xref: /linux/arch/s390/mm/fault.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *		 Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/mmu_context.h>
14 #include <linux/perf_event.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/jump_label.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/compat.h>
27 #include <linux/smp.h>
28 #include <linux/kdebug.h>
29 #include <linux/init.h>
30 #include <linux/console.h>
31 #include <linux/extable.h>
32 #include <linux/hardirq.h>
33 #include <linux/kprobes.h>
34 #include <linux/uaccess.h>
35 #include <linux/hugetlb.h>
36 #include <linux/kfence.h>
37 #include <linux/pagewalk.h>
38 #include <asm/asm-extable.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/ptrace.h>
41 #include <asm/fault.h>
42 #include <asm/diag.h>
43 #include <asm/gmap.h>
44 #include <asm/irq.h>
45 #include <asm/facility.h>
46 #include <asm/uv.h>
47 #include "../kernel/entry.h"
48 
49 static DEFINE_STATIC_KEY_FALSE(have_store_indication);
50 
51 static int __init fault_init(void)
52 {
53 	if (test_facility(75))
54 		static_branch_enable(&have_store_indication);
55 	return 0;
56 }
57 early_initcall(fault_init);
58 
59 /*
60  * Find out which address space caused the exception.
61  */
62 static bool is_kernel_fault(struct pt_regs *regs)
63 {
64 	union teid teid = { .val = regs->int_parm_long };
65 
66 	if (user_mode(regs))
67 		return false;
68 	if (teid.as == PSW_BITS_AS_SECONDARY)
69 		return false;
70 	return true;
71 }
72 
73 static unsigned long get_fault_address(struct pt_regs *regs)
74 {
75 	union teid teid = { .val = regs->int_parm_long };
76 
77 	return teid.addr * PAGE_SIZE;
78 }
79 
80 static __always_inline bool fault_is_write(struct pt_regs *regs)
81 {
82 	union teid teid = { .val = regs->int_parm_long };
83 
84 	if (static_branch_likely(&have_store_indication))
85 		return teid.fsi == TEID_FSI_STORE;
86 	return false;
87 }
88 
89 static void dump_pagetable(unsigned long asce, unsigned long address)
90 {
91 	unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
92 
93 	pr_alert("AS:%016lx ", asce);
94 	switch (asce & _ASCE_TYPE_MASK) {
95 	case _ASCE_TYPE_REGION1:
96 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
97 		if (get_kernel_nofault(entry, table))
98 			goto bad;
99 		pr_cont("R1:%016lx ", entry);
100 		if (entry & _REGION_ENTRY_INVALID)
101 			goto out;
102 		table = __va(entry & _REGION_ENTRY_ORIGIN);
103 		fallthrough;
104 	case _ASCE_TYPE_REGION2:
105 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
106 		if (get_kernel_nofault(entry, table))
107 			goto bad;
108 		pr_cont("R2:%016lx ", entry);
109 		if (entry & _REGION_ENTRY_INVALID)
110 			goto out;
111 		table = __va(entry & _REGION_ENTRY_ORIGIN);
112 		fallthrough;
113 	case _ASCE_TYPE_REGION3:
114 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
115 		if (get_kernel_nofault(entry, table))
116 			goto bad;
117 		pr_cont("R3:%016lx ", entry);
118 		if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
119 			goto out;
120 		table = __va(entry & _REGION_ENTRY_ORIGIN);
121 		fallthrough;
122 	case _ASCE_TYPE_SEGMENT:
123 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
124 		if (get_kernel_nofault(entry, table))
125 			goto bad;
126 		pr_cont("S:%016lx ", entry);
127 		if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
128 			goto out;
129 		table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
130 	}
131 	table += (address & _PAGE_INDEX) >> PAGE_SHIFT;
132 	if (get_kernel_nofault(entry, table))
133 		goto bad;
134 	pr_cont("P:%016lx ", entry);
135 out:
136 	pr_cont("\n");
137 	return;
138 bad:
139 	pr_cont("BAD\n");
140 }
141 
142 static void dump_fault_info(struct pt_regs *regs)
143 {
144 	union teid teid = { .val = regs->int_parm_long };
145 	unsigned long asce;
146 
147 	pr_alert("Failing address: %016lx TEID: %016lx\n",
148 		 get_fault_address(regs), teid.val);
149 	pr_alert("Fault in ");
150 	switch (teid.as) {
151 	case PSW_BITS_AS_HOME:
152 		pr_cont("home space ");
153 		break;
154 	case PSW_BITS_AS_SECONDARY:
155 		pr_cont("secondary space ");
156 		break;
157 	case PSW_BITS_AS_ACCREG:
158 		pr_cont("access register ");
159 		break;
160 	case PSW_BITS_AS_PRIMARY:
161 		pr_cont("primary space ");
162 		break;
163 	}
164 	pr_cont("mode while using ");
165 	if (is_kernel_fault(regs)) {
166 		asce = get_lowcore()->kernel_asce.val;
167 		pr_cont("kernel ");
168 	} else {
169 		asce = get_lowcore()->user_asce.val;
170 		pr_cont("user ");
171 	}
172 	pr_cont("ASCE.\n");
173 	dump_pagetable(asce, get_fault_address(regs));
174 }
175 
176 int show_unhandled_signals = 1;
177 
178 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
179 {
180 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
181 
182 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
183 		return;
184 	if (!unhandled_signal(current, signr))
185 		return;
186 	if (!__ratelimit(&rs))
187 		return;
188 	pr_alert("User process fault: interruption code %04x ilc:%d ",
189 		 regs->int_code & 0xffff, regs->int_code >> 17);
190 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
191 	pr_cont("\n");
192 	if (is_mm_fault)
193 		dump_fault_info(regs);
194 	show_regs(regs);
195 }
196 
197 static void do_sigsegv(struct pt_regs *regs, int si_code)
198 {
199 	report_user_fault(regs, SIGSEGV, 1);
200 	force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
201 }
202 
203 static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
204 {
205 	unsigned long address;
206 	bool is_write;
207 
208 	if (user_mode(regs)) {
209 		if (WARN_ON_ONCE(!si_code))
210 			si_code = SEGV_MAPERR;
211 		return do_sigsegv(regs, si_code);
212 	}
213 	if (fixup_exception(regs))
214 		return;
215 	if (is_kernel_fault(regs)) {
216 		address = get_fault_address(regs);
217 		is_write = fault_is_write(regs);
218 		if (kfence_handle_page_fault(address, is_write, regs))
219 			return;
220 		pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
221 	} else {
222 		pr_alert("Unable to handle kernel paging request in virtual user address space\n");
223 	}
224 	dump_fault_info(regs);
225 	die(regs, "Oops");
226 }
227 
228 static void handle_fault_error(struct pt_regs *regs, int si_code)
229 {
230 	struct mm_struct *mm = current->mm;
231 
232 	mmap_read_unlock(mm);
233 	handle_fault_error_nolock(regs, si_code);
234 }
235 
236 static void do_sigbus(struct pt_regs *regs)
237 {
238 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
239 }
240 
241 /*
242  * This routine handles page faults.  It determines the address,
243  * and the problem, and then passes it off to one of the appropriate
244  * routines.
