {
62 		limit = _REGION1_SIZE - 1;
63 		atype = _ASCE_TYPE_REGION2;
64 		etype = _REGION2_ENTRY_EMPTY;
65 	} else {
66 		limit = -1UL;
67 		atype = _ASCE_TYPE_REGION1;
68 		etype = _REGION1_ENTRY_EMPTY;
69 	}
70 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
71 	if (!gmap)
72 		goto out;
73 	INIT_LIST_HEAD(&gmap->crst_list);
74 	INIT_LIST_HEAD(&gmap->children);
75 	INIT_LIST_HEAD(&gmap->pt_list);
76 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
77 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
78 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
79 	spin_lock_init(&gmap->guest_table_lock);
80 	spin_lock_init(&gmap->shadow_lock);
81 	refcount_set(&gmap->ref_count, 1);
82 	page = gmap_alloc_crst();
83 	if (!page)
84 		goto out_free;
85 	page->index = 0;
86 	list_add(&page->lru, &gmap->crst_list);
87 	table = page_to_virt(page);
88 	crst_table_init(table, etype);
89 	gmap->table = table;
90 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
91 		_ASCE_USER_BITS | __pa(table);
92 	gmap->asce_end = limit;
93 	return gmap;
94 
95 out_free:
96 	kfree(gmap);
97 out:
98 	return NULL;
99 }
100 
101 /**
102  * gmap_create - create a guest address space
103  * @mm: pointer to the parent mm_struct
104  * @limit: maximum size of the gmap address space
105  *
106  * Returns a guest address space structure.
107  */
108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
109 {
110 	struct gmap *gmap;
111 	unsigned long gmap_asce;
112 
113 	gmap = gmap_alloc(limit);
114 	if (!gmap)
115 		return NULL;
116 	gmap->mm = mm;
117 	spin_lock(&mm->context.lock);
118 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
119 	if (list_is_singular(&mm->context.gmap_list))
120 		gmap_asce = gmap->asce;
121 	else
122 		gmap_asce = -1UL;
123 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
124 	spin_unlock(&mm->context.lock);
125 	return gmap;
126 }
127 EXPORT_SYMBOL_GPL(gmap_create);
128 
129 static void gmap_flush_tlb(struct gmap *gmap)
130 {
131 	if (MACHINE_HAS_IDTE)
132 		__tlb_flush_idte(gmap->asce);
133 	else
134 		__tlb_flush_global();
135 }
136 
137 static void gmap_radix_tree_free(struct radix_tree_root *root)
138 {
139 	struct radix_tree_iter iter;
140 	unsigned long indices[16];
141 	unsigned long index;
142 	void __rcu **slot;
143 	int i, nr;
144 
145 	/* A radix tree is freed by deleting all of its entries */
146 	index = 0;
147 	do {
148 		nr = 0;
149 		radix_tree_for_each_slot(slot, root, &iter, index) {
150 			indices[nr] = iter.index;
151 			if (++nr == 16)
152 				break;
153 		}
154 		for (i = 0; i < nr; i++) {
155 			index = indices[i];
156 			radix_tree_delete(root, index);
157 		}
158 	} while (nr > 0);
159 }
160 
161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
162 {
163 	struct gmap_rmap *rmap, *rnext, *head;
164 	struct radix_tree_iter iter;
165 	unsigned long indices[16];
166 	unsigned long index;
167 	void __rcu **slot;
168 	int i, nr;
169 
170 	/* A radix tree is freed by deleting all of its entries */
171 	index = 0;
172 	do {
173 		nr = 0;
174 		radix_tree_for_each_slot(slot, root, &iter, index) {
175 			indices[nr] = iter.index;
176 			if (++nr == 16)
177 				break;
178 		}
179 		for (i = 0; i < nr; i++) {
180 			index = indices[i];
181 			head = radix_tree_delete(root, index);
182 			gmap_for_each_rmap_safe(rmap, rnext, head)
183 				kfree(rmap);
184 		}
185 	} while (nr > 0);
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  *
192  * No locks required. There are no references to this gmap anymore.
193  */
194 static void gmap_free(struct gmap *gmap)
195 {
196 	struct page *page, *next;
197 
198 	/* Flush tlb of all gmaps (if not already done for shadows) */
199 	if (!(gmap_is_shadow(gmap) && gmap->removed))
200 		gmap_flush_tlb(gmap);
201 	/* Free all segment & region tables. */
202 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
203 		__free_pages(page, CRST_ALLOC_ORDER);
204 	gmap_radix_tree_free(&gmap->guest_to_host);
205 	gmap_radix_tree_free(&gmap->host_to_guest);
206 
207 	/* Free additional data for a shadow gmap */
208 	if (gmap_is_shadow(gmap)) {
209 		struct ptdesc *ptdesc, *n;
210 
211 		/* Free all page tables. */
212 		list_for_each_entry_safe(ptdesc, n, &gmap->pt_list, pt_list)
213 			page_table_free_pgste(ptdesc);
214 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
215 		/* Release reference to the parent */
216 		gmap_put(gmap->parent);
217 	}
218 
219 	kfree(gmap);
220 }
221 
222 /**
223  * gmap_get - increase reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * Returns the gmap pointer
227  */
228 struct gmap *gmap_get(struct gmap *gmap)
229 {
230 	refcount_inc(&gmap->ref_count);
231 	return gmap;
232 }
233 EXPORT_SYMBOL_GPL(gmap_get);
234 
235 /**
236  * gmap_put - decrease reference counter for guest address space
237  * @gmap: pointer to the guest address space structure
238  *
239  * If the reference counter reaches zero the guest address space is freed.
240  */
241 void gmap_put(struct gmap *gmap)
242 {
243 	if (refcount_dec_and_test(&gmap->ref_count))
244 		gmap_free(gmap);
245 }
246 EXPORT_SYMBOL_GPL(gmap_put);
247 
248 /**
249  * gmap_remove - remove a guest address space but do not free it yet
250  * @gmap: pointer to the guest address space structure
251  */
252 void gmap_remove(struct gmap *gmap)
253 {
254 	struct gmap *sg, *next;
255 	unsigned long gmap_asce;
256 
257 	/* Remove all shadow gmaps linked to this gmap */
258 	if (!list_empty(&gmap->children)) {
259 		spin_lock(&gmap->shadow_lock);
260 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
261 			list_del(&sg->list);
262 			gmap_put(sg);
263 		}
264 		spin_unlock(&gmap->shadow_lock);
265 	}
266 	/* Remove gmap from the pre-mm list */
267 	spin_lock(&gmap->mm->context.lock);
268 	list_del_rcu(&gmap->list);
269 	if (list_empty(&gmap->mm->context.gmap_list))
270 		gmap_asce = 0;
271 	else if (list_is_singular(&gmap->mm->context.gmap_list))
272 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
273 					     struct gmap, list)->asce;
274 	else
275 		gmap_asce = -1UL;
276 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
277 	spin_unlock(&gmap->mm->context.lock);
278 	synchronize_rcu();
279 	/* Put reference */
280 	gmap_put(gmap);
281 }
282 EXPORT_SYMBOL_GPL(gmap_remove);
283 
284 /*
285  * gmap_alloc_table is assumed to be called with mmap_lock held
286  */
287 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
288 			    unsigned long init, unsigned long gaddr)
289 {
290 	struct page *page;
291 	unsigned long *new;
292 
293 	/* since we dont free the gmap table until gmap_free we can unlock */
294 	page = gmap_alloc_crst();
295 	if (!page)
296 		return -ENOMEM;
297 	new = page_to_virt(page);
298 	crst_table_init(new, init);
299 	spin_lock(&gmap->guest_table_lock);
300 	if (*table & _REGION_ENTRY_INVALID) {
301 		list_add(&page->lru, &gmap->crst_list);
302 		*table = __pa(new) | _REGION_ENTRY_LENGTH |
303 			(*table & _REGION_ENTRY_TYPE_MASK);
304 		page->index = gaddr;
305 		page = NULL;
306 	}
307 	spin_unlock(&gmap->guest_table_lock);
308 	if (page)
309 		__free_pages(page, CRST_ALLOC_ORDER);
310 	return 0;
311 }
312 
313 /**
314  * __gmap_segment_gaddr - find virtual address from segment pointer
315  * @entry: pointer to a segment table entry in the guest address space
316  *
317  * Returns the virtual address in the guest address space for the segment
318  */
319 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
320 {
321 	struct page *page;
322 	unsigned long offset;
323 
324 	offset = (unsigned long) entry / sizeof(unsigned long);
325 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
326 	page = pmd_pgtable_page((pmd_t *) entry);
327 	return page->index + offset;
328 }
329 
330 /**
331  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
332  * @gmap: pointer to the guest address space structure
333  * @vmaddr: address in the host process address space
334  *
335  * Returns 1 if a TLB flush is required
336  */
337 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
338 {
339 	unsigned long *entry;
340 	int flush = 0;
341 
342 	BUG_ON(gmap_is_shadow(gmap));
343 	spin_lock(&gmap->guest_table_lock);
344 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
345 	if (entry) {
346 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
347 		*entry = _SEGMENT_ENTRY_EMPTY;
348 	}
349 	spin_unlock(&gmap->guest_table_lock);
350 	return flush;
351 }
352 
353 /**
354  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
355  * @gmap: pointer to the guest address space structure
356  * @gaddr: address in the guest address space
357  *
358  * Returns 1 if a TLB flush is required
359  */
360 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
361 {
362 	unsigned long vmaddr;
363 
364 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
365 						   gaddr >> PMD_SHIFT);
366 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
367 }
368 
369 /**
370  * gmap_unmap_segment - unmap segment from the guest address space
371  * @gmap: pointer to the guest address space structure
372  * @to: address in the guest address space
373  * @len: length of the memory area to unmap
374  *
375  * Returns 0 if the unmap succeeded, -EINVAL if not.
376  */
377 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
378 {
379 	unsigned long off;
380 	int flush;
381 
382 	BUG_ON(gmap_is_shadow(gmap));
383 	if ((to | len) & (PMD_SIZE - 1))
384 		return -EINVAL;
385 	if (len == 0 || to + len < to)
386 		return -EINVAL;
387 
388 	flush = 0;
389 	mmap_write_lock(gmap->mm);
390 	for (off = 0; off < len; off += PMD_SIZE)
391 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
392 	mmap_write_unlock(gmap->mm);
393 	if (flush)
394 		gmap_flush_tlb(gmap);
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
398 
399 /**
400  * gmap_map_segment - map a segment to the guest address space
401  * @gmap: pointer to the guest address space structure
402  * @from: source address in the parent address space
403  * @to: target address in the guest address space
404  * @len: length of the memory area to map
405  *
406  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
407  */
408 int gmap_map_segment(struct gmap *gmap, unsigned long from,
409 		     unsigned long to, unsigned long len)
410 {
411 	unsigned long off;
412 	int flush;
413 
414 	BUG_ON(gmap_is_shadow(gmap));
415 	if ((from | to | len) & (PMD_SIZE - 1))
416 		return -EINVAL;
417 	if (len == 0 || from + len < from || to + len < to ||
418 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
419 		return -EINVAL;
420 
421 	flush = 0;
422 	mmap_write_lock(gmap->mm);
423 	for (off = 0; off < len; off += PMD_SIZE) {
424 		/* Remove old translation */
425 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
426 		/* Store new translation */
427 		if (radix_tree_insert(&gmap->guest_to_host,
428 				      (to + off) >> PMD_SHIFT,
429 				      (void *) from + off))
430 			break;
431 	}
432 	mmap_write_unlock(gmap->mm);
433 	if (flush)
434 		gmap_flush_tlb(gmap);
435 	if (off >= len)
436 		return 0;
437 	gmap_unmap_segment(gmap, to, len);
438 	return -ENOMEM;
439 }
440 EXPORT_SYMBOL_GPL(gmap_map_segment);
441 
442 /**
443  * __gmap_translate - translate a guest address to a user space address
444  * @gmap: pointer to guest mapping meta data structure
445  * @gaddr: guest address
446  *
447  * Returns user space address which corresponds to the guest address or
448  * -EFAULT if no such mapping exists.
449  * This function does not establish potentially missing page table entries.
