xref: /linux/arch/s390/mm/gmap.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2016, 2018
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @mm: pointer to the parent mm_struct
31  * @limit: maximum address of the gmap address space
32  *
33  * Returns a guest address space structure.
34  */
35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 	struct gmap *gmap;
38 	struct page *page;
39 	unsigned long *table;
40 	unsigned long etype, atype;
41 
42 	if (limit < _REGION3_SIZE) {
43 		limit = _REGION3_SIZE - 1;
44 		atype = _ASCE_TYPE_SEGMENT;
45 		etype = _SEGMENT_ENTRY_EMPTY;
46 	} else if (limit < _REGION2_SIZE) {
47 		limit = _REGION2_SIZE - 1;
48 		atype = _ASCE_TYPE_REGION3;
49 		etype = _REGION3_ENTRY_EMPTY;
50 	} else if (limit < _REGION1_SIZE) {
51 		limit = _REGION1_SIZE - 1;
52 		atype = _ASCE_TYPE_REGION2;
53 		etype = _REGION2_ENTRY_EMPTY;
54 	} else {
55 		limit = -1UL;
56 		atype = _ASCE_TYPE_REGION1;
57 		etype = _REGION1_ENTRY_EMPTY;
58 	}
59 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60 	if (!gmap)
61 		goto out;
62 	INIT_LIST_HEAD(&gmap->crst_list);
63 	INIT_LIST_HEAD(&gmap->children);
64 	INIT_LIST_HEAD(&gmap->pt_list);
65 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68 	spin_lock_init(&gmap->guest_table_lock);
69 	spin_lock_init(&gmap->shadow_lock);
70 	refcount_set(&gmap->ref_count, 1);
71 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72 	if (!page)
73 		goto out_free;
74 	page->index = 0;
75 	list_add(&page->lru, &gmap->crst_list);
76 	table = (unsigned long *) page_to_phys(page);
77 	crst_table_init(table, etype);
78 	gmap->table = table;
79 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 		_ASCE_USER_BITS | __pa(table);
81 	gmap->asce_end = limit;
82 	return gmap;
83 
84 out_free:
85 	kfree(gmap);
86 out:
87 	return NULL;
88 }
89 
90 /**
91  * gmap_create - create a guest address space
92  * @mm: pointer to the parent mm_struct
93  * @limit: maximum size of the gmap address space
94  *
95  * Returns a guest address space structure.
96  */
97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 	struct gmap *gmap;
100 	unsigned long gmap_asce;
101 
102 	gmap = gmap_alloc(limit);
103 	if (!gmap)
104 		return NULL;
105 	gmap->mm = mm;
106 	spin_lock(&mm->context.lock);
107 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 	if (list_is_singular(&mm->context.gmap_list))
109 		gmap_asce = gmap->asce;
110 	else
111 		gmap_asce = -1UL;
112 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 	spin_unlock(&mm->context.lock);
114 	return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117 
118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 	if (MACHINE_HAS_IDTE)
121 		__tlb_flush_idte(gmap->asce);
122 	else
123 		__tlb_flush_global();
124 }
125 
126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 	struct radix_tree_iter iter;
129 	unsigned long indices[16];
130 	unsigned long index;
131 	void __rcu **slot;
132 	int i, nr;
133 
134 	/* A radix tree is freed by deleting all of its entries */
135 	index = 0;
136 	do {
137 		nr = 0;
138 		radix_tree_for_each_slot(slot, root, &iter, index) {
139 			indices[nr] = iter.index;
140 			if (++nr == 16)
141 				break;
142 		}
143 		for (i = 0; i < nr; i++) {
144 			index = indices[i];
145 			radix_tree_delete(root, index);
146 		}
147 	} while (nr > 0);
148 }
149 
150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 	struct gmap_rmap *rmap, *rnext, *head;
153 	struct radix_tree_iter iter;
154 	unsigned long indices[16];
155 	unsigned long index;
156 	void __rcu **slot;
157 	int i, nr;
158 
159 	/* A radix tree is freed by deleting all of its entries */
160 	index = 0;
161 	do {
162 		nr = 0;
163 		radix_tree_for_each_slot(slot, root, &iter, index) {
164 			indices[nr] = iter.index;
165 			if (++nr == 16)
166 				break;
167 		}
168 		for (i = 0; i < nr; i++) {
169 			index = indices[i];
170 			head = radix_tree_delete(root, index);
171 			gmap_for_each_rmap_safe(rmap, rnext, head)
172 				kfree(rmap);
173 		}
174 	} while (nr > 0);
175 }
176 
177 /**
178  * gmap_free - free a guest address space
179  * @gmap: pointer to the guest address space structure
180  *
181  * No locks required. There are no references to this gmap anymore.
182  */
183 static void gmap_free(struct gmap *gmap)
184 {
185 	struct page *page, *next;
186 
187 	/* Flush tlb of all gmaps (if not already done for shadows) */
188 	if (!(gmap_is_shadow(gmap) && gmap->removed))
189 		gmap_flush_tlb(gmap);
190 	/* Free all segment & region tables. */
191 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 		__free_pages(page, CRST_ALLOC_ORDER);
193 	gmap_radix_tree_free(&gmap->guest_to_host);
194 	gmap_radix_tree_free(&gmap->host_to_guest);
195 
196 	/* Free additional data for a shadow gmap */
197 	if (gmap_is_shadow(gmap)) {
198 		/* Free all page tables. */
199 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 			page_table_free_pgste(page);
201 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 		/* Release reference to the parent */
203 		gmap_put(gmap->parent);
204 	}
205 
206 	kfree(gmap);
207 }
208 
209 /**
210  * gmap_get - increase reference counter for guest address space
211  * @gmap: pointer to the guest address space structure
212  *
213  * Returns the gmap pointer
214  */
215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 	refcount_inc(&gmap->ref_count);
218 	return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221 
222 /**
223  * gmap_put - decrease reference counter for guest address space
224  * @gmap: pointer to the guest address space structure
225  *
226  * If the reference counter reaches zero the guest address space is freed.
227  */
228 void gmap_put(struct gmap *gmap)
229 {
230 	if (refcount_dec_and_test(&gmap->ref_count))
231 		gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234 
235 /**
236  * gmap_remove - remove a guest address space but do not free it yet
237  * @gmap: pointer to the guest address space structure
238  */
239 void gmap_remove(struct gmap *gmap)
240 {
241 	struct gmap *sg, *next;
242 	unsigned long gmap_asce;
243 
244 	/* Remove all shadow gmaps linked to this gmap */
245 	if (!list_empty(&gmap->children)) {
246 		spin_lock(&gmap->shadow_lock);
247 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 			list_del(&sg->list);
249 			gmap_put(sg);
250 		}
251 		spin_unlock(&gmap->shadow_lock);
252 	}
253 	/* Remove gmap from the pre-mm list */
254 	spin_lock(&gmap->mm->context.lock);
255 	list_del_rcu(&gmap->list);
256 	if (list_empty(&gmap->mm->context.gmap_list))
257 		gmap_asce = 0;
258 	else if (list_is_singular(&gmap->mm->context.gmap_list))
259 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 					     struct gmap, list)->asce;
261 	else
262 		gmap_asce = -1UL;
263 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 	spin_unlock(&gmap->mm->context.lock);
265 	synchronize_rcu();
266 	/* Put reference */
267 	gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270 
271 /**
272  * gmap_enable - switch primary space to the guest address space
273  * @gmap: pointer to the guest address space structure
274  */
275 void gmap_enable(struct gmap *gmap)
276 {
277 	S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280 
281 /**
282  * gmap_disable - switch back to the standard primary address space
283  * @gmap: pointer to the guest address space structure
284  */
285 void gmap_disable(struct gmap *gmap)
286 {
287 	S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290 
291 /**
292  * gmap_get_enabled - get a pointer to the currently enabled gmap
293  *
294  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295  */
296 struct gmap *gmap_get_enabled(void)
297 {
298 	return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301 
302 /*
303  * gmap_alloc_table is assumed to be called with mmap_sem held
304  */
305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 			    unsigned long init, unsigned long gaddr)
307 {
308 	struct page *page;
309 	unsigned long *new;
310 
311 	/* since we dont free the gmap table until gmap_free we can unlock */
312 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313 	if (!page)
314 		return -ENOMEM;
315 	new = (unsigned long *) page_to_phys(page);
316 	crst_table_init(new, init);
317 	spin_lock(&gmap->guest_table_lock);
318 	if (*table & _REGION_ENTRY_INVALID) {
319 		list_add(&page->lru, &gmap->crst_list);
320 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 			(*table & _REGION_ENTRY_TYPE_MASK);
322 		page->index = gaddr;
323 		page = NULL;
324 	}
325 	spin_unlock(&gmap->guest_table_lock);
326 	if (page)
327 		__free_pages(page, CRST_ALLOC_ORDER);
328 	return 0;
329 }
330 
331 /**
332  * __gmap_segment_gaddr - find virtual address from segment pointer
333  * @entry: pointer to a segment table entry in the guest address space
334  *
335  * Returns the virtual address in the guest address space for the segment
336  */
337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 	struct page *page;
340 	unsigned long offset, mask;
341 
342 	offset = (unsigned long) entry / sizeof(unsigned long);
343 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 	page = virt_to_page((void *)((unsigned long) entry & mask));
346 	return page->index + offset;
347 }
348 
349 /**
350  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351  * @gmap: pointer to the guest address space structure
352  * @vmaddr: address in the host process address space
353  *
354  * Returns 1 if a TLB flush is required
355  */
356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 	unsigned long *entry;
359 	int flush = 0;
360 
361 	BUG_ON(gmap_is_shadow(gmap));
362 	spin_lock(&gmap->guest_table_lock);
363 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 	if (entry) {
365 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 		*entry = _SEGMENT_ENTRY_EMPTY;
367 	}
368 	spin_unlock(&gmap->guest_table_lock);
369 	return flush;
370 }
371 
372 /**
373  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374  * @gmap: pointer to the guest address space structure
375  * @gaddr: address in the guest address space
376  *
377  * Returns 1 if a TLB flush is required
378  */
379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 	unsigned long vmaddr;
382 
383 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 						   gaddr >> PMD_SHIFT);
385 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387 
388 /**
389  * gmap_unmap_segment - unmap segment from the guest address space
390  * @gmap: pointer to the guest address space structure
391  * @to: address in the guest address space
392  * @len: length of the memory area to unmap
393  *
394  * Returns 0 if the unmap succeeded, -EINVAL if not.
