xref: /linux/arch/s390/mm/gmap.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 #include <asm/page-states.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/page.h>
25 #include <asm/tlb.h>
26 
27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
28 
29 static struct page *gmap_alloc_crst(void)
30 {
31 	struct page *page;
32 
33 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
34 	if (!page)
35 		return NULL;
36 	__arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
37 	return page;
38 }
39 
40 /**
41  * gmap_alloc - allocate and initialize a guest address space
42  * @limit: maximum address of the gmap address space
43  *
44  * Returns a guest address space structure.
45  */
46 static struct gmap *gmap_alloc(unsigned long limit)
47 {
48 	struct gmap *gmap;
49 	struct page *page;
50 	unsigned long *table;
51 	unsigned long etype, atype;
52 
53 	if (limit < _REGION3_SIZE) {
54 		limit = _REGION3_SIZE - 1;
55 		atype = _ASCE_TYPE_SEGMENT;
56 		etype = _SEGMENT_ENTRY_EMPTY;
57 	} else if (limit < _REGION2_SIZE) {
58 		limit = _REGION2_SIZE - 1;
59 		atype = _ASCE_TYPE_REGION3;
60 		etype = _REGION3_ENTRY_EMPTY;
61 	} else if (limit < _REGION1_SIZE) {
62 		limit = _REGION1_SIZE - 1;
63 		atype = _ASCE_TYPE_REGION2;
64 		etype = _REGION2_ENTRY_EMPTY;
65 	} else {
66 		limit = -1UL;
67 		atype = _ASCE_TYPE_REGION1;
68 		etype = _REGION1_ENTRY_EMPTY;
69 	}
70 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
71 	if (!gmap)
72 		goto out;
73 	INIT_LIST_HEAD(&gmap->crst_list);
74 	INIT_LIST_HEAD(&gmap->children);
75 	INIT_LIST_HEAD(&gmap->pt_list);
76 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
77 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
78 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
79 	spin_lock_init(&gmap->guest_table_lock);
80 	spin_lock_init(&gmap->shadow_lock);
81 	refcount_set(&gmap->ref_count, 1);
82 	page = gmap_alloc_crst();
83 	if (!page)
84 		goto out_free;
85 	page->index = 0;
86 	list_add(&page->lru, &gmap->crst_list);
87 	table = page_to_virt(page);
88 	crst_table_init(table, etype);
89 	gmap->table = table;
90 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
91 		_ASCE_USER_BITS | __pa(table);
92 	gmap->asce_end = limit;
93 	return gmap;
94 
95 out_free:
96 	kfree(gmap);
97 out:
98 	return NULL;
99 }
100 
101 /**
102  * gmap_create - create a guest address space
103  * @mm: pointer to the parent mm_struct
104  * @limit: maximum size of the gmap address space
105  *
106  * Returns a guest address space structure.
107  */
108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
109 {
110 	struct gmap *gmap;
111 	unsigned long gmap_asce;
112 
113 	gmap = gmap_alloc(limit);
114 	if (!gmap)
115 		return NULL;
116 	gmap->mm = mm;
117 	spin_lock(&mm->context.lock);
118 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
119 	if (list_is_singular(&mm->context.gmap_list))
120 		gmap_asce = gmap->asce;
121 	else
122 		gmap_asce = -1UL;
123 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
124 	spin_unlock(&mm->context.lock);
125 	return gmap;
126 }
127 EXPORT_SYMBOL_GPL(gmap_create);
128 
129 static void gmap_flush_tlb(struct gmap *gmap)
130 {
131 	if (MACHINE_HAS_IDTE)
132 		__tlb_flush_idte(gmap->asce);
133 	else
134 		__tlb_flush_global();
135 }
136 
137 static void gmap_radix_tree_free(struct radix_tree_root *root)
138 {
139 	struct radix_tree_iter iter;
140 	unsigned long indices[16];
141 	unsigned long index;
142 	void __rcu **slot;
143 	int i, nr;
144 
145 	/* A radix tree is freed by deleting all of its entries */
146 	index = 0;
147 	do {
148 		nr = 0;
149 		radix_tree_for_each_slot(slot, root, &iter, index) {
150 			indices[nr] = iter.index;
151 			if (++nr == 16)
152 				break;
153 		}
154 		for (i = 0; i < nr; i++) {
155 			index = indices[i];
156 			radix_tree_delete(root, index);
157 		}
158 	} while (nr > 0);
159 }
160 
161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
162 {
163 	struct gmap_rmap *rmap, *rnext, *head;
164 	struct radix_tree_iter iter;
165 	unsigned long indices[16];
166 	unsigned long index;
167 	void __rcu **slot;
168 	int i, nr;
169 
170 	/* A radix tree is freed by deleting all of its entries */
171 	index = 0;
172 	do {
173 		nr = 0;
174 		radix_tree_for_each_slot(slot, root, &iter, index) {
175 			indices[nr] = iter.index;
176 			if (++nr == 16)
177 				break;
178 		}
179 		for (i = 0; i < nr; i++) {
180 			index = indices[i];
181 			head = radix_tree_delete(root, index);
182 			gmap_for_each_rmap_safe(rmap, rnext, head)
183 				kfree(rmap);
184 		}
185 	} while (nr > 0);
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  *
192  * No locks required. There are no references to this gmap anymore.
193  */
194 static void gmap_free(struct gmap *gmap)
195 {
196 	struct page *page, *next;
197 
198 	/* Flush tlb of all gmaps (if not already done for shadows) */
199 	if (!(gmap_is_shadow(gmap) && gmap->removed))
200 		gmap_flush_tlb(gmap);
201 	/* Free all segment & region tables. */
202 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
203 		__free_pages(page, CRST_ALLOC_ORDER);
204 	gmap_radix_tree_free(&gmap->guest_to_host);
205 	gmap_radix_tree_free(&gmap->host_to_guest);
206 
207 	/* Free additional data for a shadow gmap */
208 	if (gmap_is_shadow(gmap)) {
209 		struct ptdesc *ptdesc, *n;
210 
211 		/* Free all page tables. */
212 		list_for_each_entry_safe(ptdesc, n, &gmap->pt_list, pt_list)
213 			page_table_free_pgste(ptdesc);
214 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
215 		/* Release reference to the parent */
216 		gmap_put(gmap->parent);
217 	}
218 
219 	kfree(gmap);
220 }
221 
222 /**
223  * gmap_get - increase reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * Returns the gmap pointer
227  */
228 struct gmap *gmap_get(struct gmap *gmap)
229 {
230 	refcount_inc(&gmap->ref_count);
231 	return gmap;
232 }
233 EXPORT_SYMBOL_GPL(gmap_get);
234 
235 /**
236  * gmap_put - decrease reference counter for guest address space
237  * @gmap: pointer to the guest address space structure
238  *
239  * If the reference counter reaches zero the guest address space is freed.
240  */
241 void gmap_put(struct gmap *gmap)
242 {
243 	if (refcount_dec_and_test(&gmap->ref_count))
244 		gmap_free(gmap);
245 }
246 EXPORT_SYMBOL_GPL(gmap_put);
247 
248 /**
249  * gmap_remove - remove a guest address space but do not free it yet
250  * @gmap: pointer to the guest address space structure
251  */
252 void gmap_remove(struct gmap *gmap)
253 {
254 	struct gmap *sg, *next;
255 	unsigned long gmap_asce;
256 
257 	/* Remove all shadow gmaps linked to this gmap */
258 	if (!list_empty(&gmap->children)) {
259 		spin_lock(&gmap->shadow_lock);
260 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
261 			list_del(&sg->list);
262 			gmap_put(sg);
263 		}
264 		spin_unlock(&gmap->shadow_lock);
265 	}
266 	/* Remove gmap from the pre-mm list */
267 	spin_lock(&gmap->mm->context.lock);
268 	list_del_rcu(&gmap->list);
269 	if (list_empty(&gmap->mm->context.gmap_list))
270 		gmap_asce = 0;
271 	else if (list_is_singular(&gmap->mm->context.gmap_list))
272 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
273 					     struct gmap, list)->asce;
274 	else
275 		gmap_asce = -1UL;
276 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
277 	spin_unlock(&gmap->mm->context.lock);
278 	synchronize_rcu();
279 	/* Put reference */
280 	gmap_put(gmap);
281 }
282 EXPORT_SYMBOL_GPL(gmap_remove);
283 
284 /**
285  * gmap_enable - switch primary space to the guest address space
286  * @gmap: pointer to the guest address space structure
287  */
288 void gmap_enable(struct gmap *gmap)
289 {
290 	S390_lowcore.gmap = (unsigned long) gmap;
291 }
292 EXPORT_SYMBOL_GPL(gmap_enable);
293 
294 /**
295  * gmap_disable - switch back to the standard primary address space
296  * @gmap: pointer to the guest address space structure
297  */
298 void gmap_disable(struct gmap *gmap)
299 {
300 	S390_lowcore.gmap = 0UL;
301 }
302 EXPORT_SYMBOL_GPL(gmap_disable);
303 
304 /**
305  * gmap_get_enabled - get a pointer to the currently enabled gmap
306  *
307  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
308  */
309 struct gmap *gmap_get_enabled(void)
310 {
311 	return (struct gmap *) S390_lowcore.gmap;
312 }
313 EXPORT_SYMBOL_GPL(gmap_get_enabled);
314 
315 /*
316  * gmap_alloc_table is assumed to be called with mmap_lock held
317  */
318 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
319 			    unsigned long init, unsigned long gaddr)
320 {
321 	struct page *page;
322 	unsigned long *new;
323 
324 	/* since we dont free the gmap table until gmap_free we can unlock */
325 	page = gmap_alloc_crst();
326 	if (!page)
327 		return -ENOMEM;
328 	new = page_to_virt(page);
329 	crst_table_init(new, init);
330 	spin_lock(&gmap->guest_table_lock);
331 	if (*table & _REGION_ENTRY_INVALID) {
332 		list_add(&page->lru, &gmap->crst_list);
333 		*table = __pa(new) | _REGION_ENTRY_LENGTH |
334 			(*table & _REGION_ENTRY_TYPE_MASK);
335 		page->index = gaddr;
336 		page = NULL;
337 	}
338 	spin_unlock(&gmap->guest_table_lock);
339 	if (page)
340 		__free_pages(page, CRST_ALLOC_ORDER);
341 	return 0;
342 }
343 
344 /**
345  * __gmap_segment_gaddr - find virtual address from segment pointer
346  * @entry: pointer to a segment table entry in the guest address space
347  *
348  * Returns the virtual address in the guest address space for the segment
349  */
350 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
351 {
352 	struct page *page;
353 	unsigned long offset;
354 
355 	offset = (unsigned long) entry / sizeof(unsigned long);
356 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
357 	page = pmd_pgtable_page((pmd_t *) entry);
358 	return page->index + offset;
359 }
360 
361 /**
362  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
363  * @gmap: pointer to the guest address space structure
364  * @vmaddr: address in the host process address space
365  *
366  * Returns 1 if a TLB flush is required
367  */
368 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
369 {
370 	unsigned long *entry;
371 	int flush = 0;
372 
373 	BUG_ON(gmap_is_shadow(gmap));
374 	spin_lock(&gmap->guest_table_lock);
375 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
376 	if (entry) {
377 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
378 		*entry = _SEGMENT_ENTRY_EMPTY;
379 	}
380 	spin_unlock(&gmap->guest_table_lock);
381 	return flush;
382 }
383 
384 /**
385  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
386  * @gmap: pointer to the guest address space structure
387  * @gaddr: address in the guest address space
388  *
389  * Returns 1 if a TLB flush is required
390  */
391 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
392 {
393 	unsigned long vmaddr;
394 
395 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
396 						   gaddr >> PMD_SHIFT);
397 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
398 }
399 
400 /**
401  * gmap_unmap_segment - unmap segment from the guest address space
402  * @gmap: pointer to the guest address space structure
403  * @to: address in the guest address space
404  * @len: length of the memory area to unmap
405  *
406  * Returns 0 if the unmap succeeded, -EINVAL if not.