450  * The mmap_lock of the mm that belongs to the address space must be held
451  * when this function gets called.
452  *
453  * Note: Can also be called for shadow gmaps.
454  */
455 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
456 {
457 	unsigned long vmaddr;
458 
459 	vmaddr = (unsigned long)
460 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
461 	/* Note: guest_to_host is empty for a shadow gmap */
462 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
463 }
464 EXPORT_SYMBOL_GPL(__gmap_translate);
465 
466 /**
467  * gmap_translate - translate a guest address to a user space address
468  * @gmap: pointer to guest mapping meta data structure
469  * @gaddr: guest address
470  *
471  * Returns user space address which corresponds to the guest address or
472  * -EFAULT if no such mapping exists.
473  * This function does not establish potentially missing page table entries.
474  */
475 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
476 {
477 	unsigned long rc;
478 
479 	mmap_read_lock(gmap->mm);
480 	rc = __gmap_translate(gmap, gaddr);
481 	mmap_read_unlock(gmap->mm);
482 	return rc;
483 }
484 EXPORT_SYMBOL_GPL(gmap_translate);
485 
486 /**
487  * gmap_unlink - disconnect a page table from the gmap shadow tables
488  * @mm: pointer to the parent mm_struct
489  * @table: pointer to the host page table
490  * @vmaddr: vm address associated with the host page table
491  */
492 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
493 		 unsigned long vmaddr)
494 {
495 	struct gmap *gmap;
496 	int flush;
497 
498 	rcu_read_lock();
499 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
500 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
501 		if (flush)
502 			gmap_flush_tlb(gmap);
503 	}
504 	rcu_read_unlock();
505 }
506 
507 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
508 			   unsigned long gaddr);
509 
510 /**
511  * __gmap_link - set up shadow page tables to connect a host to a guest address
512  * @gmap: pointer to guest mapping meta data structure
513  * @gaddr: guest address
514  * @vmaddr: vm address
515  *
516  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
517  * if the vm address is already mapped to a different guest segment.
518  * The mmap_lock of the mm that belongs to the address space must be held
519  * when this function gets called.
520  */
521 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
522 {
523 	struct mm_struct *mm;
524 	unsigned long *table;
525 	spinlock_t *ptl;
526 	pgd_t *pgd;
527 	p4d_t *p4d;
528 	pud_t *pud;
529 	pmd_t *pmd;
530 	u64 unprot;
531 	int rc;
532 
533 	BUG_ON(gmap_is_shadow(gmap));
534 	/* Create higher level tables in the gmap page table */
535 	table = gmap->table;
536 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
537 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
538 		if ((*table & _REGION_ENTRY_INVALID) &&
539 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
540 				     gaddr & _REGION1_MASK))
541 			return -ENOMEM;
542 		table = __va(*table & _REGION_ENTRY_ORIGIN);
543 	}
544 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
545 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
546 		if ((*table & _REGION_ENTRY_INVALID) &&
547 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
548 				     gaddr & _REGION2_MASK))
549 			return -ENOMEM;
550 		table = __va(*table & _REGION_ENTRY_ORIGIN);
551 	}
552 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
553 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
554 		if ((*table & _REGION_ENTRY_INVALID) &&
555 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
556 				     gaddr & _REGION3_MASK))
557 			return -ENOMEM;
558 		table = __va(*table & _REGION_ENTRY_ORIGIN);
559 	}
560 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
561 	/* Walk the parent mm page table */
562 	mm = gmap->mm;
563 	pgd = pgd_offset(mm, vmaddr);
564 	VM_BUG_ON(pgd_none(*pgd));
565 	p4d = p4d_offset(pgd, vmaddr);
566 	VM_BUG_ON(p4d_none(*p4d));
567 	pud = pud_offset(p4d, vmaddr);
568 	VM_BUG_ON(pud_none(*pud));
569 	/* large puds cannot yet be handled */
570 	if (pud_leaf(*pud))
571 		return -EFAULT;
572 	pmd = pmd_offset(pud, vmaddr);
573 	VM_BUG_ON(pmd_none(*pmd));
574 	/* Are we allowed to use huge pages? */
575 	if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
576 		return -EFAULT;
577 	/* Link gmap segment table entry location to page table. */
578 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
579 	if (rc)
580 		return rc;
581 	ptl = pmd_lock(mm, pmd);
582 	spin_lock(&gmap->guest_table_lock);
583 	if (*table == _SEGMENT_ENTRY_EMPTY) {
584 		rc = radix_tree_insert(&gmap->host_to_guest,
585 				       vmaddr >> PMD_SHIFT, table);
586 		if (!rc) {
587 			if (pmd_leaf(*pmd)) {
588 				*table = (pmd_val(*pmd) &
589 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
590 					| _SEGMENT_ENTRY_GMAP_UC
591 					| _SEGMENT_ENTRY;
592 			} else
593 				*table = pmd_val(*pmd) &
594 					_SEGMENT_ENTRY_HARDWARE_BITS;
595 		}
596 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
597 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
598 		unprot = (u64)*table;
599 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
600 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
601 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
602 	}
603 	spin_unlock(&gmap->guest_table_lock);
604 	spin_unlock(ptl);
605 	radix_tree_preload_end();
606 	return rc;
607 }
608 
609 /**
610  * fixup_user_fault_nowait - manually resolve a user page fault without waiting
611  * @mm:		mm_struct of target mm
612  * @address:	user address
613  * @fault_flags:flags to pass down to handle_mm_fault()
614  * @unlocked:	did we unlock the mmap_lock while retrying
615  *
616  * This function behaves similarly to fixup_user_fault(), but it guarantees
617  * that the fault will be resolved without waiting. The function might drop
618  * and re-acquire the mm lock, in which case @unlocked will be set to true.
619  *
620  * The guarantee is that the fault is handled without waiting, but the
621  * function itself might sleep, due to the lock.
622  *
623  * Context: Needs to be called with mm->mmap_lock held in read mode, and will
624  * return with the lock held in read mode; @unlocked will indicate whether
625  * the lock has been dropped and re-acquired. This is the same behaviour as
626  * fixup_user_fault().
627  *
628  * Return: 0 on success, -EAGAIN if the fault cannot be resolved without
629  * waiting, -EFAULT if the fault cannot be resolved, -ENOMEM if out of
630  * memory.
631  */
632 static int fixup_user_fault_nowait(struct mm_struct *mm, unsigned long address,
633 				   unsigned int fault_flags, bool *unlocked)
634 {
635 	struct vm_area_struct *vma;
636 	unsigned int test_flags;
637 	vm_fault_t fault;
638 	int rc;
639 
640 	fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
641 	test_flags = fault_flags & FAULT_FLAG_WRITE ? VM_WRITE : VM_READ;
642 
643 	vma = find_vma(mm, address);
644 	if (unlikely(!vma || address < vma->vm_start))
645 		return -EFAULT;
646 	if (unlikely(!(vma->vm_flags & test_flags)))
647 		return -EFAULT;
648 
649 	fault = handle_mm_fault(vma, address, fault_flags, NULL);
650 	/* the mm lock has been dropped, take it again */
651 	if (fault & VM_FAULT_COMPLETED) {
652 		*unlocked = true;
653 		mmap_read_lock(mm);
654 		return 0;
655 	}
656 	/* the mm lock has not been dropped */
657 	if (fault & VM_FAULT_ERROR) {
658 		rc = vm_fault_to_errno(fault, 0);
659 		BUG_ON(!rc);
660 		return rc;
661 	}
662 	/* the mm lock has not been dropped because of FAULT_FLAG_RETRY_NOWAIT */
663 	if (fault & VM_FAULT_RETRY)
664 		return -EAGAIN;
665 	/* nothing needed to be done and the mm lock has not been dropped */
666 	return 0;
667 }
668 
669 /**
670  * __gmap_fault - resolve a fault on a guest address
671  * @gmap: pointer to guest mapping meta data structure
672  * @gaddr: guest address
673  * @fault_flags: flags to pass down to handle_mm_fault()
674  *
675  * Context: Needs to be called with mm->mmap_lock held in read mode. Might
676  * drop and re-acquire the lock. Will always return with the lock held.
677  */
678 static int __gmap_fault(struct gmap *gmap, unsigned long gaddr, unsigned int fault_flags)
679 {
680 	unsigned long vmaddr;
681 	bool unlocked;
682 	int rc = 0;
683 
684 retry:
685 	unlocked = false;
686 
687 	vmaddr = __gmap_translate(gmap, gaddr);
688 	if (IS_ERR_VALUE(vmaddr))
689 		return vmaddr;
690 
691 	if (fault_flags & FAULT_FLAG_RETRY_NOWAIT)
692 		rc = fixup_user_fault_nowait(gmap->mm, vmaddr, fault_flags, &unlocked);
693 	else
694 		rc = fixup_user_fault(gmap->mm, vmaddr, fault_flags, &unlocked);
695 	if (rc)
696 		return rc;
697 	/*
698 	 * In the case that fixup_user_fault unlocked the mmap_lock during
699 	 * fault-in, redo __gmap_translate() to avoid racing with a
700 	 * map/unmap_segment.
701 	 * In particular, __gmap_translate(), fixup_user_fault{,_nowait}(),
702 	 * and __gmap_link() must all be called atomically in one go; if the
703 	 * lock had been dropped in between, a retry is needed.
704 	 */
705 	if (unlocked)
706 		goto retry;
707 
708 	return __gmap_link(gmap, gaddr, vmaddr);
709 }
710 
711 /**
712  * gmap_fault - resolve a fault on a guest address
713  * @gmap: pointer to guest mapping meta data structure
714  * @gaddr: guest address
715  * @fault_flags: flags to pass down to handle_mm_fault()
716  *
717  * Returns 0 on success, -ENOMEM for out of memory conditions, -EFAULT if the
718  * vm address is already mapped to a different guest segment, and -EAGAIN if
719  * FAULT_FLAG_RETRY_NOWAIT was specified and the fault could not be processed
720  * immediately.
721  */
722 int gmap_fault(struct gmap *gmap, unsigned long gaddr, unsigned int fault_flags)
723 {
724 	int rc;
725 
726 	mmap_read_lock(gmap->mm);
727 	rc = __gmap_fault(gmap, gaddr, fault_flags);
728 	mmap_read_unlock(gmap->mm);
729 	return rc;
730 }
731 EXPORT_SYMBOL_GPL(gmap_fault);
732 
733 /*
734  * this function is assumed to be called with mmap_lock held
735  */
736 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
737 {
738 	struct vm_area_struct *vma;
739 	unsigned long vmaddr;
740 	spinlock_t *ptl;
741 	pte_t *ptep;
742 
743 	/* Find the vm address for the guest address */
744 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
745 						   gaddr >> PMD_SHIFT);
746 	if (vmaddr) {
747 		vmaddr |= gaddr & ~PMD_MASK;
748 
749 		vma = vma_lookup(gmap->mm, vmaddr);
750 		if (!vma || is_vm_hugetlb_page(vma))
751 			return;
752 
753 		/* Get pointer to the page table entry */
754 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
755 		if (likely(ptep)) {
756 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
757 			pte_unmap_unlock(ptep, ptl);
758 		}
759 	}
760 }
761 EXPORT_SYMBOL_GPL(__gmap_zap);
762 
763 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
764 {
765 	unsigned long gaddr, vmaddr, size;
766 	struct vm_area_struct *vma;
767 
768 	mmap_read_lock(gmap->mm);
769 	for (gaddr = from; gaddr < to;
770 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
771 		/* Find the vm address for the guest address */
772 		vmaddr = (unsigned long)
773 			radix_tree_lookup(&gmap->guest_to_host,
774 					  gaddr >> PMD_SHIFT);
775 		if (!vmaddr)
776 			continue;
777 		vmaddr |= gaddr & ~PMD_MASK;
778 		/* Find vma in the parent mm */
779 		vma = find_vma(gmap->mm, vmaddr);
780 		if (!vma)
781 			continue;
782 		/*
783 		 * We do not discard pages that are backed by
784 		 * hugetlbfs, so we don't have to refault them.
