xref: /linux/arch/s390/mm/gmap.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/cpufeature.h>
12 #include <linux/export.h>
13 #include <linux/kernel.h>
14 #include <linux/pagewalk.h>
15 #include <linux/swap.h>
16 #include <linux/smp.h>
17 #include <linux/spinlock.h>
18 #include <linux/slab.h>
19 #include <linux/swapops.h>
20 #include <linux/ksm.h>
21 #include <linux/mman.h>
22 #include <linux/pgtable.h>
23 #include <asm/page-states.h>
24 #include <asm/pgalloc.h>
25 #include <asm/machine.h>
26 #include <asm/gmap_helpers.h>
27 #include <asm/gmap.h>
28 #include <asm/page.h>
29 
30 /*
31  * The address is saved in a radix tree directly; NULL would be ambiguous,
32  * since 0 is a valid address, and NULL is returned when nothing was found.
33  * The lower bits are ignored by all users of the macro, so it can be used
34  * to distinguish a valid address 0 from a NULL.
35  */
36 #define VALID_GADDR_FLAG 1
37 #define IS_GADDR_VALID(gaddr) ((gaddr) & VALID_GADDR_FLAG)
38 #define MAKE_VALID_GADDR(gaddr) (((gaddr) & HPAGE_MASK) | VALID_GADDR_FLAG)
39 
40 #define GMAP_SHADOW_FAKE_TABLE 1ULL
41 
gmap_alloc_crst(void)42 static struct page *gmap_alloc_crst(void)
43 {
44 	struct page *page;
45 
46 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
47 	if (!page)
48 		return NULL;
49 	__arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
50 	return page;
51 }
52 
53 /**
54  * gmap_alloc - allocate and initialize a guest address space
55  * @limit: maximum address of the gmap address space
56  *
57  * Returns a guest address space structure.
58  */
gmap_alloc(unsigned long limit)59 struct gmap *gmap_alloc(unsigned long limit)
60 {
61 	struct gmap *gmap;
62 	struct page *page;
63 	unsigned long *table;
64 	unsigned long etype, atype;
65 
66 	if (limit < _REGION3_SIZE) {
67 		limit = _REGION3_SIZE - 1;
68 		atype = _ASCE_TYPE_SEGMENT;
69 		etype = _SEGMENT_ENTRY_EMPTY;
70 	} else if (limit < _REGION2_SIZE) {
71 		limit = _REGION2_SIZE - 1;
72 		atype = _ASCE_TYPE_REGION3;
73 		etype = _REGION3_ENTRY_EMPTY;
74 	} else if (limit < _REGION1_SIZE) {
75 		limit = _REGION1_SIZE - 1;
76 		atype = _ASCE_TYPE_REGION2;
77 		etype = _REGION2_ENTRY_EMPTY;
78 	} else {
79 		limit = -1UL;
80 		atype = _ASCE_TYPE_REGION1;
81 		etype = _REGION1_ENTRY_EMPTY;
82 	}
83 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
84 	if (!gmap)
85 		goto out;
86 	INIT_LIST_HEAD(&gmap->children);
87 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
88 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
89 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
90 	spin_lock_init(&gmap->guest_table_lock);
91 	spin_lock_init(&gmap->shadow_lock);
92 	refcount_set(&gmap->ref_count, 1);
93 	page = gmap_alloc_crst();
94 	if (!page)
95 		goto out_free;
96 	table = page_to_virt(page);
97 	crst_table_init(table, etype);
98 	gmap->table = table;
99 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
100 		_ASCE_USER_BITS | __pa(table);
101 	gmap->asce_end = limit;
102 	return gmap;
103 
104 out_free:
105 	kfree(gmap);
106 out:
107 	return NULL;
108 }
109 EXPORT_SYMBOL_GPL(gmap_alloc);
110 
111 /**
112  * gmap_create - create a guest address space
113  * @mm: pointer to the parent mm_struct
114  * @limit: maximum size of the gmap address space
115  *
116  * Returns a guest address space structure.
117  */
gmap_create(struct mm_struct * mm,unsigned long limit)118 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
119 {
120 	struct gmap *gmap;
121 	unsigned long gmap_asce;
122 
123 	gmap = gmap_alloc(limit);
124 	if (!gmap)
125 		return NULL;
126 	gmap->mm = mm;
127 	spin_lock(&mm->context.lock);
128 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
129 	if (list_is_singular(&mm->context.gmap_list))
130 		gmap_asce = gmap->asce;
131 	else
132 		gmap_asce = -1UL;
133 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
134 	spin_unlock(&mm->context.lock);
135 	return gmap;
136 }
137 EXPORT_SYMBOL_GPL(gmap_create);
138 
gmap_flush_tlb(struct gmap * gmap)139 static void gmap_flush_tlb(struct gmap *gmap)
140 {
141 	__tlb_flush_idte(gmap->asce);
142 }
143 
gmap_radix_tree_free(struct radix_tree_root * root)144 static void gmap_radix_tree_free(struct radix_tree_root *root)
145 {
146 	struct radix_tree_iter iter;
147 	unsigned long indices[16];
148 	unsigned long index;
149 	void __rcu **slot;
150 	int i, nr;
151 
152 	/* A radix tree is freed by deleting all of its entries */
153 	index = 0;
154 	do {
155 		nr = 0;
156 		radix_tree_for_each_slot(slot, root, &iter, index) {
157 			indices[nr] = iter.index;
158 			if (++nr == 16)
159 				break;
160 		}
161 		for (i = 0; i < nr; i++) {
162 			index = indices[i];
163 			radix_tree_delete(root, index);
164 		}
165 	} while (nr > 0);
166 }
167 
gmap_rmap_radix_tree_free(struct radix_tree_root * root)168 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
169 {
170 	struct gmap_rmap *rmap, *rnext, *head;
171 	struct radix_tree_iter iter;
172 	unsigned long indices[16];
173 	unsigned long index;
174 	void __rcu **slot;
175 	int i, nr;
176 
177 	/* A radix tree is freed by deleting all of its entries */
178 	index = 0;
179 	do {
180 		nr = 0;
181 		radix_tree_for_each_slot(slot, root, &iter, index) {
182 			indices[nr] = iter.index;
183 			if (++nr == 16)
184 				break;
185 		}
186 		for (i = 0; i < nr; i++) {
187 			index = indices[i];
188 			head = radix_tree_delete(root, index);
189 			gmap_for_each_rmap_safe(rmap, rnext, head)
190 				kfree(rmap);
191 		}
192 	} while (nr > 0);
193 }
194 
gmap_free_crst(unsigned long * table,bool free_ptes)195 static void gmap_free_crst(unsigned long *table, bool free_ptes)
196 {
197 	bool is_segment = (table[0] & _SEGMENT_ENTRY_TYPE_MASK) == 0;
198 	int i;
199 
200 	if (is_segment) {
201 		if (!free_ptes)
202 			goto out;
203 		for (i = 0; i < _CRST_ENTRIES; i++)
204 			if (!(table[i] & _SEGMENT_ENTRY_INVALID))
205 				page_table_free_pgste(page_ptdesc(phys_to_page(table[i])));
206 	} else {
207 		for (i = 0; i < _CRST_ENTRIES; i++)
208 			if (!(table[i] & _REGION_ENTRY_INVALID))
209 				gmap_free_crst(__va(table[i] & PAGE_MASK), free_ptes);
210 	}
211 
212 out:
213 	free_pages((unsigned long)table, CRST_ALLOC_ORDER);
214 }
215 
216 /**
217  * gmap_free - free a guest address space
218  * @gmap: pointer to the guest address space structure
219  *
220  * No locks required. There are no references to this gmap anymore.
221  */
gmap_free(struct gmap * gmap)222 void gmap_free(struct gmap *gmap)
223 {
224 	/* Flush tlb of all gmaps (if not already done for shadows) */
225 	if (!(gmap_is_shadow(gmap) && gmap->removed))
226 		gmap_flush_tlb(gmap);
227 	/* Free all segment & region tables. */
228 	gmap_free_crst(gmap->table, gmap_is_shadow(gmap));
229 
230 	gmap_radix_tree_free(&gmap->guest_to_host);
231 	gmap_radix_tree_free(&gmap->host_to_guest);
232 
233 	/* Free additional data for a shadow gmap */
234 	if (gmap_is_shadow(gmap)) {
235 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
236 		/* Release reference to the parent */
237 		gmap_put(gmap->parent);
238 	}
239 
240 	kfree(gmap);
241 }
242 EXPORT_SYMBOL_GPL(gmap_free);
243 
244 /**
245  * gmap_get - increase reference counter for guest address space
246  * @gmap: pointer to the guest address space structure
247  *
248  * Returns the gmap pointer
249  */
gmap_get(struct gmap * gmap)250 struct gmap *gmap_get(struct gmap *gmap)
251 {
252 	refcount_inc(&gmap->ref_count);
253 	return gmap;
254 }
255 EXPORT_SYMBOL_GPL(gmap_get);
256 
257 /**
258  * gmap_put - decrease reference counter for guest address space
259  * @gmap: pointer to the guest address space structure
260  *
261  * If the reference counter reaches zero the guest address space is freed.