407  */
408 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
409 {
410 	unsigned long off;
411 	int flush;
412 
413 	BUG_ON(gmap_is_shadow(gmap));
414 	if ((to | len) & (PMD_SIZE - 1))
415 		return -EINVAL;
416 	if (len == 0 || to + len < to)
417 		return -EINVAL;
418 
419 	flush = 0;
420 	mmap_write_lock(gmap->mm);
421 	for (off = 0; off < len; off += PMD_SIZE)
422 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
423 	mmap_write_unlock(gmap->mm);
424 	if (flush)
425 		gmap_flush_tlb(gmap);
426 	return 0;
427 }
428 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
429 
430 /**
431  * gmap_map_segment - map a segment to the guest address space
432  * @gmap: pointer to the guest address space structure
433  * @from: source address in the parent address space
434  * @to: target address in the guest address space
435  * @len: length of the memory area to map
436  *
437  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
438  */
439 int gmap_map_segment(struct gmap *gmap, unsigned long from,
440 		     unsigned long to, unsigned long len)
441 {
442 	unsigned long off;
443 	int flush;
444 
445 	BUG_ON(gmap_is_shadow(gmap));
446 	if ((from | to | len) & (PMD_SIZE - 1))
447 		return -EINVAL;
448 	if (len == 0 || from + len < from || to + len < to ||
449 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
450 		return -EINVAL;
451 
452 	flush = 0;
453 	mmap_write_lock(gmap->mm);
454 	for (off = 0; off < len; off += PMD_SIZE) {
455 		/* Remove old translation */
456 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
457 		/* Store new translation */
458 		if (radix_tree_insert(&gmap->guest_to_host,
459 				      (to + off) >> PMD_SHIFT,
460 				      (void *) from + off))
461 			break;
462 	}
463 	mmap_write_unlock(gmap->mm);
464 	if (flush)
465 		gmap_flush_tlb(gmap);
466 	if (off >= len)
467 		return 0;
468 	gmap_unmap_segment(gmap, to, len);
469 	return -ENOMEM;
470 }
471 EXPORT_SYMBOL_GPL(gmap_map_segment);
472 
473 /**
474  * __gmap_translate - translate a guest address to a user space address
475  * @gmap: pointer to guest mapping meta data structure
476  * @gaddr: guest address
477  *
478  * Returns user space address which corresponds to the guest address or
479  * -EFAULT if no such mapping exists.
480  * This function does not establish potentially missing page table entries.
481  * The mmap_lock of the mm that belongs to the address space must be held
482  * when this function gets called.
483  *
484  * Note: Can also be called for shadow gmaps.
485  */
486 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
487 {
488 	unsigned long vmaddr;
489 
490 	vmaddr = (unsigned long)
491 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
492 	/* Note: guest_to_host is empty for a shadow gmap */
493 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
494 }
495 EXPORT_SYMBOL_GPL(__gmap_translate);
496 
497 /**
498  * gmap_translate - translate a guest address to a user space address
499  * @gmap: pointer to guest mapping meta data structure
500  * @gaddr: guest address
501  *
502  * Returns user space address which corresponds to the guest address or
503  * -EFAULT if no such mapping exists.
504  * This function does not establish potentially missing page table entries.
505  */
506 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
507 {
508 	unsigned long rc;
509 
510 	mmap_read_lock(gmap->mm);
511 	rc = __gmap_translate(gmap, gaddr);
512 	mmap_read_unlock(gmap->mm);
513 	return rc;
514 }
515 EXPORT_SYMBOL_GPL(gmap_translate);
516 
517 /**
518  * gmap_unlink - disconnect a page table from the gmap shadow tables
519  * @mm: pointer to the parent mm_struct
520  * @table: pointer to the host page table
521  * @vmaddr: vm address associated with the host page table
522  */
523 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
524 		 unsigned long vmaddr)
525 {
526 	struct gmap *gmap;
527 	int flush;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
531 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
532 		if (flush)
533 			gmap_flush_tlb(gmap);
534 	}
535 	rcu_read_unlock();
536 }
537 
538 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
539 			   unsigned long gaddr);
540 
541 /**
542  * __gmap_link - set up shadow page tables to connect a host to a guest address
543  * @gmap: pointer to guest mapping meta data structure
544  * @gaddr: guest address
545  * @vmaddr: vm address
546  *
547  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
548  * if the vm address is already mapped to a different guest segment.
549  * The mmap_lock of the mm that belongs to the address space must be held
550  * when this function gets called.
551  */
552 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
553 {
554 	struct mm_struct *mm;
555 	unsigned long *table;
556 	spinlock_t *ptl;
557 	pgd_t *pgd;
558 	p4d_t *p4d;
559 	pud_t *pud;
560 	pmd_t *pmd;
561 	u64 unprot;
562 	int rc;
563 
564 	BUG_ON(gmap_is_shadow(gmap));
565 	/* Create higher level tables in the gmap page table */
566 	table = gmap->table;
567 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
568 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
569 		if ((*table & _REGION_ENTRY_INVALID) &&
570 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
571 				     gaddr & _REGION1_MASK))
572 			return -ENOMEM;
573 		table = __va(*table & _REGION_ENTRY_ORIGIN);
574 	}
575 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
576 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
577 		if ((*table & _REGION_ENTRY_INVALID) &&
578 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
579 				     gaddr & _REGION2_MASK))
580 			return -ENOMEM;
581 		table = __va(*table & _REGION_ENTRY_ORIGIN);
582 	}
583 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
584 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
585 		if ((*table & _REGION_ENTRY_INVALID) &&
586 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
587 				     gaddr & _REGION3_MASK))
588 			return -ENOMEM;
589 		table = __va(*table & _REGION_ENTRY_ORIGIN);
590 	}
591 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
592 	/* Walk the parent mm page table */
593 	mm = gmap->mm;
594 	pgd = pgd_offset(mm, vmaddr);
595 	VM_BUG_ON(pgd_none(*pgd));
596 	p4d = p4d_offset(pgd, vmaddr);
597 	VM_BUG_ON(p4d_none(*p4d));
598 	pud = pud_offset(p4d, vmaddr);
599 	VM_BUG_ON(pud_none(*pud));
600 	/* large puds cannot yet be handled */
601 	if (pud_leaf(*pud))
602 		return -EFAULT;
603 	pmd = pmd_offset(pud, vmaddr);
604 	VM_BUG_ON(pmd_none(*pmd));
605 	/* Are we allowed to use huge pages? */
606 	if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
607 		return -EFAULT;
608 	/* Link gmap segment table entry location to page table. */
609 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
610 	if (rc)
611 		return rc;
612 	ptl = pmd_lock(mm, pmd);
613 	spin_lock(&gmap->guest_table_lock);
614 	if (*table == _SEGMENT_ENTRY_EMPTY) {
615 		rc = radix_tree_insert(&gmap->host_to_guest,
616 				       vmaddr >> PMD_SHIFT, table);
617 		if (!rc) {
618 			if (pmd_leaf(*pmd)) {
619 				*table = (pmd_val(*pmd) &
620 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
621 					| _SEGMENT_ENTRY_GMAP_UC;
622 			} else
623 				*table = pmd_val(*pmd) &
624 					_SEGMENT_ENTRY_HARDWARE_BITS;
625 		}
626 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
627 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
628 		unprot = (u64)*table;
629 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
630 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
631 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
632 	}
633 	spin_unlock(&gmap->guest_table_lock);
634 	spin_unlock(ptl);
635 	radix_tree_preload_end();
636 	return rc;
637 }
638 
639 /**
640  * gmap_fault - resolve a fault on a guest address
641  * @gmap: pointer to guest mapping meta data structure
642  * @gaddr: guest address
643  * @fault_flags: flags to pass down to handle_mm_fault()
644  *
645  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
646  * if the vm address is already mapped to a different guest segment.
647  */
648 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
649 	       unsigned int fault_flags)
650 {
651 	unsigned long vmaddr;
652 	int rc;
653 	bool unlocked;
654 
655 	mmap_read_lock(gmap->mm);
656 
657 retry:
658 	unlocked = false;
659 	vmaddr = __gmap_translate(gmap, gaddr);
660 	if (IS_ERR_VALUE(vmaddr)) {
661 		rc = vmaddr;
662 		goto out_up;
663 	}
664 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
665 			     &unlocked)) {
666 		rc = -EFAULT;
667 		goto out_up;
668 	}
669 	/*
670 	 * In the case that fixup_user_fault unlocked the mmap_lock during
671 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
672 	 */
673 	if (unlocked)
674 		goto retry;
675 
676 	rc = __gmap_link(gmap, gaddr, vmaddr);
677 out_up:
678 	mmap_read_unlock(gmap->mm);
679 	return rc;
680 }
681 EXPORT_SYMBOL_GPL(gmap_fault);
682 
683 /*
684  * this function is assumed to be called with mmap_lock held
685  */
686 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
687 {
688 	struct vm_area_struct *vma;
689 	unsigned long vmaddr;
690 	spinlock_t *ptl;
691 	pte_t *ptep;
692 
693 	/* Find the vm address for the guest address */
694 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
695 						   gaddr >> PMD_SHIFT);
696 	if (vmaddr) {
697 		vmaddr |= gaddr & ~PMD_MASK;
698 
699 		vma = vma_lookup(gmap->mm, vmaddr);
700 		if (!vma || is_vm_hugetlb_page(vma))
701 			return;
702 
703 		/* Get pointer to the page table entry */
704 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
705 		if (likely(ptep)) {
706 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
707 			pte_unmap_unlock(ptep, ptl);
708 		}
709 	}
710 }
711 EXPORT_SYMBOL_GPL(__gmap_zap);
712 
713 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
714 {
715 	unsigned long gaddr, vmaddr, size;
716 	struct vm_area_struct *vma;
717 
718 	mmap_read_lock(gmap->mm);
719 	for (gaddr = from; gaddr < to;
720 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
721 		/* Find the vm address for the guest address */
722 		vmaddr = (unsigned long)
723 			radix_tree_lookup(&gmap->guest_to_host,
724 					  gaddr >> PMD_SHIFT);
725 		if (!vmaddr)
726 			continue;
727 		vmaddr |= gaddr & ~PMD_MASK;
728 		/* Find vma in the parent mm */
729 		vma = find_vma(gmap->mm, vmaddr);
730 		if (!vma)
731 			continue;
732 		/*
733 		 * We do not discard pages that are backed by
734 		 * hugetlbfs, so we don't have to refault them.
735 		 */
736 		if (is_vm_hugetlb_page(vma))
737 			continue;
738 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
739 		zap_page_range_single(vma, vmaddr, size, NULL);
740 	}
741 	mmap_read_unlock(gmap->mm);
742 }
743 EXPORT_SYMBOL_GPL(gmap_discard);
744 
745 static LIST_HEAD(gmap_notifier_list);
746 static DEFINE_SPINLOCK(gmap_notifier_lock);
747 
748 /**
749  * gmap_register_pte_notifier - register a pte invalidation callback
750  * @nb: pointer to the gmap notifier block
751  */
752 void gmap_register_pte_notifier(struct gmap_notifier *nb)
753 {
754 	spin_lock(&gmap_notifier_lock);
755 	list_add_rcu(&nb->list, &gmap_notifier_list);
756 	spin_unlock(&gmap_notifier_lock);
757 }
758 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
759 
760 /**
761  * gmap_unregister_pte_notifier - remove a pte invalidation callback
762  * @nb: pointer to the gmap notifier block
763  */
764 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
765 {
766 	spin_lock(&gmap_notifier_lock);
767 	list_del_rcu(&nb->list);
768 	spin_unlock(&gmap_notifier_lock);
769 	synchronize_rcu();
770 }
771 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
772 
773 /**
774  * gmap_call_notifier - call all registered invalidation callbacks
775  * @gmap: pointer to guest mapping meta data structure
776  * @start: start virtual address in the guest address space
777  * @end: end virtual address in the guest address space
778  */
779 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
780 			       unsigned long end)
781 {
782 	struct gmap_notifier *nb;
783 
784 	list_for_each_entry(nb, &gmap_notifier_list, list)
785 		nb->notifier_call(gmap, start, end);
786 }
787 
788 /**
789  * gmap_table_walk - walk the gmap page tables
790  * @gmap: pointer to guest mapping meta data structure
791  * @gaddr: virtual address in the guest address space
792  * @level: page table level to stop at
793  *
794  * Returns a table entry pointer for the given guest address and @level
795  * @level=0 : returns a pointer to a page table table entry (or NULL)
796  * @level=1 : returns a pointer to a segment table entry (or NULL)
797  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
798  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
799  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
800  *
801  * Returns NULL if the gmap page tables could not be walked to the
802  * requested level.
