1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * S390 version 4 * Copyright IBM Corp. 1999 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (uweigand@de.ibm.com) 7 * 8 * Derived from "arch/i386/mm/fault.c" 9 * Copyright (C) 1995 Linus Torvalds 10 */ 11 12 #include <linux/kernel_stat.h> 13 #include <linux/mmu_context.h> 14 #include <linux/perf_event.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/jump_label.h> 19 #include <linux/kernel.h> 20 #include <linux/errno.h> 21 #include <linux/string.h> 22 #include <linux/types.h> 23 #include <linux/ptrace.h> 24 #include <linux/mman.h> 25 #include <linux/mm.h> 26 #include <linux/compat.h> 27 #include <linux/smp.h> 28 #include <linux/kdebug.h> 29 #include <linux/init.h> 30 #include <linux/console.h> 31 #include <linux/extable.h> 32 #include <linux/hardirq.h> 33 #include <linux/kprobes.h> 34 #include <linux/uaccess.h> 35 #include <linux/hugetlb.h> 36 #include <linux/kfence.h> 37 #include <asm/asm-extable.h> 38 #include <asm/asm-offsets.h> 39 #include <asm/ptrace.h> 40 #include <asm/fault.h> 41 #include <asm/diag.h> 42 #include <asm/gmap.h> 43 #include <asm/irq.h> 44 #include <asm/facility.h> 45 #include <asm/uv.h> 46 #include "../kernel/entry.h" 47 48 enum fault_type { 49 KERNEL_FAULT, 50 USER_FAULT, 51 GMAP_FAULT, 52 }; 53 54 static DEFINE_STATIC_KEY_FALSE(have_store_indication); 55 56 static int __init fault_init(void) 57 { 58 if (test_facility(75)) 59 static_branch_enable(&have_store_indication); 60 return 0; 61 } 62 early_initcall(fault_init); 63 64 /* 65 * Find out which address space caused the exception. 66 */ 67 static enum fault_type get_fault_type(struct pt_regs *regs) 68 { 69 union teid teid = { .val = regs->int_parm_long }; 70 struct gmap *gmap; 71 72 if (likely(teid.as == PSW_BITS_AS_PRIMARY)) { 73 if (user_mode(regs)) 74 return USER_FAULT; 75 if (!IS_ENABLED(CONFIG_PGSTE)) 76 return KERNEL_FAULT; 77 gmap = (struct gmap *)get_lowcore()->gmap; 78 if (gmap && gmap->asce == regs->cr1) 79 return GMAP_FAULT; 80 return KERNEL_FAULT; 81 } 82 if (teid.as == PSW_BITS_AS_SECONDARY) 83 return USER_FAULT; 84 /* Access register mode, not used in the kernel */ 85 if (teid.as == PSW_BITS_AS_ACCREG) 86 return USER_FAULT; 87 /* Home space -> access via kernel ASCE */ 88 return KERNEL_FAULT; 89 } 90 91 static unsigned long get_fault_address(struct pt_regs *regs) 92 { 93 union teid teid = { .val = regs->int_parm_long }; 94 95 return teid.addr * PAGE_SIZE; 96 } 97 98 static __always_inline bool fault_is_write(struct pt_regs *regs) 99 { 100 union teid teid = { .val = regs->int_parm_long }; 101 102 if (static_branch_likely(&have_store_indication)) 103 return teid.fsi == TEID_FSI_STORE; 104 return false; 105 } 106 107 static void dump_pagetable(unsigned long asce, unsigned long address) 108 { 109 unsigned long entry, *table = __va(asce & _ASCE_ORIGIN); 110 111 pr_alert("AS:%016lx ", asce); 112 switch (asce & _ASCE_TYPE_MASK) { 113 case _ASCE_TYPE_REGION1: 114 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT; 115 if (get_kernel_nofault(entry, table)) 116 goto bad; 117 pr_cont("R1:%016lx ", entry); 118 if (entry & _REGION_ENTRY_INVALID) 119 goto out; 120 table = __va(entry & _REGION_ENTRY_ORIGIN); 121 fallthrough; 122 case _ASCE_TYPE_REGION2: 123 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT; 124 if (get_kernel_nofault(entry, table)) 125 goto bad; 126 pr_cont("R2:%016lx ", entry); 127 if (entry & _REGION_ENTRY_INVALID) 128 goto out; 129 table = __va(entry & _REGION_ENTRY_ORIGIN); 130 