785 		 */
786 		if (is_vm_hugetlb_page(vma))
787 			continue;
788 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
789 		zap_page_range_single(vma, vmaddr, size, NULL);
790 	}
791 	mmap_read_unlock(gmap->mm);
792 }
793 EXPORT_SYMBOL_GPL(gmap_discard);
794 
795 static LIST_HEAD(gmap_notifier_list);
796 static DEFINE_SPINLOCK(gmap_notifier_lock);
797 
798 /**
799  * gmap_register_pte_notifier - register a pte invalidation callback
800  * @nb: pointer to the gmap notifier block
801  */
802 void gmap_register_pte_notifier(struct gmap_notifier *nb)
803 {
804 	spin_lock(&gmap_notifier_lock);
805 	list_add_rcu(&nb->list, &gmap_notifier_list);
806 	spin_unlock(&gmap_notifier_lock);
807 }
808 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
809 
810 /**
811  * gmap_unregister_pte_notifier - remove a pte invalidation callback
812  * @nb: pointer to the gmap notifier block
813  */
814 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
815 {
816 	spin_lock(&gmap_notifier_lock);
817 	list_del_rcu(&nb->list);
818 	spin_unlock(&gmap_notifier_lock);
819 	synchronize_rcu();
820 }
821 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
822 
823 /**
824  * gmap_call_notifier - call all registered invalidation callbacks
825  * @gmap: pointer to guest mapping meta data structure
826  * @start: start virtual address in the guest address space
827  * @end: end virtual address in the guest address space
828  */
829 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
830 			       unsigned long end)
831 {
832 	struct gmap_notifier *nb;
833 
834 	list_for_each_entry(nb, &gmap_notifier_list, list)
835 		nb->notifier_call(gmap, start, end);
836 }
837 
838 /**
839  * gmap_table_walk - walk the gmap page tables
840  * @gmap: pointer to guest mapping meta data structure
841  * @gaddr: virtual address in the guest address space
842  * @level: page table level to stop at
843  *
844  * Returns a table entry pointer for the given guest address and @level
845  * @level=0 : returns a pointer to a page table table entry (or NULL)
846  * @level=1 : returns a pointer to a segment table entry (or NULL)
847  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
848  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
849  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
850  *
851  * Returns NULL if the gmap page tables could not be walked to the
852  * requested level.
853  *
854  * Note: Can also be called for shadow gmaps.
855  */
856 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
857 					     unsigned long gaddr, int level)
858 {
859 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
860 	unsigned long *table = gmap->table;
861 
862 	if (gmap_is_shadow(gmap) && gmap->removed)
863 		return NULL;
864 
865 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
866 		return NULL;
867 
868 	if (asce_type != _ASCE_TYPE_REGION1 &&
869 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
870 		return NULL;
871 
872 	switch (asce_type) {
873 	case _ASCE_TYPE_REGION1:
874 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
875 		if (level == 4)
876 			break;
877 		if (*table & _REGION_ENTRY_INVALID)
878 			return NULL;
879 		table = __va(*table & _REGION_ENTRY_ORIGIN);
880 		fallthrough;
881 	case _ASCE_TYPE_REGION2:
882 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
883 		if (level == 3)
884 			break;
885 		if (*table & _REGION_ENTRY_INVALID)
886 			return NULL;
887 		table = __va(*table & _REGION_ENTRY_ORIGIN);
888 		fallthrough;
889 	case _ASCE_TYPE_REGION3:
890 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
891 		if (level == 2)
892 			break;
893 		if (*table & _REGION_ENTRY_INVALID)
894 			return NULL;
895 		table = __va(*table & _REGION_ENTRY_ORIGIN);
896 		fallthrough;
897 	case _ASCE_TYPE_SEGMENT:
898 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
899 		if (level == 1)
900 			break;
901 		if (*table & _REGION_ENTRY_INVALID)
902 			return NULL;
903 		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
904 		table += (gaddr & _PAGE_INDEX) >> PAGE_SHIFT;
905 	}
906 	return table;
907 }
908 
909 /**
910  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
911  *		      and return the pte pointer
912  * @gmap: pointer to guest mapping meta data structure
913  * @gaddr: virtual address in the guest address space
914  * @ptl: pointer to the spinlock pointer
915  *
916  * Returns a pointer to the locked pte for a guest address, or NULL
917  */
918 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
919 			       spinlock_t **ptl)
920 {
921 	unsigned long *table;
922 
923 	BUG_ON(gmap_is_shadow(gmap));
924 	/* Walk the gmap page table, lock and get pte pointer */
925 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
926 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
927 		return NULL;
928 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
929 }
930 
931 /**
932  * gmap_pte_op_fixup - force a page in and connect the gmap page table
933  * @gmap: pointer to guest mapping meta data structure
934  * @gaddr: virtual address in the guest address space
935  * @vmaddr: address in the host process address space
936  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
937  *
938  * Returns 0 if the caller can retry __gmap_translate (might fail again),
939  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
940  * up or connecting the gmap page table.
941  */
942 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
943 			     unsigned long vmaddr, int prot)
944 {
945 	struct mm_struct *mm = gmap->mm;
946 	unsigned int fault_flags;
947 	bool unlocked = false;
948 
949 	BUG_ON(gmap_is_shadow(gmap));
950 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
951 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
952 		return -EFAULT;
953 	if (unlocked)
954 		/* lost mmap_lock, caller has to retry __gmap_translate */
955 		return 0;
956 	/* Connect the page tables */
957 	return __gmap_link(gmap, gaddr, vmaddr);
958 }
959 
960 /**
961  * gmap_pte_op_end - release the page table lock
962  * @ptep: pointer to the locked pte
963  * @ptl: pointer to the page table spinlock
964  */
965 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
966 {
967 	pte_unmap_unlock(ptep, ptl);
968 }
969 
970 /**
971  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
972  *		      and return the pmd pointer
973  * @gmap: pointer to guest mapping meta data structure
974  * @gaddr: virtual address in the guest address space
975  *
976  * Returns a pointer to the pmd for a guest address, or NULL
977  */
978 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
979 {
980 	pmd_t *pmdp;
981 
982 	BUG_ON(gmap_is_shadow(gmap));
983 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
984 	if (!pmdp)
985 		return NULL;
986 
987 	/* without huge pages, there is no need to take the table lock */
988 	if (!gmap->mm->context.allow_gmap_hpage_1m)
989 		return pmd_none(*pmdp) ? NULL : pmdp;
990 
991 	spin_lock(&gmap->guest_table_lock);
992 	if (pmd_none(*pmdp)) {
993 		spin_unlock(&gmap->guest_table_lock);
994 		return NULL;
995 	}
996 
997 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
998 	if (!pmd_leaf(*pmdp))
999 		spin_unlock(&gmap->guest_table_lock);
1000 	return pmdp;
1001 }
1002 
1003 /**
1004  * gmap_pmd_op_end - release the guest_table_lock if needed
1005  * @gmap: pointer to the guest mapping meta data structure
1006  * @pmdp: pointer to the pmd
1007  */
1008 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
1009 {
1010 	if (pmd_leaf(*pmdp))
1011 		spin_unlock(&gmap->guest_table_lock);
1012 }
1013 
1014 /*
1015  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
1016  * @pmdp: pointer to the pmd to be protected
1017  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1018  * @bits: notification bits to set
1019  *
1020  * Returns:
1021  * 0 if successfully protected
1022  * -EAGAIN if a fixup is needed
1023  * -EINVAL if unsupported notifier bits have been specified
1024  *
1025  * Expected to be called with sg->mm->mmap_lock in read and
1026  * guest_table_lock held.
1027  */
1028 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
1029 			    pmd_t *pmdp, int prot, unsigned long bits)
1030 {
1031 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
1032 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
1033 	pmd_t new = *pmdp;
1034 
1035 	/* Fixup needed */
1036 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
1037 		return -EAGAIN;
1038 
1039 	if (prot == PROT_NONE && !pmd_i) {
1040 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
1041 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
1042 	}
1043 
1044 	if (prot == PROT_READ && !pmd_p) {
1045 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
1046 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
1047 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
1048 	}
1049 
1050 	if (bits & GMAP_NOTIFY_MPROT)
1051 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1052 
1053 	/* Shadow GMAP protection needs split PMDs */
1054 	if (bits & GMAP_NOTIFY_SHADOW)
1055 		return -EINVAL;
1056 
1057 	return 0;
1058 }
1059 
1060 /*
1061  * gmap_protect_pte - remove access rights to memory and set pgste bits
1062  * @gmap: pointer to guest mapping meta data structure
1063  * @gaddr: virtual address in the guest address space
1064  * @pmdp: pointer to the pmd associated with the pte
1065  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1066  * @bits: notification bits to set
1067  *
1068  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1069  * -EAGAIN if a fixup is needed.
1070  *
1071  * Expected to be called with sg->mm->mmap_lock in read
1072  */
1073 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1074 			    pmd_t *pmdp, int prot, unsigned long bits)
1075 {
1076 	int rc;
1077 	pte_t *ptep;
1078 	spinlock_t *ptl;
1079 	unsigned long pbits = 0;
1080 
1081 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1082 		return -EAGAIN;
1083 
1084 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1085 	if (!ptep)
1086 		return -ENOMEM;
1087 
1088 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1089 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1090 	/* Protect and unlock. */
1091 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1092 	gmap_pte_op_end(ptep, ptl);
1093 	return rc;
1094 }
1095 
1096 /*
1097  * gmap_protect_range - remove access rights to memory and set pgste bits
1098  * @gmap: pointer to guest mapping meta data structure
1099  * @gaddr: virtual address in the guest address space
1100  * @len: size of area
1101  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1102  * @bits: pgste notification bits to set
1103  *
1104  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1105  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1106  *
1107  * Called with sg->mm->mmap_lock in read.
1108  */
1109 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1110 			      unsigned long len, int prot, unsigned long bits)
1111 {
1112 	unsigned long vmaddr, dist;
1113 	pmd_t *pmdp;
1114 	int rc;
1115 
1116 	BUG_ON(gmap_is_shadow(gmap));
1117 	while (len) {
1118 		rc = -EAGAIN;
1119 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1120 		if (pmdp) {
1121 			if (!pmd_leaf(*pmdp)) {
1122 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1123 						      bits);
1124 				if (!rc) {
1125 					len -= PAGE_SIZE;
1126 					gaddr += PAGE_SIZE;
1127 				}
1128 			} else {
1129 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1130 						      bits);
1131 				if (!rc) {
1132 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1133 					len = len < dist ? 0 : len - dist;
1134 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1135 				}
1136 			}
1137 			gmap_pmd_op_end(gmap, pmdp);
1138 		}
1139 		if (rc) {
1140 			if (rc == -EINVAL)
1141 				return rc;
1142 
1143 			/* -EAGAIN, fixup of userspace mm and gmap */
1144 			vmaddr = __gmap_translate(gmap, gaddr);
1145 			if (IS_ERR_VALUE(vmaddr))
1146 				return vmaddr;
1147 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1148 			if (rc)
1149 				return rc;
1150 		}
1151 	}
1152 	return 0;
1153 }
1154 
1155 /**
1156  * gmap_mprotect_notify - change access rights for a range of ptes and
1157  *                        call the notifier if any pte changes again
1158  * @gmap: pointer to guest mapping meta data structure
1159  * @gaddr: virtual address in the guest address space
1160  * @len: size of area
1161  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1162  *
1163  * Returns 0 if for each page in the given range a gmap mapping exists,
1164  * the new access rights could be set and the notifier could be armed.
1165  * If the gmap mapping is missing for one or more pages -EFAULT is
1166  * returned. If no memory could be allocated -ENOMEM is returned.
1167  * This function establishes missing page table entries.
1168  */
1169 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1170 			 unsigned long len, int prot)
1171 {
1172 	int rc;
1173 
1174 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1175 		return -EINVAL;
1176 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1177 		return -EINVAL;
1178 	mmap_read_lock(gmap->mm);
1179 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1180 	mmap_read_unlock(gmap->mm);
1181 	return rc;
1182 }
1183 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1184 
1185 /**
1186  * gmap_read_table - get an unsigned long value from a guest page table using
1187  *                   absolute addressing, without marking the page referenced.
1188  * @gmap: pointer to guest mapping meta data structure
1189  * @gaddr: virtual address in the guest address space
1190  * @val: pointer to the unsigned long value to return
1191  *
1192  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1193  * if reading using the virtual address failed. -EINVAL if called on a gmap
1194  * shadow.