803  *
804  * Note: Can also be called for shadow gmaps.
805  */
806 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
807 					     unsigned long gaddr, int level)
808 {
809 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
810 	unsigned long *table = gmap->table;
811 
812 	if (gmap_is_shadow(gmap) && gmap->removed)
813 		return NULL;
814 
815 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
816 		return NULL;
817 
818 	if (asce_type != _ASCE_TYPE_REGION1 &&
819 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
820 		return NULL;
821 
822 	switch (asce_type) {
823 	case _ASCE_TYPE_REGION1:
824 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
825 		if (level == 4)
826 			break;
827 		if (*table & _REGION_ENTRY_INVALID)
828 			return NULL;
829 		table = __va(*table & _REGION_ENTRY_ORIGIN);
830 		fallthrough;
831 	case _ASCE_TYPE_REGION2:
832 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
833 		if (level == 3)
834 			break;
835 		if (*table & _REGION_ENTRY_INVALID)
836 			return NULL;
837 		table = __va(*table & _REGION_ENTRY_ORIGIN);
838 		fallthrough;
839 	case _ASCE_TYPE_REGION3:
840 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
841 		if (level == 2)
842 			break;
843 		if (*table & _REGION_ENTRY_INVALID)
844 			return NULL;
845 		table = __va(*table & _REGION_ENTRY_ORIGIN);
846 		fallthrough;
847 	case _ASCE_TYPE_SEGMENT:
848 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
849 		if (level == 1)
850 			break;
851 		if (*table & _REGION_ENTRY_INVALID)
852 			return NULL;
853 		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
854 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
855 	}
856 	return table;
857 }
858 
859 /**
860  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
861  *		      and return the pte pointer
862  * @gmap: pointer to guest mapping meta data structure
863  * @gaddr: virtual address in the guest address space
864  * @ptl: pointer to the spinlock pointer
865  *
866  * Returns a pointer to the locked pte for a guest address, or NULL
867  */
868 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
869 			       spinlock_t **ptl)
870 {
871 	unsigned long *table;
872 
873 	BUG_ON(gmap_is_shadow(gmap));
874 	/* Walk the gmap page table, lock and get pte pointer */
875 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
876 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
877 		return NULL;
878 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
879 }
880 
881 /**
882  * gmap_pte_op_fixup - force a page in and connect the gmap page table
883  * @gmap: pointer to guest mapping meta data structure
884  * @gaddr: virtual address in the guest address space
885  * @vmaddr: address in the host process address space
886  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
887  *
888  * Returns 0 if the caller can retry __gmap_translate (might fail again),
889  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
890  * up or connecting the gmap page table.
891  */
892 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
893 			     unsigned long vmaddr, int prot)
894 {
895 	struct mm_struct *mm = gmap->mm;
896 	unsigned int fault_flags;
897 	bool unlocked = false;
898 
899 	BUG_ON(gmap_is_shadow(gmap));
900 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
901 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
902 		return -EFAULT;
903 	if (unlocked)
904 		/* lost mmap_lock, caller has to retry __gmap_translate */
905 		return 0;
906 	/* Connect the page tables */
907 	return __gmap_link(gmap, gaddr, vmaddr);
908 }
909 
910 /**
911  * gmap_pte_op_end - release the page table lock
912  * @ptep: pointer to the locked pte
913  * @ptl: pointer to the page table spinlock
914  */
915 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
916 {
917 	pte_unmap_unlock(ptep, ptl);
918 }
919 
920 /**
921  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
922  *		      and return the pmd pointer
923  * @gmap: pointer to guest mapping meta data structure
924  * @gaddr: virtual address in the guest address space
925  *
926  * Returns a pointer to the pmd for a guest address, or NULL
927  */
928 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
929 {
930 	pmd_t *pmdp;
931 
932 	BUG_ON(gmap_is_shadow(gmap));
933 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
934 	if (!pmdp)
935 		return NULL;
936 
937 	/* without huge pages, there is no need to take the table lock */
938 	if (!gmap->mm->context.allow_gmap_hpage_1m)
939 		return pmd_none(*pmdp) ? NULL : pmdp;
940 
941 	spin_lock(&gmap->guest_table_lock);
942 	if (pmd_none(*pmdp)) {
943 		spin_unlock(&gmap->guest_table_lock);
944 		return NULL;
945 	}
946 
947 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
948 	if (!pmd_leaf(*pmdp))
949 		spin_unlock(&gmap->guest_table_lock);
950 	return pmdp;
951 }
952 
953 /**
954  * gmap_pmd_op_end - release the guest_table_lock if needed
955  * @gmap: pointer to the guest mapping meta data structure
956  * @pmdp: pointer to the pmd
957  */
958 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
959 {
960 	if (pmd_leaf(*pmdp))
961 		spin_unlock(&gmap->guest_table_lock);
962 }
963 
964 /*
965  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
966  * @pmdp: pointer to the pmd to be protected
967  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
968  * @bits: notification bits to set
969  *
970  * Returns:
971  * 0 if successfully protected
972  * -EAGAIN if a fixup is needed
973  * -EINVAL if unsupported notifier bits have been specified
974  *
975  * Expected to be called with sg->mm->mmap_lock in read and
976  * guest_table_lock held.
977  */
978 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
979 			    pmd_t *pmdp, int prot, unsigned long bits)
980 {
981 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
982 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
983 	pmd_t new = *pmdp;
984 
985 	/* Fixup needed */
986 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
987 		return -EAGAIN;
988 
989 	if (prot == PROT_NONE && !pmd_i) {
990 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
991 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
992 	}
993 
994 	if (prot == PROT_READ && !pmd_p) {
995 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
996 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
997 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
998 	}
999 
1000 	if (bits & GMAP_NOTIFY_MPROT)
1001 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1002 
1003 	/* Shadow GMAP protection needs split PMDs */
1004 	if (bits & GMAP_NOTIFY_SHADOW)
1005 		return -EINVAL;
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * gmap_protect_pte - remove access rights to memory and set pgste bits
1012  * @gmap: pointer to guest mapping meta data structure
1013  * @gaddr: virtual address in the guest address space
1014  * @pmdp: pointer to the pmd associated with the pte
1015  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1016  * @bits: notification bits to set
1017  *
1018  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1019  * -EAGAIN if a fixup is needed.
1020  *
1021  * Expected to be called with sg->mm->mmap_lock in read
1022  */
1023 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1024 			    pmd_t *pmdp, int prot, unsigned long bits)
1025 {
1026 	int rc;
1027 	pte_t *ptep;
1028 	spinlock_t *ptl;
1029 	unsigned long pbits = 0;
1030 
1031 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1032 		return -EAGAIN;
1033 
1034 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1035 	if (!ptep)
1036 		return -ENOMEM;
1037 
1038 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1039 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1040 	/* Protect and unlock. */
1041 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1042 	gmap_pte_op_end(ptep, ptl);
1043 	return rc;
1044 }
1045 
1046 /*
1047  * gmap_protect_range - remove access rights to memory and set pgste bits
1048  * @gmap: pointer to guest mapping meta data structure
1049  * @gaddr: virtual address in the guest address space
1050  * @len: size of area
1051  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1052  * @bits: pgste notification bits to set
1053  *
1054  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1055  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1056  *
1057  * Called with sg->mm->mmap_lock in read.
1058  */
1059 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1060 			      unsigned long len, int prot, unsigned long bits)
1061 {
1062 	unsigned long vmaddr, dist;
1063 	pmd_t *pmdp;
1064 	int rc;
1065 
1066 	BUG_ON(gmap_is_shadow(gmap));
1067 	while (len) {
1068 		rc = -EAGAIN;
1069 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1070 		if (pmdp) {
1071 			if (!pmd_leaf(*pmdp)) {
1072 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1073 						      bits);
1074 				if (!rc) {
1075 					len -= PAGE_SIZE;
1076 					gaddr += PAGE_SIZE;
1077 				}
1078 			} else {
1079 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1080 						      bits);
1081 				if (!rc) {
1082 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1083 					len = len < dist ? 0 : len - dist;
1084 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1085 				}
1086 			}
1087 			gmap_pmd_op_end(gmap, pmdp);
1088 		}
1089 		if (rc) {
1090 			if (rc == -EINVAL)
1091 				return rc;
1092 
1093 			/* -EAGAIN, fixup of userspace mm and gmap */
1094 			vmaddr = __gmap_translate(gmap, gaddr);
1095 			if (IS_ERR_VALUE(vmaddr))
1096 				return vmaddr;
1097 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1098 			if (rc)
1099 				return rc;
1100 		}
1101 	}
1102 	return 0;
1103 }
1104 
1105 /**
1106  * gmap_mprotect_notify - change access rights for a range of ptes and
1107  *                        call the notifier if any pte changes again
1108  * @gmap: pointer to guest mapping meta data structure
1109  * @gaddr: virtual address in the guest address space
1110  * @len: size of area
1111  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1112  *
1113  * Returns 0 if for each page in the given range a gmap mapping exists,
1114  * the new access rights could be set and the notifier could be armed.
1115  * If the gmap mapping is missing for one or more pages -EFAULT is
1116  * returned. If no memory could be allocated -ENOMEM is returned.
1117  * This function establishes missing page table entries.
1118  */
1119 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1120 			 unsigned long len, int prot)
1121 {
1122 	int rc;
1123 
1124 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1125 		return -EINVAL;
1126 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1127 		return -EINVAL;
1128 	mmap_read_lock(gmap->mm);
1129 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1130 	mmap_read_unlock(gmap->mm);
1131 	return rc;
1132 }
1133 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1134 
1135 /**
1136  * gmap_read_table - get an unsigned long value from a guest page table using
1137  *                   absolute addressing, without marking the page referenced.
1138  * @gmap: pointer to guest mapping meta data structure
1139  * @gaddr: virtual address in the guest address space
1140  * @val: pointer to the unsigned long value to return
1141  *
1142  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1143  * if reading using the virtual address failed. -EINVAL if called on a gmap
1144  * shadow.
1145  *
1146  * Called with gmap->mm->mmap_lock in read.