395  */
396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 	unsigned long off;
399 	int flush;
400 
401 	BUG_ON(gmap_is_shadow(gmap));
402 	if ((to | len) & (PMD_SIZE - 1))
403 		return -EINVAL;
404 	if (len == 0 || to + len < to)
405 		return -EINVAL;
406 
407 	flush = 0;
408 	down_write(&gmap->mm->mmap_sem);
409 	for (off = 0; off < len; off += PMD_SIZE)
410 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 	up_write(&gmap->mm->mmap_sem);
412 	if (flush)
413 		gmap_flush_tlb(gmap);
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417 
418 /**
419  * gmap_map_segment - map a segment to the guest address space
420  * @gmap: pointer to the guest address space structure
421  * @from: source address in the parent address space
422  * @to: target address in the guest address space
423  * @len: length of the memory area to map
424  *
425  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426  */
427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 		     unsigned long to, unsigned long len)
429 {
430 	unsigned long off;
431 	int flush;
432 
433 	BUG_ON(gmap_is_shadow(gmap));
434 	if ((from | to | len) & (PMD_SIZE - 1))
435 		return -EINVAL;
436 	if (len == 0 || from + len < from || to + len < to ||
437 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 		return -EINVAL;
439 
440 	flush = 0;
441 	down_write(&gmap->mm->mmap_sem);
442 	for (off = 0; off < len; off += PMD_SIZE) {
443 		/* Remove old translation */
444 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 		/* Store new translation */
446 		if (radix_tree_insert(&gmap->guest_to_host,
447 				      (to + off) >> PMD_SHIFT,
448 				      (void *) from + off))
449 			break;
450 	}
451 	up_write(&gmap->mm->mmap_sem);
452 	if (flush)
453 		gmap_flush_tlb(gmap);
454 	if (off >= len)
455 		return 0;
456 	gmap_unmap_segment(gmap, to, len);
457 	return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460 
461 /**
462  * __gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  * The mmap_sem of the mm that belongs to the address space must be held
470  * when this function gets called.
471  *
472  * Note: Can also be called for shadow gmaps.
473  */
474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 	unsigned long vmaddr;
477 
478 	vmaddr = (unsigned long)
479 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 	/* Note: guest_to_host is empty for a shadow gmap */
481 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484 
485 /**
486  * gmap_translate - translate a guest address to a user space address
487  * @gmap: pointer to guest mapping meta data structure
488  * @gaddr: guest address
489  *
490  * Returns user space address which corresponds to the guest address or
491  * -EFAULT if no such mapping exists.
492  * This function does not establish potentially missing page table entries.
493  */
494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 	unsigned long rc;
497 
498 	down_read(&gmap->mm->mmap_sem);
499 	rc = __gmap_translate(gmap, gaddr);
500 	up_read(&gmap->mm->mmap_sem);
501 	return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504 
505 /**
506  * gmap_unlink - disconnect a page table from the gmap shadow tables
507  * @gmap: pointer to guest mapping meta data structure
508  * @table: pointer to the host page table
509  * @vmaddr: vm address associated with the host page table
510  */
511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 		 unsigned long vmaddr)
513 {
514 	struct gmap *gmap;
515 	int flush;
516 
517 	rcu_read_lock();
518 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 		if (flush)
521 			gmap_flush_tlb(gmap);
522 	}
523 	rcu_read_unlock();
524 }
525 
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 			   unsigned long gaddr);
528 
529 /**
530  * gmap_link - set up shadow page tables to connect a host to a guest address
531  * @gmap: pointer to guest mapping meta data structure
532  * @gaddr: guest address
533  * @vmaddr: vm address
534  *
535  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536  * if the vm address is already mapped to a different guest segment.
537  * The mmap_sem of the mm that belongs to the address space must be held
538  * when this function gets called.
539  */
540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 	struct mm_struct *mm;
543 	unsigned long *table;
544 	spinlock_t *ptl;
545 	pgd_t *pgd;
546 	p4d_t *p4d;
547 	pud_t *pud;
548 	pmd_t *pmd;
549 	u64 unprot;
550 	int rc;
551 
552 	BUG_ON(gmap_is_shadow(gmap));
553 	/* Create higher level tables in the gmap page table */
554 	table = gmap->table;
555 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 		if ((*table & _REGION_ENTRY_INVALID) &&
558 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 				     gaddr & _REGION1_MASK))
560 			return -ENOMEM;
561 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 	}
563 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 		if ((*table & _REGION_ENTRY_INVALID) &&
566 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 				     gaddr & _REGION2_MASK))
568 			return -ENOMEM;
569 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 	}
571 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 		if ((*table & _REGION_ENTRY_INVALID) &&
574 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 				     gaddr & _REGION3_MASK))
576 			return -ENOMEM;
577 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 	}
579 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 	/* Walk the parent mm page table */
581 	mm = gmap->mm;
582 	pgd = pgd_offset(mm, vmaddr);
583 	VM_BUG_ON(pgd_none(*pgd));
584 	p4d = p4d_offset(pgd, vmaddr);
585 	VM_BUG_ON(p4d_none(*p4d));
586 	pud = pud_offset(p4d, vmaddr);
587 	VM_BUG_ON(pud_none(*pud));
588 	/* large puds cannot yet be handled */
589 	if (pud_large(*pud))
590 		return -EFAULT;
591 	pmd = pmd_offset(pud, vmaddr);
592 	VM_BUG_ON(pmd_none(*pmd));
593 	/* Are we allowed to use huge pages? */
594 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 		return -EFAULT;
596 	/* Link gmap segment table entry location to page table. */
597 	rc = radix_tree_preload(GFP_KERNEL);
598 	if (rc)
599 		return rc;
600 	ptl = pmd_lock(mm, pmd);
601 	spin_lock(&gmap->guest_table_lock);
602 	if (*table == _SEGMENT_ENTRY_EMPTY) {
603 		rc = radix_tree_insert(&gmap->host_to_guest,
604 				       vmaddr >> PMD_SHIFT, table);
605 		if (!rc) {
606 			if (pmd_large(*pmd)) {
607 				*table = (pmd_val(*pmd) &
608 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 					| _SEGMENT_ENTRY_GMAP_UC;
610 			} else
611 				*table = pmd_val(*pmd) &
612 					_SEGMENT_ENTRY_HARDWARE_BITS;
613 		}
614 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 		unprot = (u64)*table;
617 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 	}
621 	spin_unlock(&gmap->guest_table_lock);
622 	spin_unlock(ptl);
623 	radix_tree_preload_end();
624 	return rc;
625 }
626 
627 /**
628  * gmap_fault - resolve a fault on a guest address
629  * @gmap: pointer to guest mapping meta data structure
630  * @gaddr: guest address
631  * @fault_flags: flags to pass down to handle_mm_fault()
632  *
633  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634  * if the vm address is already mapped to a different guest segment.
635  */
636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 	       unsigned int fault_flags)
638 {
639 	unsigned long vmaddr;
640 	int rc;
641 	bool unlocked;
642 
643 	down_read(&gmap->mm->mmap_sem);
644 
645 retry:
646 	unlocked = false;
647 	vmaddr = __gmap_translate(gmap, gaddr);
648 	if (IS_ERR_VALUE(vmaddr)) {
649 		rc = vmaddr;
650 		goto out_up;
651 	}
652 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
653 			     &unlocked)) {
654 		rc = -EFAULT;
655 		goto out_up;
656 	}
657 	/*
658 	 * In the case that fixup_user_fault unlocked the mmap_sem during
659 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 	 */
661 	if (unlocked)
662 		goto retry;
663 
664 	rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 	up_read(&gmap->mm->mmap_sem);
667 	return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670 
671 /*
672  * this function is assumed to be called with mmap_sem held
673  */
674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 		/* Get pointer to the page table entry */
686 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 		if (likely(ptep))
688 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 		pte_unmap_unlock(ptep, ptl);
690 	}
691 }
692 EXPORT_SYMBOL_GPL(__gmap_zap);
693 
694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
695 {
696 	unsigned long gaddr, vmaddr, size;
697 	struct vm_area_struct *vma;
698 
699 	down_read(&gmap->mm->mmap_sem);
700 	for (gaddr = from; gaddr < to;
701 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
702 		/* Find the vm address for the guest address */
703 		vmaddr = (unsigned long)
704 			radix_tree_lookup(&gmap->guest_to_host,
705 					  gaddr >> PMD_SHIFT);
706 		if (!vmaddr)
707 			continue;
708 		vmaddr |= gaddr & ~PMD_MASK;
709 		/* Find vma in the parent mm */
710 		vma = find_vma(gmap->mm, vmaddr);
711 		if (!vma)
712 			continue;
713 		/*
714 		 * We do not discard pages that are backed by
715 		 * hugetlbfs, so we don't have to refault them.