1195  *
1196  * Called with gmap->mm->mmap_lock in read.
1197  */
1198 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1199 {
1200 	unsigned long address, vmaddr;
1201 	spinlock_t *ptl;
1202 	pte_t *ptep, pte;
1203 	int rc;
1204 
1205 	if (gmap_is_shadow(gmap))
1206 		return -EINVAL;
1207 
1208 	while (1) {
1209 		rc = -EAGAIN;
1210 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1211 		if (ptep) {
1212 			pte = *ptep;
1213 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1214 				address = pte_val(pte) & PAGE_MASK;
1215 				address += gaddr & ~PAGE_MASK;
1216 				*val = *(unsigned long *)__va(address);
1217 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1218 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1219 				rc = 0;
1220 			}
1221 			gmap_pte_op_end(ptep, ptl);
1222 		}
1223 		if (!rc)
1224 			break;
1225 		vmaddr = __gmap_translate(gmap, gaddr);
1226 		if (IS_ERR_VALUE(vmaddr)) {
1227 			rc = vmaddr;
1228 			break;
1229 		}
1230 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1231 		if (rc)
1232 			break;
1233 	}
1234 	return rc;
1235 }
1236 EXPORT_SYMBOL_GPL(gmap_read_table);
1237 
1238 /**
1239  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1240  * @sg: pointer to the shadow guest address space structure
1241  * @vmaddr: vm address associated with the rmap
1242  * @rmap: pointer to the rmap structure
1243  *
1244  * Called with the sg->guest_table_lock
1245  */
1246 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1247 				    struct gmap_rmap *rmap)
1248 {
1249 	struct gmap_rmap *temp;
1250 	void __rcu **slot;
1251 
1252 	BUG_ON(!gmap_is_shadow(sg));
1253 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1254 	if (slot) {
1255 		rmap->next = radix_tree_deref_slot_protected(slot,
1256 							&sg->guest_table_lock);
1257 		for (temp = rmap->next; temp; temp = temp->next) {
1258 			if (temp->raddr == rmap->raddr) {
1259 				kfree(rmap);
1260 				return;
1261 			}
1262 		}
1263 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1264 	} else {
1265 		rmap->next = NULL;
1266 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1267 				  rmap);
1268 	}
1269 }
1270 
1271 /**
1272  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1273  * @sg: pointer to the shadow guest address space structure
1274  * @raddr: rmap address in the shadow gmap
1275  * @paddr: address in the parent guest address space
1276  * @len: length of the memory area to protect
1277  *
1278  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1279  * if out of memory and -EFAULT if paddr is invalid.
1280  */
1281 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1282 			     unsigned long paddr, unsigned long len)
1283 {
1284 	struct gmap *parent;
1285 	struct gmap_rmap *rmap;
1286 	unsigned long vmaddr;
1287 	spinlock_t *ptl;
1288 	pte_t *ptep;
1289 	int rc;
1290 
1291 	BUG_ON(!gmap_is_shadow(sg));
1292 	parent = sg->parent;
1293 	while (len) {
1294 		vmaddr = __gmap_translate(parent, paddr);
1295 		if (IS_ERR_VALUE(vmaddr))
1296 			return vmaddr;
1297 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1298 		if (!rmap)
1299 			return -ENOMEM;
1300 		rmap->raddr = raddr;
1301 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1302 		if (rc) {
1303 			kfree(rmap);
1304 			return rc;
1305 		}
1306 		rc = -EAGAIN;
1307 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1308 		if (ptep) {
1309 			spin_lock(&sg->guest_table_lock);
1310 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1311 					     PGSTE_VSIE_BIT);
1312 			if (!rc)
1313 				gmap_insert_rmap(sg, vmaddr, rmap);
1314 			spin_unlock(&sg->guest_table_lock);
1315 			gmap_pte_op_end(ptep, ptl);
1316 		}
1317 		radix_tree_preload_end();
1318 		if (rc) {
1319 			kfree(rmap);
1320 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1321 			if (rc)
1322 				return rc;
1323 			continue;
1324 		}
1325 		paddr += PAGE_SIZE;
1326 		len -= PAGE_SIZE;
1327 	}
1328 	return 0;
1329 }
1330 
1331 #define _SHADOW_RMAP_MASK	0x7
1332 #define _SHADOW_RMAP_REGION1	0x5
1333 #define _SHADOW_RMAP_REGION2	0x4
1334 #define _SHADOW_RMAP_REGION3	0x3
1335 #define _SHADOW_RMAP_SEGMENT	0x2
1336 #define _SHADOW_RMAP_PGTABLE	0x1
1337 
1338 /**
1339  * gmap_idte_one - invalidate a single region or segment table entry
1340  * @asce: region or segment table *origin* + table-type bits
1341  * @vaddr: virtual address to identify the table entry to flush
1342  *
1343  * The invalid bit of a single region or segment table entry is set
1344  * and the associated TLB entries depending on the entry are flushed.
1345  * The table-type of the @asce identifies the portion of the @vaddr
1346  * that is used as the invalidation index.
1347  */
1348 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1349 {
1350 	asm volatile(
1351 		"	idte	%0,0,%1"
1352 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1353 }
1354 
1355 /**
1356  * gmap_unshadow_page - remove a page from a shadow page table
1357  * @sg: pointer to the shadow guest address space structure
1358  * @raddr: rmap address in the shadow guest address space
1359  *
1360  * Called with the sg->guest_table_lock
1361  */
1362 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1363 {
1364 	unsigned long *table;
1365 
1366 	BUG_ON(!gmap_is_shadow(sg));
1367 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1368 	if (!table || *table & _PAGE_INVALID)
1369 		return;
1370 	gmap_call_notifier(sg, raddr, raddr + PAGE_SIZE - 1);
1371 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1372 }
1373 
1374 /**
1375  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1376  * @sg: pointer to the shadow guest address space structure
1377  * @raddr: rmap address in the shadow guest address space
1378  * @pgt: pointer to the start of a shadow page table
1379  *
1380  * Called with the sg->guest_table_lock
1381  */
1382 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1383 				unsigned long *pgt)
1384 {
1385 	int i;
1386 
1387 	BUG_ON(!gmap_is_shadow(sg));
1388 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += PAGE_SIZE)
1389 		pgt[i] = _PAGE_INVALID;
1390 }
1391 
1392 /**
1393  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1394  * @sg: pointer to the shadow guest address space structure
1395  * @raddr: address in the shadow guest address space
1396  *
1397  * Called with the sg->guest_table_lock
1398  */
1399 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1400 {
1401 	unsigned long *ste;
1402 	phys_addr_t sto, pgt;
1403 	struct ptdesc *ptdesc;
1404 
1405 	BUG_ON(!gmap_is_shadow(sg));
1406 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1407 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1408 		return;
1409 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1410 	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1411 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1412 	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1413 	*ste = _SEGMENT_ENTRY_EMPTY;
1414 	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1415 	/* Free page table */
1416 	ptdesc = page_ptdesc(phys_to_page(pgt));
1417 	list_del(&ptdesc->pt_list);
1418 	page_table_free_pgste(ptdesc);
1419 }
1420 
1421 /**
1422  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1423  * @sg: pointer to the shadow guest address space structure
1424  * @raddr: rmap address in the shadow guest address space
1425  * @sgt: pointer to the start of a shadow segment table
1426  *
1427  * Called with the sg->guest_table_lock
1428  */
1429 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1430 				unsigned long *sgt)
1431 {
1432 	struct ptdesc *ptdesc;
1433 	phys_addr_t pgt;
1434 	int i;
1435 
1436 	BUG_ON(!gmap_is_shadow(sg));
1437 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1438 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1439 			continue;
1440 		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1441 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1442 		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1443 		/* Free page table */
1444 		ptdesc = page_ptdesc(phys_to_page(pgt));
1445 		list_del(&ptdesc->pt_list);
1446 		page_table_free_pgste(ptdesc);
1447 	}
1448 }
1449 
1450 /**
1451  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1452  * @sg: pointer to the shadow guest address space structure
1453  * @raddr: rmap address in the shadow guest address space
1454  *
1455  * Called with the shadow->guest_table_lock
1456  */
1457 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1458 {
1459 	unsigned long r3o, *r3e;
1460 	phys_addr_t sgt;
1461 	struct page *page;
1462 
1463 	BUG_ON(!gmap_is_shadow(sg));
1464 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1465 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1466 		return;
1467 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1468 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1469 	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1470 	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1471 	*r3e = _REGION3_ENTRY_EMPTY;
1472 	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1473 	/* Free segment table */
1474 	page = phys_to_page(sgt);
1475 	list_del(&page->lru);
1476 	__free_pages(page, CRST_ALLOC_ORDER);
1477 }
1478 
1479 /**
1480  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1481  * @sg: pointer to the shadow guest address space structure
1482  * @raddr: address in the shadow guest address space
1483  * @r3t: pointer to the start of a shadow region-3 table
1484  *
1485  * Called with the sg->guest_table_lock
1486  */
1487 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1488 				unsigned long *r3t)
1489 {
1490 	struct page *page;
1491 	phys_addr_t sgt;
1492 	int i;
1493 
1494 	BUG_ON(!gmap_is_shadow(sg));
1495 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1496 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1497 			continue;
1498 		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1499 		r3t[i] = _REGION3_ENTRY_EMPTY;
1500 		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1501 		/* Free segment table */
1502 		page = phys_to_page(sgt);
1503 		list_del(&page->lru);
1504 		__free_pages(page, CRST_ALLOC_ORDER);
1505 	}
1506 }
1507 
1508 /**
1509  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1510  * @sg: pointer to the shadow guest address space structure
1511  * @raddr: rmap address in the shadow guest address space
1512  *
1513  * Called with the sg->guest_table_lock
1514  */
1515 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1516 {
1517 	unsigned long r2o, *r2e;
1518 	phys_addr_t r3t;
1519 	struct page *page;
1520 
1521 	BUG_ON(!gmap_is_shadow(sg));
1522 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1523 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1524 		return;
1525 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1526 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1527 	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1528 	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1529 	*r2e = _REGION2_ENTRY_EMPTY;
1530 	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1531 	/* Free region 3 table */
1532 	page = phys_to_page(r3t);
1533 	list_del(&page->lru);
1534 	__free_pages(page, CRST_ALLOC_ORDER);
1535 }
1536 
1537 /**
1538  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1539  * @sg: pointer to the shadow guest address space structure
1540  * @raddr: rmap address in the shadow guest address space
1541  * @r2t: pointer to the start of a shadow region-2 table
1542  *
1543  * Called with the sg->guest_table_lock
1544  */
1545 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1546 				unsigned long *r2t)
1547 {
1548 	phys_addr_t r3t;
1549 	struct page *page;
1550 	int i;
1551 
1552 	BUG_ON(!gmap_is_shadow(sg));
1553 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1554 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1555 			continue;
1556 		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1557 		r2t[i] = _REGION2_ENTRY_EMPTY;
1558 		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1559 		/* Free region 3 table */
1560 		page = phys_to_page(r3t);
1561 		list_del(&page->lru);
1562 		__free_pages(page, CRST_ALLOC_ORDER);
1563 	}
1564 }
1565 
1566 /**
1567  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1568  * @sg: pointer to the shadow guest address space structure
1569  * @raddr: rmap address in the shadow guest address space
1570  *
1571  * Called with the sg->guest_table_lock
1572  */
1573 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1574 {
1575 	unsigned long r1o, *r1e;
1576 	struct page *page;
1577 	phys_addr_t r2t;
1578 
1579 	BUG_ON(!gmap_is_shadow(sg));
1580 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1581 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1582 		return;
1583 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1584 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1585 	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1586 	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1587 	*r1e = _REGION1_ENTRY_EMPTY;
1588 	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1589 	/* Free region 2 table */
1590 	page = phys_to_page(r2t);
1591 	list_del(&page->lru);
1592 	__free_pages(page, CRST_ALLOC_ORDER);
1593 }
1594 
1595 /**
1596  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1597  * @sg: pointer to the shadow guest address space structure
1598  * @raddr: rmap address in the shadow guest address space
1599  * @r1t: pointer to the start of a shadow region-1 table
1600  *
1601  * Called with the shadow->guest_table_lock
1602  */
1603 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1604 				unsigned long *r1t)
1605 {
1606 	unsigned long asce;
1607 	struct page *page;
1608 	phys_addr_t r2t;
1609 	int i;
1610 
1611 	BUG_ON(!gmap_is_shadow(sg));
1612 	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1613 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1614 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1615 			continue;
1616 		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1617 		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1618 		/* Clear entry and flush translation r1t -> r2t */
1619 		gmap_idte_one(asce, raddr);
1620 		r1t[i] = _REGION1_ENTRY_EMPTY;
1621 		/* Free region 2 table */
1622 		page = phys_to_page(r2t);
1623 		list_del(&page->lru);
1624 		__free_pages(page, CRST_ALLOC_ORDER);
1625 	}
1626 }
1627 
1628 /**
1629  * gmap_unshadow - remove a shadow page table completely
1630  * @sg: pointer to the shadow guest address space structure
1631  *
1632  * Called with sg->guest_table_lock
1633  */
1634 static void gmap_unshadow(struct gmap *sg)
1635 {
1636 	unsigned long *table;
1637 
1638 	BUG_ON(!gmap_is_shadow(sg));
1639 	if (sg->removed)
1640 		return;
1641 	sg->removed = 1;
1642 	gmap_call_notifier(sg, 0, -1UL);
1643 	gmap_flush_tlb(sg);
1644 	table = __va(sg->asce & _ASCE_ORIGIN);
1645 	switch (sg->asce & _ASCE_TYPE_MASK) {
1646 	case _ASCE_TYPE_REGION1:
1647 		__gmap_unshadow_r1t(sg, 0, table);
1648 		break;
1649 	case _ASCE_TYPE_REGION2:
1650 		__gmap_unshadow_r2t(sg, 0, table);
1651 		break;
1652 	case _ASCE_TYPE_REGION3:
1653 		__gmap_unshadow_r3t(sg, 0, table);
1654 		break;
1655 	case _ASCE_TYPE_SEGMENT:
1656 		__gmap_unshadow_sgt(sg, 0, table);
1657 		break;
1658 	}
1659 }
1660 
1661 /**
1662  * gmap_find_shadow - find a specific asce in the list of shadow tables
1663  * @parent: pointer to the parent gmap
1664  * @asce: ASCE for which the shadow table is created
1665  * @edat_level: edat level to be used for the shadow translation
1666  *
1667  * Returns the pointer to a gmap if a shadow table with the given asce is
1668  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1669  * otherwise NULL
1670  */
1671 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1672 				     int edat_level)
1673 {
1674 	struct gmap *sg;
1675 
1676 	list_for_each_entry(sg, &parent->children, list) {
1677 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1678 		    sg->removed)
1679 			continue;
1680 		if (!sg->initialized)
1681 			return ERR_PTR(-EAGAIN);
1682 		refcount_inc(&sg->ref_count);
1683 		return sg;
1684 	}
1685 	return NULL;
1686 }
1687 
1688 /**
1689  * gmap_shadow_valid - check if a shadow guest address space matches the
1690  *                     given properties and is still valid
1691  * @sg: pointer to the shadow guest address space structure
1692  * @asce: ASCE for which the shadow table is requested
1693  * @edat_level: edat level to be used for the shadow translation
1694  *
1695  * Returns 1 if the gmap shadow is still valid and matches the given
1696  * properties, the caller can continue using it. Returns 0 otherwise, the
1697  * caller has to request a new shadow gmap in this case.