262  */
gmap_put(struct gmap * gmap)263 void gmap_put(struct gmap *gmap)
264 {
265 	if (refcount_dec_and_test(&gmap->ref_count))
266 		gmap_free(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_put);
269 
270 /**
271  * gmap_remove - remove a guest address space but do not free it yet
272  * @gmap: pointer to the guest address space structure
273  */
gmap_remove(struct gmap * gmap)274 void gmap_remove(struct gmap *gmap)
275 {
276 	struct gmap *sg, *next;
277 	unsigned long gmap_asce;
278 
279 	/* Remove all shadow gmaps linked to this gmap */
280 	if (!list_empty(&gmap->children)) {
281 		spin_lock(&gmap->shadow_lock);
282 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
283 			list_del(&sg->list);
284 			gmap_put(sg);
285 		}
286 		spin_unlock(&gmap->shadow_lock);
287 	}
288 	/* Remove gmap from the pre-mm list */
289 	spin_lock(&gmap->mm->context.lock);
290 	list_del_rcu(&gmap->list);
291 	if (list_empty(&gmap->mm->context.gmap_list))
292 		gmap_asce = 0;
293 	else if (list_is_singular(&gmap->mm->context.gmap_list))
294 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
295 					     struct gmap, list)->asce;
296 	else
297 		gmap_asce = -1UL;
298 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
299 	spin_unlock(&gmap->mm->context.lock);
300 	synchronize_rcu();
301 	/* Put reference */
302 	gmap_put(gmap);
303 }
304 EXPORT_SYMBOL_GPL(gmap_remove);
305 
306 /*
307  * gmap_alloc_table is assumed to be called with mmap_lock held
308  */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)309 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
310 			    unsigned long init, unsigned long gaddr)
311 {
312 	struct page *page;
313 	unsigned long *new;
314 
315 	/* since we dont free the gmap table until gmap_free we can unlock */
316 	page = gmap_alloc_crst();
317 	if (!page)
318 		return -ENOMEM;
319 	new = page_to_virt(page);
320 	crst_table_init(new, init);
321 	spin_lock(&gmap->guest_table_lock);
322 	if (*table & _REGION_ENTRY_INVALID) {
323 		*table = __pa(new) | _REGION_ENTRY_LENGTH |
324 			(*table & _REGION_ENTRY_TYPE_MASK);
325 		page = NULL;
326 	}
327 	spin_unlock(&gmap->guest_table_lock);
328 	if (page)
329 		__free_pages(page, CRST_ALLOC_ORDER);
330 	return 0;
331 }
332 
host_to_guest_lookup(struct gmap * gmap,unsigned long vmaddr)333 static unsigned long host_to_guest_lookup(struct gmap *gmap, unsigned long vmaddr)
334 {
335 	return (unsigned long)radix_tree_lookup(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
336 }
337 
host_to_guest_delete(struct gmap * gmap,unsigned long vmaddr)338 static unsigned long host_to_guest_delete(struct gmap *gmap, unsigned long vmaddr)
339 {
340 	return (unsigned long)radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
341 }
342 
host_to_guest_pmd_delete(struct gmap * gmap,unsigned long vmaddr,unsigned long * gaddr)343 static pmd_t *host_to_guest_pmd_delete(struct gmap *gmap, unsigned long vmaddr,
344 				       unsigned long *gaddr)
345 {
346 	*gaddr = host_to_guest_delete(gmap, vmaddr);
347 	if (IS_GADDR_VALID(*gaddr))
348 		return (pmd_t *)gmap_table_walk(gmap, *gaddr, 1);
349 	return NULL;
350 }
351 
352 /**
353  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
354  * @gmap: pointer to the guest address space structure
355  * @vmaddr: address in the host process address space
356  *
357  * Returns 1 if a TLB flush is required
358  */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)359 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
360 {
361 	unsigned long gaddr;
362 	int flush = 0;
363 	pmd_t *pmdp;
364 
365 	BUG_ON(gmap_is_shadow(gmap));
366 	spin_lock(&gmap->guest_table_lock);
367 
368 	pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
369 	if (pmdp) {
370 		flush = (pmd_val(*pmdp) != _SEGMENT_ENTRY_EMPTY);
371 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
372 	}
373 
374 	spin_unlock(&gmap->guest_table_lock);
375 	return flush;
376 }
377 
378 /**
379  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
380  * @gmap: pointer to the guest address space structure
381  * @gaddr: address in the guest address space
382  *
383  * Returns 1 if a TLB flush is required
384  */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)385 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
386 {
387 	unsigned long vmaddr;
388 
389 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
390 						   gaddr >> PMD_SHIFT);
391 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
392 }
393 
394 /**
395  * gmap_unmap_segment - unmap segment from the guest address space
396  * @gmap: pointer to the guest address space structure
397  * @to: address in the guest address space
398  * @len: length of the memory area to unmap
399  *
400  * Returns 0 if the unmap succeeded, -EINVAL if not.
401  */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)402 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
403 {
404 	unsigned long off;
405 	int flush;
406 
407 	BUG_ON(gmap_is_shadow(gmap));
408 	if ((to | len) & (PMD_SIZE - 1))
409 		return -EINVAL;
410 	if (len == 0 || to + len < to)
411 		return -EINVAL;
412 
413 	flush = 0;
414 	mmap_write_lock(gmap->mm);
415 	for (off = 0; off < len; off += PMD_SIZE)
416 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
417 	mmap_write_unlock(gmap->mm);
418 	if (flush)
419 		gmap_flush_tlb(gmap);
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
423 
424 /**
425  * gmap_map_segment - map a segment to the guest address space
426  * @gmap: pointer to the guest address space structure
427  * @from: source address in the parent address space
428  * @to: target address in the guest address space
429  * @len: length of the memory area to map
430  *
431  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
432  */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)433 int gmap_map_segment(struct gmap *gmap, unsigned long from,
434 		     unsigned long to, unsigned long len)
435 {
436 	unsigned long off;
437 	int flush;
438 
439 	BUG_ON(gmap_is_shadow(gmap));
440 	if ((from | to | len) & (PMD_SIZE - 1))
441 		return -EINVAL;
442 	if (len == 0 || from + len < from || to + len < to ||
443 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
444 		return -EINVAL;
445 
446 	flush = 0;
447 	mmap_write_lock(gmap->mm);
448 	for (off = 0; off < len; off += PMD_SIZE) {
449 		/* Remove old translation */
450 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
451 		/* Store new translation */
452 		if (radix_tree_insert(&gmap->guest_to_host,
453 				      (to + off) >> PMD_SHIFT,
454 				      (void *) from + off))
455 			break;
456 	}
457 	mmap_write_unlock(gmap->mm);
458 	if (flush)
459 		gmap_flush_tlb(gmap);
460 	if (off >= len)
461 		return 0;
462 	gmap_unmap_segment(gmap, to, len);
463 	return -ENOMEM;
464 }
465 EXPORT_SYMBOL_GPL(gmap_map_segment);
466 
467 /**
468  * __gmap_translate - translate a guest address to a user space address
469  * @gmap: pointer to guest mapping meta data structure
470  * @gaddr: guest address
471  *
472  * Returns user space address which corresponds to the guest address or
473  * -EFAULT if no such mapping exists.
474  * This function does not establish potentially missing page table entries.
475  * The mmap_lock of the mm that belongs to the address space must be held
476  * when this function gets called.
477  *
478  * Note: Can also be called for shadow gmaps.
479  */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)480 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
481 {
482 	unsigned long vmaddr;
483 
484 	vmaddr = (unsigned long)
485 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
486 	/* Note: guest_to_host is empty for a shadow gmap */
487 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
488 }
489 EXPORT_SYMBOL_GPL(__gmap_translate);
490 
491 /**
492  * gmap_unlink - disconnect a page table from the gmap shadow tables
493  * @mm: pointer to the parent mm_struct
494  * @table: pointer to the host page table
495  * @vmaddr: vm address associated with the host page table
496  */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)497 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
498 		 unsigned long vmaddr)
499 {
500 	struct gmap *gmap;
501 	int flush;
502 
503 	rcu_read_lock();
504 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
505 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
506 		if (flush)
507 			gmap_flush_tlb(gmap);
508 	}
509 	rcu_read_unlock();
510 }
511 
512 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
513 			   unsigned long gaddr);
514 
515 /**
516  * __gmap_link - set up shadow page tables to connect a host to a guest address
517  * @gmap: pointer to guest mapping meta data structure
518  * @gaddr: guest address
519  * @vmaddr: vm address
520  *
521  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
522  * if the vm address is already mapped to a different guest segment.
523  * The mmap_lock of the mm that belongs to the address space must be held
524  * when this function gets called.