1147  */
1148 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1149 {
1150 	unsigned long address, vmaddr;
1151 	spinlock_t *ptl;
1152 	pte_t *ptep, pte;
1153 	int rc;
1154 
1155 	if (gmap_is_shadow(gmap))
1156 		return -EINVAL;
1157 
1158 	while (1) {
1159 		rc = -EAGAIN;
1160 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1161 		if (ptep) {
1162 			pte = *ptep;
1163 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1164 				address = pte_val(pte) & PAGE_MASK;
1165 				address += gaddr & ~PAGE_MASK;
1166 				*val = *(unsigned long *)__va(address);
1167 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1168 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1169 				rc = 0;
1170 			}
1171 			gmap_pte_op_end(ptep, ptl);
1172 		}
1173 		if (!rc)
1174 			break;
1175 		vmaddr = __gmap_translate(gmap, gaddr);
1176 		if (IS_ERR_VALUE(vmaddr)) {
1177 			rc = vmaddr;
1178 			break;
1179 		}
1180 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1181 		if (rc)
1182 			break;
1183 	}
1184 	return rc;
1185 }
1186 EXPORT_SYMBOL_GPL(gmap_read_table);
1187 
1188 /**
1189  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1190  * @sg: pointer to the shadow guest address space structure
1191  * @vmaddr: vm address associated with the rmap
1192  * @rmap: pointer to the rmap structure
1193  *
1194  * Called with the sg->guest_table_lock
1195  */
1196 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1197 				    struct gmap_rmap *rmap)
1198 {
1199 	struct gmap_rmap *temp;
1200 	void __rcu **slot;
1201 
1202 	BUG_ON(!gmap_is_shadow(sg));
1203 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1204 	if (slot) {
1205 		rmap->next = radix_tree_deref_slot_protected(slot,
1206 							&sg->guest_table_lock);
1207 		for (temp = rmap->next; temp; temp = temp->next) {
1208 			if (temp->raddr == rmap->raddr) {
1209 				kfree(rmap);
1210 				return;
1211 			}
1212 		}
1213 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1214 	} else {
1215 		rmap->next = NULL;
1216 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1217 				  rmap);
1218 	}
1219 }
1220 
1221 /**
1222  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1223  * @sg: pointer to the shadow guest address space structure
1224  * @raddr: rmap address in the shadow gmap
1225  * @paddr: address in the parent guest address space
1226  * @len: length of the memory area to protect
1227  *
1228  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1229  * if out of memory and -EFAULT if paddr is invalid.
1230  */
1231 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1232 			     unsigned long paddr, unsigned long len)
1233 {
1234 	struct gmap *parent;
1235 	struct gmap_rmap *rmap;
1236 	unsigned long vmaddr;
1237 	spinlock_t *ptl;
1238 	pte_t *ptep;
1239 	int rc;
1240 
1241 	BUG_ON(!gmap_is_shadow(sg));
1242 	parent = sg->parent;
1243 	while (len) {
1244 		vmaddr = __gmap_translate(parent, paddr);
1245 		if (IS_ERR_VALUE(vmaddr))
1246 			return vmaddr;
1247 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1248 		if (!rmap)
1249 			return -ENOMEM;
1250 		rmap->raddr = raddr;
1251 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1252 		if (rc) {
1253 			kfree(rmap);
1254 			return rc;
1255 		}
1256 		rc = -EAGAIN;
1257 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1258 		if (ptep) {
1259 			spin_lock(&sg->guest_table_lock);
1260 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1261 					     PGSTE_VSIE_BIT);
1262 			if (!rc)
1263 				gmap_insert_rmap(sg, vmaddr, rmap);
1264 			spin_unlock(&sg->guest_table_lock);
1265 			gmap_pte_op_end(ptep, ptl);
1266 		}
1267 		radix_tree_preload_end();
1268 		if (rc) {
1269 			kfree(rmap);
1270 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1271 			if (rc)
1272 				return rc;
1273 			continue;
1274 		}
1275 		paddr += PAGE_SIZE;
1276 		len -= PAGE_SIZE;
1277 	}
1278 	return 0;
1279 }
1280 
1281 #define _SHADOW_RMAP_MASK	0x7
1282 #define _SHADOW_RMAP_REGION1	0x5
1283 #define _SHADOW_RMAP_REGION2	0x4
1284 #define _SHADOW_RMAP_REGION3	0x3
1285 #define _SHADOW_RMAP_SEGMENT	0x2
1286 #define _SHADOW_RMAP_PGTABLE	0x1
1287 
1288 /**
1289  * gmap_idte_one - invalidate a single region or segment table entry
1290  * @asce: region or segment table *origin* + table-type bits
1291  * @vaddr: virtual address to identify the table entry to flush
1292  *
1293  * The invalid bit of a single region or segment table entry is set
1294  * and the associated TLB entries depending on the entry are flushed.
1295  * The table-type of the @asce identifies the portion of the @vaddr
1296  * that is used as the invalidation index.
1297  */
1298 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1299 {
1300 	asm volatile(
1301 		"	idte	%0,0,%1"
1302 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1303 }
1304 
1305 /**
1306  * gmap_unshadow_page - remove a page from a shadow page table
1307  * @sg: pointer to the shadow guest address space structure
1308  * @raddr: rmap address in the shadow guest address space
1309  *
1310  * Called with the sg->guest_table_lock
1311  */
1312 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1313 {
1314 	unsigned long *table;
1315 
1316 	BUG_ON(!gmap_is_shadow(sg));
1317 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1318 	if (!table || *table & _PAGE_INVALID)
1319 		return;
1320 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1321 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1322 }
1323 
1324 /**
1325  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1326  * @sg: pointer to the shadow guest address space structure
1327  * @raddr: rmap address in the shadow guest address space
1328  * @pgt: pointer to the start of a shadow page table
1329  *
1330  * Called with the sg->guest_table_lock
1331  */
1332 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1333 				unsigned long *pgt)
1334 {
1335 	int i;
1336 
1337 	BUG_ON(!gmap_is_shadow(sg));
1338 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1339 		pgt[i] = _PAGE_INVALID;
1340 }
1341 
1342 /**
1343  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1344  * @sg: pointer to the shadow guest address space structure
1345  * @raddr: address in the shadow guest address space
1346  *
1347  * Called with the sg->guest_table_lock
1348  */
1349 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1350 {
1351 	unsigned long *ste;
1352 	phys_addr_t sto, pgt;
1353 	struct ptdesc *ptdesc;
1354 
1355 	BUG_ON(!gmap_is_shadow(sg));
1356 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1357 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1358 		return;
1359 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1360 	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1361 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1362 	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1363 	*ste = _SEGMENT_ENTRY_EMPTY;
1364 	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1365 	/* Free page table */
1366 	ptdesc = page_ptdesc(phys_to_page(pgt));
1367 	list_del(&ptdesc->pt_list);
1368 	page_table_free_pgste(ptdesc);
1369 }
1370 
1371 /**
1372  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1373  * @sg: pointer to the shadow guest address space structure
1374  * @raddr: rmap address in the shadow guest address space
1375  * @sgt: pointer to the start of a shadow segment table
1376  *
1377  * Called with the sg->guest_table_lock
1378  */
1379 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1380 				unsigned long *sgt)
1381 {
1382 	struct ptdesc *ptdesc;
1383 	phys_addr_t pgt;
1384 	int i;
1385 
1386 	BUG_ON(!gmap_is_shadow(sg));
1387 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1388 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1389 			continue;
1390 		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1391 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1392 		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1393 		/* Free page table */
1394 		ptdesc = page_ptdesc(phys_to_page(pgt));
1395 		list_del(&ptdesc->pt_list);
1396 		page_table_free_pgste(ptdesc);
1397 	}
1398 }
1399 
1400 /**
1401  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1402  * @sg: pointer to the shadow guest address space structure
1403  * @raddr: rmap address in the shadow guest address space
1404  *
1405  * Called with the shadow->guest_table_lock
1406  */
1407 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1408 {
1409 	unsigned long r3o, *r3e;
1410 	phys_addr_t sgt;
1411 	struct page *page;
1412 
1413 	BUG_ON(!gmap_is_shadow(sg));
1414 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1415 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1416 		return;
1417 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1418 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1419 	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1420 	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1421 	*r3e = _REGION3_ENTRY_EMPTY;
1422 	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1423 	/* Free segment table */
1424 	page = phys_to_page(sgt);
1425 	list_del(&page->lru);
1426 	__free_pages(page, CRST_ALLOC_ORDER);
1427 }
1428 
1429 /**
1430  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1431  * @sg: pointer to the shadow guest address space structure
1432  * @raddr: address in the shadow guest address space
1433  * @r3t: pointer to the start of a shadow region-3 table
1434  *
1435  * Called with the sg->guest_table_lock
1436  */
1437 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1438 				unsigned long *r3t)
1439 {
1440 	struct page *page;
1441 	phys_addr_t sgt;
1442 	int i;
1443 
1444 	BUG_ON(!gmap_is_shadow(sg));
1445 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1446 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1447 			continue;
1448 		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1449 		r3t[i] = _REGION3_ENTRY_EMPTY;
1450 		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1451 		/* Free segment table */
1452 		page = phys_to_page(sgt);
1453 		list_del(&page->lru);
1454 		__free_pages(page, CRST_ALLOC_ORDER);
1455 	}
1456 }
1457 
1458 /**
1459  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1460  * @sg: pointer to the shadow guest address space structure
1461  * @raddr: rmap address in the shadow guest address space
1462  *
1463  * Called with the sg->guest_table_lock
1464  */
1465 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1466 {
1467 	unsigned long r2o, *r2e;
1468 	phys_addr_t r3t;
1469 	struct page *page;
1470 
1471 	BUG_ON(!gmap_is_shadow(sg));
1472 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1473 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1474 		return;
1475 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1476 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1477 	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1478 	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1479 	*r2e = _REGION2_ENTRY_EMPTY;
1480 	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1481 	/* Free region 3 table */
1482 	page = phys_to_page(r3t);
1483 	list_del(&page->lru);
1484 	__free_pages(page, CRST_ALLOC_ORDER);
1485 }
1486 
1487 /**
1488  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1489  * @sg: pointer to the shadow guest address space structure
1490  * @raddr: rmap address in the shadow guest address space
1491  * @r2t: pointer to the start of a shadow region-2 table
1492  *
1493  * Called with the sg->guest_table_lock
1494  */
1495 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1496 				unsigned long *r2t)
1497 {
1498 	phys_addr_t r3t;
1499 	struct page *page;
1500 	int i;
1501 
1502 	BUG_ON(!gmap_is_shadow(sg));
1503 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1504 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1505 			continue;
1506 		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1507 		r2t[i] = _REGION2_ENTRY_EMPTY;
1508 		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1509 		/* Free region 3 table */
1510 		page = phys_to_page(r3t);
1511 		list_del(&page->lru);
1512 		__free_pages(page, CRST_ALLOC_ORDER);
1513 	}
1514 }
1515 
1516 /**
1517  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1518  * @sg: pointer to the shadow guest address space structure
1519  * @raddr: rmap address in the shadow guest address space
1520  *
1521  * Called with the sg->guest_table_lock
1522  */
1523 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1524 {
1525 	unsigned long r1o, *r1e;
1526 	struct page *page;
1527 	phys_addr_t r2t;
1528 
1529 	BUG_ON(!gmap_is_shadow(sg));
1530 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1531 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1532 		return;
1533 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1534 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1535 	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1536 	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1537 	*r1e = _REGION1_ENTRY_EMPTY;
1538 	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1539 	/* Free region 2 table */
1540 	page = phys_to_page(r2t);
1541 	list_del(&page->lru);
1542 	__free_pages(page, CRST_ALLOC_ORDER);
1543 }
1544 
1545 /**
1546  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1547  * @sg: pointer to the shadow guest address space structure
1548  * @raddr: rmap address in the shadow guest address space
1549  * @r1t: pointer to the start of a shadow region-1 table
1550  *
1551  * Called with the shadow->guest_table_lock
1552  */
1553 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1554 				unsigned long *r1t)
1555 {
1556 	unsigned long asce;
1557 	struct page *page;
1558 	phys_addr_t r2t;
1559 	int i;
1560 
1561 	BUG_ON(!gmap_is_shadow(sg));
1562 	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1563 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1564 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1565 			continue;
1566 		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1567 		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1568 		/* Clear entry and flush translation r1t -> r2t */
1569 		gmap_idte_one(asce, raddr);
1570 		r1t[i] = _REGION1_ENTRY_EMPTY;
1571 		/* Free region 2 table */
1572 		page = phys_to_page(r2t);
1573 		list_del(&page->lru);
1574 		__free_pages(page, CRST_ALLOC_ORDER);
1575 	}
1576 }
1577 
1578 /**
1579  * gmap_unshadow - remove a shadow page table completely
1580  * @sg: pointer to the shadow guest address space structure
1581  *
1582  * Called with sg->guest_table_lock
1583  */
1584 static void gmap_unshadow(struct gmap *sg)
1585 {
1586 	unsigned long *table;
1587 
1588 	BUG_ON(!gmap_is_shadow(sg));
1589 	if (sg->removed)
1590 		return;
1591 	sg->removed = 1;
1592 	gmap_call_notifier(sg, 0, -1UL);
1593 	gmap_flush_tlb(sg);
1594 	table = __va(sg->asce & _ASCE_ORIGIN);
1595 	switch (sg->asce & _ASCE_TYPE_MASK) {
1596 	case _ASCE_TYPE_REGION1:
1597 		__gmap_unshadow_r1t(sg, 0, table);
1598 		break;
1599 	case _ASCE_TYPE_REGION2:
1600 		__gmap_unshadow_r2t(sg, 0, table);
1601 		break;
1602 	case _ASCE_TYPE_REGION3:
1603 		__gmap_unshadow_r3t(sg, 0, table);
1604 		break;
1605 	case _ASCE_TYPE_SEGMENT:
1606 		__gmap_unshadow_sgt(sg, 0, table);
1607 		break;
1608 	}
1609 }
1610 
1611 /**
1612  * gmap_find_shadow - find a specific asce in the list of shadow tables
1613  * @parent: pointer to the parent gmap
1614  * @asce: ASCE for which the shadow table is created
1615  * @edat_level: edat level to be used for the shadow translation
1616  *
1617  * Returns the pointer to a gmap if a shadow table with the given asce is
1618  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1619  * otherwise NULL
1620  */
1621 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1622 				     int edat_level)
1623 {
1624 	struct gmap *sg;
1625 
1626 	list_for_each_entry(sg, &parent->children, list) {
1627 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1628 		    sg->removed)
1629 			continue;
1630 		if (!sg->initialized)
1631 			return ERR_PTR(-EAGAIN);
1632 		refcount_inc(&sg->ref_count);
1633 		return sg;
1634 	}
1635 	return NULL;
1636 }
1637 
1638 /**
1639  * gmap_shadow_valid - check if a shadow guest address space matches the
1640  *                     given properties and is still valid
1641  * @sg: pointer to the shadow guest address space structure
1642  * @asce: ASCE for which the shadow table is requested
1643  * @edat_level: edat level to be used for the shadow translation
1644  *
1645  * Returns 1 if the gmap shadow is still valid and matches the given
1646  * properties, the caller can continue using it. Returns 0 otherwise, the
1647  * caller has to request a new shadow gmap in this case.
