xref: /linux/arch/s390/mm/fault.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  arch/s390/mm/fault.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (uweigand@de.ibm.com)
8  *
9  *  Derived from "arch/i386/mm/fault.c"
10  *    Copyright (C) 1995  Linus Torvalds
11  */
12 
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/init.h>
25 #include <linux/console.h>
26 #include <linux/module.h>
27 #include <linux/hardirq.h>
28 #include <linux/kprobes.h>
29 
30 #include <asm/system.h>
31 #include <asm/uaccess.h>
32 #include <asm/pgtable.h>
33 #include <asm/kdebug.h>
34 
35 #ifndef CONFIG_64BIT
36 #define __FAIL_ADDR_MASK 0x7ffff000
37 #define __FIXUP_MASK 0x7fffffff
38 #define __SUBCODE_MASK 0x0200
39 #define __PF_RES_FIELD 0ULL
40 #else /* CONFIG_64BIT */
41 #define __FAIL_ADDR_MASK -4096L
42 #define __FIXUP_MASK ~0L
43 #define __SUBCODE_MASK 0x0600
44 #define __PF_RES_FIELD 0x8000000000000000ULL
45 #endif /* CONFIG_64BIT */
46 
47 #ifdef CONFIG_SYSCTL
48 extern int sysctl_userprocess_debug;
49 #endif
50 
51 extern void die(const char *,struct pt_regs *,long);
52 
53 #ifdef CONFIG_KPROBES
54 ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
55 int register_page_fault_notifier(struct notifier_block *nb)
56 {
57 	return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
58 }
59 
60 int unregister_page_fault_notifier(struct notifier_block *nb)
61 {
62 	return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
63 }
64 
65 static inline int notify_page_fault(enum die_val val, const char *str,
66 			struct pt_regs *regs, long err, int trap, int sig)
67 {
68 	struct die_args args = {
69 		.regs = regs,
70 		.str = str,
71 		.err = err,
72 		.trapnr = trap,
73 		.signr = sig
74 	};
75 	return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
76 }
77 #else
78 static inline int notify_page_fault(enum die_val val, const char *str,
79 			struct pt_regs *regs, long err, int trap, int sig)
80 {
81 	return NOTIFY_DONE;
82 }
83 #endif
84 
85 extern spinlock_t timerlist_lock;
86 
87 /*
88  * Unlock any spinlocks which will prevent us from getting the
89  * message out (timerlist_lock is acquired through the
90  * console unblank code)
91  */
92 void bust_spinlocks(int yes)
93 {
94 	if (yes) {
95 		oops_in_progress = 1;
96 	} else {
97 		int loglevel_save = console_loglevel;
98 		console_unblank();
99 		oops_in_progress = 0;
100 		/*
101 		 * OK, the message is on the console.  Now we call printk()
102 		 * without oops_in_progress set so that printk will give klogd
103 		 * a poke.  Hold onto your hats...
104 		 */
105 		console_loglevel = 15;
106 		printk(" ");
107 		console_loglevel = loglevel_save;
108 	}
109 }
110 
111 /*
112  * Check which address space is addressed by the access
113  * register in S390_lowcore.exc_access_id.
114  * Returns 1 for user space and 0 for kernel space.
115  */
116 static int __check_access_register(struct pt_regs *regs, int error_code)
117 {
118 	int areg = S390_lowcore.exc_access_id;
119 
120 	if (areg == 0)
121 		/* Access via access register 0 -> kernel address */
122 		return 0;
123 	save_access_regs(current->thread.acrs);
124 	if (regs && areg < NUM_ACRS && current->thread.acrs[areg] <= 1)
125 		/*
126 		 * access register contains 0 -> kernel address,
127 		 * access register contains 1 -> user space address
128 		 */
129 		return current->thread.acrs[areg];
130 
131 	/* Something unhealthy was done with the access registers... */
132 	die("page fault via unknown access register", regs, error_code);
133 	do_exit(SIGKILL);
134 	return 0;
135 }
136 
137 /*
138  * Check which address space the address belongs to.
139  * Returns 1 for user space and 0 for kernel space.