716 		 */
717 		if (is_vm_hugetlb_page(vma))
718 			continue;
719 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
720 		zap_page_range(vma, vmaddr, size);
721 	}
722 	up_read(&gmap->mm->mmap_sem);
723 }
724 EXPORT_SYMBOL_GPL(gmap_discard);
725 
726 static LIST_HEAD(gmap_notifier_list);
727 static DEFINE_SPINLOCK(gmap_notifier_lock);
728 
729 /**
730  * gmap_register_pte_notifier - register a pte invalidation callback
731  * @nb: pointer to the gmap notifier block
732  */
733 void gmap_register_pte_notifier(struct gmap_notifier *nb)
734 {
735 	spin_lock(&gmap_notifier_lock);
736 	list_add_rcu(&nb->list, &gmap_notifier_list);
737 	spin_unlock(&gmap_notifier_lock);
738 }
739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
740 
741 /**
742  * gmap_unregister_pte_notifier - remove a pte invalidation callback
743  * @nb: pointer to the gmap notifier block
744  */
745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
746 {
747 	spin_lock(&gmap_notifier_lock);
748 	list_del_rcu(&nb->list);
749 	spin_unlock(&gmap_notifier_lock);
750 	synchronize_rcu();
751 }
752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
753 
754 /**
755  * gmap_call_notifier - call all registered invalidation callbacks
756  * @gmap: pointer to guest mapping meta data structure
757  * @start: start virtual address in the guest address space
758  * @end: end virtual address in the guest address space
759  */
760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
761 			       unsigned long end)
762 {
763 	struct gmap_notifier *nb;
764 
765 	list_for_each_entry(nb, &gmap_notifier_list, list)
766 		nb->notifier_call(gmap, start, end);
767 }
768 
769 /**
770  * gmap_table_walk - walk the gmap page tables
771  * @gmap: pointer to guest mapping meta data structure
772  * @gaddr: virtual address in the guest address space
773  * @level: page table level to stop at
774  *
775  * Returns a table entry pointer for the given guest address and @level
776  * @level=0 : returns a pointer to a page table table entry (or NULL)
777  * @level=1 : returns a pointer to a segment table entry (or NULL)
778  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
779  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
780  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
781  *
782  * Returns NULL if the gmap page tables could not be walked to the
783  * requested level.
784  *
785  * Note: Can also be called for shadow gmaps.
786  */
787 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
788 					     unsigned long gaddr, int level)
789 {
790 	unsigned long *table;
791 
792 	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
793 		return NULL;
794 	if (gmap_is_shadow(gmap) && gmap->removed)
795 		return NULL;
796 	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
797 		return NULL;
798 	table = gmap->table;
799 	switch (gmap->asce & _ASCE_TYPE_MASK) {
800 	case _ASCE_TYPE_REGION1:
801 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
802 		if (level == 4)
803 			break;
804 		if (*table & _REGION_ENTRY_INVALID)
805 			return NULL;
806 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
807 		/* Fallthrough */
808 	case _ASCE_TYPE_REGION2:
809 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
810 		if (level == 3)
811 			break;
812 		if (*table & _REGION_ENTRY_INVALID)
813 			return NULL;
814 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
815 		/* Fallthrough */
816 	case _ASCE_TYPE_REGION3:
817 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
818 		if (level == 2)
819 			break;
820 		if (*table & _REGION_ENTRY_INVALID)
821 			return NULL;
822 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
823 		/* Fallthrough */
824 	case _ASCE_TYPE_SEGMENT:
825 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
826 		if (level == 1)
827 			break;
828 		if (*table & _REGION_ENTRY_INVALID)
829 			return NULL;
830 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
831 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
832 	}
833 	return table;
834 }
835 
836 /**
837  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
838  *		      and return the pte pointer
839  * @gmap: pointer to guest mapping meta data structure
840  * @gaddr: virtual address in the guest address space
841  * @ptl: pointer to the spinlock pointer
842  *
843  * Returns a pointer to the locked pte for a guest address, or NULL
844  */
845 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
846 			       spinlock_t **ptl)
847 {
848 	unsigned long *table;
849 
850 	BUG_ON(gmap_is_shadow(gmap));
851 	/* Walk the gmap page table, lock and get pte pointer */
852 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
853 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
854 		return NULL;
855 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
856 }
857 
858 /**
859  * gmap_pte_op_fixup - force a page in and connect the gmap page table
860  * @gmap: pointer to guest mapping meta data structure
861  * @gaddr: virtual address in the guest address space
862  * @vmaddr: address in the host process address space
863  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
864  *
865  * Returns 0 if the caller can retry __gmap_translate (might fail again),
866  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
867  * up or connecting the gmap page table.
868  */
869 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
870 			     unsigned long vmaddr, int prot)
871 {
872 	struct mm_struct *mm = gmap->mm;
873 	unsigned int fault_flags;
874 	bool unlocked = false;
875 
876 	BUG_ON(gmap_is_shadow(gmap));
877 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
878 	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
879 		return -EFAULT;
880 	if (unlocked)
881 		/* lost mmap_sem, caller has to retry __gmap_translate */
882 		return 0;
883 	/* Connect the page tables */
884 	return __gmap_link(gmap, gaddr, vmaddr);
885 }
886 
887 /**
888  * gmap_pte_op_end - release the page table lock
889  * @ptl: pointer to the spinlock pointer
890  */
891 static void gmap_pte_op_end(spinlock_t *ptl)
892 {
893 	if (ptl)
894 		spin_unlock(ptl);
895 }
896 
897 /**
898  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
899  *		      and return the pmd pointer
900  * @gmap: pointer to guest mapping meta data structure
901  * @gaddr: virtual address in the guest address space
902  *
903  * Returns a pointer to the pmd for a guest address, or NULL
904  */
905 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
906 {
907 	pmd_t *pmdp;
908 
909 	BUG_ON(gmap_is_shadow(gmap));
910 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
911 	if (!pmdp)
912 		return NULL;
913 
914 	/* without huge pages, there is no need to take the table lock */
915 	if (!gmap->mm->context.allow_gmap_hpage_1m)
916 		return pmd_none(*pmdp) ? NULL : pmdp;
917 
918 	spin_lock(&gmap->guest_table_lock);
919 	if (pmd_none(*pmdp)) {
920 		spin_unlock(&gmap->guest_table_lock);
921 		return NULL;
922 	}
923 
924 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
925 	if (!pmd_large(*pmdp))
926 		spin_unlock(&gmap->guest_table_lock);
927 	return pmdp;
928 }
929 
930 /**
931  * gmap_pmd_op_end - release the guest_table_lock if needed
932  * @gmap: pointer to the guest mapping meta data structure
933  * @pmdp: pointer to the pmd
934  */
935 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
936 {
937 	if (pmd_large(*pmdp))
938 		spin_unlock(&gmap->guest_table_lock);
939 }
940 
941 /*
942  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
943  * @pmdp: pointer to the pmd to be protected
944  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
945  * @bits: notification bits to set
946  *
947  * Returns:
948  * 0 if successfully protected
949  * -EAGAIN if a fixup is needed
950  * -EINVAL if unsupported notifier bits have been specified
951  *
952  * Expected to be called with sg->mm->mmap_sem in read and
953  * guest_table_lock held.
954  */
955 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
956 			    pmd_t *pmdp, int prot, unsigned long bits)
957 {
958 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
959 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
960 	pmd_t new = *pmdp;
961 
962 	/* Fixup needed */
963 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
964 		return -EAGAIN;
965 
966 	if (prot == PROT_NONE && !pmd_i) {
967 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
968 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
969 	}
970 
971 	if (prot == PROT_READ && !pmd_p) {
972 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
973 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
974 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
975 	}
976 
977 	if (bits & GMAP_NOTIFY_MPROT)
978 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
979 
980 	/* Shadow GMAP protection needs split PMDs */
981 	if (bits & GMAP_NOTIFY_SHADOW)
982 		return -EINVAL;
983 
984 	return 0;
985 }
986 
987 /*
988  * gmap_protect_pte - remove access rights to memory and set pgste bits
989  * @gmap: pointer to guest mapping meta data structure
990  * @gaddr: virtual address in the guest address space
991  * @pmdp: pointer to the pmd associated with the pte
992  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
993  * @bits: notification bits to set
994  *
995  * Returns 0 if successfully protected, -ENOMEM if out of memory and
996  * -EAGAIN if a fixup is needed.
997  *
998  * Expected to be called with sg->mm->mmap_sem in read
999  */
1000 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1001 			    pmd_t *pmdp, int prot, unsigned long bits)
1002 {
1003 	int rc;
1004 	pte_t *ptep;
1005 	spinlock_t *ptl = NULL;
1006 	unsigned long pbits = 0;
1007 
1008 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1009 		return -EAGAIN;
1010 
1011 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1012 	if (!ptep)
1013 		return -ENOMEM;
1014 
1015 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1016 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1017 	/* Protect and unlock. */
1018 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1019 	gmap_pte_op_end(ptl);
1020 	return rc;
1021 }
1022 
1023 /*
1024  * gmap_protect_range - remove access rights to memory and set pgste bits
1025  * @gmap: pointer to guest mapping meta data structure
1026  * @gaddr: virtual address in the guest address space
1027  * @len: size of area
1028  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1029  * @bits: pgste notification bits to set
1030  *
1031  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1032  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1033  *
1034  * Called with sg->mm->mmap_sem in read.
1035  */
1036 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1037 			      unsigned long len, int prot, unsigned long bits)
1038 {
1039 	unsigned long vmaddr, dist;
1040 	pmd_t *pmdp;
1041 	int rc;
1042 
1043 	BUG_ON(gmap_is_shadow(gmap));
1044 	while (len) {
1045 		rc = -EAGAIN;
1046 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1047 		if (pmdp) {
1048 			if (!pmd_large(*pmdp)) {
1049 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1050 						      bits);
1051 				if (!rc) {
1052 					len -= PAGE_SIZE;
1053 					gaddr += PAGE_SIZE;
1054 				}
1055 			} else {
1056 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1057 						      bits);
1058 				if (!rc) {
1059 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1060 					len = len < dist ? 0 : len - dist;
1061 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1062 				}
1063 			}
1064 			gmap_pmd_op_end(gmap, pmdp);
1065 		}
1066 		if (rc) {
1067 			if (rc == -EINVAL)
1068 				return rc;
1069 
1070 			/* -EAGAIN, fixup of userspace mm and gmap */
1071 			vmaddr = __gmap_translate(gmap, gaddr);
1072 			if (IS_ERR_VALUE(vmaddr))
1073 				return vmaddr;
1074 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1075 			if (rc)
1076 				return rc;
1077 		}
1078 	}
1079 	return 0;
1080 }
1081 
1082 /**
1083  * gmap_mprotect_notify - change access rights for a range of ptes and
1084  *                        call the notifier if any pte changes again
1085  * @gmap: pointer to guest mapping meta data structure
1086  * @gaddr: virtual address in the guest address space
1087  * @len: size of area
1088  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1089  *
1090  * Returns 0 if for each page in the given range a gmap mapping exists,
1091  * the new access rights could be set and the notifier could be armed.