1698  *
1699  */
1700 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1701 {
1702 	if (sg->removed)
1703 		return 0;
1704 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1705 }
1706 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1707 
1708 /**
1709  * gmap_shadow - create/find a shadow guest address space
1710  * @parent: pointer to the parent gmap
1711  * @asce: ASCE for which the shadow table is created
1712  * @edat_level: edat level to be used for the shadow translation
1713  *
1714  * The pages of the top level page table referred by the asce parameter
1715  * will be set to read-only and marked in the PGSTEs of the kvm process.
1716  * The shadow table will be removed automatically on any change to the
1717  * PTE mapping for the source table.
1718  *
1719  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1720  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1721  * parent gmap table could not be protected.
1722  */
1723 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1724 			 int edat_level)
1725 {
1726 	struct gmap *sg, *new;
1727 	unsigned long limit;
1728 	int rc;
1729 
1730 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1731 	BUG_ON(gmap_is_shadow(parent));
1732 	spin_lock(&parent->shadow_lock);
1733 	sg = gmap_find_shadow(parent, asce, edat_level);
1734 	spin_unlock(&parent->shadow_lock);
1735 	if (sg)
1736 		return sg;
1737 	/* Create a new shadow gmap */
1738 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1739 	if (asce & _ASCE_REAL_SPACE)
1740 		limit = -1UL;
1741 	new = gmap_alloc(limit);
1742 	if (!new)
1743 		return ERR_PTR(-ENOMEM);
1744 	new->mm = parent->mm;
1745 	new->parent = gmap_get(parent);
1746 	new->private = parent->private;
1747 	new->orig_asce = asce;
1748 	new->edat_level = edat_level;
1749 	new->initialized = false;
1750 	spin_lock(&parent->shadow_lock);
1751 	/* Recheck if another CPU created the same shadow */
1752 	sg = gmap_find_shadow(parent, asce, edat_level);
1753 	if (sg) {
1754 		spin_unlock(&parent->shadow_lock);
1755 		gmap_free(new);
1756 		return sg;
1757 	}
1758 	if (asce & _ASCE_REAL_SPACE) {
1759 		/* only allow one real-space gmap shadow */
1760 		list_for_each_entry(sg, &parent->children, list) {
1761 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1762 				spin_lock(&sg->guest_table_lock);
1763 				gmap_unshadow(sg);
1764 				spin_unlock(&sg->guest_table_lock);
1765 				list_del(&sg->list);
1766 				gmap_put(sg);
1767 				break;
1768 			}
1769 		}
1770 	}
1771 	refcount_set(&new->ref_count, 2);
1772 	list_add(&new->list, &parent->children);
1773 	if (asce & _ASCE_REAL_SPACE) {
1774 		/* nothing to protect, return right away */
1775 		new->initialized = true;
1776 		spin_unlock(&parent->shadow_lock);
1777 		return new;
1778 	}
1779 	spin_unlock(&parent->shadow_lock);
1780 	/* protect after insertion, so it will get properly invalidated */
1781 	mmap_read_lock(parent->mm);
1782 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1783 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1784 				PROT_READ, GMAP_NOTIFY_SHADOW);
1785 	mmap_read_unlock(parent->mm);
1786 	spin_lock(&parent->shadow_lock);
1787 	new->initialized = true;
1788 	if (rc) {
1789 		list_del(&new->list);
1790 		gmap_free(new);
1791 		new = ERR_PTR(rc);
1792 	}
1793 	spin_unlock(&parent->shadow_lock);
1794 	return new;
1795 }
1796 EXPORT_SYMBOL_GPL(gmap_shadow);
1797 
1798 /**
1799  * gmap_shadow_r2t - create an empty shadow region 2 table
1800  * @sg: pointer to the shadow guest address space structure
1801  * @saddr: faulting address in the shadow gmap
1802  * @r2t: parent gmap address of the region 2 table to get shadowed
1803  * @fake: r2t references contiguous guest memory block, not a r2t
1804  *
1805  * The r2t parameter specifies the address of the source table. The
1806  * four pages of the source table are made read-only in the parent gmap
1807  * address space. A write to the source table area @r2t will automatically
1808  * remove the shadow r2 table and all of its descendants.
1809  *
1810  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1811  * shadow table structure is incomplete, -ENOMEM if out of memory and
1812  * -EFAULT if an address in the parent gmap could not be resolved.
1813  *
1814  * Called with sg->mm->mmap_lock in read.
1815  */
1816 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1817 		    int fake)
1818 {
1819 	unsigned long raddr, origin, offset, len;
1820 	unsigned long *table;
1821 	phys_addr_t s_r2t;
1822 	struct page *page;
1823 	int rc;
1824 
1825 	BUG_ON(!gmap_is_shadow(sg));
1826 	/* Allocate a shadow region second table */
1827 	page = gmap_alloc_crst();
1828 	if (!page)
1829 		return -ENOMEM;
1830 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1831 	if (fake)
1832 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1833 	s_r2t = page_to_phys(page);
1834 	/* Install shadow region second table */
1835 	spin_lock(&sg->guest_table_lock);
1836 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1837 	if (!table) {
1838 		rc = -EAGAIN;		/* Race with unshadow */
1839 		goto out_free;
1840 	}
1841 	if (!(*table & _REGION_ENTRY_INVALID)) {
1842 		rc = 0;			/* Already established */
1843 		goto out_free;
1844 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1845 		rc = -EAGAIN;		/* Race with shadow */
1846 		goto out_free;
1847 	}
1848 	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1849 	/* mark as invalid as long as the parent table is not protected */
1850 	*table = s_r2t | _REGION_ENTRY_LENGTH |
1851 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1852 	if (sg->edat_level >= 1)
1853 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1854 	list_add(&page->lru, &sg->crst_list);
1855 	if (fake) {
1856 		/* nothing to protect for fake tables */
1857 		*table &= ~_REGION_ENTRY_INVALID;
1858 		spin_unlock(&sg->guest_table_lock);
1859 		return 0;
1860 	}
1861 	spin_unlock(&sg->guest_table_lock);
1862 	/* Make r2t read-only in parent gmap page table */
1863 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1864 	origin = r2t & _REGION_ENTRY_ORIGIN;
1865 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1866 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1867 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1868 	spin_lock(&sg->guest_table_lock);
1869 	if (!rc) {
1870 		table = gmap_table_walk(sg, saddr, 4);
1871 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1872 			rc = -EAGAIN;		/* Race with unshadow */
1873 		else
1874 			*table &= ~_REGION_ENTRY_INVALID;
1875 	} else {
1876 		gmap_unshadow_r2t(sg, raddr);
1877 	}
1878 	spin_unlock(&sg->guest_table_lock);
1879 	return rc;
1880 out_free:
1881 	spin_unlock(&sg->guest_table_lock);
1882 	__free_pages(page, CRST_ALLOC_ORDER);
1883 	return rc;
1884 }
1885 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1886 
1887 /**
1888  * gmap_shadow_r3t - create a shadow region 3 table
1889  * @sg: pointer to the shadow guest address space structure
1890  * @saddr: faulting address in the shadow gmap
1891  * @r3t: parent gmap address of the region 3 table to get shadowed
1892  * @fake: r3t references contiguous guest memory block, not a r3t
1893  *
1894  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1895  * shadow table structure is incomplete, -ENOMEM if out of memory and
1896  * -EFAULT if an address in the parent gmap could not be resolved.
1897  *
1898  * Called with sg->mm->mmap_lock in read.