1648  *
1649  */
1650 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1651 {
1652 	if (sg->removed)
1653 		return 0;
1654 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1655 }
1656 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1657 
1658 /**
1659  * gmap_shadow - create/find a shadow guest address space
1660  * @parent: pointer to the parent gmap
1661  * @asce: ASCE for which the shadow table is created
1662  * @edat_level: edat level to be used for the shadow translation
1663  *
1664  * The pages of the top level page table referred by the asce parameter
1665  * will be set to read-only and marked in the PGSTEs of the kvm process.
1666  * The shadow table will be removed automatically on any change to the
1667  * PTE mapping for the source table.
1668  *
1669  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1670  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1671  * parent gmap table could not be protected.
1672  */
1673 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1674 			 int edat_level)
1675 {
1676 	struct gmap *sg, *new;
1677 	unsigned long limit;
1678 	int rc;
1679 
1680 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1681 	BUG_ON(gmap_is_shadow(parent));
1682 	spin_lock(&parent->shadow_lock);
1683 	sg = gmap_find_shadow(parent, asce, edat_level);
1684 	spin_unlock(&parent->shadow_lock);
1685 	if (sg)
1686 		return sg;
1687 	/* Create a new shadow gmap */
1688 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1689 	if (asce & _ASCE_REAL_SPACE)
1690 		limit = -1UL;
1691 	new = gmap_alloc(limit);
1692 	if (!new)
1693 		return ERR_PTR(-ENOMEM);
1694 	new->mm = parent->mm;
1695 	new->parent = gmap_get(parent);
1696 	new->private = parent->private;
1697 	new->orig_asce = asce;
1698 	new->edat_level = edat_level;
1699 	new->initialized = false;
1700 	spin_lock(&parent->shadow_lock);
1701 	/* Recheck if another CPU created the same shadow */
1702 	sg = gmap_find_shadow(parent, asce, edat_level);
1703 	if (sg) {
1704 		spin_unlock(&parent->shadow_lock);
1705 		gmap_free(new);
1706 		return sg;
1707 	}
1708 	if (asce & _ASCE_REAL_SPACE) {
1709 		/* only allow one real-space gmap shadow */
1710 		list_for_each_entry(sg, &parent->children, list) {
1711 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1712 				spin_lock(&sg->guest_table_lock);
1713 				gmap_unshadow(sg);
1714 				spin_unlock(&sg->guest_table_lock);
1715 				list_del(&sg->list);
1716 				gmap_put(sg);
1717 				break;
1718 			}
1719 		}
1720 	}
1721 	refcount_set(&new->ref_count, 2);
1722 	list_add(&new->list, &parent->children);
1723 	if (asce & _ASCE_REAL_SPACE) {
1724 		/* nothing to protect, return right away */
1725 		new->initialized = true;
1726 		spin_unlock(&parent->shadow_lock);
1727 		return new;
1728 	}
1729 	spin_unlock(&parent->shadow_lock);
1730 	/* protect after insertion, so it will get properly invalidated */
1731 	mmap_read_lock(parent->mm);
1732 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1733 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1734 				PROT_READ, GMAP_NOTIFY_SHADOW);
1735 	mmap_read_unlock(parent->mm);
1736 	spin_lock(&parent->shadow_lock);
1737 	new->initialized = true;
1738 	if (rc) {
1739 		list_del(&new->list);
1740 		gmap_free(new);
1741 		new = ERR_PTR(rc);
1742 	}
1743 	spin_unlock(&parent->shadow_lock);
1744 	return new;
1745 }
1746 EXPORT_SYMBOL_GPL(gmap_shadow);
1747 
1748 /**
1749  * gmap_shadow_r2t - create an empty shadow region 2 table
1750  * @sg: pointer to the shadow guest address space structure
1751  * @saddr: faulting address in the shadow gmap
1752  * @r2t: parent gmap address of the region 2 table to get shadowed
1753  * @fake: r2t references contiguous guest memory block, not a r2t
1754  *
1755  * The r2t parameter specifies the address of the source table. The
1756  * four pages of the source table are made read-only in the parent gmap
1757  * address space. A write to the source table area @r2t will automatically
1758  * remove the shadow r2 table and all of its descendants.
1759  *
1760  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1761  * shadow table structure is incomplete, -ENOMEM if out of memory and
1762  * -EFAULT if an address in the parent gmap could not be resolved.
1763  *
1764  * Called with sg->mm->mmap_lock in read.
1765  */
1766 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1767 		    int fake)
1768 {
1769 	unsigned long raddr, origin, offset, len;
1770 	unsigned long *table;
1771 	phys_addr_t s_r2t;
1772 	struct page *page;
1773 	int rc;
1774 
1775 	BUG_ON(!gmap_is_shadow(sg));
1776 	/* Allocate a shadow region second table */
1777 	page = gmap_alloc_crst();
1778 	if (!page)
1779 		return -ENOMEM;
1780 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1781 	if (fake)
1782 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1783 	s_r2t = page_to_phys(page);
1784 	/* Install shadow region second table */
1785 	spin_lock(&sg->guest_table_lock);
1786 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1787 	if (!table) {
1788 		rc = -EAGAIN;		/* Race with unshadow */
1789 		goto out_free;
1790 	}
1791 	if (!(*table & _REGION_ENTRY_INVALID)) {
1792 		rc = 0;			/* Already established */
1793 		goto out_free;
1794 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1795 		rc = -EAGAIN;		/* Race with shadow */
1796 		goto out_free;
1797 	}
1798 	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1799 	/* mark as invalid as long as the parent table is not protected */
1800 	*table = s_r2t | _REGION_ENTRY_LENGTH |
1801 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1802 	if (sg->edat_level >= 1)
1803 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1804 	list_add(&page->lru, &sg->crst_list);
1805 	if (fake) {
1806 		/* nothing to protect for fake tables */
1807 		*table &= ~_REGION_ENTRY_INVALID;
1808 		spin_unlock(&sg->guest_table_lock);
1809 		return 0;
1810 	}
1811 	spin_unlock(&sg->guest_table_lock);
1812 	/* Make r2t read-only in parent gmap page table */
1813 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1814 	origin = r2t & _REGION_ENTRY_ORIGIN;
1815 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1816 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1817 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1818 	spin_lock(&sg->guest_table_lock);
1819 	if (!rc) {
1820 		table = gmap_table_walk(sg, saddr, 4);
1821 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1822 			rc = -EAGAIN;		/* Race with unshadow */
1823 		else
1824 			*table &= ~_REGION_ENTRY_INVALID;
1825 	} else {
1826 		gmap_unshadow_r2t(sg, raddr);
1827 	}
1828 	spin_unlock(&sg->guest_table_lock);
1829 	return rc;
1830 out_free:
1831 	spin_unlock(&sg->guest_table_lock);
1832 	__free_pages(page, CRST_ALLOC_ORDER);
1833 	return rc;
1834 }
1835 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1836 
1837 /**
1838  * gmap_shadow_r3t - create a shadow region 3 table
1839  * @sg: pointer to the shadow guest address space structure
1840  * @saddr: faulting address in the shadow gmap
1841  * @r3t: parent gmap address of the region 3 table to get shadowed
1842  * @fake: r3t references contiguous guest memory block, not a r3t
1843  *
1844  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1845  * shadow table structure is incomplete, -ENOMEM if out of memory and
1846  * -EFAULT if an address in the parent gmap could not be resolved.
1847  *
1848  * Called with sg->mm->mmap_lock in read.
1849  */
1850 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1851 		    int fake)
1852 {
1853 	unsigned long raddr, origin, offset, len;
1854 	unsigned long *table;
1855 	phys_addr_t s_r3t;
1856 	struct page *page;
1857 	int rc;
1858 
1859 	BUG_ON(!gmap_is_shadow(sg));
1860 	/* Allocate a shadow region second table */
1861 	page = gmap_alloc_crst();
1862 	if (!page)
1863 		return -ENOMEM;
1864 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1865 	if (fake)
1866 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1867 	s_r3t = page_to_phys(page);
1868 	/* Install shadow region second table */
1869 	spin_lock(&sg->guest_table_lock);
1870 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1871 	if (!table) {
1872 		rc = -EAGAIN;		/* Race with unshadow */
1873 		goto out_free;
1874 	}
1875 	if (!(*table & _REGION_ENTRY_INVALID)) {
1876 		rc = 0;			/* Already established */
1877 		goto out_free;
1878 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1879 		rc = -EAGAIN;		/* Race with shadow */
1880 		goto out_free;
1881 	}
1882 	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1883 	/* mark as invalid as long as the parent table is not protected */
1884 	*table = s_r3t | _REGION_ENTRY_LENGTH |
1885 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1886 	if (sg->edat_level >= 1)
1887 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1888 	list_add(&page->lru, &sg->crst_list);
1889 	if (fake) {
1890 		/* nothing to protect for fake tables */
1891 		*table &= ~_REGION_ENTRY_INVALID;
1892 		spin_unlock(&sg->guest_table_lock);
1893 		return 0;
1894 	}
1895 	spin_unlock(&sg->guest_table_lock);
1896 	/* Make r3t read-only in parent gmap page table */
1897 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1898 	origin = r3t & _REGION_ENTRY_ORIGIN;
1899 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1900 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1901 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1902 	spin_lock(&sg->guest_table_lock);
1903 	if (!rc) {
1904 		table = gmap_table_walk(sg, saddr, 3);
1905 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1906 			rc = -EAGAIN;		/* Race with unshadow */
1907 		else
1908 			*table &= ~_REGION_ENTRY_INVALID;
1909 	} else {
1910 		gmap_unshadow_r3t(sg, raddr);
1911 	}
1912 	spin_unlock(&sg->guest_table_lock);
1913 	return rc;
1914 out_free:
1915 	spin_unlock(&sg->guest_table_lock);
1916 	__free_pages(page, CRST_ALLOC_ORDER);
1917 	return rc;
1918 }
1919 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1920 
1921 /**
1922  * gmap_shadow_sgt - create a shadow segment table
1923  * @sg: pointer to the shadow guest address space structure
1924  * @saddr: faulting address in the shadow gmap
1925  * @sgt: parent gmap address of the segment table to get shadowed
1926  * @fake: sgt references contiguous guest memory block, not a sgt
1927  *
1928  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1929  * shadow table structure is incomplete, -ENOMEM if out of memory and
1930  * -EFAULT if an address in the parent gmap could not be resolved.