525  */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)526 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
527 {
528 	struct mm_struct *mm;
529 	unsigned long *table;
530 	spinlock_t *ptl;
531 	pgd_t *pgd;
532 	p4d_t *p4d;
533 	pud_t *pud;
534 	pmd_t *pmd;
535 	u64 unprot;
536 	int rc;
537 
538 	BUG_ON(gmap_is_shadow(gmap));
539 	/* Create higher level tables in the gmap page table */
540 	table = gmap->table;
541 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
542 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
543 		if ((*table & _REGION_ENTRY_INVALID) &&
544 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
545 				     gaddr & _REGION1_MASK))
546 			return -ENOMEM;
547 		table = __va(*table & _REGION_ENTRY_ORIGIN);
548 	}
549 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
550 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
551 		if ((*table & _REGION_ENTRY_INVALID) &&
552 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
553 				     gaddr & _REGION2_MASK))
554 			return -ENOMEM;
555 		table = __va(*table & _REGION_ENTRY_ORIGIN);
556 	}
557 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
558 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
559 		if ((*table & _REGION_ENTRY_INVALID) &&
560 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
561 				     gaddr & _REGION3_MASK))
562 			return -ENOMEM;
563 		table = __va(*table & _REGION_ENTRY_ORIGIN);
564 	}
565 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
566 	/* Walk the parent mm page table */
567 	mm = gmap->mm;
568 	pgd = pgd_offset(mm, vmaddr);
569 	VM_BUG_ON(pgd_none(*pgd));
570 	p4d = p4d_offset(pgd, vmaddr);
571 	VM_BUG_ON(p4d_none(*p4d));
572 	pud = pud_offset(p4d, vmaddr);
573 	VM_BUG_ON(pud_none(*pud));
574 	/* large puds cannot yet be handled */
575 	if (pud_leaf(*pud))
576 		return -EFAULT;
577 	pmd = pmd_offset(pud, vmaddr);
578 	VM_BUG_ON(pmd_none(*pmd));
579 	/* Are we allowed to use huge pages? */
580 	if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
581 		return -EFAULT;
582 	/* Link gmap segment table entry location to page table. */
583 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
584 	if (rc)
585 		return rc;
586 	ptl = pmd_lock(mm, pmd);
587 	spin_lock(&gmap->guest_table_lock);
588 	if (*table == _SEGMENT_ENTRY_EMPTY) {
589 		rc = radix_tree_insert(&gmap->host_to_guest,
590 				       vmaddr >> PMD_SHIFT,
591 				       (void *)MAKE_VALID_GADDR(gaddr));
592 		if (!rc) {
593 			if (pmd_leaf(*pmd)) {
594 				*table = (pmd_val(*pmd) &
595 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
596 					| _SEGMENT_ENTRY_GMAP_UC
597 					| _SEGMENT_ENTRY;
598 			} else
599 				*table = (pmd_val(*pmd) &
600 					_SEGMENT_ENTRY_HARDWARE_BITS)
601 					| _SEGMENT_ENTRY;
602 		}
603 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
604 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
605 		unprot = (u64)*table;
606 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
607 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
608 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
609 	}
610 	spin_unlock(&gmap->guest_table_lock);
611 	spin_unlock(ptl);
612 	radix_tree_preload_end();
613 	return rc;
614 }
615 EXPORT_SYMBOL(__gmap_link);
616 
617 /*
618  * this function is assumed to be called with mmap_lock held
619  */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)620 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
621 {
622 	unsigned long vmaddr;
623 
624 	mmap_assert_locked(gmap->mm);
625 
626 	/* Find the vm address for the guest address */
627 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
628 						   gaddr >> PMD_SHIFT);
629 	if (vmaddr) {
630 		vmaddr |= gaddr & ~PMD_MASK;
631 		gmap_helper_zap_one_page(gmap->mm, vmaddr);
632 	}
633 }
634 EXPORT_SYMBOL_GPL(__gmap_zap);
635 
636 static LIST_HEAD(gmap_notifier_list);
637 static DEFINE_SPINLOCK(gmap_notifier_lock);
638 
639 /**
640  * gmap_register_pte_notifier - register a pte invalidation callback
641  * @nb: pointer to the gmap notifier block
642  */
gmap_register_pte_notifier(struct gmap_notifier * nb)643 void gmap_register_pte_notifier(struct gmap_notifier *nb)
644 {
645 	spin_lock(&gmap_notifier_lock);
646 	list_add_rcu(&nb->list, &gmap_notifier_list);
647 	spin_unlock(&gmap_notifier_lock);
648 }
649 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
650 
651 /**
652  * gmap_unregister_pte_notifier - remove a pte invalidation callback
653  * @nb: pointer to the gmap notifier block
654  */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)655 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
656 {
657 	spin_lock(&gmap_notifier_lock);
658 	list_del_rcu(&nb->list);
659 	spin_unlock(&gmap_notifier_lock);
660 	synchronize_rcu();
661 }
662 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
663 
664 /**
665  * gmap_call_notifier - call all registered invalidation callbacks
666  * @gmap: pointer to guest mapping meta data structure
667  * @start: start virtual address in the guest address space
668  * @end: end virtual address in the guest address space
669  */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)670 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
671 			       unsigned long end)
672 {
673 	struct gmap_notifier *nb;
674 
675 	list_for_each_entry(nb, &gmap_notifier_list, list)
676 		nb->notifier_call(gmap, start, end);
677 }
678 
679 /**
680  * gmap_table_walk - walk the gmap page tables
681  * @gmap: pointer to guest mapping meta data structure
682  * @gaddr: virtual address in the guest address space
683  * @level: page table level to stop at
684  *
685  * Returns a table entry pointer for the given guest address and @level
686  * @level=0 : returns a pointer to a page table table entry (or NULL)
687  * @level=1 : returns a pointer to a segment table entry (or NULL)
688  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
689  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
690  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
691  *
692  * Returns NULL if the gmap page tables could not be walked to the
693  * requested level.
694  *
695  * Note: Can also be called for shadow gmaps.
696  */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)697 unsigned long *gmap_table_walk(struct gmap *gmap, unsigned long gaddr, int level)
698 {
699 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
700 	unsigned long *table = gmap->table;
701 
702 	if (gmap_is_shadow(gmap) && gmap->removed)
703 		return NULL;
704 
705 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
706 		return NULL;
707 
708 	if (asce_type != _ASCE_TYPE_REGION1 &&
709 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
710 		return NULL;
711 
712 	switch (asce_type) {
713 	case _ASCE_TYPE_REGION1:
714 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
715 		if (level == 4)
716 			break;
717 		if (*table & _REGION_ENTRY_INVALID)
718 			return NULL;
719 		table = __va(*table & _REGION_ENTRY_ORIGIN);
720 		fallthrough;
721 	case _ASCE_TYPE_REGION2:
722 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
723 		if (level == 3)
724 			break;
725 		if (*table & _REGION_ENTRY_INVALID)
726 			return NULL;
727 		table = __va(*table & _REGION_ENTRY_ORIGIN);
728 		fallthrough;
729 	case _ASCE_TYPE_REGION3:
730 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
731 		if (level == 2)
732 			break;
733 		if (*table & _REGION_ENTRY_INVALID)
734 			return NULL;
735 		table = __va(*table & _REGION_ENTRY_ORIGIN);
736 		fallthrough;
737 	case _ASCE_TYPE_SEGMENT:
738 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
739 		if (level == 1)
740 			break;
741 		if (*table & _REGION_ENTRY_INVALID)
742 			return NULL;
743 		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
744 		table += (gaddr & _PAGE_INDEX) >> PAGE_SHIFT;
745 	}
746 	return table;
747 }
748 EXPORT_SYMBOL(gmap_table_walk);
749 
750 /**
751  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
752  *		      and return the pte pointer
753  * @gmap: pointer to guest mapping meta data structure
754  * @gaddr: virtual address in the guest address space
755  * @ptl: pointer to the spinlock pointer
756  *
757  * Returns a pointer to the locked pte for a guest address, or NULL
758  */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)759 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
760 			       spinlock_t **ptl)
761 {
762 	unsigned long *table;
763 
764 	BUG_ON(gmap_is_shadow(gmap));
765 	/* Walk the gmap page table, lock and get pte pointer */
766 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
767 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
768 		return NULL;
769 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
770 }
771 
772 /**
773  * gmap_pte_op_fixup - force a page in and connect the gmap page table
774  * @gmap: pointer to guest mapping meta data structure
775  * @gaddr: virtual address in the guest address space
776  * @vmaddr: address in the host process address space
777  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
778  *
779  * Returns 0 if the caller can retry __gmap_translate (might fail again),
780  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
781  * up or connecting the gmap page table.
782  */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)783 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
784 			     unsigned long vmaddr, int prot)
785 {
786 	struct mm_struct *mm = gmap->mm;
787 	unsigned int fault_flags;
788 	bool unlocked = false;
789 
790 	BUG_ON(gmap_is_shadow(gmap));
791 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
792 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
793 		return -EFAULT;
794 	if (unlocked)
795 		/* lost mmap_lock, caller has to retry __gmap_translate */
796 		return 0;
797 	/* Connect the page tables */
798 	return __gmap_link(gmap, gaddr, vmaddr);
799 }
800 
801 /**
802  * gmap_pte_op_end - release the page table lock
803  * @ptep: pointer to the locked pte
804  * @ptl: pointer to the page table spinlock
805  */
gmap_pte_op_end(pte_t * ptep,spinlock_t * ptl)806 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
807 {
808 	pte_unmap_unlock(ptep, ptl);
809 }
810 
811 /**
812  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
813  *		      and return the pmd pointer
814  * @gmap: pointer to guest mapping meta data structure
815  * @gaddr: virtual address in the guest address space
816  *
817  * Returns a pointer to the pmd for a guest address, or NULL
818  */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)819 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
820 {
821 	pmd_t *pmdp;
822 
823 	BUG_ON(gmap_is_shadow(gmap));
824 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
825 	if (!pmdp)
826 		return NULL;
827 
828 	/* without huge pages, there is no need to take the table lock */
829 	if (!gmap->mm->context.allow_gmap_hpage_1m)
830 		return pmd_none(*pmdp) ? NULL : pmdp;
831 
832 	spin_lock(&gmap->guest_table_lock);
833 	if (pmd_none(*pmdp)) {
834 		spin_unlock(&gmap->guest_table_lock);
835 		return NULL;
836 	}
837 
838 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
839 	if (!pmd_leaf(*pmdp))
840 		spin_unlock(&gmap->guest_table_lock);
841 	return pmdp;
842 }
843 
844 /**
845  * gmap_pmd_op_end - release the guest_table_lock if needed
846  * @gmap: pointer to the guest mapping meta data structure
847  * @pmdp: pointer to the pmd
848  */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)849 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
850 {
851 	if (pmd_leaf(*pmdp))
852 		spin_unlock(&gmap->guest_table_lock);
853 }
854 
855 /*
856  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
857  * @pmdp: pointer to the pmd to be protected
858  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
859  * @bits: notification bits to set
860  *
861  * Returns:
862  * 0 if successfully protected
863  * -EAGAIN if a fixup is needed
864  * -EINVAL if unsupported notifier bits have been specified
865  *
866  * Expected to be called with sg->mm->mmap_lock in read and
867  * guest_table_lock held.
868  */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)869 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
870 			    pmd_t *pmdp, int prot, unsigned long bits)
871 {
872 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
873 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
874 	pmd_t new = *pmdp;
875 
876 	/* Fixup needed */
877 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
878 		return -EAGAIN;
879 
880 	if (prot == PROT_NONE && !pmd_i) {
881 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
882 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
883 	}
884 
885 	if (prot == PROT_READ && !pmd_p) {
886 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
887 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
888 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
889 	}
890 
891 	if (bits & GMAP_NOTIFY_MPROT)
892 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
893 
894 	/* Shadow GMAP protection needs split PMDs */
895 	if (bits & GMAP_NOTIFY_SHADOW)
896 		return -EINVAL;
897 
898 	return 0;
899 }
900 
901 /*
902  * gmap_protect_pte - remove access rights to memory and set pgste bits
903  * @gmap: pointer to guest mapping meta data structure
904  * @gaddr: virtual address in the guest address space
905  * @pmdp: pointer to the pmd associated with the pte
906  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
907  * @bits: notification bits to set
908  *
909  * Returns 0 if successfully protected, -ENOMEM if out of memory and
910  * -EAGAIN if a fixup is needed.