1899  */
1900 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1901 		    int fake)
1902 {
1903 	unsigned long raddr, origin, offset, len;
1904 	unsigned long *table;
1905 	phys_addr_t s_r3t;
1906 	struct page *page;
1907 	int rc;
1908 
1909 	BUG_ON(!gmap_is_shadow(sg));
1910 	/* Allocate a shadow region second table */
1911 	page = gmap_alloc_crst();
1912 	if (!page)
1913 		return -ENOMEM;
1914 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1915 	if (fake)
1916 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1917 	s_r3t = page_to_phys(page);
1918 	/* Install shadow region second table */
1919 	spin_lock(&sg->guest_table_lock);
1920 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1921 	if (!table) {
1922 		rc = -EAGAIN;		/* Race with unshadow */
1923 		goto out_free;
1924 	}
1925 	if (!(*table & _REGION_ENTRY_INVALID)) {
1926 		rc = 0;			/* Already established */
1927 		goto out_free;
1928 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1929 		rc = -EAGAIN;		/* Race with shadow */
1930 		goto out_free;
1931 	}
1932 	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1933 	/* mark as invalid as long as the parent table is not protected */
1934 	*table = s_r3t | _REGION_ENTRY_LENGTH |
1935 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1936 	if (sg->edat_level >= 1)
1937 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1938 	list_add(&page->lru, &sg->crst_list);
1939 	if (fake) {
1940 		/* nothing to protect for fake tables */
1941 		*table &= ~_REGION_ENTRY_INVALID;
1942 		spin_unlock(&sg->guest_table_lock);
1943 		return 0;
1944 	}
1945 	spin_unlock(&sg->guest_table_lock);
1946 	/* Make r3t read-only in parent gmap page table */
1947 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1948 	origin = r3t & _REGION_ENTRY_ORIGIN;
1949 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1950 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1951 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1952 	spin_lock(&sg->guest_table_lock);
1953 	if (!rc) {
1954 		table = gmap_table_walk(sg, saddr, 3);
1955 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1956 			rc = -EAGAIN;		/* Race with unshadow */
1957 		else
1958 			*table &= ~_REGION_ENTRY_INVALID;
1959 	} else {
1960 		gmap_unshadow_r3t(sg, raddr);
1961 	}
1962 	spin_unlock(&sg->guest_table_lock);
1963 	return rc;
1964 out_free:
1965 	spin_unlock(&sg->guest_table_lock);
1966 	__free_pages(page, CRST_ALLOC_ORDER);
1967 	return rc;
1968 }
1969 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1970 
1971 /**
1972  * gmap_shadow_sgt - create a shadow segment table
1973  * @sg: pointer to the shadow guest address space structure
1974  * @saddr: faulting address in the shadow gmap
1975  * @sgt: parent gmap address of the segment table to get shadowed
1976  * @fake: sgt references contiguous guest memory block, not a sgt
1977  *
1978  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1979  * shadow table structure is incomplete, -ENOMEM if out of memory and
1980  * -EFAULT if an address in the parent gmap could not be resolved.
1981  *
1982  * Called with sg->mm->mmap_lock in read.
1983  */
1984 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1985 		    int fake)
1986 {
1987 	unsigned long raddr, origin, offset, len;
1988 	unsigned long *table;
1989 	phys_addr_t s_sgt;
1990 	struct page *page;
1991 	int rc;
1992 
1993 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1994 	/* Allocate a shadow segment table */
1995 	page = gmap_alloc_crst();
1996 	if (!page)
1997 		return -ENOMEM;
1998 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1999 	if (fake)
2000 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2001 	s_sgt = page_to_phys(page);
2002 	/* Install shadow region second table */
2003 	spin_lock(&sg->guest_table_lock);
2004 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
2005 	if (!table) {
2006 		rc = -EAGAIN;		/* Race with unshadow */
2007 		goto out_free;
2008 	}
2009 	if (!(*table & _REGION_ENTRY_INVALID)) {
2010 		rc = 0;			/* Already established */
2011 		goto out_free;
2012 	} else if (*table & _REGION_ENTRY_ORIGIN) {
2013 		rc = -EAGAIN;		/* Race with shadow */
2014 		goto out_free;
2015 	}
2016 	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
2017 	/* mark as invalid as long as the parent table is not protected */
2018 	*table = s_sgt | _REGION_ENTRY_LENGTH |
2019 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
2020 	if (sg->edat_level >= 1)
2021 		*table |= sgt & _REGION_ENTRY_PROTECT;
2022 	list_add(&page->lru, &sg->crst_list);
2023 	if (fake) {
2024 		/* nothing to protect for fake tables */
2025 		*table &= ~_REGION_ENTRY_INVALID;
2026 		spin_unlock(&sg->guest_table_lock);
2027 		return 0;
2028 	}
2029 	spin_unlock(&sg->guest_table_lock);
2030 	/* Make sgt read-only in parent gmap page table */
2031 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
2032 	origin = sgt & _REGION_ENTRY_ORIGIN;
2033 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
2034 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
2035 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
2036 	spin_lock(&sg->guest_table_lock);
2037 	if (!rc) {
2038 		table = gmap_table_walk(sg, saddr, 2);
2039 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
2040 			rc = -EAGAIN;		/* Race with unshadow */
2041 		else
2042 			*table &= ~_REGION_ENTRY_INVALID;
2043 	} else {
2044 		gmap_unshadow_sgt(sg, raddr);
2045 	}
2046 	spin_unlock(&sg->guest_table_lock);
2047 	return rc;
2048 out_free:
2049 	spin_unlock(&sg->guest_table_lock);
2050 	__free_pages(page, CRST_ALLOC_ORDER);
2051 	return rc;
2052 }
2053 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2054 
2055 /**
2056  * gmap_shadow_pgt_lookup - find a shadow page table
2057  * @sg: pointer to the shadow guest address space structure
2058  * @saddr: the address in the shadow aguest address space
2059  * @pgt: parent gmap address of the page table to get shadowed
2060  * @dat_protection: if the pgtable is marked as protected by dat
2061  * @fake: pgt references contiguous guest memory block, not a pgtable
2062  *
2063  * Returns 0 if the shadow page table was found and -EAGAIN if the page
2064  * table was not found.
2065  *
2066  * Called with sg->mm->mmap_lock in read.
2067  */
2068 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2069 			   unsigned long *pgt, int *dat_protection,
2070 			   int *fake)
2071 {
2072 	unsigned long *table;
2073 	struct page *page;
2074 	int rc;
2075 
2076 	BUG_ON(!gmap_is_shadow(sg));
2077 	spin_lock(&sg->guest_table_lock);
2078 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2079 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2080 		/* Shadow page tables are full pages (pte+pgste) */
2081 		page = pfn_to_page(*table >> PAGE_SHIFT);
2082 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2083 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2084 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2085 		rc = 0;
2086 	} else  {
2087 		rc = -EAGAIN;
2088 	}
2089 	spin_unlock(&sg->guest_table_lock);
2090 	return rc;
2091 
2092 }
2093 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2094 
2095 /**
2096  * gmap_shadow_pgt - instantiate a shadow page table
2097  * @sg: pointer to the shadow guest address space structure
2098  * @saddr: faulting address in the shadow gmap
2099  * @pgt: parent gmap address of the page table to get shadowed
2100  * @fake: pgt references contiguous guest memory block, not a pgtable
2101  *
2102  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2103  * shadow table structure is incomplete, -ENOMEM if out of memory,
2104  * -EFAULT if an address in the parent gmap could not be resolved and
2105  *
2106  * Called with gmap->mm->mmap_lock in read
2107  */
2108 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2109 		    int fake)
2110 {
2111 	unsigned long raddr, origin;
2112 	unsigned long *table;
2113 	struct ptdesc *ptdesc;
2114 	phys_addr_t s_pgt;
2115 	int rc;
2116 
2117 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2118 	/* Allocate a shadow page table */
2119 	ptdesc = page_table_alloc_pgste(sg->mm);
2120 	if (!ptdesc)
2121 		return -ENOMEM;
2122 	ptdesc->pt_index = pgt & _SEGMENT_ENTRY_ORIGIN;
2123 	if (fake)
2124 		ptdesc->pt_index |= GMAP_SHADOW_FAKE_TABLE;
2125 	s_pgt = page_to_phys(ptdesc_page(ptdesc));
2126 	/* Install shadow page table */
2127 	spin_lock(&sg->guest_table_lock);
2128 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2129 	if (!table) {
2130 		rc = -EAGAIN;		/* Race with unshadow */
2131 		goto out_free;
2132 	}
2133 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2134 		rc = 0;			/* Already established */
2135 		goto out_free;
2136 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2137 		rc = -EAGAIN;		/* Race with shadow */
2138 		goto out_free;
2139 	}
2140 	/* mark as invalid as long as the parent table is not protected */
2141 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2142 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2143 	list_add(&ptdesc->pt_list, &sg->pt_list);
2144 	if (fake) {
2145 		/* nothing to protect for fake tables */
2146 		*table &= ~_SEGMENT_ENTRY_INVALID;
2147 		spin_unlock(&sg->guest_table_lock);
2148 		return 0;
2149 	}
2150 	spin_unlock(&sg->guest_table_lock);
2151 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2152 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2153 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2154 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2155 	spin_lock(&sg->guest_table_lock);
2156 	if (!rc) {
2157 		table = gmap_table_walk(sg, saddr, 1);
2158 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2159 			rc = -EAGAIN;		/* Race with unshadow */
2160 		else
2161 			*table &= ~_SEGMENT_ENTRY_INVALID;
2162 	} else {
2163 		gmap_unshadow_pgt(sg, raddr);
2164 	}
2165 	spin_unlock(&sg->guest_table_lock);
2166 	return rc;
2167 out_free:
2168 	spin_unlock(&sg->guest_table_lock);
2169 	page_table_free_pgste(ptdesc);
2170 	return rc;
2171 
2172 }
2173 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2174 
2175 /**
2176  * gmap_shadow_page - create a shadow page mapping
2177  * @sg: pointer to the shadow guest address space structure
2178  * @saddr: faulting address in the shadow gmap
2179  * @pte: pte in parent gmap address space to get shadowed
2180  *
2181  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2182  * shadow table structure is incomplete, -ENOMEM if out of memory and
2183  * -EFAULT if an address in the parent gmap could not be resolved.
2184  *
2185  * Called with sg->mm->mmap_lock in read.
2186  */
2187 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2188 {
2189 	struct gmap *parent;
2190 	struct gmap_rmap *rmap;
2191 	unsigned long vmaddr, paddr;
2192 	spinlock_t *ptl;
2193 	pte_t *sptep, *tptep;
2194 	int prot;
2195 	int rc;
2196 
2197 	BUG_ON(!gmap_is_shadow(sg));
2198 	parent = sg->parent;
2199 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2200 
2201 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2202 	if (!rmap)
2203 		return -ENOMEM;
2204 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2205 
2206 	while (1) {
2207 		paddr = pte_val(pte) & PAGE_MASK;
2208 		vmaddr = __gmap_translate(parent, paddr);
2209 		if (IS_ERR_VALUE(vmaddr)) {
2210 			rc = vmaddr;
2211 			break;
2212 		}
2213 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2214 		if (rc)
2215 			break;
2216 		rc = -EAGAIN;
2217 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2218 		if (sptep) {
2219 			spin_lock(&sg->guest_table_lock);
2220 			/* Get page table pointer */
2221 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2222 			if (!tptep) {
2223 				spin_unlock(&sg->guest_table_lock);
2224 				gmap_pte_op_end(sptep, ptl);
2225 				radix_tree_preload_end();
2226 				break;
2227 			}
2228 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2229 			if (rc > 0) {
2230 				/* Success and a new mapping */
2231 				gmap_insert_rmap(sg, vmaddr, rmap);
2232 				rmap = NULL;
2233 				rc = 0;
2234 			}
2235 			gmap_pte_op_end(sptep, ptl);
2236 			spin_unlock(&sg->guest_table_lock);
2237 		}
2238 		radix_tree_preload_end();
2239 		if (!rc)
2240 			break;
2241 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2242 		if (rc)
2243 			break;
2244 	}
2245 	kfree(rmap);
2246 	return rc;
2247 }
2248 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2249 
2250 /*
2251  * gmap_shadow_notify - handle notifications for shadow gmap
2252  *
2253  * Called with sg->parent->shadow_lock.
2254  */
2255 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2256 			       unsigned long gaddr)
2257 {
2258 	struct gmap_rmap *rmap, *rnext, *head;
2259 	unsigned long start, end, bits, raddr;
2260 
2261 	BUG_ON(!gmap_is_shadow(sg));
2262 
2263 	spin_lock(&sg->guest_table_lock);
2264 	if (sg->removed) {
2265 		spin_unlock(&sg->guest_table_lock);
2266 		return;
2267 	}
2268 	/* Check for top level table */
2269 	start = sg->orig_asce & _ASCE_ORIGIN;
2270 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2271 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2272 	    gaddr < end) {
2273 		/* The complete shadow table has to go */
2274 		gmap_unshadow(sg);
2275 		spin_unlock(&sg->guest_table_lock);
2276 		list_del(&sg->list);
2277 		gmap_put(sg);
2278 		return;
2279 	}
2280 	/* Remove the page table tree from on specific entry */
2281 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2282 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2283 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2284 		raddr = rmap->raddr ^ bits;
2285 		switch (bits) {
2286 		case _SHADOW_RMAP_REGION1:
2287 			gmap_unshadow_r2t(sg, raddr);
2288 			break;
2289 		case _SHADOW_RMAP_REGION2:
2290 			gmap_unshadow_r3t(sg, raddr);
2291 			break;
2292 		case _SHADOW_RMAP_REGION3:
2293 			gmap_unshadow_sgt(sg, raddr);
2294 			break;
2295 		case _SHADOW_RMAP_SEGMENT:
2296 			gmap_unshadow_pgt(sg, raddr);
2297 			break;
2298 		case _SHADOW_RMAP_PGTABLE:
2299 			gmap_unshadow_page(sg, raddr);
2300 			break;
2301 		}
2302 		kfree(rmap);
2303 	}
2304 	spin_unlock(&sg->guest_table_lock);
2305 }
2306 
2307 /**
2308  * ptep_notify - call all invalidation callbacks for a specific pte.