1931  *
1932  * Called with sg->mm->mmap_lock in read.
1933  */
1934 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1935 		    int fake)
1936 {
1937 	unsigned long raddr, origin, offset, len;
1938 	unsigned long *table;
1939 	phys_addr_t s_sgt;
1940 	struct page *page;
1941 	int rc;
1942 
1943 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1944 	/* Allocate a shadow segment table */
1945 	page = gmap_alloc_crst();
1946 	if (!page)
1947 		return -ENOMEM;
1948 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1949 	if (fake)
1950 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1951 	s_sgt = page_to_phys(page);
1952 	/* Install shadow region second table */
1953 	spin_lock(&sg->guest_table_lock);
1954 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1955 	if (!table) {
1956 		rc = -EAGAIN;		/* Race with unshadow */
1957 		goto out_free;
1958 	}
1959 	if (!(*table & _REGION_ENTRY_INVALID)) {
1960 		rc = 0;			/* Already established */
1961 		goto out_free;
1962 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1963 		rc = -EAGAIN;		/* Race with shadow */
1964 		goto out_free;
1965 	}
1966 	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1967 	/* mark as invalid as long as the parent table is not protected */
1968 	*table = s_sgt | _REGION_ENTRY_LENGTH |
1969 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1970 	if (sg->edat_level >= 1)
1971 		*table |= sgt & _REGION_ENTRY_PROTECT;
1972 	list_add(&page->lru, &sg->crst_list);
1973 	if (fake) {
1974 		/* nothing to protect for fake tables */
1975 		*table &= ~_REGION_ENTRY_INVALID;
1976 		spin_unlock(&sg->guest_table_lock);
1977 		return 0;
1978 	}
1979 	spin_unlock(&sg->guest_table_lock);
1980 	/* Make sgt read-only in parent gmap page table */
1981 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1982 	origin = sgt & _REGION_ENTRY_ORIGIN;
1983 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1984 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1985 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1986 	spin_lock(&sg->guest_table_lock);
1987 	if (!rc) {
1988 		table = gmap_table_walk(sg, saddr, 2);
1989 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1990 			rc = -EAGAIN;		/* Race with unshadow */
1991 		else
1992 			*table &= ~_REGION_ENTRY_INVALID;
1993 	} else {
1994 		gmap_unshadow_sgt(sg, raddr);
1995 	}
1996 	spin_unlock(&sg->guest_table_lock);
1997 	return rc;
1998 out_free:
1999 	spin_unlock(&sg->guest_table_lock);
2000 	__free_pages(page, CRST_ALLOC_ORDER);
2001 	return rc;
2002 }
2003 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2004 
2005 /**
2006  * gmap_shadow_pgt_lookup - find a shadow page table
2007  * @sg: pointer to the shadow guest address space structure
2008  * @saddr: the address in the shadow aguest address space
2009  * @pgt: parent gmap address of the page table to get shadowed
2010  * @dat_protection: if the pgtable is marked as protected by dat
2011  * @fake: pgt references contiguous guest memory block, not a pgtable
2012  *
2013  * Returns 0 if the shadow page table was found and -EAGAIN if the page
2014  * table was not found.
2015  *
2016  * Called with sg->mm->mmap_lock in read.
2017  */
2018 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2019 			   unsigned long *pgt, int *dat_protection,
2020 			   int *fake)
2021 {
2022 	unsigned long *table;
2023 	struct page *page;
2024 	int rc;
2025 
2026 	BUG_ON(!gmap_is_shadow(sg));
2027 	spin_lock(&sg->guest_table_lock);
2028 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2029 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2030 		/* Shadow page tables are full pages (pte+pgste) */
2031 		page = pfn_to_page(*table >> PAGE_SHIFT);
2032 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2033 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2034 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2035 		rc = 0;
2036 	} else  {
2037 		rc = -EAGAIN;
2038 	}
2039 	spin_unlock(&sg->guest_table_lock);
2040 	return rc;
2041 
2042 }
2043 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2044 
2045 /**
2046  * gmap_shadow_pgt - instantiate a shadow page table
2047  * @sg: pointer to the shadow guest address space structure
2048  * @saddr: faulting address in the shadow gmap
2049  * @pgt: parent gmap address of the page table to get shadowed
2050  * @fake: pgt references contiguous guest memory block, not a pgtable
2051  *
2052  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2053  * shadow table structure is incomplete, -ENOMEM if out of memory,
2054  * -EFAULT if an address in the parent gmap could not be resolved and
2055  *
2056  * Called with gmap->mm->mmap_lock in read
2057  */
2058 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2059 		    int fake)
2060 {
2061 	unsigned long raddr, origin;
2062 	unsigned long *table;
2063 	struct ptdesc *ptdesc;
2064 	phys_addr_t s_pgt;
2065 	int rc;
2066 
2067 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2068 	/* Allocate a shadow page table */
2069 	ptdesc = page_table_alloc_pgste(sg->mm);
2070 	if (!ptdesc)
2071 		return -ENOMEM;
2072 	ptdesc->pt_index = pgt & _SEGMENT_ENTRY_ORIGIN;
2073 	if (fake)
2074 		ptdesc->pt_index |= GMAP_SHADOW_FAKE_TABLE;
2075 	s_pgt = page_to_phys(ptdesc_page(ptdesc));
2076 	/* Install shadow page table */
2077 	spin_lock(&sg->guest_table_lock);
2078 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2079 	if (!table) {
2080 		rc = -EAGAIN;		/* Race with unshadow */
2081 		goto out_free;
2082 	}
2083 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2084 		rc = 0;			/* Already established */
2085 		goto out_free;
2086 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2087 		rc = -EAGAIN;		/* Race with shadow */
2088 		goto out_free;
2089 	}
2090 	/* mark as invalid as long as the parent table is not protected */
2091 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2092 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2093 	list_add(&ptdesc->pt_list, &sg->pt_list);
2094 	if (fake) {
2095 		/* nothing to protect for fake tables */
2096 		*table &= ~_SEGMENT_ENTRY_INVALID;
2097 		spin_unlock(&sg->guest_table_lock);
2098 		return 0;
2099 	}
2100 	spin_unlock(&sg->guest_table_lock);
2101 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2102 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2103 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2104 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2105 	spin_lock(&sg->guest_table_lock);
2106 	if (!rc) {
2107 		table = gmap_table_walk(sg, saddr, 1);
2108 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2109 			rc = -EAGAIN;		/* Race with unshadow */
2110 		else
2111 			*table &= ~_SEGMENT_ENTRY_INVALID;
2112 	} else {
2113 		gmap_unshadow_pgt(sg, raddr);
2114 	}
2115 	spin_unlock(&sg->guest_table_lock);
2116 	return rc;
2117 out_free:
2118 	spin_unlock(&sg->guest_table_lock);
2119 	page_table_free_pgste(ptdesc);
2120 	return rc;
2121 
2122 }
2123 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2124 
2125 /**
2126  * gmap_shadow_page - create a shadow page mapping
2127  * @sg: pointer to the shadow guest address space structure
2128  * @saddr: faulting address in the shadow gmap
2129  * @pte: pte in parent gmap address space to get shadowed
2130  *
2131  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2132  * shadow table structure is incomplete, -ENOMEM if out of memory and
2133  * -EFAULT if an address in the parent gmap could not be resolved.
2134  *
2135  * Called with sg->mm->mmap_lock in read.
2136  */
2137 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2138 {
2139 	struct gmap *parent;
2140 	struct gmap_rmap *rmap;
2141 	unsigned long vmaddr, paddr;
2142 	spinlock_t *ptl;
2143 	pte_t *sptep, *tptep;
2144 	int prot;
2145 	int rc;
2146 
2147 	BUG_ON(!gmap_is_shadow(sg));
2148 	parent = sg->parent;
2149 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2150 
2151 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2152 	if (!rmap)
2153 		return -ENOMEM;
2154 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2155 
2156 	while (1) {
2157 		paddr = pte_val(pte) & PAGE_MASK;
2158 		vmaddr = __gmap_translate(parent, paddr);
2159 		if (IS_ERR_VALUE(vmaddr)) {
2160 			rc = vmaddr;
2161 			break;
2162 		}
2163 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2164 		if (rc)
2165 			break;
2166 		rc = -EAGAIN;
2167 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2168 		if (sptep) {
2169 			spin_lock(&sg->guest_table_lock);
2170 			/* Get page table pointer */
2171 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2172 			if (!tptep) {
2173 				spin_unlock(&sg->guest_table_lock);
2174 				gmap_pte_op_end(sptep, ptl);
2175 				radix_tree_preload_end();
2176 				break;
2177 			}
2178 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2179 			if (rc > 0) {
2180 				/* Success and a new mapping */
2181 				gmap_insert_rmap(sg, vmaddr, rmap);
2182 				rmap = NULL;
2183 				rc = 0;
2184 			}
2185 			gmap_pte_op_end(sptep, ptl);
2186 			spin_unlock(&sg->guest_table_lock);
2187 		}
2188 		radix_tree_preload_end();
2189 		if (!rc)
2190 			break;
2191 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2192 		if (rc)
2193 			break;
2194 	}
2195 	kfree(rmap);
2196 	return rc;
2197 }
2198 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2199 
2200 /*
2201  * gmap_shadow_notify - handle notifications for shadow gmap
2202  *
2203  * Called with sg->parent->shadow_lock.
2204  */
2205 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2206 			       unsigned long gaddr)
2207 {
2208 	struct gmap_rmap *rmap, *rnext, *head;
2209 	unsigned long start, end, bits, raddr;
2210 
2211 	BUG_ON(!gmap_is_shadow(sg));
2212 
2213 	spin_lock(&sg->guest_table_lock);
2214 	if (sg->removed) {
2215 		spin_unlock(&sg->guest_table_lock);
2216 		return;
2217 	}
2218 	/* Check for top level table */
2219 	start = sg->orig_asce & _ASCE_ORIGIN;
2220 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2221 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2222 	    gaddr < end) {
2223 		/* The complete shadow table has to go */
2224 		gmap_unshadow(sg);
2225 		spin_unlock(&sg->guest_table_lock);
2226 		list_del(&sg->list);
2227 		gmap_put(sg);
2228 		return;
2229 	}
2230 	/* Remove the page table tree from on specific entry */
2231 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2232 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2233 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2234 		raddr = rmap->raddr ^ bits;
2235 		switch (bits) {
2236 		case _SHADOW_RMAP_REGION1:
2237 			gmap_unshadow_r2t(sg, raddr);
2238 			break;
2239 		case _SHADOW_RMAP_REGION2:
2240 			gmap_unshadow_r3t(sg, raddr);
2241 			break;
2242 		case _SHADOW_RMAP_REGION3:
2243 			gmap_unshadow_sgt(sg, raddr);
2244 			break;
2245 		case _SHADOW_RMAP_SEGMENT:
2246 			gmap_unshadow_pgt(sg, raddr);
2247 			break;
2248 		case _SHADOW_RMAP_PGTABLE:
2249 			gmap_unshadow_page(sg, raddr);
2250 			break;
2251 		}
2252 		kfree(rmap);
2253 	}
2254 	spin_unlock(&sg->guest_table_lock);
2255 }
2256 
2257 /**
2258  * ptep_notify - call all invalidation callbacks for a specific pte.