fallthrough; 131 case _ASCE_TYPE_REGION3: 132 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT; 133 if (get_kernel_nofault(entry, table)) 134 goto bad; 135 pr_cont("R3:%016lx ", entry); 136 if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE)) 137 goto out; 138 table = __va(entry & _REGION_ENTRY_ORIGIN); 139 fallthrough; 140 case _ASCE_TYPE_SEGMENT: 141 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 142 if (get_kernel_nofault(entry, table)) 143 goto bad; 144 pr_cont("S:%016lx ", entry); 145 if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE)) 146 goto out; 147 table = __va(entry & _SEGMENT_ENTRY_ORIGIN); 148 } 149 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT; 150 if (get_kernel_nofault(entry, table)) 151 goto bad; 152 pr_cont("P:%016lx ", entry); 153 out: 154 pr_cont("\n"); 155 return; 156 bad: 157 pr_cont("BAD\n"); 158 } 159 160 static void dump_fault_info(struct pt_regs *regs) 161 { 162 union teid teid = { .val = regs->int_parm_long }; 163 unsigned long asce; 164 165 pr_alert("Failing address: %016lx TEID: %016lx\n", 166 get_fault_address(regs), teid.val); 167 pr_alert("Fault in "); 168 switch (teid.as) { 169 case PSW_BITS_AS_HOME: 170 pr_cont("home space "); 171 break; 172 case PSW_BITS_AS_SECONDARY: 173 pr_cont("secondary space "); 174 break; 175 case PSW_BITS_AS_ACCREG: 176 pr_cont("access register "); 177 break; 178 case PSW_BITS_AS_PRIMARY: 179 pr_cont("primary space "); 180 break; 181 } 182 pr_cont("mode while using "); 183 switch (get_fault_type(regs)) { 184 case USER_FAULT: 185 asce = get_lowcore()->user_asce.val; 186 pr_cont("user "); 187 break; 188 case GMAP_FAULT: 189 asce = ((struct gmap *)get_lowcore()->gmap)->asce; 190 pr_cont("gmap "); 191 break; 192 case KERNEL_FAULT: 193 asce = get_lowcore()->kernel_asce.val; 194 pr_cont("kernel "); 195 break; 196 default: 197 unreachable(); 198 } 199 pr_cont("ASCE.\n"); 200 dump_pagetable(asce, get_fault_address(regs)); 201 } 202 203 int show_unhandled_signals = 1; 204 205 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault) 206 { 207 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); 208 209 if ((task_pid_nr(current) > 1) && !show_unhandled_signals) 210 return; 211 if (!unhandled_signal(current, signr)) 212 return; 213 if (!__ratelimit(&rs)) 214 return; 215 pr_alert("User process fault: interruption code %04x ilc:%d ", 216 regs->int_code & 0xffff, regs->int_code >> 17); 217 print_vma_addr(KERN_CONT "in ", regs->psw.addr); 218 pr_cont("\n"); 219 if (is_mm_fault) 220 dump_fault_info(regs); 221 show_regs(regs); 222 } 223 224 static void do_sigsegv(struct pt_regs *regs, int si_code) 225 { 226 report_user_fault(regs, SIGSEGV, 1); 227 force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs)); 228 } 229 230 static void handle_fault_error_nolock(struct pt_regs *regs, int si_code) 231 { 232 enum fault_type fault_type; 233 unsigned long address; 234 bool is_write; 235 236 if (user_mode(regs)) { 237 if (WARN_ON_ONCE(!si_code)) 238 si_code = SEGV_MAPERR; 239 return do_sigsegv(regs, si_code); 240 } 241 if (fixup_exception(regs)) 242 return; 243 fault_type = get_fault_type(regs); 244 if (fault_type == KERNEL_FAULT) { 245 address = get_fault_address(regs); 246 is_write = fault_is_write(regs); 247 if (kfence_handle_page_fault(address, is_write, regs)) 248 return; 249 } 250 if (fault_type == KERNEL_FAULT) 251 pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n"); 252 else 253 pr_alert("Unable to handle kernel paging request in virtual user address space\n"); 