2309  * @mm: pointer to the process mm_struct
2310  * @vmaddr: virtual address in the process address space
2311  * @pte: pointer to the page table entry
2312  * @bits: bits from the pgste that caused the notify call
2313  *
2314  * This function is assumed to be called with the page table lock held
2315  * for the pte to notify.
2316  */
2317 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2318 		 pte_t *pte, unsigned long bits)
2319 {
2320 	unsigned long offset, gaddr = 0;
2321 	unsigned long *table;
2322 	struct gmap *gmap, *sg, *next;
2323 
2324 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2325 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2326 	rcu_read_lock();
2327 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2328 		spin_lock(&gmap->guest_table_lock);
2329 		table = radix_tree_lookup(&gmap->host_to_guest,
2330 					  vmaddr >> PMD_SHIFT);
2331 		if (table)
2332 			gaddr = __gmap_segment_gaddr(table) + offset;
2333 		spin_unlock(&gmap->guest_table_lock);
2334 		if (!table)
2335 			continue;
2336 
2337 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2338 			spin_lock(&gmap->shadow_lock);
2339 			list_for_each_entry_safe(sg, next,
2340 						 &gmap->children, list)
2341 				gmap_shadow_notify(sg, vmaddr, gaddr);
2342 			spin_unlock(&gmap->shadow_lock);
2343 		}
2344 		if (bits & PGSTE_IN_BIT)
2345 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2346 	}
2347 	rcu_read_unlock();
2348 }
2349 EXPORT_SYMBOL_GPL(ptep_notify);
2350 
2351 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2352 			     unsigned long gaddr)
2353 {
2354 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2355 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2356 }
2357 
2358 /**
2359  * gmap_pmdp_xchg - exchange a gmap pmd with another
2360  * @gmap: pointer to the guest address space structure
2361  * @pmdp: pointer to the pmd entry
2362  * @new: replacement entry
2363  * @gaddr: the affected guest address
2364  *
2365  * This function is assumed to be called with the guest_table_lock
2366  * held.
2367  */
2368 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2369 			   unsigned long gaddr)
2370 {
2371 	gaddr &= HPAGE_MASK;
2372 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2373 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2374 	if (MACHINE_HAS_TLB_GUEST)
2375 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2376 			    IDTE_GLOBAL);
2377 	else if (MACHINE_HAS_IDTE)
2378 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2379 	else
2380 		__pmdp_csp(pmdp);
2381 	set_pmd(pmdp, new);
2382 }
2383 
2384 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2385 			    int purge)
2386 {
2387 	pmd_t *pmdp;
2388 	struct gmap *gmap;
2389 	unsigned long gaddr;
2390 
2391 	rcu_read_lock();
2392 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2393 		spin_lock(&gmap->guest_table_lock);
2394 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2395 						  vmaddr >> PMD_SHIFT);
2396 		if (pmdp) {
2397 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2398 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2399 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2400 						   _SEGMENT_ENTRY_GMAP_UC |
2401 						   _SEGMENT_ENTRY));
2402 			if (purge)
2403 				__pmdp_csp(pmdp);
2404 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2405 		}
2406 		spin_unlock(&gmap->guest_table_lock);
2407 	}
2408 	rcu_read_unlock();
2409 }
2410 
2411 /**
2412  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2413  *                        flushing
2414  * @mm: pointer to the process mm_struct
2415  * @vmaddr: virtual address in the process address space
2416  */
2417 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2418 {
2419 	gmap_pmdp_clear(mm, vmaddr, 0);
2420 }
2421 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2422 
2423 /**
2424  * gmap_pmdp_csp - csp all affected guest pmd entries
2425  * @mm: pointer to the process mm_struct
2426  * @vmaddr: virtual address in the process address space
2427  */
2428 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2429 {
2430 	gmap_pmdp_clear(mm, vmaddr, 1);
2431 }
2432 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2433 
2434 /**
2435  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2436  * @mm: pointer to the process mm_struct
2437  * @vmaddr: virtual address in the process address space
2438  */
2439 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2440 {
2441 	unsigned long *entry, gaddr;
2442 	struct gmap *gmap;
2443 	pmd_t *pmdp;
2444 
2445 	rcu_read_lock();
2446 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2447 		spin_lock(&gmap->guest_table_lock);
2448 		entry = radix_tree_delete(&gmap->host_to_guest,
2449 					  vmaddr >> PMD_SHIFT);
2450 		if (entry) {
2451 			pmdp = (pmd_t *)entry;
2452 			gaddr = __gmap_segment_gaddr(entry);
2453 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2454 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2455 					   _SEGMENT_ENTRY_GMAP_UC |
2456 					   _SEGMENT_ENTRY));
2457 			if (MACHINE_HAS_TLB_GUEST)
2458 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2459 					    gmap->asce, IDTE_LOCAL);
2460 			else if (MACHINE_HAS_IDTE)
2461 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2462 			*entry = _SEGMENT_ENTRY_EMPTY;
2463 		}
2464 		spin_unlock(&gmap->guest_table_lock);
2465 	}
2466 	rcu_read_unlock();
2467 }
2468 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2469 
2470 /**
2471  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2472  * @mm: pointer to the process mm_struct
2473  * @vmaddr: virtual address in the process address space
2474  */
2475 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2476 {
2477 	unsigned long *entry, gaddr;
2478 	struct gmap *gmap;
2479 	pmd_t *pmdp;
2480 
2481 	rcu_read_lock();
2482 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2483 		spin_lock(&gmap->guest_table_lock);
2484 		entry = radix_tree_delete(&gmap->host_to_guest,
2485 					  vmaddr >> PMD_SHIFT);
2486 		if (entry) {
2487 			pmdp = (pmd_t *)entry;
2488 			gaddr = __gmap_segment_gaddr(entry);
2489 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2490 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2491 					   _SEGMENT_ENTRY_GMAP_UC |
2492 					   _SEGMENT_ENTRY));
2493 			if (MACHINE_HAS_TLB_GUEST)
2494 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2495 					    gmap->asce, IDTE_GLOBAL);
2496 			else if (MACHINE_HAS_IDTE)
2497 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2498 			else
2499 				__pmdp_csp(pmdp);
2500 			*entry = _SEGMENT_ENTRY_EMPTY;
2501 		}
2502 		spin_unlock(&gmap->guest_table_lock);
2503 	}
2504 	rcu_read_unlock();
2505 }
2506 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2507 
2508 /**
2509  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2510  * @gmap: pointer to guest address space
2511  * @pmdp: pointer to the pmd to be tested
2512  * @gaddr: virtual address in the guest address space
2513  *
2514  * This function is assumed to be called with the guest_table_lock
2515  * held.
2516  */
2517 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2518 					  unsigned long gaddr)
2519 {
2520 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2521 		return false;
2522 
2523 	/* Already protected memory, which did not change is clean */
2524 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2525 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2526 		return false;
2527 
2528 	/* Clear UC indication and reset protection */
2529 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2530 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2531 	return true;
2532 }
2533 
2534 /**
2535  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2536  * @gmap: pointer to guest address space
2537  * @bitmap: dirty bitmap for this pmd
2538  * @gaddr: virtual address in the guest address space
2539  * @vmaddr: virtual address in the host address space
2540  *
2541  * This function is assumed to be called with the guest_table_lock
2542  * held.
2543  */
2544 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2545 			     unsigned long gaddr, unsigned long vmaddr)
2546 {
2547 	int i;
2548 	pmd_t *pmdp;
2549 	pte_t *ptep;
2550 	spinlock_t *ptl;
2551 
2552 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2553 	if (!pmdp)
2554 		return;
2555 
2556 	if (pmd_leaf(*pmdp)) {
2557 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2558 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2559 	} else {
2560 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2561 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2562 			if (!ptep)
2563 				continue;
2564 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2565 				set_bit(i, bitmap);
2566 			pte_unmap_unlock(ptep, ptl);
2567 		}
2568 	}
2569 	gmap_pmd_op_end(gmap, pmdp);
2570 }
2571 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2572 
2573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2574 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2575 				    unsigned long end, struct mm_walk *walk)
2576 {
2577 	struct vm_area_struct *vma = walk->vma;
2578 
2579 	split_huge_pmd(vma, pmd, addr);
2580 	return 0;
2581 }
2582 
2583 static const struct mm_walk_ops thp_split_walk_ops = {
2584 	.pmd_entry	= thp_split_walk_pmd_entry,
2585 	.walk_lock	= PGWALK_WRLOCK_VERIFY,
2586 };
2587 
2588 static inline void thp_split_mm(struct mm_struct *mm)
2589 {
2590 	struct vm_area_struct *vma;
2591 	VMA_ITERATOR(vmi, mm, 0);
2592 
2593 	for_each_vma(vmi, vma) {
2594 		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2595 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2596 	}
2597 	mm->def_flags |= VM_NOHUGEPAGE;
2598 }
2599 #else
2600 static inline void thp_split_mm(struct mm_struct *mm)
2601 {
2602 }
2603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2604 
2605 /*
2606  * switch on pgstes for its userspace process (for kvm)
2607  */
2608 int s390_enable_sie(void)
2609 {
2610 	struct mm_struct *mm = current->mm;
2611 
2612 	/* Do we have pgstes? if yes, we are done */
2613 	if (mm_has_pgste(mm))
2614 		return 0;
2615 	/* Fail if the page tables are 2K */
2616 	if (!mm_alloc_pgste(mm))
2617 		return -EINVAL;
2618 	mmap_write_lock(mm);
2619 	mm->context.has_pgste = 1;
2620 	/* split thp mappings and disable thp for future mappings */
2621 	thp_split_mm(mm);
2622 	mmap_write_unlock(mm);
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL_GPL(s390_enable_sie);
2626 
2627 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr,
2628 				   unsigned long end, struct mm_walk *walk)
2629 {
2630 	unsigned long *found_addr = walk->private;
2631 
2632 	/* Return 1 of the page is a zeropage. */
2633 	if (is_zero_pfn(pte_pfn(*pte))) {
2634 		/*
2635 		 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2636 		 * right thing and likely don't care: FAULT_FLAG_UNSHARE
2637 		 * currently only works in COW mappings, which is also where
2638 		 * mm_forbids_zeropage() is checked.
2639 		 */
2640 		if (!is_cow_mapping(walk->vma->vm_flags))
2641 			return -EFAULT;
2642 
2643 		*found_addr = addr;
2644 		return 1;
2645 	}
2646 	return 0;
2647 }
2648 
2649 static const struct mm_walk_ops find_zeropage_ops = {
2650 	.pte_entry	= find_zeropage_pte_entry,
2651 	.walk_lock	= PGWALK_WRLOCK,
2652 };
2653 
2654 /*
2655  * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2656  * we cannot simply zap all shared zeropages, because this could later
2657  * trigger unexpected userfaultfd missing events.
2658  *
2659  * This must be called after mm->context.allow_cow_sharing was
2660  * set to 0, to avoid future mappings of shared zeropages.
2661  *
2662  * mm contracts with s390, that even if mm were to remove a page table,
2663  * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2664  * would fail, it will never insert a page table containing empty zero
2665  * pages once mm_forbids_zeropage(mm) i.e.
2666  * mm->context.allow_cow_sharing is set to 0.