2259  * @mm: pointer to the process mm_struct
2260  * @vmaddr: virtual address in the process address space
2261  * @pte: pointer to the page table entry
2262  * @bits: bits from the pgste that caused the notify call
2263  *
2264  * This function is assumed to be called with the page table lock held
2265  * for the pte to notify.
2266  */
2267 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2268 		 pte_t *pte, unsigned long bits)
2269 {
2270 	unsigned long offset, gaddr = 0;
2271 	unsigned long *table;
2272 	struct gmap *gmap, *sg, *next;
2273 
2274 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2275 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2276 	rcu_read_lock();
2277 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2278 		spin_lock(&gmap->guest_table_lock);
2279 		table = radix_tree_lookup(&gmap->host_to_guest,
2280 					  vmaddr >> PMD_SHIFT);
2281 		if (table)
2282 			gaddr = __gmap_segment_gaddr(table) + offset;
2283 		spin_unlock(&gmap->guest_table_lock);
2284 		if (!table)
2285 			continue;
2286 
2287 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2288 			spin_lock(&gmap->shadow_lock);
2289 			list_for_each_entry_safe(sg, next,
2290 						 &gmap->children, list)
2291 				gmap_shadow_notify(sg, vmaddr, gaddr);
2292 			spin_unlock(&gmap->shadow_lock);
2293 		}
2294 		if (bits & PGSTE_IN_BIT)
2295 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL_GPL(ptep_notify);
2300 
2301 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2302 			     unsigned long gaddr)
2303 {
2304 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2305 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2306 }
2307 
2308 /**
2309  * gmap_pmdp_xchg - exchange a gmap pmd with another
2310  * @gmap: pointer to the guest address space structure
2311  * @pmdp: pointer to the pmd entry
2312  * @new: replacement entry
2313  * @gaddr: the affected guest address
2314  *
2315  * This function is assumed to be called with the guest_table_lock
2316  * held.
2317  */
2318 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2319 			   unsigned long gaddr)
2320 {
2321 	gaddr &= HPAGE_MASK;
2322 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2323 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2324 	if (MACHINE_HAS_TLB_GUEST)
2325 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2326 			    IDTE_GLOBAL);
2327 	else if (MACHINE_HAS_IDTE)
2328 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2329 	else
2330 		__pmdp_csp(pmdp);
2331 	set_pmd(pmdp, new);
2332 }
2333 
2334 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2335 			    int purge)
2336 {
2337 	pmd_t *pmdp;
2338 	struct gmap *gmap;
2339 	unsigned long gaddr;
2340 
2341 	rcu_read_lock();
2342 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2343 		spin_lock(&gmap->guest_table_lock);
2344 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2345 						  vmaddr >> PMD_SHIFT);
2346 		if (pmdp) {
2347 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2348 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2349 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2350 						   _SEGMENT_ENTRY_GMAP_UC));
2351 			if (purge)
2352 				__pmdp_csp(pmdp);
2353 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2354 		}
2355 		spin_unlock(&gmap->guest_table_lock);
2356 	}
2357 	rcu_read_unlock();
2358 }
2359 
2360 /**
2361  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2362  *                        flushing
2363  * @mm: pointer to the process mm_struct
2364  * @vmaddr: virtual address in the process address space
2365  */
2366 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2367 {
2368 	gmap_pmdp_clear(mm, vmaddr, 0);
2369 }
2370 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2371 
2372 /**
2373  * gmap_pmdp_csp - csp all affected guest pmd entries
2374  * @mm: pointer to the process mm_struct
2375  * @vmaddr: virtual address in the process address space
2376  */
2377 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2378 {
2379 	gmap_pmdp_clear(mm, vmaddr, 1);
2380 }
2381 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2382 
2383 /**
2384  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2385  * @mm: pointer to the process mm_struct
2386  * @vmaddr: virtual address in the process address space
2387  */
2388 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2389 {
2390 	unsigned long *entry, gaddr;
2391 	struct gmap *gmap;
2392 	pmd_t *pmdp;
2393 
2394 	rcu_read_lock();
2395 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2396 		spin_lock(&gmap->guest_table_lock);
2397 		entry = radix_tree_delete(&gmap->host_to_guest,
2398 					  vmaddr >> PMD_SHIFT);
2399 		if (entry) {
2400 			pmdp = (pmd_t *)entry;
2401 			gaddr = __gmap_segment_gaddr(entry);
2402 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2403 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2404 					   _SEGMENT_ENTRY_GMAP_UC));
2405 			if (MACHINE_HAS_TLB_GUEST)
2406 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2407 					    gmap->asce, IDTE_LOCAL);
2408 			else if (MACHINE_HAS_IDTE)
2409 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2410 			*entry = _SEGMENT_ENTRY_EMPTY;
2411 		}
2412 		spin_unlock(&gmap->guest_table_lock);
2413 	}
2414 	rcu_read_unlock();
2415 }
2416 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2417 
2418 /**
2419  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2420  * @mm: pointer to the process mm_struct
2421  * @vmaddr: virtual address in the process address space
2422  */
2423 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2424 {
2425 	unsigned long *entry, gaddr;
2426 	struct gmap *gmap;
2427 	pmd_t *pmdp;
2428 
2429 	rcu_read_lock();
2430 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2431 		spin_lock(&gmap->guest_table_lock);
2432 		entry = radix_tree_delete(&gmap->host_to_guest,
2433 					  vmaddr >> PMD_SHIFT);
2434 		if (entry) {
2435 			pmdp = (pmd_t *)entry;
2436 			gaddr = __gmap_segment_gaddr(entry);
2437 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2438 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2439 					   _SEGMENT_ENTRY_GMAP_UC));
2440 			if (MACHINE_HAS_TLB_GUEST)
2441 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2442 					    gmap->asce, IDTE_GLOBAL);
2443 			else if (MACHINE_HAS_IDTE)
2444 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2445 			else
2446 				__pmdp_csp(pmdp);
2447 			*entry = _SEGMENT_ENTRY_EMPTY;
2448 		}
2449 		spin_unlock(&gmap->guest_table_lock);
2450 	}
2451 	rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2454 
2455 /**
2456  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2457  * @gmap: pointer to guest address space
2458  * @pmdp: pointer to the pmd to be tested
2459  * @gaddr: virtual address in the guest address space
2460  *
2461  * This function is assumed to be called with the guest_table_lock
2462  * held.
2463  */
2464 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2465 					  unsigned long gaddr)
2466 {
2467 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2468 		return false;
2469 
2470 	/* Already protected memory, which did not change is clean */
2471 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2472 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2473 		return false;
2474 
2475 	/* Clear UC indication and reset protection */
2476 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2477 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2478 	return true;
2479 }
2480 
2481 /**
2482  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2483  * @gmap: pointer to guest address space
2484  * @bitmap: dirty bitmap for this pmd
2485  * @gaddr: virtual address in the guest address space
2486  * @vmaddr: virtual address in the host address space
2487  *
2488  * This function is assumed to be called with the guest_table_lock
2489  * held.
2490  */
2491 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2492 			     unsigned long gaddr, unsigned long vmaddr)
2493 {
2494 	int i;
2495 	pmd_t *pmdp;
2496 	pte_t *ptep;
2497 	spinlock_t *ptl;
2498 
2499 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2500 	if (!pmdp)
2501 		return;
2502 
2503 	if (pmd_leaf(*pmdp)) {
2504 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2505 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2506 	} else {
2507 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2508 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2509 			if (!ptep)
2510 				continue;
2511 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2512 				set_bit(i, bitmap);
2513 			pte_unmap_unlock(ptep, ptl);
2514 		}
2515 	}
2516 	gmap_pmd_op_end(gmap, pmdp);
2517 }
2518 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2519 
2520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2521 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2522 				    unsigned long end, struct mm_walk *walk)
2523 {
2524 	struct vm_area_struct *vma = walk->vma;
2525 
2526 	split_huge_pmd(vma, pmd, addr);
2527 	return 0;
2528 }
2529 
2530 static const struct mm_walk_ops thp_split_walk_ops = {
2531 	.pmd_entry	= thp_split_walk_pmd_entry,
2532 	.walk_lock	= PGWALK_WRLOCK_VERIFY,
2533 };
2534 
2535 static inline void thp_split_mm(struct mm_struct *mm)
2536 {
2537 	struct vm_area_struct *vma;
2538 	VMA_ITERATOR(vmi, mm, 0);
2539 
2540 	for_each_vma(vmi, vma) {
2541 		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2542 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2543 	}
2544 	mm->def_flags |= VM_NOHUGEPAGE;
2545 }
2546 #else
2547 static inline void thp_split_mm(struct mm_struct *mm)
2548 {
2549 }
2550 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2551 
2552 /*
2553  * switch on pgstes for its userspace process (for kvm)
2554  */
2555 int s390_enable_sie(void)
2556 {
2557 	struct mm_struct *mm = current->mm;
2558 
2559 	/* Do we have pgstes? if yes, we are done */
2560 	if (mm_has_pgste(mm))
2561 		return 0;
2562 	/* Fail if the page tables are 2K */
2563 	if (!mm_alloc_pgste(mm))
2564 		return -EINVAL;
2565 	mmap_write_lock(mm);
2566 	mm->context.has_pgste = 1;
2567 	/* split thp mappings and disable thp for future mappings */
2568 	thp_split_mm(mm);
2569 	mmap_write_unlock(mm);
2570 	return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(s390_enable_sie);
2573 
2574 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr,
2575 				   unsigned long end, struct mm_walk *walk)
2576 {
2577 	unsigned long *found_addr = walk->private;
2578 
2579 	/* Return 1 of the page is a zeropage. */
2580 	if (is_zero_pfn(pte_pfn(*pte))) {
2581 		/*
2582 		 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2583 		 * right thing and likely don't care: FAULT_FLAG_UNSHARE
2584 		 * currently only works in COW mappings, which is also where
2585 		 * mm_forbids_zeropage() is checked.
2586 		 */
2587 		if (!is_cow_mapping(walk->vma->vm_flags))
2588 			return -EFAULT;
2589 
2590 		*found_addr = addr;
2591 		return 1;
2592 	}
2593 	return 0;
2594 }
2595 
2596 static const struct mm_walk_ops find_zeropage_ops = {
2597 	.pte_entry	= find_zeropage_pte_entry,
2598 	.walk_lock	= PGWALK_WRLOCK,
2599 };
2600 
2601 /*
2602  * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2603  * we cannot simply zap all shared zeropages, because this could later
2604  * trigger unexpected userfaultfd missing events.
2605  *
2606  * This must be called after mm->context.allow_cow_sharing was
2607  * set to 0, to avoid future mappings of shared zeropages.
2608  *
2609  * mm contracts with s390, that even if mm were to remove a page table,
2610  * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2611  * would fail, it will never insert a page table containing empty zero
2612  * pages once mm_forbids_zeropage(mm) i.e.
2613  * mm->context.allow_cow_sharing is set to 0.
2614  */
2615 static int __s390_unshare_zeropages(struct mm_struct *mm)
2616 {
2617 	struct vm_area_struct *vma;
2618 	VMA_ITERATOR(vmi, mm, 0);
2619 	unsigned long addr;
2620 	vm_fault_t fault;
2621 	int rc;
2622 
2623 	for_each_vma(vmi, vma) {
2624 		/*
2625 		 * We could only look at COW mappings, but it's more future
2626 		 * proof to catch unexpected zeropages in other mappings and
2627 		 * fail.