911  *
912  * Expected to be called with sg->mm->mmap_lock in read
913  */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)914 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
915 			    pmd_t *pmdp, int prot, unsigned long bits)
916 {
917 	int rc;
918 	pte_t *ptep;
919 	spinlock_t *ptl;
920 	unsigned long pbits = 0;
921 
922 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
923 		return -EAGAIN;
924 
925 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
926 	if (!ptep)
927 		return -ENOMEM;
928 
929 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
930 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
931 	/* Protect and unlock. */
932 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
933 	gmap_pte_op_end(ptep, ptl);
934 	return rc;
935 }
936 
937 /*
938  * gmap_protect_range - remove access rights to memory and set pgste bits
939  * @gmap: pointer to guest mapping meta data structure
940  * @gaddr: virtual address in the guest address space
941  * @len: size of area
942  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
943  * @bits: pgste notification bits to set
944  *
945  * Returns:
946  *   PAGE_SIZE if a small page was successfully protected;
947  *   HPAGE_SIZE if a large page was successfully protected;
948  *   -ENOMEM if out of memory;
949  *   -EFAULT if gaddr is invalid (or mapping for shadows is missing);
950  *   -EAGAIN if the guest mapping is missing and should be fixed by the caller.
951  *
952  * Context: Called with sg->mm->mmap_lock in read.
953  */
gmap_protect_one(struct gmap * gmap,unsigned long gaddr,int prot,unsigned long bits)954 int gmap_protect_one(struct gmap *gmap, unsigned long gaddr, int prot, unsigned long bits)
955 {
956 	pmd_t *pmdp;
957 	int rc = 0;
958 
959 	BUG_ON(gmap_is_shadow(gmap));
960 
961 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
962 	if (!pmdp)
963 		return -EAGAIN;
964 
965 	if (!pmd_leaf(*pmdp)) {
966 		rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, bits);
967 		if (!rc)
968 			rc = PAGE_SIZE;
969 	} else {
970 		rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, bits);
971 		if (!rc)
972 			rc = HPAGE_SIZE;
973 	}
974 	gmap_pmd_op_end(gmap, pmdp);
975 
976 	return rc;
977 }
978 EXPORT_SYMBOL_GPL(gmap_protect_one);
979 
980 /**
981  * gmap_read_table - get an unsigned long value from a guest page table using
982  *                   absolute addressing, without marking the page referenced.
983  * @gmap: pointer to guest mapping meta data structure
984  * @gaddr: virtual address in the guest address space
985  * @val: pointer to the unsigned long value to return
986  *
987  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
988  * if reading using the virtual address failed. -EINVAL if called on a gmap
989  * shadow.
990  *
991  * Called with gmap->mm->mmap_lock in read.
992  */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)993 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
994 {
995 	unsigned long address, vmaddr;
996 	spinlock_t *ptl;
997 	pte_t *ptep, pte;
998 	int rc;
999 
1000 	if (gmap_is_shadow(gmap))
1001 		return -EINVAL;
1002 
1003 	while (1) {
1004 		rc = -EAGAIN;
1005 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1006 		if (ptep) {
1007 			pte = *ptep;
1008 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1009 				address = pte_val(pte) & PAGE_MASK;
1010 				address += gaddr & ~PAGE_MASK;
1011 				*val = *(unsigned long *)__va(address);
1012 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1013 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1014 				rc = 0;
1015 			}
1016 			gmap_pte_op_end(ptep, ptl);
1017 		}
1018 		if (!rc)
1019 			break;
1020 		vmaddr = __gmap_translate(gmap, gaddr);
1021 		if (IS_ERR_VALUE(vmaddr)) {
1022 			rc = vmaddr;
1023 			break;
1024 		}
1025 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1026 		if (rc)
1027 			break;
1028 	}
1029 	return rc;
1030 }
1031 EXPORT_SYMBOL_GPL(gmap_read_table);
1032 
1033 /**
1034  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1035  * @sg: pointer to the shadow guest address space structure
1036  * @vmaddr: vm address associated with the rmap
1037  * @rmap: pointer to the rmap structure
1038  *
1039  * Called with the sg->guest_table_lock
1040  */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1041 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1042 				    struct gmap_rmap *rmap)
1043 {
1044 	struct gmap_rmap *temp;
1045 	void __rcu **slot;
1046 
1047 	BUG_ON(!gmap_is_shadow(sg));
1048 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1049 	if (slot) {
1050 		rmap->next = radix_tree_deref_slot_protected(slot,
1051 							&sg->guest_table_lock);
1052 		for (temp = rmap->next; temp; temp = temp->next) {
1053 			if (temp->raddr == rmap->raddr) {
1054 				kfree(rmap);
1055 				return;
1056 			}
1057 		}
1058 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1059 	} else {
1060 		rmap->next = NULL;
1061 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1062 				  rmap);
1063 	}
1064 }
1065 
1066 /**
1067  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1068  * @sg: pointer to the shadow guest address space structure
1069  * @raddr: rmap address in the shadow gmap
1070  * @paddr: address in the parent guest address space
1071  * @len: length of the memory area to protect
1072  *
1073  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1074  * if out of memory and -EFAULT if paddr is invalid.
1075  */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1076 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1077 			     unsigned long paddr, unsigned long len)
1078 {
1079 	struct gmap *parent;
1080 	struct gmap_rmap *rmap;
1081 	unsigned long vmaddr;
1082 	spinlock_t *ptl;
1083 	pte_t *ptep;
1084 	int rc;
1085 
1086 	BUG_ON(!gmap_is_shadow(sg));
1087 	parent = sg->parent;
1088 	while (len) {
1089 		vmaddr = __gmap_translate(parent, paddr);
1090 		if (IS_ERR_VALUE(vmaddr))
1091 			return vmaddr;
1092 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1093 		if (!rmap)
1094 			return -ENOMEM;
1095 		rmap->raddr = raddr;
1096 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1097 		if (rc) {
1098 			kfree(rmap);
1099 			return rc;
1100 		}
1101 		rc = -EAGAIN;
1102 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1103 		if (ptep) {
1104 			spin_lock(&sg->guest_table_lock);
1105 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1106 					     PGSTE_VSIE_BIT);
1107 			if (!rc)
1108 				gmap_insert_rmap(sg, vmaddr, rmap);
1109 			spin_unlock(&sg->guest_table_lock);
1110 			gmap_pte_op_end(ptep, ptl);
1111 		}
1112 		radix_tree_preload_end();
1113 		if (rc) {
1114 			kfree(rmap);
1115 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1116 			if (rc)
1117 				return rc;
1118 			continue;
1119 		}
1120 		paddr += PAGE_SIZE;
1121 		len -= PAGE_SIZE;
1122 	}
1123 	return 0;
1124 }
1125 
1126 #define _SHADOW_RMAP_MASK	0x7
1127 #define _SHADOW_RMAP_REGION1	0x5
1128 #define _SHADOW_RMAP_REGION2	0x4
1129 #define _SHADOW_RMAP_REGION3	0x3
1130 #define _SHADOW_RMAP_SEGMENT	0x2
1131 #define _SHADOW_RMAP_PGTABLE	0x1
1132 
1133 /**
1134  * gmap_idte_one - invalidate a single region or segment table entry
1135  * @asce: region or segment table *origin* + table-type bits
1136  * @vaddr: virtual address to identify the table entry to flush
1137  *
1138  * The invalid bit of a single region or segment table entry is set
1139  * and the associated TLB entries depending on the entry are flushed.
1140  * The table-type of the @asce identifies the portion of the @vaddr
1141  * that is used as the invalidation index.