1092  * If the gmap mapping is missing for one or more pages -EFAULT is
1093  * returned. If no memory could be allocated -ENOMEM is returned.
1094  * This function establishes missing page table entries.
1095  */
1096 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1097 			 unsigned long len, int prot)
1098 {
1099 	int rc;
1100 
1101 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1102 		return -EINVAL;
1103 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1104 		return -EINVAL;
1105 	down_read(&gmap->mm->mmap_sem);
1106 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1107 	up_read(&gmap->mm->mmap_sem);
1108 	return rc;
1109 }
1110 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1111 
1112 /**
1113  * gmap_read_table - get an unsigned long value from a guest page table using
1114  *                   absolute addressing, without marking the page referenced.
1115  * @gmap: pointer to guest mapping meta data structure
1116  * @gaddr: virtual address in the guest address space
1117  * @val: pointer to the unsigned long value to return
1118  *
1119  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1120  * if reading using the virtual address failed. -EINVAL if called on a gmap
1121  * shadow.
1122  *
1123  * Called with gmap->mm->mmap_sem in read.
1124  */
1125 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1126 {
1127 	unsigned long address, vmaddr;
1128 	spinlock_t *ptl;
1129 	pte_t *ptep, pte;
1130 	int rc;
1131 
1132 	if (gmap_is_shadow(gmap))
1133 		return -EINVAL;
1134 
1135 	while (1) {
1136 		rc = -EAGAIN;
1137 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1138 		if (ptep) {
1139 			pte = *ptep;
1140 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1141 				address = pte_val(pte) & PAGE_MASK;
1142 				address += gaddr & ~PAGE_MASK;
1143 				*val = *(unsigned long *) address;
1144 				pte_val(*ptep) |= _PAGE_YOUNG;
1145 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1146 				rc = 0;
1147 			}
1148 			gmap_pte_op_end(ptl);
1149 		}
1150 		if (!rc)
1151 			break;
1152 		vmaddr = __gmap_translate(gmap, gaddr);
1153 		if (IS_ERR_VALUE(vmaddr)) {
1154 			rc = vmaddr;
1155 			break;
1156 		}
1157 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1158 		if (rc)
1159 			break;
1160 	}
1161 	return rc;
1162 }
1163 EXPORT_SYMBOL_GPL(gmap_read_table);
1164 
1165 /**
1166  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1167  * @sg: pointer to the shadow guest address space structure
1168  * @vmaddr: vm address associated with the rmap
1169  * @rmap: pointer to the rmap structure
1170  *
1171  * Called with the sg->guest_table_lock
1172  */
1173 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1174 				    struct gmap_rmap *rmap)
1175 {
1176 	void __rcu **slot;
1177 
1178 	BUG_ON(!gmap_is_shadow(sg));
1179 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1180 	if (slot) {
1181 		rmap->next = radix_tree_deref_slot_protected(slot,
1182 							&sg->guest_table_lock);
1183 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1184 	} else {
1185 		rmap->next = NULL;
1186 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1187 				  rmap);
1188 	}
1189 }
1190 
1191 /**
1192  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1193  * @sg: pointer to the shadow guest address space structure
1194  * @raddr: rmap address in the shadow gmap
1195  * @paddr: address in the parent guest address space
1196  * @len: length of the memory area to protect
1197  *
1198  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1199  * if out of memory and -EFAULT if paddr is invalid.
1200  */
1201 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1202 			     unsigned long paddr, unsigned long len)
1203 {
1204 	struct gmap *parent;
1205 	struct gmap_rmap *rmap;
1206 	unsigned long vmaddr;
1207 	spinlock_t *ptl;
1208 	pte_t *ptep;
1209 	int rc;
1210 
1211 	BUG_ON(!gmap_is_shadow(sg));
1212 	parent = sg->parent;
1213 	while (len) {
1214 		vmaddr = __gmap_translate(parent, paddr);
1215 		if (IS_ERR_VALUE(vmaddr))
1216 			return vmaddr;
1217 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1218 		if (!rmap)
1219 			return -ENOMEM;
1220 		rmap->raddr = raddr;
1221 		rc = radix_tree_preload(GFP_KERNEL);
1222 		if (rc) {
1223 			kfree(rmap);
1224 			return rc;
1225 		}
1226 		rc = -EAGAIN;
1227 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1228 		if (ptep) {
1229 			spin_lock(&sg->guest_table_lock);
1230 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1231 					     PGSTE_VSIE_BIT);
1232 			if (!rc)
1233 				gmap_insert_rmap(sg, vmaddr, rmap);
1234 			spin_unlock(&sg->guest_table_lock);
1235 			gmap_pte_op_end(ptl);
1236 		}
1237 		radix_tree_preload_end();
1238 		if (rc) {
1239 			kfree(rmap);
1240 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1241 			if (rc)
1242 				return rc;
1243 			continue;
1244 		}
1245 		paddr += PAGE_SIZE;
1246 		len -= PAGE_SIZE;
1247 	}
1248 	return 0;
1249 }
1250 
1251 #define _SHADOW_RMAP_MASK	0x7
1252 #define _SHADOW_RMAP_REGION1	0x5
1253 #define _SHADOW_RMAP_REGION2	0x4
1254 #define _SHADOW_RMAP_REGION3	0x3
1255 #define _SHADOW_RMAP_SEGMENT	0x2
1256 #define _SHADOW_RMAP_PGTABLE	0x1
1257 
1258 /**
1259  * gmap_idte_one - invalidate a single region or segment table entry
1260  * @asce: region or segment table *origin* + table-type bits
1261  * @vaddr: virtual address to identify the table entry to flush
1262  *
1263  * The invalid bit of a single region or segment table entry is set
1264  * and the associated TLB entries depending on the entry are flushed.
1265  * The table-type of the @asce identifies the portion of the @vaddr
1266  * that is used as the invalidation index.
1267  */
1268 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1269 {
1270 	asm volatile(
1271 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1272 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1273 }
1274 
1275 /**
1276  * gmap_unshadow_page - remove a page from a shadow page table
1277  * @sg: pointer to the shadow guest address space structure
1278  * @raddr: rmap address in the shadow guest address space
1279  *
1280  * Called with the sg->guest_table_lock
1281  */
1282 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1283 {
1284 	unsigned long *table;
1285 
1286 	BUG_ON(!gmap_is_shadow(sg));
1287 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1288 	if (!table || *table & _PAGE_INVALID)
1289 		return;
1290 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1291 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1292 }
1293 
1294 /**
1295  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1296  * @sg: pointer to the shadow guest address space structure
1297  * @raddr: rmap address in the shadow guest address space
1298  * @pgt: pointer to the start of a shadow page table
1299  *
1300  * Called with the sg->guest_table_lock
1301  */
1302 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1303 				unsigned long *pgt)
1304 {
1305 	int i;
1306 
1307 	BUG_ON(!gmap_is_shadow(sg));
1308 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1309 		pgt[i] = _PAGE_INVALID;
1310 }
1311 
1312 /**
1313  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1314  * @sg: pointer to the shadow guest address space structure
1315  * @raddr: address in the shadow guest address space
1316  *
1317  * Called with the sg->guest_table_lock
1318  */
1319 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1320 {
1321 	unsigned long sto, *ste, *pgt;
1322 	struct page *page;
1323 
1324 	BUG_ON(!gmap_is_shadow(sg));
1325 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1326 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1327 		return;
1328 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1329 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1330 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1331 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1332 	*ste = _SEGMENT_ENTRY_EMPTY;
1333 	__gmap_unshadow_pgt(sg, raddr, pgt);
1334 	/* Free page table */
1335 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1336 	list_del(&page->lru);
1337 	page_table_free_pgste(page);
1338 }
1339 
1340 /**
1341  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1342  * @sg: pointer to the shadow guest address space structure
1343  * @raddr: rmap address in the shadow guest address space
1344  * @sgt: pointer to the start of a shadow segment table
1345  *
1346  * Called with the sg->guest_table_lock
1347  */
1348 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1349 				unsigned long *sgt)
1350 {
1351 	unsigned long *pgt;
1352 	struct page *page;
1353 	int i;
1354 
1355 	BUG_ON(!gmap_is_shadow(sg));
1356 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1357 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1358 			continue;
1359 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1360 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1361 		__gmap_unshadow_pgt(sg, raddr, pgt);
1362 		/* Free page table */
1363 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1364 		list_del(&page->lru);
1365 		page_table_free_pgste(page);
1366 	}
1367 }
1368 
1369 /**
1370  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1371  * @sg: pointer to the shadow guest address space structure
1372  * @raddr: rmap address in the shadow guest address space
1373  *
1374  * Called with the shadow->guest_table_lock
1375  */
1376 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1377 {
1378 	unsigned long r3o, *r3e, *sgt;
1379 	struct page *page;
1380 
1381 	BUG_ON(!gmap_is_shadow(sg));
1382 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1383 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1384 		return;
1385 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1386 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1387 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1388 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1389 	*r3e = _REGION3_ENTRY_EMPTY;
1390 	__gmap_unshadow_sgt(sg, raddr, sgt);
1391 	/* Free segment table */
1392 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1393 	list_del(&page->lru);
1394 	__free_pages(page, CRST_ALLOC_ORDER);
1395 }
1396 
1397 /**
1398  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1399  * @sg: pointer to the shadow guest address space structure
1400  * @raddr: address in the shadow guest address space
1401  * @r3t: pointer to the start of a shadow region-3 table
1402  *
1403  * Called with the sg->guest_table_lock
1404  */
1405 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1406 				unsigned long *r3t)
1407 {
1408 	unsigned long *sgt;
1409 	struct page *page;
1410 	int i;
1411 
1412 	BUG_ON(!gmap_is_shadow(sg));
1413 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1414 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1415 			continue;