2628 		 */
2629 		if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma))
2630 			continue;
2631 		addr = vma->vm_start;
2632 
2633 retry:
2634 		rc = walk_page_range_vma(vma, addr, vma->vm_end,
2635 					 &find_zeropage_ops, &addr);
2636 		if (rc < 0)
2637 			return rc;
2638 		else if (!rc)
2639 			continue;
2640 
2641 		/* addr was updated by find_zeropage_pte_entry() */
2642 		fault = handle_mm_fault(vma, addr,
2643 					FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
2644 					NULL);
2645 		if (fault & VM_FAULT_OOM)
2646 			return -ENOMEM;
2647 		/*
2648 		 * See break_ksm(): even after handle_mm_fault() returned 0, we
2649 		 * must start the lookup from the current address, because
2650 		 * handle_mm_fault() may back out if there's any difficulty.
2651 		 *
2652 		 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2653 		 * maybe they could trigger in the future on concurrent
2654 		 * truncation. In that case, the shared zeropage would be gone
2655 		 * and we can simply retry and make progress.
2656 		 */
2657 		cond_resched();
2658 		goto retry;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static int __s390_disable_cow_sharing(struct mm_struct *mm)
2665 {
2666 	int rc;
2667 
2668 	if (!mm->context.allow_cow_sharing)
2669 		return 0;
2670 
2671 	mm->context.allow_cow_sharing = 0;
2672 
2673 	/* Replace all shared zeropages by anonymous pages. */
2674 	rc = __s390_unshare_zeropages(mm);
2675 	/*
2676 	 * Make sure to disable KSM (if enabled for the whole process or
2677 	 * individual VMAs). Note that nothing currently hinders user space
2678 	 * from re-enabling it.
2679 	 */
2680 	if (!rc)
2681 		rc = ksm_disable(mm);
2682 	if (rc)
2683 		mm->context.allow_cow_sharing = 1;
2684 	return rc;
2685 }
2686 
2687 /*
2688  * Disable most COW-sharing of memory pages for the whole process:
2689  * (1) Disable KSM and unmerge/unshare any KSM pages.
2690  * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2691  *
2692  * Not that we currently don't bother with COW-shared pages that are shared
2693  * with parent/child processes due to fork().
2694  */
2695 int s390_disable_cow_sharing(void)
2696 {
2697 	int rc;
2698 
2699 	mmap_write_lock(current->mm);
2700 	rc = __s390_disable_cow_sharing(current->mm);
2701 	mmap_write_unlock(current->mm);
2702 	return rc;
2703 }
2704 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing);
2705 
2706 /*
2707  * Enable storage key handling from now on and initialize the storage
2708  * keys with the default key.
2709  */
2710 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2711 				  unsigned long next, struct mm_walk *walk)
2712 {
2713 	/* Clear storage key */
2714 	ptep_zap_key(walk->mm, addr, pte);
2715 	return 0;
2716 }
2717 
2718 /*
2719  * Give a chance to schedule after setting a key to 256 pages.
2720  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2721  * Both can sleep.
2722  */
2723 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2724 				  unsigned long next, struct mm_walk *walk)
2725 {
2726 	cond_resched();
2727 	return 0;
2728 }
2729 
2730 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2731 				      unsigned long hmask, unsigned long next,
2732 				      struct mm_walk *walk)
2733 {
2734 	pmd_t *pmd = (pmd_t *)pte;
2735 	unsigned long start, end;
2736 	struct page *page = pmd_page(*pmd);
2737 
2738 	/*
2739 	 * The write check makes sure we do not set a key on shared
2740 	 * memory. This is needed as the walker does not differentiate
2741 	 * between actual guest memory and the process executable or
2742 	 * shared libraries.
2743 	 */
2744 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2745 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2746 		return 0;
2747 
2748 	start = pmd_val(*pmd) & HPAGE_MASK;
2749 	end = start + HPAGE_SIZE;
2750 	__storage_key_init_range(start, end);
2751 	set_bit(PG_arch_1, &page->flags);
2752 	cond_resched();
2753 	return 0;
2754 }
2755 
2756 static const struct mm_walk_ops enable_skey_walk_ops = {
2757 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2758 	.pte_entry		= __s390_enable_skey_pte,
2759 	.pmd_entry		= __s390_enable_skey_pmd,
2760 	.walk_lock		= PGWALK_WRLOCK,
2761 };
2762 
2763 int s390_enable_skey(void)
2764 {
2765 	struct mm_struct *mm = current->mm;
2766 	int rc = 0;
2767 
2768 	mmap_write_lock(mm);
2769 	if (mm_uses_skeys(mm))
2770 		goto out_up;
2771 
2772 	mm->context.uses_skeys = 1;
2773 	rc = __s390_disable_cow_sharing(mm);
2774 	if (rc) {
2775 		mm->context.uses_skeys = 0;
2776 		goto out_up;
2777 	}
2778 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2779 
2780 out_up:
2781 	mmap_write_unlock(mm);
2782 	return rc;
2783 }
2784 EXPORT_SYMBOL_GPL(s390_enable_skey);
2785 
2786 /*
2787  * Reset CMMA state, make all pages stable again.
2788  */
2789 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2790 			     unsigned long next, struct mm_walk *walk)
2791 {
2792 	ptep_zap_unused(walk->mm, addr, pte, 1);
2793 	return 0;
2794 }
2795 
2796 static const struct mm_walk_ops reset_cmma_walk_ops = {
2797 	.pte_entry		= __s390_reset_cmma,
2798 	.walk_lock		= PGWALK_WRLOCK,
2799 };
2800 
2801 void s390_reset_cmma(struct mm_struct *mm)
2802 {
2803 	mmap_write_lock(mm);
2804 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2805 	mmap_write_unlock(mm);
2806 }
2807 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2808 
2809 #define GATHER_GET_PAGES 32
2810 
2811 struct reset_walk_state {
2812 	unsigned long next;
2813 	unsigned long count;
2814 	unsigned long pfns[GATHER_GET_PAGES];
2815 };
2816 
2817 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2818 			     unsigned long next, struct mm_walk *walk)
2819 {
2820 	struct reset_walk_state *p = walk->private;
2821 	pte_t pte = READ_ONCE(*ptep);
2822 
2823 	if (pte_present(pte)) {
2824 		/* we have a reference from the mapping, take an extra one */
2825 		get_page(phys_to_page(pte_val(pte)));
2826 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2827 		p->next = next;
2828 		p->count++;
2829 	}
2830 	return p->count >= GATHER_GET_PAGES;
2831 }
2832 
2833 static const struct mm_walk_ops gather_pages_ops = {
2834 	.pte_entry = s390_gather_pages,
2835 	.walk_lock = PGWALK_RDLOCK,
2836 };
2837 
2838 /*
2839  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2840  * Each page needs to have an extra reference, which will be released here.
2841  */
2842 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2843 {
2844 	unsigned long i;
2845 
2846 	for (i = 0; i < count; i++) {
2847 		/* we always have an extra reference */
2848 		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2849 		/* get rid of the extra reference */
2850 		put_page(pfn_to_page(pfns[i]));
2851 		cond_resched();
2852 	}
2853 }
2854 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2855 
2856 /**
2857  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2858  * in the given range of the given address space.
2859  * @mm: the mm to operate on
2860  * @start: the start of the range
2861  * @end: the end of the range
2862  * @interruptible: if not 0, stop when a fatal signal is received
2863  *
2864  * Walk the given range of the given address space and call the destroy
2865  * secure page UVC on each page. Optionally exit early if a fatal signal is
2866  * pending.
2867  *
2868  * Return: 0 on success, -EINTR if the function stopped before completing
2869  */
2870 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2871 			    unsigned long end, bool interruptible)
2872 {
2873 	struct reset_walk_state state = { .next = start };
2874 	int r = 1;
2875 
2876 	while (r > 0) {
2877 		state.count = 0;
2878 		mmap_read_lock(mm);
2879 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2880 		mmap_read_unlock(mm);
2881 		cond_resched();
2882 		s390_uv_destroy_pfns(state.count, state.pfns);
2883 		if (interruptible && fatal_signal_pending(current))
2884 			return -EINTR;
2885 	}
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2889 
2890 /**
2891  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2892  * list of page tables of the gmap.
2893  * @gmap: the gmap whose table is to be removed
2894  *
2895  * On s390x, KVM keeps a list of all pages containing the page tables of the
2896  * gmap (the CRST list). This list is used at tear down time to free all
2897  * pages that are now not needed anymore.
2898  *
2899  * This function removes the topmost page of the tree (the one pointed to by
2900  * the ASCE) from the CRST list.
2901  *
2902  * This means that it will not be freed when the VM is torn down, and needs
2903  * to be handled separately by the caller, unless a leak is actually
2904  * intended. Notice that this function will only remove the page from the
2905  * list, the page will still be used as a top level page table (and ASCE).
2906  */
2907 void s390_unlist_old_asce(struct gmap *gmap)
2908 {
2909 	struct page *old;
2910 
2911 	old = virt_to_page(gmap->table);
2912 	spin_lock(&gmap->guest_table_lock);
2913 	list_del(&old->lru);
2914 	/*
2915 	 * Sometimes the topmost page might need to be "removed" multiple
2916 	 * times, for example if the VM is rebooted into secure mode several
2917 	 * times concurrently, or if s390_replace_asce fails after calling
2918 	 * s390_remove_old_asce and is attempted again later. In that case
2919 	 * the old asce has been removed from the list, and therefore it
2920 	 * will not be freed when the VM terminates, but the ASCE is still
2921 	 * in use and still pointed to.
2922 	 * A subsequent call to replace_asce will follow the pointer and try
2923 	 * to remove the same page from the list again.
2924 	 * Therefore it's necessary that the page of the ASCE has valid
2925 	 * pointers, so list_del can work (and do nothing) without
2926 	 * dereferencing stale or invalid pointers.
2927 	 */
2928 	INIT_LIST_HEAD(&old->lru);
2929 	spin_unlock(&gmap->guest_table_lock);
2930 }
2931 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2932 
2933 /**
2934  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2935  * @gmap: the gmap whose ASCE needs to be replaced
2936  *
2937  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2938  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2939  * to the wrong pages, causing use-after-free and memory corruption.
2940  * If the allocation of the new top level page table fails, the ASCE is not
2941  * replaced.
2942  * In any case, the old ASCE is always removed from the gmap CRST list.
2943  * Therefore the caller has to make sure to save a pointer to it
2944  * beforehand, unless a leak is actually intended.
2945  */
2946 int s390_replace_asce(struct gmap *gmap)
2947 {
2948 	unsigned long asce;
2949 	struct page *page;
2950 	void *table;
2951 
2952 	s390_unlist_old_asce(gmap);
2953 
2954 	/* Replacing segment type ASCEs would cause serious issues */
2955 	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2956 		return -EINVAL;
2957 
2958 	page = gmap_alloc_crst();
2959 	if (!page)
2960 		return -ENOMEM;
2961 	page->index = 0;
2962 	table = page_to_virt(page);
2963 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2964 
2965 	/*
2966 	 * The caller has to deal with the old ASCE, but here we make sure
2967 	 * the new one is properly added to the CRST list, so that
2968 	 * it will be freed when the VM is torn down.
2969 	 */
2970 	spin_lock(&gmap->guest_table_lock);
2971 	list_add(&page->lru, &gmap->crst_list);
2972 	spin_unlock(&gmap->guest_table_lock);
2973 
2974 	/* Set new table origin while preserving existing ASCE control bits */
2975 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2976 	WRITE_ONCE(gmap->asce, asce);
2977 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2978 	WRITE_ONCE(gmap->table, table);
2979 
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL_GPL(s390_replace_asce);
2983