140  */
141 static inline int check_user_space(struct pt_regs *regs, int error_code)
142 {
143 	/*
144 	 * The lowest two bits of S390_lowcore.trans_exc_code indicate
145 	 * which paging table was used:
146 	 *   0: Primary Segment Table Descriptor
147 	 *   1: STD determined via access register
148 	 *   2: Secondary Segment Table Descriptor
149 	 *   3: Home Segment Table Descriptor
150 	 */
151 	int descriptor = S390_lowcore.trans_exc_code & 3;
152 	if (unlikely(descriptor == 1))
153 		return __check_access_register(regs, error_code);
154 	if (descriptor == 2)
155 		return current->thread.mm_segment.ar4;
156 	return descriptor != 0;
157 }
158 
159 /*
160  * Send SIGSEGV to task.  This is an external routine
161  * to keep the stack usage of do_page_fault small.
162  */
163 static void do_sigsegv(struct pt_regs *regs, unsigned long error_code,
164 		       int si_code, unsigned long address)
165 {
166 	struct siginfo si;
167 
168 #if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG)
169 #if defined(CONFIG_SYSCTL)
170 	if (sysctl_userprocess_debug)
171 #endif
172 	{
173 		printk("User process fault: interruption code 0x%lX\n",
174 		       error_code);
175 		printk("failing address: %lX\n", address);
176 		show_regs(regs);
177 	}
178 #endif
179 	si.si_signo = SIGSEGV;
180 	si.si_code = si_code;
181 	si.si_addr = (void __user *) address;
182 	force_sig_info(SIGSEGV, &si, current);
183 }
184 
185 /*
186  * This routine handles page faults.  It determines the address,
187  * and the problem, and then passes it off to one of the appropriate
188  * routines.
189  *
190  * error_code:
191  *   04       Protection           ->  Write-Protection  (suprression)
192  *   10       Segment translation  ->  Not present       (nullification)
193  *   11       Page translation     ->  Not present       (nullification)
194  *   3b       Region third trans.  ->  Not present       (nullification)
195  */
196 static inline void __kprobes
197 do_exception(struct pt_regs *regs, unsigned long error_code, int is_protection)
198 {
199         struct task_struct *tsk;
200         struct mm_struct *mm;
201         struct vm_area_struct * vma;
202         unsigned long address;
203 	int user_address;
204 	const struct exception_table_entry *fixup;
205 	int si_code = SEGV_MAPERR;
206 
207         tsk = current;
208         mm = tsk->mm;
209 
210 	if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
211 					SIGSEGV) == NOTIFY_STOP)
212 		return;
213 
214 	/*
215          * Check for low-address protection.  This needs to be treated
216 	 * as a special case because the translation exception code
217 	 * field is not guaranteed to contain valid data in this case.
218 	 */
219 	if (is_protection && !(S390_lowcore.trans_exc_code & 4)) {
220 
221 		/* Low-address protection hit in kernel mode means
222 		   NULL pointer write access in kernel mode.  */
223  		if (!(regs->psw.mask & PSW_MASK_PSTATE)) {
224 			address = 0;
225 			user_address = 0;
226 			goto no_context;
227 		}
228 
229 		/* Low-address protection hit in user mode 'cannot happen'.  */
230 		die ("Low-address protection", regs, error_code);
231         	do_exit(SIGKILL);
232 	}
233 
234         /*
235          * get the failing address
236          * more specific the segment and page table portion of
237          * the address
238          */
239         address = S390_lowcore.trans_exc_code & __FAIL_ADDR_MASK;
240 	user_address = check_user_space(regs, error_code);
241 
242 	/*
243 	 * Verify that the fault happened in user space, that
244 	 * we are not in an interrupt and that there is a
245 	 * user context.
246 	 */
247         if (user_address == 0 || in_atomic() || !mm)
248                 goto no_context;
249 
250 	/*
251 	 * When we get here, the fault happened in the current
252 	 * task's user address space, so we can switch on the
253 	 * interrupts again and then search the VMAs
254 	 */
255 	local_irq_enable();
256 
257         down_read(&mm->mmap_sem);
258 
259         vma = find_vma(mm, address);
260         if (!vma)
261                 goto bad_area;
262         if (vma->vm_start <= address)
263                 goto good_area;
264         if (!(vma->vm_flags & VM_GROWSDOWN))
265                 goto bad_area;
266         if (expand_stack(vma, address))
267                 goto bad_area;
268 /*
269  * Ok, we have a good vm_area for this memory access, so
270  * we can handle it..