1142  */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1143 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1144 {
1145 	asm volatile(
1146 		"	idte	%0,0,%1"
1147 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1148 }
1149 
1150 /**
1151  * gmap_unshadow_page - remove a page from a shadow page table
1152  * @sg: pointer to the shadow guest address space structure
1153  * @raddr: rmap address in the shadow guest address space
1154  *
1155  * Called with the sg->guest_table_lock
1156  */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1157 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1158 {
1159 	unsigned long *table;
1160 
1161 	BUG_ON(!gmap_is_shadow(sg));
1162 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1163 	if (!table || *table & _PAGE_INVALID)
1164 		return;
1165 	gmap_call_notifier(sg, raddr, raddr + PAGE_SIZE - 1);
1166 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1167 }
1168 
1169 /**
1170  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1171  * @sg: pointer to the shadow guest address space structure
1172  * @raddr: rmap address in the shadow guest address space
1173  * @pgt: pointer to the start of a shadow page table
1174  *
1175  * Called with the sg->guest_table_lock
1176  */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1177 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1178 				unsigned long *pgt)
1179 {
1180 	int i;
1181 
1182 	BUG_ON(!gmap_is_shadow(sg));
1183 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += PAGE_SIZE)
1184 		pgt[i] = _PAGE_INVALID;
1185 }
1186 
1187 /**
1188  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1189  * @sg: pointer to the shadow guest address space structure
1190  * @raddr: address in the shadow guest address space
1191  *
1192  * Called with the sg->guest_table_lock
1193  */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1194 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1195 {
1196 	unsigned long *ste;
1197 	phys_addr_t sto, pgt;
1198 	struct ptdesc *ptdesc;
1199 
1200 	BUG_ON(!gmap_is_shadow(sg));
1201 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1202 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1203 		return;
1204 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1205 	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1206 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1207 	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1208 	*ste = _SEGMENT_ENTRY_EMPTY;
1209 	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1210 	/* Free page table */
1211 	ptdesc = page_ptdesc(phys_to_page(pgt));
1212 	page_table_free_pgste(ptdesc);
1213 }
1214 
1215 /**
1216  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1217  * @sg: pointer to the shadow guest address space structure
1218  * @raddr: rmap address in the shadow guest address space
1219  * @sgt: pointer to the start of a shadow segment table
1220  *
1221  * Called with the sg->guest_table_lock
1222  */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1223 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1224 				unsigned long *sgt)
1225 {
1226 	struct ptdesc *ptdesc;
1227 	phys_addr_t pgt;
1228 	int i;
1229 
1230 	BUG_ON(!gmap_is_shadow(sg));
1231 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1232 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1233 			continue;
1234 		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1235 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1236 		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1237 		/* Free page table */
1238 		ptdesc = page_ptdesc(phys_to_page(pgt));
1239 		page_table_free_pgste(ptdesc);
1240 	}
1241 }
1242 
1243 /**
1244  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1245  * @sg: pointer to the shadow guest address space structure
1246  * @raddr: rmap address in the shadow guest address space
1247  *
1248  * Called with the shadow->guest_table_lock
1249  */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1250 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1251 {
1252 	unsigned long r3o, *r3e;
1253 	phys_addr_t sgt;
1254 	struct page *page;
1255 
1256 	BUG_ON(!gmap_is_shadow(sg));
1257 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1258 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1259 		return;
1260 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1261 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1262 	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1263 	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1264 	*r3e = _REGION3_ENTRY_EMPTY;
1265 	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1266 	/* Free segment table */
1267 	page = phys_to_page(sgt);
1268 	__free_pages(page, CRST_ALLOC_ORDER);
1269 }
1270 
1271 /**
1272  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1273  * @sg: pointer to the shadow guest address space structure
1274  * @raddr: address in the shadow guest address space
1275  * @r3t: pointer to the start of a shadow region-3 table
1276  *
1277  * Called with the sg->guest_table_lock
1278  */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1279 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1280 				unsigned long *r3t)
1281 {
1282 	struct page *page;
1283 	phys_addr_t sgt;
1284 	int i;
1285 
1286 	BUG_ON(!gmap_is_shadow(sg));
1287 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1288 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1289 			continue;
1290 		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1291 		r3t[i] = _REGION3_ENTRY_EMPTY;
1292 		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1293 		/* Free segment table */
1294 		page = phys_to_page(sgt);
1295 		__free_pages(page, CRST_ALLOC_ORDER);
1296 	}
1297 }
1298 
1299 /**
1300  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1301  * @sg: pointer to the shadow guest address space structure
1302  * @raddr: rmap address in the shadow guest address space
1303  *
1304  * Called with the sg->guest_table_lock
1305  */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1306 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1307 {
1308 	unsigned long r2o, *r2e;
1309 	phys_addr_t r3t;
1310 	struct page *page;
1311 
1312 	BUG_ON(!gmap_is_shadow(sg));
1313 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1314 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1315 		return;
1316 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1317 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1318 	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1319 	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1320 	*r2e = _REGION2_ENTRY_EMPTY;
1321 	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1322 	/* Free region 3 table */
1323 	page = phys_to_page(r3t);
1324 	__free_pages(page, CRST_ALLOC_ORDER);
1325 }
1326 
1327 /**
1328  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1329  * @sg: pointer to the shadow guest address space structure
1330  * @raddr: rmap address in the shadow guest address space
1331  * @r2t: pointer to the start of a shadow region-2 table
1332  *
1333  * Called with the sg->guest_table_lock
1334  */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1335 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1336 				unsigned long *r2t)
1337 {
1338 	phys_addr_t r3t;
1339 	struct page *page;
1340 	int i;
1341 
1342 	BUG_ON(!gmap_is_shadow(sg));
1343 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1344 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1345 			continue;
1346 		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1347 		r2t[i] = _REGION2_ENTRY_EMPTY;
1348 		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1349 		/* Free region 3 table */
1350 		page = phys_to_page(r3t);
1351 		__free_pages(page, CRST_ALLOC_ORDER);
1352 	}
1353 }
1354 
1355 /**
1356  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1357  * @sg: pointer to the shadow guest address space structure
1358  * @raddr: rmap address in the shadow guest address space
1359  *
1360  * Called with the sg->guest_table_lock
1361  */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1362 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1363 {
1364 	unsigned long r1o, *r1e;
1365 	struct page *page;
1366 	phys_addr_t r2t;
1367 
1368 	BUG_ON(!gmap_is_shadow(sg));
1369 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1370 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1371 		return;
1372 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1373 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1374 	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1375 	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1376 	*r1e = _REGION1_ENTRY_EMPTY;
1377 	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1378 	/* Free region 2 table */
1379 	page = phys_to_page(r2t);
1380 	__free_pages(page, CRST_ALLOC_ORDER);
1381 }
1382 
1383 /**
1384  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1385  * @sg: pointer to the shadow guest address space structure
1386  * @raddr: rmap address in the shadow guest address space
1387  * @r1t: pointer to the start of a shadow region-1 table
1388  *
1389  * Called with the shadow->guest_table_lock
1390  */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1391 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1392 				unsigned long *r1t)
1393 {
1394 	unsigned long asce;
1395 	struct page *page;
1396 	phys_addr_t r2t;
1397 	int i;
1398 
1399 	BUG_ON(!gmap_is_shadow(sg));
1400 	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1401 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1402 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1403 			continue;
1404 		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1405 		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1406 		/* Clear entry and flush translation r1t -> r2t */
1407 		gmap_idte_one(asce, raddr);
1408 		r1t[i] = _REGION1_ENTRY_EMPTY;
1409 		/* Free region 2 table */
1410 		page = phys_to_page(r2t);
1411 		__free_pages(page, CRST_ALLOC_ORDER);
1412 	}
1413 }
1414 
1415 /**
1416  * gmap_unshadow - remove a shadow page table completely
1417  * @sg: pointer to the shadow guest address space structure
1418  *
1419  * Called with sg->guest_table_lock
1420  */
gmap_unshadow(struct gmap * sg)1421 void gmap_unshadow(struct gmap *sg)
1422 {
1423 	unsigned long *table;
1424 
1425 	BUG_ON(!gmap_is_shadow(sg));
1426 	if (sg->removed)
1427 		return;
1428 	sg->removed = 1;
1429 	gmap_call_notifier(sg, 0, -1UL);
1430 	gmap_flush_tlb(sg);
1431 	table = __va(sg->asce & _ASCE_ORIGIN);
1432 	switch (sg->asce & _ASCE_TYPE_MASK) {
1433 	case _ASCE_TYPE_REGION1:
1434 		__gmap_unshadow_r1t(sg, 0, table);
1435 		break;
1436 	case _ASCE_TYPE_REGION2:
1437 		__gmap_unshadow_r2t(sg, 0, table);
1438 		break;
1439 	case _ASCE_TYPE_REGION3:
1440 		__gmap_unshadow_r3t(sg, 0, table);
1441 		break;
1442 	case _ASCE_TYPE_SEGMENT:
1443 		__gmap_unshadow_sgt(sg, 0, table);
1444 		break;
1445 	}
1446 }
1447 EXPORT_SYMBOL(gmap_unshadow);
1448 
1449 /**
1450  * gmap_shadow_r2t - create an empty shadow region 2 table
1451  * @sg: pointer to the shadow guest address space structure
1452  * @saddr: faulting address in the shadow gmap
1453  * @r2t: parent gmap address of the region 2 table to get shadowed
1454  * @fake: r2t references contiguous guest memory block, not a r2t
1455  *
1456  * The r2t parameter specifies the address of the source table. The
1457  * four pages of the source table are made read-only in the parent gmap
1458  * address space. A write to the source table area @r2t will automatically
1459  * remove the shadow r2 table and all of its descendants.
1460  *
1461  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1462  * shadow table structure is incomplete, -ENOMEM if out of memory and
1463  * -EFAULT if an address in the parent gmap could not be resolved.
1464  *
1465  * Called with sg->mm->mmap_lock in read.
1466  */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1467 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1468 		    int fake)
1469 {
1470 	unsigned long raddr, origin, offset, len;
1471 	unsigned long *table;
1472 	phys_addr_t s_r2t;
1473 	struct page *page;
1474 	int rc;
1475 
1476 	BUG_ON(!gmap_is_shadow(sg));
1477 	/* Allocate a shadow region second table */
1478 	page = gmap_alloc_crst();
1479 	if (!page)
1480 		return -ENOMEM;
1481 	s_r2t = page_to_phys(page);
1482 	/* Install shadow region second table */
1483 	spin_lock(&sg->guest_table_lock);
1484 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1485 	if (!table) {
1486 		rc = -EAGAIN;		/* Race with unshadow */
1487 		goto out_free;
1488 	}
1489 	if (!(*table & _REGION_ENTRY_INVALID)) {
1490 		rc = 0;			/* Already established */
1491 		goto out_free;
1492 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1493 		rc = -EAGAIN;		/* Race with shadow */
1494 		goto out_free;
1495 	}
1496 	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1497 	/* mark as invalid as long as the parent table is not protected */
1498 	*table = s_r2t | _REGION_ENTRY_LENGTH |
1499 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1500 	if (sg->edat_level >= 1)
1501 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1502 	if (fake) {
1503 		/* nothing to protect for fake tables */
1504 		*table &= ~_REGION_ENTRY_INVALID;
1505 		spin_unlock(&sg->guest_table_lock);
1506 		return 0;
1507 	}
1508 	spin_unlock(&sg->guest_table_lock);
1509 	/* Make r2t read-only in parent gmap page table */
1510 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1511 	origin = r2t & _REGION_ENTRY_ORIGIN;
1512 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1513 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1514 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1515 	spin_lock(&sg->guest_table_lock);
1516 	if (!rc) {
1517 		table = gmap_table_walk(sg, saddr, 4);
1518 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1519 			rc = -EAGAIN;		/* Race with unshadow */
1520 		else
1521 			*table &= ~_REGION_ENTRY_INVALID;
1522 	} else {
1523 		gmap_unshadow_r2t(sg, raddr);
1524 	}
1525 	spin_unlock(&sg->guest_table_lock);
1526 	return rc;
1527 out_free:
1528 	spin_unlock(&sg->guest_table_lock);
1529 	__free_pages(page, CRST_ALLOC_ORDER);
1530 	return rc;
1531 }
1532 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1533 
1534 /**
1535  * gmap_shadow_r3t - create a shadow region 3 table
1536  * @sg: pointer to the shadow guest address space structure
1537  * @saddr: faulting address in the shadow gmap
1538  * @r3t: parent gmap address of the region 3 table to get shadowed
1539  * @fake: r3t references contiguous guest memory block, not a r3t
1540  *
1541  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1542  * shadow table structure is incomplete, -ENOMEM if out of memory and
1543  * -EFAULT if an address in the parent gmap could not be resolved.