1416 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1417 		r3t[i] = _REGION3_ENTRY_EMPTY;
1418 		__gmap_unshadow_sgt(sg, raddr, sgt);
1419 		/* Free segment table */
1420 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1421 		list_del(&page->lru);
1422 		__free_pages(page, CRST_ALLOC_ORDER);
1423 	}
1424 }
1425 
1426 /**
1427  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1428  * @sg: pointer to the shadow guest address space structure
1429  * @raddr: rmap address in the shadow guest address space
1430  *
1431  * Called with the sg->guest_table_lock
1432  */
1433 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1434 {
1435 	unsigned long r2o, *r2e, *r3t;
1436 	struct page *page;
1437 
1438 	BUG_ON(!gmap_is_shadow(sg));
1439 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1440 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1441 		return;
1442 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1443 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1444 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1445 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1446 	*r2e = _REGION2_ENTRY_EMPTY;
1447 	__gmap_unshadow_r3t(sg, raddr, r3t);
1448 	/* Free region 3 table */
1449 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1450 	list_del(&page->lru);
1451 	__free_pages(page, CRST_ALLOC_ORDER);
1452 }
1453 
1454 /**
1455  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1456  * @sg: pointer to the shadow guest address space structure
1457  * @raddr: rmap address in the shadow guest address space
1458  * @r2t: pointer to the start of a shadow region-2 table
1459  *
1460  * Called with the sg->guest_table_lock
1461  */
1462 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1463 				unsigned long *r2t)
1464 {
1465 	unsigned long *r3t;
1466 	struct page *page;
1467 	int i;
1468 
1469 	BUG_ON(!gmap_is_shadow(sg));
1470 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1471 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1472 			continue;
1473 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1474 		r2t[i] = _REGION2_ENTRY_EMPTY;
1475 		__gmap_unshadow_r3t(sg, raddr, r3t);
1476 		/* Free region 3 table */
1477 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1478 		list_del(&page->lru);
1479 		__free_pages(page, CRST_ALLOC_ORDER);
1480 	}
1481 }
1482 
1483 /**
1484  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1485  * @sg: pointer to the shadow guest address space structure
1486  * @raddr: rmap address in the shadow guest address space
1487  *
1488  * Called with the sg->guest_table_lock
1489  */
1490 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1491 {
1492 	unsigned long r1o, *r1e, *r2t;
1493 	struct page *page;
1494 
1495 	BUG_ON(!gmap_is_shadow(sg));
1496 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1497 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1498 		return;
1499 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1500 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1501 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1502 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1503 	*r1e = _REGION1_ENTRY_EMPTY;
1504 	__gmap_unshadow_r2t(sg, raddr, r2t);
1505 	/* Free region 2 table */
1506 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1507 	list_del(&page->lru);
1508 	__free_pages(page, CRST_ALLOC_ORDER);
1509 }
1510 
1511 /**
1512  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1513  * @sg: pointer to the shadow guest address space structure
1514  * @raddr: rmap address in the shadow guest address space
1515  * @r1t: pointer to the start of a shadow region-1 table
1516  *
1517  * Called with the shadow->guest_table_lock
1518  */
1519 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1520 				unsigned long *r1t)
1521 {
1522 	unsigned long asce, *r2t;
1523 	struct page *page;
1524 	int i;
1525 
1526 	BUG_ON(!gmap_is_shadow(sg));
1527 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1528 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1529 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1530 			continue;
1531 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1532 		__gmap_unshadow_r2t(sg, raddr, r2t);
1533 		/* Clear entry and flush translation r1t -> r2t */
1534 		gmap_idte_one(asce, raddr);
1535 		r1t[i] = _REGION1_ENTRY_EMPTY;
1536 		/* Free region 2 table */
1537 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1538 		list_del(&page->lru);
1539 		__free_pages(page, CRST_ALLOC_ORDER);
1540 	}
1541 }
1542 
1543 /**
1544  * gmap_unshadow - remove a shadow page table completely
1545  * @sg: pointer to the shadow guest address space structure
1546  *
1547  * Called with sg->guest_table_lock
1548  */
1549 static void gmap_unshadow(struct gmap *sg)
1550 {
1551 	unsigned long *table;
1552 
1553 	BUG_ON(!gmap_is_shadow(sg));
1554 	if (sg->removed)
1555 		return;
1556 	sg->removed = 1;
1557 	gmap_call_notifier(sg, 0, -1UL);
1558 	gmap_flush_tlb(sg);
1559 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1560 	switch (sg->asce & _ASCE_TYPE_MASK) {
1561 	case _ASCE_TYPE_REGION1:
1562 		__gmap_unshadow_r1t(sg, 0, table);
1563 		break;
1564 	case _ASCE_TYPE_REGION2:
1565 		__gmap_unshadow_r2t(sg, 0, table);
1566 		break;
1567 	case _ASCE_TYPE_REGION3:
1568 		__gmap_unshadow_r3t(sg, 0, table);
1569 		break;
1570 	case _ASCE_TYPE_SEGMENT:
1571 		__gmap_unshadow_sgt(sg, 0, table);
1572 		break;
1573 	}
1574 }
1575 
1576 /**
1577  * gmap_find_shadow - find a specific asce in the list of shadow tables
1578  * @parent: pointer to the parent gmap
1579  * @asce: ASCE for which the shadow table is created
1580  * @edat_level: edat level to be used for the shadow translation
1581  *
1582  * Returns the pointer to a gmap if a shadow table with the given asce is
1583  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1584  * otherwise NULL
1585  */
1586 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1587 				     int edat_level)
1588 {
1589 	struct gmap *sg;
1590 
1591 	list_for_each_entry(sg, &parent->children, list) {
1592 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1593 		    sg->removed)
1594 			continue;
1595 		if (!sg->initialized)
1596 			return ERR_PTR(-EAGAIN);
1597 		refcount_inc(&sg->ref_count);
1598 		return sg;
1599 	}
1600 	return NULL;
1601 }
1602 
1603 /**
1604  * gmap_shadow_valid - check if a shadow guest address space matches the
1605  *                     given properties and is still valid
1606  * @sg: pointer to the shadow guest address space structure
1607  * @asce: ASCE for which the shadow table is requested
1608  * @edat_level: edat level to be used for the shadow translation
1609  *
1610  * Returns 1 if the gmap shadow is still valid and matches the given
1611  * properties, the caller can continue using it. Returns 0 otherwise, the
1612  * caller has to request a new shadow gmap in this case.
1613  *
1614  */
1615 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1616 {
1617 	if (sg->removed)
1618 		return 0;
1619 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1620 }
1621 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1622 
1623 /**
1624  * gmap_shadow - create/find a shadow guest address space
1625  * @parent: pointer to the parent gmap
1626  * @asce: ASCE for which the shadow table is created
1627  * @edat_level: edat level to be used for the shadow translation
1628  *
1629  * The pages of the top level page table referred by the asce parameter
1630  * will be set to read-only and marked in the PGSTEs of the kvm process.
1631  * The shadow table will be removed automatically on any change to the
1632  * PTE mapping for the source table.
1633  *
1634  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1635  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1636  * parent gmap table could not be protected.
1637  */
1638 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1639 			 int edat_level)
1640 {
1641 	struct gmap *sg, *new;
1642 	unsigned long limit;
1643 	int rc;
1644 
1645 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1646 	BUG_ON(gmap_is_shadow(parent));
1647 	spin_lock(&parent->shadow_lock);
1648 	sg = gmap_find_shadow(parent, asce, edat_level);
1649 	spin_unlock(&parent->shadow_lock);
1650 	if (sg)
1651 		return sg;
1652 	/* Create a new shadow gmap */
1653 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1654 	if (asce & _ASCE_REAL_SPACE)
1655 		limit = -1UL;
1656 	new = gmap_alloc(limit);
1657 	if (!new)
1658 		return ERR_PTR(-ENOMEM);
1659 	new->mm = parent->mm;
1660 	new->parent = gmap_get(parent);
1661 	new->orig_asce = asce;
1662 	new->edat_level = edat_level;
1663 	new->initialized = false;
1664 	spin_lock(&parent->shadow_lock);
1665 	/* Recheck if another CPU created the same shadow */
1666 	sg = gmap_find_shadow(parent, asce, edat_level);
1667 	if (sg) {
1668 		spin_unlock(&parent->shadow_lock);
1669 		gmap_free(new);
1670 		return sg;
1671 	}
1672 	if (asce & _ASCE_REAL_SPACE) {
1673 		/* only allow one real-space gmap shadow */
1674 		list_for_each_entry(sg, &parent->children, list) {
1675 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1676 				spin_lock(&sg->guest_table_lock);
1677 				gmap_unshadow(sg);
1678 				spin_unlock(&sg->guest_table_lock);
1679 				list_del(&sg->list);
1680 				gmap_put(sg);
1681 				break;
1682 			}
1683 		}
1684 	}
1685 	refcount_set(&new->ref_count, 2);
1686 	list_add(&new->list, &parent->children);
1687 	if (asce & _ASCE_REAL_SPACE) {
1688 		/* nothing to protect, return right away */
1689 		new->initialized = true;
1690 		spin_unlock(&parent->shadow_lock);
1691 		return new;
1692 	}
1693 	spin_unlock(&parent->shadow_lock);
1694 	/* protect after insertion, so it will get properly invalidated */
1695 	down_read(&parent->mm->mmap_sem);
1696 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1697 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1698 				PROT_READ, GMAP_NOTIFY_SHADOW);
1699 	up_read(&parent->mm->mmap_sem);
1700 	spin_lock(&parent->shadow_lock);
1701 	new->initialized = true;
1702 	if (rc) {
1703 		list_del(&new->list);
1704 		gmap_free(new);
1705 		new = ERR_PTR(rc);
1706 	}
1707 	spin_unlock(&parent->shadow_lock);
1708 	return new;
1709 }
1710 EXPORT_SYMBOL_GPL(gmap_shadow);
1711 
1712 /**
1713  * gmap_shadow_r2t - create an empty shadow region 2 table
1714  * @sg: pointer to the shadow guest address space structure
1715  * @saddr: faulting address in the shadow gmap
1716  * @r2t: parent gmap address of the region 2 table to get shadowed
1717  * @fake: r2t references contiguous guest memory block, not a r2t
1718  *
1719  * The r2t parameter specifies the address of the source table. The
1720  * four pages of the source table are made read-only in the parent gmap
1721  * address space. A write to the source table area @r2t will automatically
1722  * remove the shadow r2 table and all of its decendents.