254 dump_fault_info(regs); 255 die(regs, "Oops"); 256 } 257 258 static void handle_fault_error(struct pt_regs *regs, int si_code) 259 { 260 struct mm_struct *mm = current->mm; 261 262 mmap_read_unlock(mm); 263 handle_fault_error_nolock(regs, si_code); 264 } 265 266 static void do_sigbus(struct pt_regs *regs) 267 { 268 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs)); 269 } 270 271 /* 272 * This routine handles page faults. It determines the address, 273 * and the problem, and then passes it off to one of the appropriate 274 * routines. 275 * 276 * interruption code (int_code): 277 * 04 Protection -> Write-Protection (suppression) 278 * 10 Segment translation -> Not present (nullification) 279 * 11 Page translation -> Not present (nullification) 280 * 3b Region third trans. -> Not present (nullification) 281 */ 282 static void do_exception(struct pt_regs *regs, int access) 283 { 284 struct vm_area_struct *vma; 285 unsigned long address; 286 struct mm_struct *mm; 287 enum fault_type type; 288 unsigned int flags; 289 struct gmap *gmap; 290 vm_fault_t fault; 291 bool is_write; 292 293 /* 294 * The instruction that caused the program check has 295 * been nullified. Don't signal single step via SIGTRAP. 296 */ 297 clear_thread_flag(TIF_PER_TRAP); 298 if (kprobe_page_fault(regs, 14)) 299 return; 300 mm = current->mm; 301 address = get_fault_address(regs); 302 is_write = fault_is_write(regs); 303 type = get_fault_type(regs); 304 switch (type) { 305 case KERNEL_FAULT: 306 return handle_fault_error_nolock(regs, 0); 307 case USER_FAULT: 308 case GMAP_FAULT: 309 if (faulthandler_disabled() || !mm) 310 return handle_fault_error_nolock(regs, 0); 311 break; 312 } 313 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 314 flags = FAULT_FLAG_DEFAULT; 315 if (user_mode(regs)) 316 flags |= FAULT_FLAG_USER; 317 if (is_write) 318 access = VM_WRITE; 319 if (access == VM_WRITE) 320 flags |= FAULT_FLAG_WRITE; 321 if (!(flags & FAULT_FLAG_USER)) 322 goto lock_mmap; 323 vma = lock_vma_under_rcu(mm, address); 324 if (!vma) 325 goto lock_mmap; 326 if (!(vma->vm_flags & access)) { 327 vma_end_read(vma); 328 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 329 return handle_fault_error_nolock(regs, SEGV_ACCERR); 330 } 331 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs); 332 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 333 vma_end_read(vma); 334 if (!(fault & VM_FAULT_RETRY)) { 335 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 336 if (unlikely(fault & VM_FAULT_ERROR)) 337 goto error; 338 return; 339 } 340 count_vm_vma_lock_event(VMA_LOCK_RETRY); 341 if (fault & VM_FAULT_MAJOR) 342 flags |= FAULT_FLAG_TRIED; 343 344 /* Quick path to respond to signals */ 345 if (fault_signal_pending(fault, regs)) { 346 if (!user_mode(regs)) 347 handle_fault_error_nolock(regs, 0); 348 return; 349 } 350 lock_mmap: 351 mmap_read_lock(mm); 352 gmap = NULL; 353 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) { 354 gmap = (struct gmap *)get_lowcore()->gmap; 355 current->thread.gmap_addr = address; 356 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE); 357 current->thread.gmap_int_code = regs->int_code & 0xffff; 358 address = __gmap_translate(gmap, address); 359 if (address == -EFAULT) 360 return handle_fault_error(regs, SEGV_MAPERR); 361 if (gmap->pfault_enabled) 362 flags |= FAULT_FLAG_RETRY_NOWAIT; 363 } 364 retry: 365 vma = find_vma(mm, address); 366 if (!vma) 367 return handle_fault_error(regs, SEGV_MAPERR); 368 if (unlikely(vma->vm_start > address)) { 369 if (!