1544  *
1545  * Called with sg->mm->mmap_lock in read.
1546  */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1547 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1548 		    int fake)
1549 {
1550 	unsigned long raddr, origin, offset, len;
1551 	unsigned long *table;
1552 	phys_addr_t s_r3t;
1553 	struct page *page;
1554 	int rc;
1555 
1556 	BUG_ON(!gmap_is_shadow(sg));
1557 	/* Allocate a shadow region second table */
1558 	page = gmap_alloc_crst();
1559 	if (!page)
1560 		return -ENOMEM;
1561 	s_r3t = page_to_phys(page);
1562 	/* Install shadow region second table */
1563 	spin_lock(&sg->guest_table_lock);
1564 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1565 	if (!table) {
1566 		rc = -EAGAIN;		/* Race with unshadow */
1567 		goto out_free;
1568 	}
1569 	if (!(*table & _REGION_ENTRY_INVALID)) {
1570 		rc = 0;			/* Already established */
1571 		goto out_free;
1572 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1573 		rc = -EAGAIN;		/* Race with shadow */
1574 		goto out_free;
1575 	}
1576 	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1577 	/* mark as invalid as long as the parent table is not protected */
1578 	*table = s_r3t | _REGION_ENTRY_LENGTH |
1579 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1580 	if (sg->edat_level >= 1)
1581 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1582 	if (fake) {
1583 		/* nothing to protect for fake tables */
1584 		*table &= ~_REGION_ENTRY_INVALID;
1585 		spin_unlock(&sg->guest_table_lock);
1586 		return 0;
1587 	}
1588 	spin_unlock(&sg->guest_table_lock);
1589 	/* Make r3t read-only in parent gmap page table */
1590 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1591 	origin = r3t & _REGION_ENTRY_ORIGIN;
1592 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1593 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1594 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1595 	spin_lock(&sg->guest_table_lock);
1596 	if (!rc) {
1597 		table = gmap_table_walk(sg, saddr, 3);
1598 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1599 			rc = -EAGAIN;		/* Race with unshadow */
1600 		else
1601 			*table &= ~_REGION_ENTRY_INVALID;
1602 	} else {
1603 		gmap_unshadow_r3t(sg, raddr);
1604 	}
1605 	spin_unlock(&sg->guest_table_lock);
1606 	return rc;
1607 out_free:
1608 	spin_unlock(&sg->guest_table_lock);
1609 	__free_pages(page, CRST_ALLOC_ORDER);
1610 	return rc;
1611 }
1612 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1613 
1614 /**
1615  * gmap_shadow_sgt - create a shadow segment table
1616  * @sg: pointer to the shadow guest address space structure
1617  * @saddr: faulting address in the shadow gmap
1618  * @sgt: parent gmap address of the segment table to get shadowed
1619  * @fake: sgt references contiguous guest memory block, not a sgt
1620  *
1621  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1622  * shadow table structure is incomplete, -ENOMEM if out of memory and
1623  * -EFAULT if an address in the parent gmap could not be resolved.
1624  *
1625  * Called with sg->mm->mmap_lock in read.
1626  */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1627 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1628 		    int fake)
1629 {
1630 	unsigned long raddr, origin, offset, len;
1631 	unsigned long *table;
1632 	phys_addr_t s_sgt;
1633 	struct page *page;
1634 	int rc;
1635 
1636 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1637 	/* Allocate a shadow segment table */
1638 	page = gmap_alloc_crst();
1639 	if (!page)
1640 		return -ENOMEM;
1641 	s_sgt = page_to_phys(page);
1642 	/* Install shadow region second table */
1643 	spin_lock(&sg->guest_table_lock);
1644 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1645 	if (!table) {
1646 		rc = -EAGAIN;		/* Race with unshadow */
1647 		goto out_free;
1648 	}
1649 	if (!(*table & _REGION_ENTRY_INVALID)) {
1650 		rc = 0;			/* Already established */
1651 		goto out_free;
1652 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1653 		rc = -EAGAIN;		/* Race with shadow */
1654 		goto out_free;
1655 	}
1656 	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1657 	/* mark as invalid as long as the parent table is not protected */
1658 	*table = s_sgt | _REGION_ENTRY_LENGTH |
1659 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1660 	if (sg->edat_level >= 1)
1661 		*table |= sgt & _REGION_ENTRY_PROTECT;
1662 	if (fake) {
1663 		/* nothing to protect for fake tables */
1664 		*table &= ~_REGION_ENTRY_INVALID;
1665 		spin_unlock(&sg->guest_table_lock);
1666 		return 0;
1667 	}
1668 	spin_unlock(&sg->guest_table_lock);
1669 	/* Make sgt read-only in parent gmap page table */
1670 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1671 	origin = sgt & _REGION_ENTRY_ORIGIN;
1672 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1673 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1674 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1675 	spin_lock(&sg->guest_table_lock);
1676 	if (!rc) {
1677 		table = gmap_table_walk(sg, saddr, 2);
1678 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1679 			rc = -EAGAIN;		/* Race with unshadow */
1680 		else
1681 			*table &= ~_REGION_ENTRY_INVALID;
1682 	} else {
1683 		gmap_unshadow_sgt(sg, raddr);
1684 	}
1685 	spin_unlock(&sg->guest_table_lock);
1686 	return rc;
1687 out_free:
1688 	spin_unlock(&sg->guest_table_lock);
1689 	__free_pages(page, CRST_ALLOC_ORDER);
1690 	return rc;
1691 }
1692 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1693 
gmap_pgste_set_pgt_addr(struct ptdesc * ptdesc,unsigned long pgt_addr)1694 static void gmap_pgste_set_pgt_addr(struct ptdesc *ptdesc, unsigned long pgt_addr)
1695 {
1696 	unsigned long *pgstes = page_to_virt(ptdesc_page(ptdesc));
1697 
1698 	pgstes += _PAGE_ENTRIES;
1699 
1700 	pgstes[0] &= ~PGSTE_ST2_MASK;
1701 	pgstes[1] &= ~PGSTE_ST2_MASK;
1702 	pgstes[2] &= ~PGSTE_ST2_MASK;
1703 	pgstes[3] &= ~PGSTE_ST2_MASK;
1704 
1705 	pgstes[0] |= (pgt_addr >> 16) & PGSTE_ST2_MASK;
1706 	pgstes[1] |= pgt_addr & PGSTE_ST2_MASK;
1707 	pgstes[2] |= (pgt_addr << 16) & PGSTE_ST2_MASK;
1708 	pgstes[3] |= (pgt_addr << 32) & PGSTE_ST2_MASK;
1709 }
1710 
1711 /**
1712  * gmap_shadow_pgt - instantiate a shadow page table
1713  * @sg: pointer to the shadow guest address space structure
1714  * @saddr: faulting address in the shadow gmap
1715  * @pgt: parent gmap address of the page table to get shadowed
1716  * @fake: pgt references contiguous guest memory block, not a pgtable
1717  *
1718  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1719  * shadow table structure is incomplete, -ENOMEM if out of memory,
1720  * -EFAULT if an address in the parent gmap could not be resolved and
1721  *
1722  * Called with gmap->mm->mmap_lock in read
1723  */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)1724 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1725 		    int fake)
1726 {
1727 	unsigned long raddr, origin;
1728 	unsigned long *table;
1729 	struct ptdesc *ptdesc;
1730 	phys_addr_t s_pgt;
1731 	int rc;
1732 
1733 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1734 	/* Allocate a shadow page table */
1735 	ptdesc = page_table_alloc_pgste(sg->mm);
1736 	if (!ptdesc)
1737 		return -ENOMEM;
1738 	origin = pgt & _SEGMENT_ENTRY_ORIGIN;
1739 	if (fake)
1740 		origin |= GMAP_SHADOW_FAKE_TABLE;
1741 	gmap_pgste_set_pgt_addr(ptdesc, origin);
1742 	s_pgt = page_to_phys(ptdesc_page(ptdesc));
1743 	/* Install shadow page table */
1744 	spin_lock(&sg->guest_table_lock);
1745 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1746 	if (!table) {
1747 		rc = -EAGAIN;		/* Race with unshadow */
1748 		goto out_free;
1749 	}
1750 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1751 		rc = 0;			/* Already established */
1752 		goto out_free;
1753 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1754 		rc = -EAGAIN;		/* Race with shadow */
1755 		goto out_free;
1756 	}
1757 	/* mark as invalid as long as the parent table is not protected */
1758 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1759 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1760 	if (fake) {
1761 		/* nothing to protect for fake tables */
1762 		*table &= ~_SEGMENT_ENTRY_INVALID;
1763 		spin_unlock(&sg->guest_table_lock);
1764 		return 0;
1765 	}
1766 	spin_unlock(&sg->guest_table_lock);
1767 	/* Make pgt read-only in parent gmap page table (not the pgste) */
1768 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1769 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1770 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
1771 	spin_lock(&sg->guest_table_lock);
1772 	if (!rc) {
1773 		table = gmap_table_walk(sg, saddr, 1);
1774 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
1775 			rc = -EAGAIN;		/* Race with unshadow */
1776 		else
1777 			*table &= ~_SEGMENT_ENTRY_INVALID;
1778 	} else {
1779 		gmap_unshadow_pgt(sg, raddr);
1780 	}
1781 	spin_unlock(&sg->guest_table_lock);
1782 	return rc;
1783 out_free:
1784 	spin_unlock(&sg->guest_table_lock);
1785 	page_table_free_pgste(ptdesc);
1786 	return rc;
1787 
1788 }
1789 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1790 
1791 /**
1792  * gmap_shadow_page - create a shadow page mapping
1793  * @sg: pointer to the shadow guest address space structure
1794  * @saddr: faulting address in the shadow gmap
1795  * @pte: pte in parent gmap address space to get shadowed
1796  *
1797  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1798  * shadow table structure is incomplete, -ENOMEM if out of memory and
1799  * -EFAULT if an address in the parent gmap could not be resolved.