1723  *
1724  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1725  * shadow table structure is incomplete, -ENOMEM if out of memory and
1726  * -EFAULT if an address in the parent gmap could not be resolved.
1727  *
1728  * Called with sg->mm->mmap_sem in read.
1729  */
1730 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1731 		    int fake)
1732 {
1733 	unsigned long raddr, origin, offset, len;
1734 	unsigned long *s_r2t, *table;
1735 	struct page *page;
1736 	int rc;
1737 
1738 	BUG_ON(!gmap_is_shadow(sg));
1739 	/* Allocate a shadow region second table */
1740 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1741 	if (!page)
1742 		return -ENOMEM;
1743 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1744 	if (fake)
1745 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1746 	s_r2t = (unsigned long *) page_to_phys(page);
1747 	/* Install shadow region second table */
1748 	spin_lock(&sg->guest_table_lock);
1749 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1750 	if (!table) {
1751 		rc = -EAGAIN;		/* Race with unshadow */
1752 		goto out_free;
1753 	}
1754 	if (!(*table & _REGION_ENTRY_INVALID)) {
1755 		rc = 0;			/* Already established */
1756 		goto out_free;
1757 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1758 		rc = -EAGAIN;		/* Race with shadow */
1759 		goto out_free;
1760 	}
1761 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1762 	/* mark as invalid as long as the parent table is not protected */
1763 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1764 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1765 	if (sg->edat_level >= 1)
1766 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1767 	list_add(&page->lru, &sg->crst_list);
1768 	if (fake) {
1769 		/* nothing to protect for fake tables */
1770 		*table &= ~_REGION_ENTRY_INVALID;
1771 		spin_unlock(&sg->guest_table_lock);
1772 		return 0;
1773 	}
1774 	spin_unlock(&sg->guest_table_lock);
1775 	/* Make r2t read-only in parent gmap page table */
1776 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1777 	origin = r2t & _REGION_ENTRY_ORIGIN;
1778 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1779 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1780 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1781 	spin_lock(&sg->guest_table_lock);
1782 	if (!rc) {
1783 		table = gmap_table_walk(sg, saddr, 4);
1784 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1785 			      (unsigned long) s_r2t)
1786 			rc = -EAGAIN;		/* Race with unshadow */
1787 		else
1788 			*table &= ~_REGION_ENTRY_INVALID;
1789 	} else {
1790 		gmap_unshadow_r2t(sg, raddr);
1791 	}
1792 	spin_unlock(&sg->guest_table_lock);
1793 	return rc;
1794 out_free:
1795 	spin_unlock(&sg->guest_table_lock);
1796 	__free_pages(page, CRST_ALLOC_ORDER);
1797 	return rc;
1798 }
1799 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1800 
1801 /**
1802  * gmap_shadow_r3t - create a shadow region 3 table
1803  * @sg: pointer to the shadow guest address space structure
1804  * @saddr: faulting address in the shadow gmap
1805  * @r3t: parent gmap address of the region 3 table to get shadowed
1806  * @fake: r3t references contiguous guest memory block, not a r3t
1807  *
1808  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1809  * shadow table structure is incomplete, -ENOMEM if out of memory and
1810  * -EFAULT if an address in the parent gmap could not be resolved.
1811  *
1812  * Called with sg->mm->mmap_sem in read.
1813  */
1814 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1815 		    int fake)
1816 {
1817 	unsigned long raddr, origin, offset, len;
1818 	unsigned long *s_r3t, *table;
1819 	struct page *page;
1820 	int rc;
1821 
1822 	BUG_ON(!gmap_is_shadow(sg));
1823 	/* Allocate a shadow region second table */
1824 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1825 	if (!page)
1826 		return -ENOMEM;
1827 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1828 	if (fake)
1829 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1830 	s_r3t = (unsigned long *) page_to_phys(page);
1831 	/* Install shadow region second table */
1832 	spin_lock(&sg->guest_table_lock);
1833 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1834 	if (!table) {
1835 		rc = -EAGAIN;		/* Race with unshadow */
1836 		goto out_free;
1837 	}
1838 	if (!(*table & _REGION_ENTRY_INVALID)) {
1839 		rc = 0;			/* Already established */
1840 		goto out_free;
1841 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1842 		rc = -EAGAIN;		/* Race with shadow */
1843 	}
1844 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1845 	/* mark as invalid as long as the parent table is not protected */
1846 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1847 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1848 	if (sg->edat_level >= 1)
1849 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1850 	list_add(&page->lru, &sg->crst_list);
1851 	if (fake) {
1852 		/* nothing to protect for fake tables */
1853 		*table &= ~_REGION_ENTRY_INVALID;
1854 		spin_unlock(&sg->guest_table_lock);
1855 		return 0;
1856 	}
1857 	spin_unlock(&sg->guest_table_lock);
1858 	/* Make r3t read-only in parent gmap page table */
1859 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1860 	origin = r3t & _REGION_ENTRY_ORIGIN;
1861 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1862 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1863 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1864 	spin_lock(&sg->guest_table_lock);
1865 	if (!rc) {
1866 		table = gmap_table_walk(sg, saddr, 3);
1867 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1868 			      (unsigned long) s_r3t)
1869 			rc = -EAGAIN;		/* Race with unshadow */
1870 		else
1871 			*table &= ~_REGION_ENTRY_INVALID;
1872 	} else {
1873 		gmap_unshadow_r3t(sg, raddr);
1874 	}
1875 	spin_unlock(&sg->guest_table_lock);
1876 	return rc;
1877 out_free:
1878 	spin_unlock(&sg->guest_table_lock);
1879 	__free_pages(page, CRST_ALLOC_ORDER);
1880 	return rc;
1881 }
1882 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1883 
1884 /**
1885  * gmap_shadow_sgt - create a shadow segment table
1886  * @sg: pointer to the shadow guest address space structure
1887  * @saddr: faulting address in the shadow gmap
1888  * @sgt: parent gmap address of the segment table to get shadowed
1889  * @fake: sgt references contiguous guest memory block, not a sgt
1890  *
1891  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1892  * shadow table structure is incomplete, -ENOMEM if out of memory and
1893  * -EFAULT if an address in the parent gmap could not be resolved.
1894  *
1895  * Called with sg->mm->mmap_sem in read.
1896  */
1897 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1898 		    int fake)
1899 {
1900 	unsigned long raddr, origin, offset, len;
1901 	unsigned long *s_sgt, *table;
1902 	struct page *page;
1903 	int rc;
1904 
1905 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1906 	/* Allocate a shadow segment table */
1907 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1908 	if (!page)
1909 		return -ENOMEM;
1910 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1911 	if (fake)
1912 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1913 	s_sgt = (unsigned long *) page_to_phys(page);
1914 	/* Install shadow region second table */
1915 	spin_lock(&sg->guest_table_lock);
1916 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1917 	if (!table) {
1918 		rc = -EAGAIN;		/* Race with unshadow */
1919 		goto out_free;
1920 	}
1921 	if (!(*table & _REGION_ENTRY_INVALID)) {
1922 		rc = 0;			/* Already established */
1923 		goto out_free;
1924 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1925 		rc = -EAGAIN;		/* Race with shadow */
1926 		goto out_free;
1927 	}
1928 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1929 	/* mark as invalid as long as the parent table is not protected */
1930 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1931 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1932 	if (sg->edat_level >= 1)
1933 		*table |= sgt & _REGION_ENTRY_PROTECT;
1934 	list_add(&page->lru, &sg->crst_list);
1935 	if (fake) {
1936 		/* nothing to protect for fake tables */
1937 		*table &= ~_REGION_ENTRY_INVALID;
1938 		spin_unlock(&sg->guest_table_lock);
1939 		return 0;
1940 	}
1941 	spin_unlock(&sg->guest_table_lock);
1942 	/* Make sgt read-only in parent gmap page table */
1943 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1944 	origin = sgt & _REGION_ENTRY_ORIGIN;
1945 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1946 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1947 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1948 	spin_lock(&sg->guest_table_lock);
1949 	if (!rc) {
1950 		table = gmap_table_walk(sg, saddr, 2);
1951 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1952 			      (unsigned long) s_sgt)
1953 			rc = -EAGAIN;		/* Race with unshadow */
1954 		else
1955 			*table &= ~_REGION_ENTRY_INVALID;
1956 	} else {
1957 		gmap_unshadow_sgt(sg, raddr);
1958 	}
1959 	spin_unlock(&sg->guest_table_lock);
1960 	return rc;
1961 out_free:
1962 	spin_unlock(&sg->guest_table_lock);
1963 	__free_pages(page, CRST_ALLOC_ORDER);
1964 	return rc;
1965 }
1966 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1967 
1968 /**
1969  * gmap_shadow_lookup_pgtable - find a shadow page table
1970  * @sg: pointer to the shadow guest address space structure
1971  * @saddr: the address in the shadow aguest address space
1972  * @pgt: parent gmap address of the page table to get shadowed
1973  * @dat_protection: if the pgtable is marked as protected by dat
1974  * @fake: pgt references contiguous guest memory block, not a pgtable
1975  *
1976  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1977  * table was not found.
1978  *
1979  * Called with sg->mm->mmap_sem in read.