271  */
272 good_area:
273 	si_code = SEGV_ACCERR;
274 	if (!is_protection) {
275 		/* page not present, check vm flags */
276 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
277 			goto bad_area;
278 	} else {
279 		if (!(vma->vm_flags & VM_WRITE))
280 			goto bad_area;
281 	}
282 
283 survive:
284 	/*
285 	 * If for any reason at all we couldn't handle the fault,
286 	 * make sure we exit gracefully rather than endlessly redo
287 	 * the fault.
288 	 */
289 	switch (handle_mm_fault(mm, vma, address, is_protection)) {
290 	case VM_FAULT_MINOR:
291 		tsk->min_flt++;
292 		break;
293 	case VM_FAULT_MAJOR:
294 		tsk->maj_flt++;
295 		break;
296 	case VM_FAULT_SIGBUS:
297 		goto do_sigbus;
298 	case VM_FAULT_OOM:
299 		goto out_of_memory;
300 	default:
301 		BUG();
302 	}
303 
304         up_read(&mm->mmap_sem);
305 	/*
306 	 * The instruction that caused the program check will
307 	 * be repeated. Don't signal single step via SIGTRAP.
308 	 */
309 	clear_tsk_thread_flag(current, TIF_SINGLE_STEP);
310         return;
311 
312 /*
313  * Something tried to access memory that isn't in our memory map..
314  * Fix it, but check if it's kernel or user first..
315  */
316 bad_area:
317         up_read(&mm->mmap_sem);
318 
319         /* User mode accesses just cause a SIGSEGV */
320         if (regs->psw.mask & PSW_MASK_PSTATE) {
321                 tsk->thread.prot_addr = address;
322                 tsk->thread.trap_no = error_code;
323 		do_sigsegv(regs, error_code, si_code, address);
324                 return;
325 	}
326 
327 no_context:
328         /* Are we prepared to handle this kernel fault?  */
329 	fixup = search_exception_tables(regs->psw.addr & __FIXUP_MASK);
330 	if (fixup) {
331 		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
332                 return;
333         }
334 
335 /*
336  * Oops. The kernel tried to access some bad page. We'll have to
337  * terminate things with extreme prejudice.
338  */
339         if (user_address == 0)
340                 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
341         	       " at virtual kernel address %p\n", (void *)address);
342         else
343                 printk(KERN_ALERT "Unable to handle kernel paging request"
344 		       " at virtual user address %p\n", (void *)address);
345 
346         die("Oops", regs, error_code);
347         do_exit(SIGKILL);
348 
349 
350 /*
351  * We ran out of memory, or some other thing happened to us that made
352  * us unable to handle the page fault gracefully.
353 */
354 out_of_memory:
355 	up_read(&mm->mmap_sem);
356 	if (tsk->pid == 1) {
357 		yield();
358 		goto survive;
359 	}
360 	printk("VM: killing process %s\n", tsk->comm);
361 	if (regs->psw.mask & PSW_MASK_PSTATE)
362 		do_exit(SIGKILL);
363 	goto no_context;
364 
365 do_sigbus:
366 	up_read(&mm->mmap_sem);
367 
368 	/*
369 	 * Send a sigbus, regardless of whether we were in kernel
370 	 * or user mode.
371 	 */
372         tsk->thread.prot_addr = address;
373         tsk->thread.trap_no = error_code;
374 	force_sig(SIGBUS, tsk);
375 
376 	/* Kernel mode? Handle exceptions or die */
377 	if (!(regs->psw.mask & PSW_MASK_PSTATE))
378 		goto no_context;
379 }
380 
381 void do_protection_exception(struct pt_regs *regs, unsigned long error_code)
382 {
383 	regs->psw.addr -= (error_code >> 16);
384 	do_exception(regs, 4, 1);
385 }
386 
387 void do_dat_exception(struct pt_regs *regs, unsigned long error_code)
388 {
389 	do_exception(regs, error_code & 0xff, 0);
390 }
391 
392 #ifdef CONFIG_PFAULT
393 /*
394  * 'pfault' pseudo page faults routines.