1800  *
1801  * Called with sg->mm->mmap_lock in read.
1802  */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)1803 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1804 {
1805 	struct gmap *parent;
1806 	struct gmap_rmap *rmap;
1807 	unsigned long vmaddr, paddr;
1808 	spinlock_t *ptl;
1809 	pte_t *sptep, *tptep;
1810 	int prot;
1811 	int rc;
1812 
1813 	BUG_ON(!gmap_is_shadow(sg));
1814 	parent = sg->parent;
1815 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1816 
1817 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1818 	if (!rmap)
1819 		return -ENOMEM;
1820 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1821 
1822 	while (1) {
1823 		paddr = pte_val(pte) & PAGE_MASK;
1824 		vmaddr = __gmap_translate(parent, paddr);
1825 		if (IS_ERR_VALUE(vmaddr)) {
1826 			rc = vmaddr;
1827 			break;
1828 		}
1829 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1830 		if (rc)
1831 			break;
1832 		rc = -EAGAIN;
1833 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1834 		if (sptep) {
1835 			spin_lock(&sg->guest_table_lock);
1836 			/* Get page table pointer */
1837 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1838 			if (!tptep) {
1839 				spin_unlock(&sg->guest_table_lock);
1840 				gmap_pte_op_end(sptep, ptl);
1841 				radix_tree_preload_end();
1842 				break;
1843 			}
1844 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1845 			if (rc > 0) {
1846 				/* Success and a new mapping */
1847 				gmap_insert_rmap(sg, vmaddr, rmap);
1848 				rmap = NULL;
1849 				rc = 0;
1850 			}
1851 			gmap_pte_op_end(sptep, ptl);
1852 			spin_unlock(&sg->guest_table_lock);
1853 		}
1854 		radix_tree_preload_end();
1855 		if (!rc)
1856 			break;
1857 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1858 		if (rc)
1859 			break;
1860 	}
1861 	kfree(rmap);
1862 	return rc;
1863 }
1864 EXPORT_SYMBOL_GPL(gmap_shadow_page);
1865 
1866 /*
1867  * gmap_shadow_notify - handle notifications for shadow gmap
1868  *
1869  * Called with sg->parent->shadow_lock.
1870  */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)1871 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
1872 			       unsigned long gaddr)
1873 {
1874 	struct gmap_rmap *rmap, *rnext, *head;
1875 	unsigned long start, end, bits, raddr;
1876 
1877 	BUG_ON(!gmap_is_shadow(sg));
1878 
1879 	spin_lock(&sg->guest_table_lock);
1880 	if (sg->removed) {
1881 		spin_unlock(&sg->guest_table_lock);
1882 		return;
1883 	}
1884 	/* Check for top level table */
1885 	start = sg->orig_asce & _ASCE_ORIGIN;
1886 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
1887 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
1888 	    gaddr < end) {
1889 		/* The complete shadow table has to go */
1890 		gmap_unshadow(sg);
1891 		spin_unlock(&sg->guest_table_lock);
1892 		list_del(&sg->list);
1893 		gmap_put(sg);
1894 		return;
1895 	}
1896 	/* Remove the page table tree from on specific entry */
1897 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1898 	gmap_for_each_rmap_safe(rmap, rnext, head) {
1899 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
1900 		raddr = rmap->raddr ^ bits;
1901 		switch (bits) {
1902 		case _SHADOW_RMAP_REGION1:
1903 			gmap_unshadow_r2t(sg, raddr);
1904 			break;
1905 		case _SHADOW_RMAP_REGION2:
1906 			gmap_unshadow_r3t(sg, raddr);
1907 			break;
1908 		case _SHADOW_RMAP_REGION3:
1909 			gmap_unshadow_sgt(sg, raddr);
1910 			break;
1911 		case _SHADOW_RMAP_SEGMENT:
1912 			gmap_unshadow_pgt(sg, raddr);
1913 			break;
1914 		case _SHADOW_RMAP_PGTABLE:
1915 			gmap_unshadow_page(sg, raddr);
1916 			break;
1917 		}
1918 		kfree(rmap);
1919 	}
1920 	spin_unlock(&sg->guest_table_lock);
1921 }
1922 
1923 /**
1924  * ptep_notify - call all invalidation callbacks for a specific pte.
1925  * @mm: pointer to the process mm_struct
1926  * @vmaddr: virtual address in the process address space
1927  * @pte: pointer to the page table entry
1928  * @bits: bits from the pgste that caused the notify call
1929  *
1930  * This function is assumed to be called with the page table lock held
1931  * for the pte to notify.
1932  */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)1933 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
1934 		 pte_t *pte, unsigned long bits)
1935 {
1936 	unsigned long offset, gaddr = 0;
1937 	struct gmap *gmap, *sg, *next;
1938 
1939 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
1940 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
1941 	rcu_read_lock();
1942 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
1943 		spin_lock(&gmap->guest_table_lock);
1944 		gaddr = host_to_guest_lookup(gmap, vmaddr) + offset;
1945 		spin_unlock(&gmap->guest_table_lock);
1946 		if (!IS_GADDR_VALID(gaddr))
1947 			continue;
1948 
1949 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
1950 			spin_lock(&gmap->shadow_lock);
1951 			list_for_each_entry_safe(sg, next,
1952 						 &gmap->children, list)
1953 				gmap_shadow_notify(sg, vmaddr, gaddr);
1954 			spin_unlock(&gmap->shadow_lock);
1955 		}
1956 		if (bits & PGSTE_IN_BIT)
1957 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
1958 	}
1959 	rcu_read_unlock();
1960 }
1961 EXPORT_SYMBOL_GPL(ptep_notify);
1962 
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)1963 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
1964 			     unsigned long gaddr)
1965 {
1966 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1967 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
1968 }
1969 
1970 /**
1971  * gmap_pmdp_xchg - exchange a gmap pmd with another
1972  * @gmap: pointer to the guest address space structure
1973  * @pmdp: pointer to the pmd entry
1974  * @new: replacement entry
1975  * @gaddr: the affected guest address
1976  *
1977  * This function is assumed to be called with the guest_table_lock
1978  * held.
1979  */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)1980 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
1981 			   unsigned long gaddr)
1982 {
1983 	gaddr &= HPAGE_MASK;
1984 	pmdp_notify_gmap(gmap, pmdp, gaddr);
1985 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
1986 	if (machine_has_tlb_guest())
1987 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
1988 			    IDTE_GLOBAL);
1989 	else
1990 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
1991 	set_pmd(pmdp, new);
1992 }
1993 
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)1994 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
1995 			    int purge)
1996 {
1997 	pmd_t *pmdp;
1998 	struct gmap *gmap;
1999 	unsigned long gaddr;
2000 
2001 	rcu_read_lock();
2002 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2003 		spin_lock(&gmap->guest_table_lock);
2004 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2005 		if (pmdp) {
2006 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2007 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2008 						   _SEGMENT_ENTRY_GMAP_UC |
2009 						   _SEGMENT_ENTRY));
2010 			if (purge)
2011 				__pmdp_cspg(pmdp);
2012 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2013 		}
2014 		spin_unlock(&gmap->guest_table_lock);
2015 	}
2016 	rcu_read_unlock();
2017 }
2018 
2019 /**
2020  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2021  *                        flushing
2022  * @mm: pointer to the process mm_struct
2023  * @vmaddr: virtual address in the process address space
2024  */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2025 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2026 {
2027 	gmap_pmdp_clear(mm, vmaddr, 0);
2028 }
2029 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2030 
2031 /**
2032  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2033  * @mm: pointer to the process mm_struct
2034  * @vmaddr: virtual address in the process address space
2035  */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2036 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2037 {
2038 	unsigned long gaddr;
2039 	struct gmap *gmap;
2040 	pmd_t *pmdp;
2041 
2042 	rcu_read_lock();
2043 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2044 		spin_lock(&gmap->guest_table_lock);
2045 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2046 		if (pmdp) {
2047 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2048 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2049 						   _SEGMENT_ENTRY_GMAP_UC |
2050 						   _SEGMENT_ENTRY));
2051 			if (machine_has_tlb_guest())
2052 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2053 					    gmap->asce, IDTE_LOCAL);
2054 			else
2055 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2056 			*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
2057 		}
2058 		spin_unlock(&gmap->guest_table_lock);
2059 	}
2060 	rcu_read_unlock();
2061 }
2062 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2063 
2064 /**
2065  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2066  * @mm: pointer to the process mm_struct
2067  * @vmaddr: virtual address in the process address space
2068  */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2069 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2070 {
2071 	unsigned long gaddr;
2072 	struct gmap *gmap;
2073 	pmd_t *pmdp;
2074 
2075 	rcu_read_lock();
2076 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2077 		spin_lock(&gmap->guest_table_lock);
2078 		pmdp = host_to_guest_pmd_delete(gmap, vmaddr, &gaddr);
2079 		if (pmdp) {
2080 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2081 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2082 						   _SEGMENT_ENTRY_GMAP_UC |
2083 						   _SEGMENT_ENTRY));
2084 			if (machine_has_tlb_guest())
2085 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2086 					    gmap->asce, IDTE_GLOBAL);
2087 			else
2088 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2089 			*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
2090 		}
2091 		spin_unlock(&gmap->guest_table_lock);
2092 	}
2093 	rcu_read_unlock();
2094 }
2095 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2096 
2097 /**
2098  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2099  * @gmap: pointer to guest address space
2100  * @pmdp: pointer to the pmd to be tested
2101  * @gaddr: virtual address in the guest address space
2102  *
2103  * This function is assumed to be called with the guest_table_lock
2104  * held.