(vma->vm_flags & VM_GROWSDOWN)) 370 return handle_fault_error(regs, SEGV_MAPERR); 371 vma = expand_stack(mm, address); 372 if (!vma) 373 return handle_fault_error_nolock(regs, SEGV_MAPERR); 374 } 375 if (unlikely(!(vma->vm_flags & access))) 376 return handle_fault_error(regs, SEGV_ACCERR); 377 fault = handle_mm_fault(vma, address, flags, regs); 378 if (fault_signal_pending(fault, regs)) { 379 if (flags & FAULT_FLAG_RETRY_NOWAIT) 380 mmap_read_unlock(mm); 381 if (!user_mode(regs)) 382 handle_fault_error_nolock(regs, 0); 383 return; 384 } 385 /* The fault is fully completed (including releasing mmap lock) */ 386 if (fault & VM_FAULT_COMPLETED) { 387 if (gmap) { 388 mmap_read_lock(mm); 389 goto gmap; 390 } 391 return; 392 } 393 if (unlikely(fault & VM_FAULT_ERROR)) { 394 mmap_read_unlock(mm); 395 goto error; 396 } 397 if (fault & VM_FAULT_RETRY) { 398 if (IS_ENABLED(CONFIG_PGSTE) && gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) { 399 /* 400 * FAULT_FLAG_RETRY_NOWAIT has been set, 401 * mmap_lock has not been released 402 */ 403 current->thread.gmap_pfault = 1; 404 return handle_fault_error(regs, 0); 405 } 406 flags &= ~FAULT_FLAG_RETRY_NOWAIT; 407 flags |= FAULT_FLAG_TRIED; 408 mmap_read_lock(mm); 409 goto retry; 410 } 411 gmap: 412 if (IS_ENABLED(CONFIG_PGSTE) && gmap) { 413 address = __gmap_link(gmap, current->thread.gmap_addr, 414 address); 415 if (address == -EFAULT) 416 return handle_fault_error(regs, SEGV_MAPERR); 417 if (address == -ENOMEM) { 418 fault = VM_FAULT_OOM; 419 mmap_read_unlock(mm); 420 goto error; 421 } 422 } 423 mmap_read_unlock(mm); 424 return; 425 error: 426 if (fault & VM_FAULT_OOM) { 427 if (!user_mode(regs)) 428 handle_fault_error_nolock(regs, 0); 429 else 430 pagefault_out_of_memory(); 431 } else if (fault & VM_FAULT_SIGSEGV) { 432 if (!user_mode(regs)) 433 handle_fault_error_nolock(regs, 0); 434 else 435 do_sigsegv(regs, SEGV_MAPERR); 436 } else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)) { 437 if (!user_mode(regs)) 438 handle_fault_error_nolock(regs, 0); 439 else 440 do_sigbus(regs); 441 } else { 442 pr_emerg("Unexpected fault flags: %08x\n", fault); 443 BUG(); 444 } 445 } 446 447 void do_protection_exception(struct pt_regs *regs) 448 { 449 union teid teid = { .val = regs->int_parm_long }; 450 451 /* 452 * Protection exceptions are suppressing, decrement psw address. 453 * The exception to this rule are aborted transactions, for these 454 * the PSW already points to the correct location. 455 */ 456 if (!(regs->int_code & 0x200)) 457 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16); 458 /* 459 * Check for low-address protection. This needs to be treated 460 * as a special case because the translation exception code 461 * field is not guaranteed to contain valid data in this case. 462 */ 463 if (unlikely(!teid.b61)) { 464 if (user_mode(regs)) { 465 /* Low-address protection in user mode: cannot happen */ 466 die(regs, "Low-address protection"); 467 } 468 /* 469 * Low-address protection in kernel mode means 470 * NULL pointer write access in kernel mode. 471 */ 472 return handle_fault_error_nolock(regs, 0); 473 } 474 if (unlikely(MACHINE_HAS_NX && teid.b56)) { 475 regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK); 476 return handle_fault_error_nolock(regs, SEGV_ACCERR); 477 } 478 do_exception(regs, VM_WRITE); 479 } 480 NOKPROBE_SYMBOL(do_protection_exception); 481 482 void do_dat_exception(struct pt_regs *regs) 483 { 484 do_exception(regs, VM_ACCESS_FLAGS); 485 } 