2667  */
2668 static int __s390_unshare_zeropages(struct mm_struct *mm)
2669 {
2670 	struct vm_area_struct *vma;
2671 	VMA_ITERATOR(vmi, mm, 0);
2672 	unsigned long addr;
2673 	vm_fault_t fault;
2674 	int rc;
2675 
2676 	for_each_vma(vmi, vma) {
2677 		/*
2678 		 * We could only look at COW mappings, but it's more future
2679 		 * proof to catch unexpected zeropages in other mappings and
2680 		 * fail.
2681 		 */
2682 		if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma))
2683 			continue;
2684 		addr = vma->vm_start;
2685 
2686 retry:
2687 		rc = walk_page_range_vma(vma, addr, vma->vm_end,
2688 					 &find_zeropage_ops, &addr);
2689 		if (rc < 0)
2690 			return rc;
2691 		else if (!rc)
2692 			continue;
2693 
2694 		/* addr was updated by find_zeropage_pte_entry() */
2695 		fault = handle_mm_fault(vma, addr,
2696 					FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
2697 					NULL);
2698 		if (fault & VM_FAULT_OOM)
2699 			return -ENOMEM;
2700 		/*
2701 		 * See break_ksm(): even after handle_mm_fault() returned 0, we
2702 		 * must start the lookup from the current address, because
2703 		 * handle_mm_fault() may back out if there's any difficulty.
2704 		 *
2705 		 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2706 		 * maybe they could trigger in the future on concurrent
2707 		 * truncation. In that case, the shared zeropage would be gone
2708 		 * and we can simply retry and make progress.
2709 		 */
2710 		cond_resched();
2711 		goto retry;
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 static int __s390_disable_cow_sharing(struct mm_struct *mm)
2718 {
2719 	int rc;
2720 
2721 	if (!mm->context.allow_cow_sharing)
2722 		return 0;
2723 
2724 	mm->context.allow_cow_sharing = 0;
2725 
2726 	/* Replace all shared zeropages by anonymous pages. */
2727 	rc = __s390_unshare_zeropages(mm);
2728 	/*
2729 	 * Make sure to disable KSM (if enabled for the whole process or
2730 	 * individual VMAs). Note that nothing currently hinders user space
2731 	 * from re-enabling it.
2732 	 */
2733 	if (!rc)
2734 		rc = ksm_disable(mm);
2735 	if (rc)
2736 		mm->context.allow_cow_sharing = 1;
2737 	return rc;
2738 }
2739 
2740 /*
2741  * Disable most COW-sharing of memory pages for the whole process:
2742  * (1) Disable KSM and unmerge/unshare any KSM pages.
2743  * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2744  *
2745  * Not that we currently don't bother with COW-shared pages that are shared
2746  * with parent/child processes due to fork().
2747  */
2748 int s390_disable_cow_sharing(void)
2749 {
2750 	int rc;
2751 
2752 	mmap_write_lock(current->mm);
2753 	rc = __s390_disable_cow_sharing(current->mm);
2754 	mmap_write_unlock(current->mm);
2755 	return rc;
2756 }
2757 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing);
2758 
2759 /*
2760  * Enable storage key handling from now on and initialize the storage
2761  * keys with the default key.
2762  */
2763 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2764 				  unsigned long next, struct mm_walk *walk)
2765 {
2766 	/* Clear storage key */
2767 	ptep_zap_key(walk->mm, addr, pte);
2768 	return 0;
2769 }
2770 
2771 /*
2772  * Give a chance to schedule after setting a key to 256 pages.
2773  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2774  * Both can sleep.
2775  */
2776 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2777 				  unsigned long next, struct mm_walk *walk)
2778 {
2779 	cond_resched();
2780 	return 0;
2781 }
2782 
2783 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2784 				      unsigned long hmask, unsigned long next,
2785 				      struct mm_walk *walk)
2786 {
2787 	pmd_t *pmd = (pmd_t *)pte;
2788 	unsigned long start, end;
2789 	struct folio *folio = page_folio(pmd_page(*pmd));
2790 
2791 	/*
2792 	 * The write check makes sure we do not set a key on shared
2793 	 * memory. This is needed as the walker does not differentiate
2794 	 * between actual guest memory and the process executable or
2795 	 * shared libraries.
2796 	 */
2797 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2798 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2799 		return 0;
2800 
2801 	start = pmd_val(*pmd) & HPAGE_MASK;
2802 	end = start + HPAGE_SIZE;
2803 	__storage_key_init_range(start, end);
2804 	set_bit(PG_arch_1, &folio->flags);
2805 	cond_resched();
2806 	return 0;
2807 }
2808 
2809 static const struct mm_walk_ops enable_skey_walk_ops = {
2810 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2811 	.pte_entry		= __s390_enable_skey_pte,
2812 	.pmd_entry		= __s390_enable_skey_pmd,
2813 	.walk_lock		= PGWALK_WRLOCK,
2814 };
2815 
2816 int s390_enable_skey(void)
2817 {
2818 	struct mm_struct *mm = current->mm;
2819 	int rc = 0;
2820 
2821 	mmap_write_lock(mm);
2822 	if (mm_uses_skeys(mm))
2823 		goto out_up;
2824 
2825 	mm->context.uses_skeys = 1;
2826 	rc = __s390_disable_cow_sharing(mm);
2827 	if (rc) {
2828 		mm->context.uses_skeys = 0;
2829 		goto out_up;
2830 	}
2831 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2832 
2833 out_up:
2834 	mmap_write_unlock(mm);
2835 	return rc;
2836 }
2837 EXPORT_SYMBOL_GPL(s390_enable_skey);
2838 
2839 /*
2840  * Reset CMMA state, make all pages stable again.
2841  */
2842 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2843 			     unsigned long next, struct mm_walk *walk)
2844 {
2845 	ptep_zap_unused(walk->mm, addr, pte, 1);
2846 	return 0;
2847 }
2848 
2849 static const struct mm_walk_ops reset_cmma_walk_ops = {
2850 	.pte_entry		= __s390_reset_cmma,
2851 	.walk_lock		= PGWALK_WRLOCK,
2852 };
2853 
2854 void s390_reset_cmma(struct mm_struct *mm)
2855 {
2856 	mmap_write_lock(mm);
2857 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2858 	mmap_write_unlock(mm);
2859 }
2860 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2861 
2862 #define GATHER_GET_PAGES 32
2863 
2864 struct reset_walk_state {
2865 	unsigned long next;
2866 	unsigned long count;
2867 	unsigned long pfns[GATHER_GET_PAGES];
2868 };
2869 
2870 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2871 			     unsigned long next, struct mm_walk *walk)
2872 {
2873 	struct reset_walk_state *p = walk->private;
2874 	pte_t pte = READ_ONCE(*ptep);
2875 
2876 	if (pte_present(pte)) {
2877 		/* we have a reference from the mapping, take an extra one */
2878 		get_page(phys_to_page(pte_val(pte)));
2879 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2880 		p->next = next;
2881 		p->count++;
2882 	}
2883 	return p->count >= GATHER_GET_PAGES;
2884 }
2885 
2886 static const struct mm_walk_ops gather_pages_ops = {
2887 	.pte_entry = s390_gather_pages,
2888 	.walk_lock = PGWALK_RDLOCK,
2889 };
2890 
2891 /*
2892  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2893  * Each page needs to have an extra reference, which will be released here.
2894  */
2895 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2896 {
2897 	struct folio *folio;
2898 	unsigned long i;
2899 
2900 	for (i = 0; i < count; i++) {
2901 		folio = pfn_folio(pfns[i]);
2902 		/* we always have an extra reference */
2903 		uv_destroy_folio(folio);
2904 		/* get rid of the extra reference */
2905 		folio_put(folio);
2906 		cond_resched();
2907 	}
2908 }
2909 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2910 
2911 /**
2912  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2913  * in the given range of the given address space.
2914  * @mm: the mm to operate on
2915  * @start: the start of the range
2916  * @end: the end of the range
2917  * @interruptible: if not 0, stop when a fatal signal is received
2918  *
2919  * Walk the given range of the given address space and call the destroy
2920  * secure page UVC on each page. Optionally exit early if a fatal signal is
2921  * pending.
2922  *
2923  * Return: 0 on success, -EINTR if the function stopped before completing
2924  */
2925 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2926 			    unsigned long end, bool interruptible)
2927 {
2928 	struct reset_walk_state state = { .next = start };
2929 	int r = 1;
2930 
2931 	while (r > 0) {
2932 		state.count = 0;
2933 		mmap_read_lock(mm);
2934 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2935 		mmap_read_unlock(mm);
2936 		cond_resched();
2937 		s390_uv_destroy_pfns(state.count, state.pfns);
2938 		if (interruptible && fatal_signal_pending(current))
2939 			return -EINTR;
2940 	}
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2944 
2945 /**
2946  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2947  * list of page tables of the gmap.
2948  * @gmap: the gmap whose table is to be removed
2949  *
2950  * On s390x, KVM keeps a list of all pages containing the page tables of the
2951  * gmap (the CRST list). This list is used at tear down time to free all
2952  * pages that are now not needed anymore.
2953  *
2954  * This function removes the topmost page of the tree (the one pointed to by
2955  * the ASCE) from the CRST list.
2956  *
2957  * This means that it will not be freed when the VM is torn down, and needs
2958  * to be handled separately by the caller, unless a leak is actually
2959  * intended. Notice that this function will only remove the page from the
2960  * list, the page will still be used as a top level page table (and ASCE).
2961  */
2962 void s390_unlist_old_asce(struct gmap *gmap)
2963 {
2964 	struct page *old;
2965 
2966 	old = virt_to_page(gmap->table);
2967 	spin_lock(&gmap->guest_table_lock);
2968 	list_del(&old->lru);
2969 	/*
2970 	 * Sometimes the topmost page might need to be "removed" multiple
2971 	 * times, for example if the VM is rebooted into secure mode several
2972 	 * times concurrently, or if s390_replace_asce fails after calling
2973 	 * s390_remove_old_asce and is attempted again later. In that case
2974 	 * the old asce has been removed from the list, and therefore it
2975 	 * will not be freed when the VM terminates, but the ASCE is still
2976 	 * in use and still pointed to.
2977 	 * A subsequent call to replace_asce will follow the pointer and try
2978 	 * to remove the same page from the list again.
2979 	 * Therefore it's necessary that the page of the ASCE has valid
2980 	 * pointers, so list_del can work (and do nothing) without
2981 	 * dereferencing stale or invalid pointers.
2982 	 */
2983 	INIT_LIST_HEAD(&old->lru);
2984 	spin_unlock(&gmap->guest_table_lock);
2985 }
2986 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2987 
2988 /**
2989  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2990  * @gmap: the gmap whose ASCE needs to be replaced
2991  *
2992  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2993  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2994  * to the wrong pages, causing use-after-free and memory corruption.
2995  * If the allocation of the new top level page table fails, the ASCE is not
2996  * replaced.
2997  * In any case, the old ASCE is always removed from the gmap CRST list.
2998  * Therefore the caller has to make sure to save a pointer to it
2999  * beforehand, unless a leak is actually intended.
3000  */
3001 int s390_replace_asce(struct gmap *gmap)
3002 {
3003 	unsigned long asce;
3004 	struct page *page;
3005 	void *table;
3006 
3007 	s390_unlist_old_asce(gmap);
3008 
3009 	/* Replacing segment type ASCEs would cause serious issues */
3010 	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
3011 		return -EINVAL;
3012 
3013 	page = gmap_alloc_crst();
3014 	if (!page)
3015 		return -ENOMEM;
3016 	page->index = 0;
3017 	table = page_to_virt(page);
3018 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
3019 
3020 	/*
3021 	 * The caller has to deal with the old ASCE, but here we make sure
3022 	 * the new one is properly added to the CRST list, so that
3023 	 * it will be freed when the VM is torn down.
3024 	 */
3025 	spin_lock(&gmap->guest_table_lock);
3026 	list_add(&page->lru, &gmap->crst_list);
3027 	spin_unlock(&gmap->guest_table_lock);
3028 
3029 	/* Set new table origin while preserving existing ASCE control bits */
3030 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
3031 	WRITE_ONCE(gmap->asce, asce);
3032 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
3033 	WRITE_ONCE(gmap->table, table);
3034 
3035 	return 0;
3036 }
3037 EXPORT_SYMBOL_GPL(s390_replace_asce);
3038