2105  */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2106 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2107 					  unsigned long gaddr)
2108 {
2109 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2110 		return false;
2111 
2112 	/* Already protected memory, which did not change is clean */
2113 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2114 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2115 		return false;
2116 
2117 	/* Clear UC indication and reset protection */
2118 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2119 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2120 	return true;
2121 }
2122 
2123 /**
2124  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2125  * @gmap: pointer to guest address space
2126  * @bitmap: dirty bitmap for this pmd
2127  * @gaddr: virtual address in the guest address space
2128  * @vmaddr: virtual address in the host address space
2129  *
2130  * This function is assumed to be called with the guest_table_lock
2131  * held.
2132  */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2133 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2134 			     unsigned long gaddr, unsigned long vmaddr)
2135 {
2136 	int i;
2137 	pmd_t *pmdp;
2138 	pte_t *ptep;
2139 	spinlock_t *ptl;
2140 
2141 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2142 	if (!pmdp)
2143 		return;
2144 
2145 	if (pmd_leaf(*pmdp)) {
2146 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2147 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2148 	} else {
2149 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2150 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2151 			if (!ptep)
2152 				continue;
2153 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2154 				set_bit(i, bitmap);
2155 			pte_unmap_unlock(ptep, ptl);
2156 		}
2157 	}
2158 	gmap_pmd_op_end(gmap, pmdp);
2159 }
2160 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2161 
2162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2163 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2164 				    unsigned long end, struct mm_walk *walk)
2165 {
2166 	struct vm_area_struct *vma = walk->vma;
2167 
2168 	split_huge_pmd(vma, pmd, addr);
2169 	return 0;
2170 }
2171 
2172 static const struct mm_walk_ops thp_split_walk_ops = {
2173 	.pmd_entry	= thp_split_walk_pmd_entry,
2174 	.walk_lock	= PGWALK_WRLOCK_VERIFY,
2175 };
2176 
thp_split_mm(struct mm_struct * mm)2177 static inline void thp_split_mm(struct mm_struct *mm)
2178 {
2179 	struct vm_area_struct *vma;
2180 	VMA_ITERATOR(vmi, mm, 0);
2181 
2182 	for_each_vma(vmi, vma) {
2183 		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2184 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2185 	}
2186 	mm->def_flags |= VM_NOHUGEPAGE;
2187 }
2188 #else
thp_split_mm(struct mm_struct * mm)2189 static inline void thp_split_mm(struct mm_struct *mm)
2190 {
2191 }
2192 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2193 
2194 /*
2195  * switch on pgstes for its userspace process (for kvm)
2196  */
s390_enable_sie(void)2197 int s390_enable_sie(void)
2198 {
2199 	struct mm_struct *mm = current->mm;
2200 
2201 	/* Do we have pgstes? if yes, we are done */
2202 	if (mm_has_pgste(mm))
2203 		return 0;
2204 	mmap_write_lock(mm);
2205 	mm->context.has_pgste = 1;
2206 	/* split thp mappings and disable thp for future mappings */
2207 	thp_split_mm(mm);
2208 	mmap_write_unlock(mm);
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(s390_enable_sie);
2212 
2213 /*
2214  * Enable storage key handling from now on and initialize the storage
2215  * keys with the default key.
2216  */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2217 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2218 				  unsigned long next, struct mm_walk *walk)
2219 {
2220 	/* Clear storage key */
2221 	ptep_zap_key(walk->mm, addr, pte);
2222 	return 0;
2223 }
2224 
2225 /*
2226  * Give a chance to schedule after setting a key to 256 pages.
2227  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2228  * Both can sleep.
2229  */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2230 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2231 				  unsigned long next, struct mm_walk *walk)
2232 {
2233 	cond_resched();
2234 	return 0;
2235 }
2236 
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2237 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2238 				      unsigned long hmask, unsigned long next,
2239 				      struct mm_walk *walk)
2240 {
2241 	pmd_t *pmd = (pmd_t *)pte;
2242 	unsigned long start, end;
2243 	struct folio *folio = page_folio(pmd_page(*pmd));
2244 
2245 	/*
2246 	 * The write check makes sure we do not set a key on shared
2247 	 * memory. This is needed as the walker does not differentiate
2248 	 * between actual guest memory and the process executable or
2249 	 * shared libraries.
2250 	 */
2251 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2252 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2253 		return 0;
2254 
2255 	start = pmd_val(*pmd) & HPAGE_MASK;
2256 	end = start + HPAGE_SIZE;
2257 	__storage_key_init_range(start, end);
2258 	set_bit(PG_arch_1, &folio->flags.f);
2259 	cond_resched();
2260 	return 0;
2261 }
2262 
2263 static const struct mm_walk_ops enable_skey_walk_ops = {
2264 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2265 	.pte_entry		= __s390_enable_skey_pte,
2266 	.pmd_entry		= __s390_enable_skey_pmd,
2267 	.walk_lock		= PGWALK_WRLOCK,
2268 };
2269 
s390_enable_skey(void)2270 int s390_enable_skey(void)
2271 {
2272 	struct mm_struct *mm = current->mm;
2273 	int rc = 0;
2274 
2275 	mmap_write_lock(mm);
2276 	if (mm_uses_skeys(mm))
2277 		goto out_up;
2278 
2279 	mm->context.uses_skeys = 1;
2280 	rc = gmap_helper_disable_cow_sharing();
2281 	if (rc) {
2282 		mm->context.uses_skeys = 0;
2283 		goto out_up;
2284 	}
2285 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2286 
2287 out_up:
2288 	mmap_write_unlock(mm);
2289 	return rc;
2290 }
2291 EXPORT_SYMBOL_GPL(s390_enable_skey);
2292 
2293 /*
2294  * Reset CMMA state, make all pages stable again.
2295  */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2296 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2297 			     unsigned long next, struct mm_walk *walk)
2298 {
2299 	ptep_zap_unused(walk->mm, addr, pte, 1);
2300 	return 0;
2301 }
2302 
2303 static const struct mm_walk_ops reset_cmma_walk_ops = {
2304 	.pte_entry		= __s390_reset_cmma,
2305 	.walk_lock		= PGWALK_WRLOCK,
2306 };
2307 
s390_reset_cmma(struct mm_struct * mm)2308 void s390_reset_cmma(struct mm_struct *mm)
2309 {
2310 	mmap_write_lock(mm);
2311 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2312 	mmap_write_unlock(mm);
2313 }
2314 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2315 
2316 #define GATHER_GET_PAGES 32
2317 
2318 struct reset_walk_state {
2319 	unsigned long next;
2320 	unsigned long count;
2321 	unsigned long pfns[GATHER_GET_PAGES];
2322 };
2323 
s390_gather_pages(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2324 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2325 			     unsigned long next, struct mm_walk *walk)
2326 {
2327 	struct reset_walk_state *p = walk->private;
2328 	pte_t pte = READ_ONCE(*ptep);
2329 
2330 	if (pte_present(pte)) {
2331 		/* we have a reference from the mapping, take an extra one */
2332 		get_page(phys_to_page(pte_val(pte)));
2333 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2334 		p->next = next;
2335 		p->count++;
2336 	}
2337 	return p->count >= GATHER_GET_PAGES;
2338 }
2339 
2340 static const struct mm_walk_ops gather_pages_ops = {
2341 	.pte_entry = s390_gather_pages,
2342 	.walk_lock = PGWALK_RDLOCK,
2343 };
2344 
2345 /*
2346  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2347  * Each page needs to have an extra reference, which will be released here.
2348  */
s390_uv_destroy_pfns(unsigned long count,unsigned long * pfns)2349 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2350 {
2351 	struct folio *folio;
2352 	unsigned long i;
2353 
2354 	for (i = 0; i < count; i++) {
2355 		folio = pfn_folio(pfns[i]);
2356 		/* we always have an extra reference */
2357 		uv_destroy_folio(folio);
2358 		/* get rid of the extra reference */
2359 		folio_put(folio);
2360 		cond_resched();
2361 	}
2362 }
2363 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2364 
2365 /**
2366  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2367  * in the given range of the given address space.
2368  * @mm: the mm to operate on
2369  * @start: the start of the range
2370  * @end: the end of the range
2371  * @interruptible: if not 0, stop when a fatal signal is received
2372  *
2373  * Walk the given range of the given address space and call the destroy
2374  * secure page UVC on each page. Optionally exit early if a fatal signal is
2375  * pending.
2376  *
2377  * Return: 0 on success, -EINTR if the function stopped before completing
2378  */
__s390_uv_destroy_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool interruptible)2379 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2380 			    unsigned long end, bool interruptible)
2381 {
2382 	struct reset_walk_state state = { .next = start };
2383 	int r = 1;
2384 
2385 	while (r > 0) {
2386 		state.count = 0;
2387 		mmap_read_lock(mm);
2388 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2389 		mmap_read_unlock(mm);
2390 		cond_resched();
2391 		s390_uv_destroy_pfns(state.count, state.pfns);
2392 		if (interruptible && fatal_signal_pending(current))
2393 			return -EINTR;
2394 	}
2395 	return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2398 
2399 /**
2400  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2401  * @gmap: the gmap whose ASCE needs to be replaced
2402  *
2403  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2404  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2405  * to the wrong pages, causing use-after-free and memory corruption.
2406  * If the allocation of the new top level page table fails, the ASCE is not
2407  * replaced.
2408  * In any case, the old ASCE is always removed from the gmap CRST list.
2409  * Therefore the caller has to make sure to save a pointer to it
2410  * beforehand, unless a leak is actually intended.
2411  */
s390_replace_asce(struct gmap * gmap)2412 int s390_replace_asce(struct gmap *gmap)
2413 {
2414 	unsigned long asce;
2415 	struct page *page;
2416 	void *table;
2417 
2418 	/* Replacing segment type ASCEs would cause serious issues */
2419 	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2420 		return -EINVAL;
2421 
2422 	page = gmap_alloc_crst();
2423 	if (!page)
2424 		return -ENOMEM;
2425 	table = page_to_virt(page);
2426 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2427 
2428 	/* Set new table origin while preserving existing ASCE control bits */
2429 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2430 	WRITE_ONCE(gmap->asce, asce);
2431 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2432 	WRITE_ONCE(gmap->table, table);
2433 
2434 	return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(s390_replace_asce);
2437