486 NOKPROBE_SYMBOL(do_dat_exception); 487 488 #if IS_ENABLED(CONFIG_PGSTE) 489 490 void do_secure_storage_access(struct pt_regs *regs) 491 { 492 union teid teid = { .val = regs->int_parm_long }; 493 unsigned long addr = get_fault_address(regs); 494 struct vm_area_struct *vma; 495 struct mm_struct *mm; 496 struct folio *folio; 497 struct page *page; 498 struct gmap *gmap; 499 int rc; 500 501 /* 502 * Bit 61 indicates if the address is valid, if it is not the 503 * kernel should be stopped or SIGSEGV should be sent to the 504 * process. Bit 61 is not reliable without the misc UV feature, 505 * therefore this needs to be checked too. 506 */ 507 if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) { 508 /* 509 * When this happens, userspace did something that it 510 * was not supposed to do, e.g. branching into secure 511 * memory. Trigger a segmentation fault. 512 */ 513 if (user_mode(regs)) { 514 send_sig(SIGSEGV, current, 0); 515 return; 516 } 517 /* 518 * The kernel should never run into this case and 519 * there is no way out of this situation. 520 */ 521 panic("Unexpected PGM 0x3d with TEID bit 61=0"); 522 } 523 switch (get_fault_type(regs)) { 524 case GMAP_FAULT: 525 mm = current->mm; 526 gmap = (struct gmap *)get_lowcore()->gmap; 527 mmap_read_lock(mm); 528 addr = __gmap_translate(gmap, addr); 529 mmap_read_unlock(mm); 530 if (IS_ERR_VALUE(addr)) 531 return handle_fault_error_nolock(regs, SEGV_MAPERR); 532 fallthrough; 533 case USER_FAULT: 534 mm = current->mm; 535 mmap_read_lock(mm); 536 vma = find_vma(mm, addr); 537 if (!vma) 538 return handle_fault_error(regs, SEGV_MAPERR); 539 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET); 540 if (IS_ERR_OR_NULL(page)) { 541 mmap_read_unlock(mm); 542 break; 543 } 544 folio = page_folio(page); 545 if (arch_make_folio_accessible(folio)) 546 send_sig(SIGSEGV, current, 0); 547 folio_put(folio); 548 mmap_read_unlock(mm); 549 break; 550 case KERNEL_FAULT: 551 folio = phys_to_folio(addr); 552 if (unlikely(!folio_try_get(folio))) 553 break; 554 rc = arch_make_folio_accessible(folio); 555 folio_put(folio); 556 if (rc) 557 BUG(); 558 break; 559 default: 560 unreachable(); 561 } 562 } 563 NOKPROBE_SYMBOL(do_secure_storage_access); 564 565 void do_non_secure_storage_access(struct pt_regs *regs) 566 { 567 struct gmap *gmap = (struct gmap *)get_lowcore()->gmap; 568 unsigned long gaddr = get_fault_address(regs); 569 570 if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT)) 571 return handle_fault_error_nolock(regs, SEGV_MAPERR); 572 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL) 573 send_sig(SIGSEGV, current, 0); 574 } 575 NOKPROBE_SYMBOL(do_non_secure_storage_access); 576 577 void do_secure_storage_violation(struct pt_regs *regs) 578 { 579 struct gmap *gmap = (struct gmap *)get_lowcore()->gmap; 580 unsigned long gaddr = get_fault_address(regs); 581 582 /* 583 * If the VM has been rebooted, its address space might still contain 584 * secure pages from the previous boot. 585 * Clear the page so it can be reused. 586 */ 587 if (!gmap_destroy_page(gmap, gaddr)) 588 return; 589 /* 590 * Either KVM messed up the secure guest mapping or the same 591 * page is mapped into multiple secure guests. 592 * 593 * This exception is only triggered when a guest 2 is running 594 * and can therefore never occur in kernel context. 595 */ 596 pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n", 597 current->comm, current->pid); 598 send_sig(SIGSEGV, current, 0); 599 } 600 601 #endif /* CONFIG_PGSTE */ 602