1980  */
1981 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1982 			   unsigned long *pgt, int *dat_protection,
1983 			   int *fake)
1984 {
1985 	unsigned long *table;
1986 	struct page *page;
1987 	int rc;
1988 
1989 	BUG_ON(!gmap_is_shadow(sg));
1990 	spin_lock(&sg->guest_table_lock);
1991 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1992 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1993 		/* Shadow page tables are full pages (pte+pgste) */
1994 		page = pfn_to_page(*table >> PAGE_SHIFT);
1995 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1996 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1997 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1998 		rc = 0;
1999 	} else  {
2000 		rc = -EAGAIN;
2001 	}
2002 	spin_unlock(&sg->guest_table_lock);
2003 	return rc;
2004 
2005 }
2006 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2007 
2008 /**
2009  * gmap_shadow_pgt - instantiate a shadow page table
2010  * @sg: pointer to the shadow guest address space structure
2011  * @saddr: faulting address in the shadow gmap
2012  * @pgt: parent gmap address of the page table to get shadowed
2013  * @fake: pgt references contiguous guest memory block, not a pgtable
2014  *
2015  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2016  * shadow table structure is incomplete, -ENOMEM if out of memory,
2017  * -EFAULT if an address in the parent gmap could not be resolved and
2018  *
2019  * Called with gmap->mm->mmap_sem in read
2020  */
2021 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2022 		    int fake)
2023 {
2024 	unsigned long raddr, origin;
2025 	unsigned long *s_pgt, *table;
2026 	struct page *page;
2027 	int rc;
2028 
2029 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2030 	/* Allocate a shadow page table */
2031 	page = page_table_alloc_pgste(sg->mm);
2032 	if (!page)
2033 		return -ENOMEM;
2034 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2035 	if (fake)
2036 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2037 	s_pgt = (unsigned long *) page_to_phys(page);
2038 	/* Install shadow page table */
2039 	spin_lock(&sg->guest_table_lock);
2040 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2041 	if (!table) {
2042 		rc = -EAGAIN;		/* Race with unshadow */
2043 		goto out_free;
2044 	}
2045 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2046 		rc = 0;			/* Already established */
2047 		goto out_free;
2048 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2049 		rc = -EAGAIN;		/* Race with shadow */
2050 		goto out_free;
2051 	}
2052 	/* mark as invalid as long as the parent table is not protected */
2053 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2054 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2055 	list_add(&page->lru, &sg->pt_list);
2056 	if (fake) {
2057 		/* nothing to protect for fake tables */
2058 		*table &= ~_SEGMENT_ENTRY_INVALID;
2059 		spin_unlock(&sg->guest_table_lock);
2060 		return 0;
2061 	}
2062 	spin_unlock(&sg->guest_table_lock);
2063 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2064 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2065 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2066 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2067 	spin_lock(&sg->guest_table_lock);
2068 	if (!rc) {
2069 		table = gmap_table_walk(sg, saddr, 1);
2070 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2071 			      (unsigned long) s_pgt)
2072 			rc = -EAGAIN;		/* Race with unshadow */
2073 		else
2074 			*table &= ~_SEGMENT_ENTRY_INVALID;
2075 	} else {
2076 		gmap_unshadow_pgt(sg, raddr);
2077 	}
2078 	spin_unlock(&sg->guest_table_lock);
2079 	return rc;
2080 out_free:
2081 	spin_unlock(&sg->guest_table_lock);
2082 	page_table_free_pgste(page);
2083 	return rc;
2084 
2085 }
2086 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2087 
2088 /**
2089  * gmap_shadow_page - create a shadow page mapping
2090  * @sg: pointer to the shadow guest address space structure
2091  * @saddr: faulting address in the shadow gmap
2092  * @pte: pte in parent gmap address space to get shadowed
2093  *
2094  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2095  * shadow table structure is incomplete, -ENOMEM if out of memory and
2096  * -EFAULT if an address in the parent gmap could not be resolved.
2097  *
2098  * Called with sg->mm->mmap_sem in read.
2099  */
2100 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2101 {
2102 	struct gmap *parent;
2103 	struct gmap_rmap *rmap;
2104 	unsigned long vmaddr, paddr;
2105 	spinlock_t *ptl;
2106 	pte_t *sptep, *tptep;
2107 	int prot;
2108 	int rc;
2109 
2110 	BUG_ON(!gmap_is_shadow(sg));
2111 	parent = sg->parent;
2112 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2113 
2114 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2115 	if (!rmap)
2116 		return -ENOMEM;
2117 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2118 
2119 	while (1) {
2120 		paddr = pte_val(pte) & PAGE_MASK;
2121 		vmaddr = __gmap_translate(parent, paddr);
2122 		if (IS_ERR_VALUE(vmaddr)) {
2123 			rc = vmaddr;
2124 			break;
2125 		}
2126 		rc = radix_tree_preload(GFP_KERNEL);
2127 		if (rc)
2128 			break;
2129 		rc = -EAGAIN;
2130 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2131 		if (sptep) {
2132 			spin_lock(&sg->guest_table_lock);
2133 			/* Get page table pointer */
2134 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2135 			if (!tptep) {
2136 				spin_unlock(&sg->guest_table_lock);
2137 				gmap_pte_op_end(ptl);
2138 				radix_tree_preload_end();
2139 				break;
2140 			}
2141 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2142 			if (rc > 0) {
2143 				/* Success and a new mapping */
2144 				gmap_insert_rmap(sg, vmaddr, rmap);
2145 				rmap = NULL;
2146 				rc = 0;
2147 			}
2148 			gmap_pte_op_end(ptl);
2149 			spin_unlock(&sg->guest_table_lock);
2150 		}
2151 		radix_tree_preload_end();
2152 		if (!rc)
2153 			break;
2154 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2155 		if (rc)
2156 			break;
2157 	}
2158 	kfree(rmap);
2159 	return rc;
2160 }
2161 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2162 
2163 /**
2164  * gmap_shadow_notify - handle notifications for shadow gmap
2165  *
2166  * Called with sg->parent->shadow_lock.
2167  */
2168 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2169 			       unsigned long gaddr)
2170 {
2171 	struct gmap_rmap *rmap, *rnext, *head;
2172 	unsigned long start, end, bits, raddr;
2173 
2174 	BUG_ON(!gmap_is_shadow(sg));
2175 
2176 	spin_lock(&sg->guest_table_lock);
2177 	if (sg->removed) {
2178 		spin_unlock(&sg->guest_table_lock);
2179 		return;
2180 	}
2181 	/* Check for top level table */
2182 	start = sg->orig_asce & _ASCE_ORIGIN;
2183 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2184 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2185 	    gaddr < end) {
2186 		/* The complete shadow table has to go */
2187 		gmap_unshadow(sg);
2188 		spin_unlock(&sg->guest_table_lock);
2189 		list_del(&sg->list);
2190 		gmap_put(sg);
2191 		return;
2192 	}
2193 	/* Remove the page table tree from on specific entry */
2194 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2195 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2196 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2197 		raddr = rmap->raddr ^ bits;
2198 		switch (bits) {
2199 		case _SHADOW_RMAP_REGION1:
2200 			gmap_unshadow_r2t(sg, raddr);
2201 			break;
2202 		case _SHADOW_RMAP_REGION2:
2203 			gmap_unshadow_r3t(sg, raddr);
2204 			break;
2205 		case _SHADOW_RMAP_REGION3:
2206 			gmap_unshadow_sgt(sg, raddr);
2207 			break;
2208 		case _SHADOW_RMAP_SEGMENT:
2209 			gmap_unshadow_pgt(sg, raddr);
2210 			break;
2211 		case _SHADOW_RMAP_PGTABLE:
2212 			gmap_unshadow_page(sg, raddr);
2213 			break;
2214 		}
2215 		kfree(rmap);
2216 	}
2217 	spin_unlock(&sg->guest_table_lock);
2218 }
2219 
2220 /**
2221  * ptep_notify - call all invalidation callbacks for a specific pte.
2222  * @mm: pointer to the process mm_struct
2223  * @addr: virtual address in the process address space
2224  * @pte: pointer to the page table entry
2225  * @bits: bits from the pgste that caused the notify call
2226  *
2227  * This function is assumed to be called with the page table lock held
2228  * for the pte to notify.
2229  */
2230 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2231 		 pte_t *pte, unsigned long bits)
2232 {
2233 	unsigned long offset, gaddr = 0;
2234 	unsigned long *table;
2235 	struct gmap *gmap, *sg, *next;
2236 
2237 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2238 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2239 	rcu_read_lock();
2240 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2241 		spin_lock(&gmap->guest_table_lock);
2242 		table = radix_tree_lookup(&gmap->host_to_guest,
2243 					  vmaddr >> PMD_SHIFT);
2244 		if (table)
2245 			gaddr = __gmap_segment_gaddr(table) + offset;
2246 		spin_unlock(&gmap->guest_table_lock);
2247 		if (!table)
2248 			continue;
2249 
2250 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2251 			spin_lock(&gmap->shadow_lock);
2252 			list_for_each_entry_safe(sg, next,
2253 						 &gmap->children, list)
2254 				gmap_shadow_notify(sg, vmaddr, gaddr);
2255 			spin_unlock(&gmap->shadow_lock);
2256 		}
2257 		if (bits & PGSTE_IN_BIT)
2258 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2259 	}
2260 	rcu_read_unlock();
2261 }
2262 EXPORT_SYMBOL_GPL(ptep_notify);
2263 
2264 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2265 			     unsigned long gaddr)
2266 {
2267 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2268 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2269 }
2270 
2271 /**
2272  * gmap_pmdp_xchg - exchange a gmap pmd with another
2273  * @gmap: pointer to the guest address space structure
2274  * @pmdp: pointer to the pmd entry
2275  * @new: replacement entry
2276  * @gaddr: the affected guest address
2277  *
2278  * This function is assumed to be called with the guest_table_lock
2279  * held.