395  */
396 static int pfault_disable = 0;
397 
398 static int __init nopfault(char *str)
399 {
400 	pfault_disable = 1;
401 	return 1;
402 }
403 
404 __setup("nopfault", nopfault);
405 
406 typedef struct {
407 	__u16 refdiagc;
408 	__u16 reffcode;
409 	__u16 refdwlen;
410 	__u16 refversn;
411 	__u64 refgaddr;
412 	__u64 refselmk;
413 	__u64 refcmpmk;
414 	__u64 reserved;
415 } __attribute__ ((packed)) pfault_refbk_t;
416 
417 int pfault_init(void)
418 {
419 	pfault_refbk_t refbk =
420 		{ 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48,
421 		  __PF_RES_FIELD };
422         int rc;
423 
424 	if (pfault_disable)
425 		return -1;
426         __asm__ __volatile__(
427                 "    diag  %1,%0,0x258\n"
428 		"0:  j     2f\n"
429 		"1:  la    %0,8\n"
430 		"2:\n"
431 		".section __ex_table,\"a\"\n"
432 		"   .align 4\n"
433 #ifndef CONFIG_64BIT
434 		"   .long  0b,1b\n"
435 #else /* CONFIG_64BIT */
436 		"   .quad  0b,1b\n"
437 #endif /* CONFIG_64BIT */
438 		".previous"
439                 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc" );
440         __ctl_set_bit(0, 9);
441         return rc;
442 }
443 
444 void pfault_fini(void)
445 {
446 	pfault_refbk_t refbk =
447 	{ 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL };
448 
449 	if (pfault_disable)
450 		return;
451 	__ctl_clear_bit(0,9);
452         __asm__ __volatile__(
453                 "    diag  %0,0,0x258\n"
454 		"0:\n"
455 		".section __ex_table,\"a\"\n"
456 		"   .align 4\n"
457 #ifndef CONFIG_64BIT
458 		"   .long  0b,0b\n"
459 #else /* CONFIG_64BIT */
460 		"   .quad  0b,0b\n"
461 #endif /* CONFIG_64BIT */
462 		".previous"
463 		: : "a" (&refbk), "m" (refbk) : "cc" );
464 }
465 
466 asmlinkage void
467 pfault_interrupt(struct pt_regs *regs, __u16 error_code)
468 {
469 	struct task_struct *tsk;
470 	__u16 subcode;
471 
472 	/*
473 	 * Get the external interruption subcode & pfault
474 	 * initial/completion signal bit. VM stores this
475 	 * in the 'cpu address' field associated with the
476          * external interrupt.
477 	 */
478 	subcode = S390_lowcore.cpu_addr;
479 	if ((subcode & 0xff00) != __SUBCODE_MASK)
480 		return;
481 
482 	/*
483 	 * Get the token (= address of the task structure of the affected task).
484 	 */
485 	tsk = *(struct task_struct **) __LC_PFAULT_INTPARM;
486 
487 	if (subcode & 0x0080) {
488 		/* signal bit is set -> a page has been swapped in by VM */
489 		if (xchg(&tsk->thread.pfault_wait, -1) != 0) {
490 			/* Initial interrupt was faster than the completion
491 			 * interrupt. pfault_wait is valid. Set pfault_wait
492 			 * back to zero and wake up the process. This can
493 			 * safely be done because the task is still sleeping
494 			 * and can't produce new pfaults. */
495 			tsk->thread.pfault_wait = 0;
496 			wake_up_process(tsk);
497 			put_task_struct(tsk);
498 		}
499 	} else {
500 		/* signal bit not set -> a real page is missing. */
501 		get_task_struct(tsk);
502 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
503 		if (xchg(&tsk->thread.pfault_wait, 1) != 0) {
504 			/* Completion interrupt was faster than the initial
505 			 * interrupt (swapped in a -1 for pfault_wait). Set
506 			 * pfault_wait back to zero and exit. This can be
507 			 * done safely because tsk is running in kernel
508 			 * mode and can't produce new pfaults. */
509 			tsk->thread.pfault_wait = 0;
510 			set_task_state(tsk, TASK_RUNNING);
511 			put_task_struct(tsk);
512 		} else
513 			set_tsk_need_resched(tsk);
514 	}
515 }
516 #endif
517 
518