2280  */
2281 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2282 			   unsigned long gaddr)
2283 {
2284 	gaddr &= HPAGE_MASK;
2285 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2286 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2287 	if (MACHINE_HAS_TLB_GUEST)
2288 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2289 			    IDTE_GLOBAL);
2290 	else if (MACHINE_HAS_IDTE)
2291 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2292 	else
2293 		__pmdp_csp(pmdp);
2294 	*pmdp = new;
2295 }
2296 
2297 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2298 			    int purge)
2299 {
2300 	pmd_t *pmdp;
2301 	struct gmap *gmap;
2302 	unsigned long gaddr;
2303 
2304 	rcu_read_lock();
2305 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2306 		spin_lock(&gmap->guest_table_lock);
2307 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2308 						  vmaddr >> PMD_SHIFT);
2309 		if (pmdp) {
2310 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2311 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2312 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2313 						   _SEGMENT_ENTRY_GMAP_UC));
2314 			if (purge)
2315 				__pmdp_csp(pmdp);
2316 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2317 		}
2318 		spin_unlock(&gmap->guest_table_lock);
2319 	}
2320 	rcu_read_unlock();
2321 }
2322 
2323 /**
2324  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2325  *                        flushing
2326  * @mm: pointer to the process mm_struct
2327  * @vmaddr: virtual address in the process address space
2328  */
2329 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2330 {
2331 	gmap_pmdp_clear(mm, vmaddr, 0);
2332 }
2333 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2334 
2335 /**
2336  * gmap_pmdp_csp - csp all affected guest pmd entries
2337  * @mm: pointer to the process mm_struct
2338  * @vmaddr: virtual address in the process address space
2339  */
2340 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2341 {
2342 	gmap_pmdp_clear(mm, vmaddr, 1);
2343 }
2344 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2345 
2346 /**
2347  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2348  * @mm: pointer to the process mm_struct
2349  * @vmaddr: virtual address in the process address space
2350  */
2351 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2352 {
2353 	unsigned long *entry, gaddr;
2354 	struct gmap *gmap;
2355 	pmd_t *pmdp;
2356 
2357 	rcu_read_lock();
2358 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2359 		spin_lock(&gmap->guest_table_lock);
2360 		entry = radix_tree_delete(&gmap->host_to_guest,
2361 					  vmaddr >> PMD_SHIFT);
2362 		if (entry) {
2363 			pmdp = (pmd_t *)entry;
2364 			gaddr = __gmap_segment_gaddr(entry);
2365 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2366 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2367 					   _SEGMENT_ENTRY_GMAP_UC));
2368 			if (MACHINE_HAS_TLB_GUEST)
2369 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2370 					    gmap->asce, IDTE_LOCAL);
2371 			else if (MACHINE_HAS_IDTE)
2372 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2373 			*entry = _SEGMENT_ENTRY_EMPTY;
2374 		}
2375 		spin_unlock(&gmap->guest_table_lock);
2376 	}
2377 	rcu_read_unlock();
2378 }
2379 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2380 
2381 /**
2382  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2383  * @mm: pointer to the process mm_struct
2384  * @vmaddr: virtual address in the process address space
2385  */
2386 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2387 {
2388 	unsigned long *entry, gaddr;
2389 	struct gmap *gmap;
2390 	pmd_t *pmdp;
2391 
2392 	rcu_read_lock();
2393 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2394 		spin_lock(&gmap->guest_table_lock);
2395 		entry = radix_tree_delete(&gmap->host_to_guest,
2396 					  vmaddr >> PMD_SHIFT);
2397 		if (entry) {
2398 			pmdp = (pmd_t *)entry;
2399 			gaddr = __gmap_segment_gaddr(entry);
2400 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2401 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2402 					   _SEGMENT_ENTRY_GMAP_UC));
2403 			if (MACHINE_HAS_TLB_GUEST)
2404 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2405 					    gmap->asce, IDTE_GLOBAL);
2406 			else if (MACHINE_HAS_IDTE)
2407 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2408 			else
2409 				__pmdp_csp(pmdp);
2410 			*entry = _SEGMENT_ENTRY_EMPTY;
2411 		}
2412 		spin_unlock(&gmap->guest_table_lock);
2413 	}
2414 	rcu_read_unlock();
2415 }
2416 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2417 
2418 /**
2419  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2420  * @gmap: pointer to guest address space
2421  * @pmdp: pointer to the pmd to be tested
2422  * @gaddr: virtual address in the guest address space
2423  *
2424  * This function is assumed to be called with the guest_table_lock
2425  * held.
2426  */
2427 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2428 					  unsigned long gaddr)
2429 {
2430 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2431 		return false;
2432 
2433 	/* Already protected memory, which did not change is clean */
2434 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2435 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2436 		return false;
2437 
2438 	/* Clear UC indication and reset protection */
2439 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2440 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2441 	return true;
2442 }
2443 
2444 /**
2445  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2446  * @gmap: pointer to guest address space
2447  * @bitmap: dirty bitmap for this pmd
2448  * @gaddr: virtual address in the guest address space
2449  * @vmaddr: virtual address in the host address space
2450  *
2451  * This function is assumed to be called with the guest_table_lock
2452  * held.
2453  */
2454 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2455 			     unsigned long gaddr, unsigned long vmaddr)
2456 {
2457 	int i;
2458 	pmd_t *pmdp;
2459 	pte_t *ptep;
2460 	spinlock_t *ptl;
2461 
2462 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2463 	if (!pmdp)
2464 		return;
2465 
2466 	if (pmd_large(*pmdp)) {
2467 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2468 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2469 	} else {
2470 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2471 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2472 			if (!ptep)
2473 				continue;
2474 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2475 				set_bit(i, bitmap);
2476 			spin_unlock(ptl);
2477 		}
2478 	}
2479 	gmap_pmd_op_end(gmap, pmdp);
2480 }
2481 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2482 
2483 static inline void thp_split_mm(struct mm_struct *mm)
2484 {
2485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2486 	struct vm_area_struct *vma;
2487 	unsigned long addr;
2488 
2489 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2490 		for (addr = vma->vm_start;
2491 		     addr < vma->vm_end;
2492 		     addr += PAGE_SIZE)
2493 			follow_page(vma, addr, FOLL_SPLIT);
2494 		vma->vm_flags &= ~VM_HUGEPAGE;
2495 		vma->vm_flags |= VM_NOHUGEPAGE;
2496 	}
2497 	mm->def_flags |= VM_NOHUGEPAGE;
2498 #endif
2499 }
2500 
2501 /*
2502  * Remove all empty zero pages from the mapping for lazy refaulting
2503  * - This must be called after mm->context.has_pgste is set, to avoid
2504  *   future creation of zero pages
2505  * - This must be called after THP was enabled
2506  */
2507 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2508 			   unsigned long end, struct mm_walk *walk)
2509 {
2510 	unsigned long addr;
2511 
2512 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2513 		pte_t *ptep;
2514 		spinlock_t *ptl;
2515 
2516 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2517 		if (is_zero_pfn(pte_pfn(*ptep)))
2518 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2519 		pte_unmap_unlock(ptep, ptl);
2520 	}
2521 	return 0;
2522 }
2523 
2524 static const struct mm_walk_ops zap_zero_walk_ops = {
2525 	.pmd_entry	= __zap_zero_pages,
2526 };
2527 
2528 /*
2529  * switch on pgstes for its userspace process (for kvm)
2530  */
2531 int s390_enable_sie(void)
2532 {
2533 	struct mm_struct *mm = current->mm;
2534 
2535 	/* Do we have pgstes? if yes, we are done */
2536 	if (mm_has_pgste(mm))
2537 		return 0;
2538 	/* Fail if the page tables are 2K */
2539 	if (!mm_alloc_pgste(mm))
2540 		return -EINVAL;
2541 	down_write(&mm->mmap_sem);
2542 	mm->context.has_pgste = 1;
2543 	/* split thp mappings and disable thp for future mappings */
2544 	thp_split_mm(mm);
2545 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2546 	up_write(&mm->mmap_sem);
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(s390_enable_sie);
2550 
2551 /*
2552  * Enable storage key handling from now on and initialize the storage
2553  * keys with the default key.
2554  */
2555 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2556 				  unsigned long next, struct mm_walk *walk)
2557 {
2558 	/* Clear storage key */
2559 	ptep_zap_key(walk->mm, addr, pte);
2560 	return 0;
2561 }
2562 
2563 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2564 				      unsigned long hmask, unsigned long next,
2565 				      struct mm_walk *walk)
2566 {
2567 	pmd_t *pmd = (pmd_t *)pte;
2568 	unsigned long start, end;
2569 	struct page *page = pmd_page(*pmd);
2570 
2571 	/*
2572 	 * The write check makes sure we do not set a key on shared
2573 	 * memory. This is needed as the walker does not differentiate
2574 	 * between actual guest memory and the process executable or
2575 	 * shared libraries.
2576 	 */
2577 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2578 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2579 		return 0;
2580 
2581 	start = pmd_val(*pmd) & HPAGE_MASK;
2582 	end = start + HPAGE_SIZE - 1;
2583 	__storage_key_init_range(start, end);
2584 	set_bit(PG_arch_1, &page->flags);
2585 	return 0;
2586 }
2587 
2588 static const struct mm_walk_ops enable_skey_walk_ops = {
2589 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2590 	.pte_entry		= __s390_enable_skey_pte,
2591 };
2592 
2593 int s390_enable_skey(void)
2594 {
2595 	struct mm_struct *mm = current->mm;
2596 	struct vm_area_struct *vma;
2597 	int rc = 0;
2598 
2599 	down_write(&mm->mmap_sem);
2600 	if (mm_uses_skeys(mm))
2601 		goto out_up;
2602 
2603 	mm->context.uses_skeys = 1;
2604 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2605 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2606 				MADV_UNMERGEABLE, &vma->vm_flags)) {
2607 			mm->context.uses_skeys = 0;
2608 			rc = -ENOMEM;
2609 			goto out_up;
2610 		}
2611 	}
2612 	mm->def_flags &= ~VM_MERGEABLE;
2613 
2614 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2615 
2616 out_up:
2617 	up_write(&mm->mmap_sem);
2618 	return rc;
2619 }
2620 EXPORT_SYMBOL_GPL(s390_enable_skey);
2621 
2622 /*
2623  * Reset CMMA state, make all pages stable again.
2624  */
2625 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2626 			     unsigned long next, struct mm_walk *walk)
2627 {
2628 	ptep_zap_unused(walk->mm, addr, pte, 1);
2629 	return 0;
2630 }
2631 
2632 static const struct mm_walk_ops reset_cmma_walk_ops = {
2633 	.pte_entry		= __s390_reset_cmma,
2634 };
2635 
2636 void s390_reset_cmma(struct mm_struct *mm)
2637 {
2638 	down_write(&mm->mmap_sem);
2639 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2640 	up_write(&mm->mmap_sem);
2641 }
2642 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2643