245  *
246  * interruption code (int_code):
247  *   04       Protection	   ->  Write-Protection  (suppression)
248  *   10       Segment translation  ->  Not present	 (nullification)
249  *   11       Page translation	   ->  Not present	 (nullification)
250  *   3b       Region third trans.  ->  Not present	 (nullification)
251  */
252 static void do_exception(struct pt_regs *regs, int access)
253 {
254 	struct vm_area_struct *vma;
255 	unsigned long address;
256 	struct mm_struct *mm;
257 	unsigned int flags;
258 	vm_fault_t fault;
259 	bool is_write;
260 
261 	/*
262 	 * The instruction that caused the program check has
263 	 * been nullified. Don't signal single step via SIGTRAP.
264 	 */
265 	clear_thread_flag(TIF_PER_TRAP);
266 	if (kprobe_page_fault(regs, 14))
267 		return;
268 	mm = current->mm;
269 	address = get_fault_address(regs);
270 	is_write = fault_is_write(regs);
271 	if (is_kernel_fault(regs) || faulthandler_disabled() || !mm)
272 		return handle_fault_error_nolock(regs, 0);
273 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
274 	flags = FAULT_FLAG_DEFAULT;
275 	if (user_mode(regs))
276 		flags |= FAULT_FLAG_USER;
277 	if (is_write)
278 		access = VM_WRITE;
279 	if (access == VM_WRITE)
280 		flags |= FAULT_FLAG_WRITE;
281 	if (!(flags & FAULT_FLAG_USER))
282 		goto lock_mmap;
283 	vma = lock_vma_under_rcu(mm, address);
284 	if (!vma)
285 		goto lock_mmap;
286 	if (!(vma->vm_flags & access)) {
287 		vma_end_read(vma);
288 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
289 		return handle_fault_error_nolock(regs, SEGV_ACCERR);
290 	}
291 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
292 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
293 		vma_end_read(vma);
294 	if (!(fault & VM_FAULT_RETRY)) {
295 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
296 		goto done;
297 	}
298 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
299 	if (fault & VM_FAULT_MAJOR)
300 		flags |= FAULT_FLAG_TRIED;
301 	/* Quick path to respond to signals */
302 	if (fault_signal_pending(fault, regs)) {
303 		if (!user_mode(regs))
304 			handle_fault_error_nolock(regs, 0);
305 		return;
306 	}
307 lock_mmap:
308 retry:
309 	vma = lock_mm_and_find_vma(mm, address, regs);
310 	if (!vma)
311 		return handle_fault_error_nolock(regs, SEGV_MAPERR);
312 	if (unlikely(!(vma->vm_flags & access)))
313 		return handle_fault_error(regs, SEGV_ACCERR);
314 	fault = handle_mm_fault(vma, address, flags, regs);
315 	if (fault_signal_pending(fault, regs)) {
316 		if (!user_mode(regs))
317 			handle_fault_error_nolock(regs, 0);
318 		return;
319 	}
320 	/* The fault is fully completed (including releasing mmap lock) */
321 	if (fault & VM_FAULT_COMPLETED)
322 		return;
323 	if (fault & VM_FAULT_RETRY) {
324 		flags |= FAULT_FLAG_TRIED;
325 		goto retry;
326 	}
327 	mmap_read_unlock(mm);
328 done:
329 	if (!(fault & VM_FAULT_ERROR))
330 		return;
331 	if (fault & VM_FAULT_OOM) {
332 		if (!user_mode(regs))
333 			handle_fault_error_nolock(regs, 0);
334 		else
335 			pagefault_out_of_memory();
336 	} else if (fault & VM_FAULT_SIGSEGV) {
337 		if (!user_mode(regs))
338 			handle_fault_error_nolock(regs, 0);
339 		else
340 			do_sigsegv(regs, SEGV_MAPERR);
341 	} else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_HWPOISON |
342 			    VM_FAULT_HWPOISON_LARGE)) {
343 		if (!user_mode(regs))
344 			handle_fault_error_nolock(regs, 0);
345 		else
346 			do_sigbus(regs);
347 	} else {
348 		pr_emerg("Unexpected fault flags: %08x\n", fault);
349 		BUG();
350 	}
351 }
352 
353 void do_protection_exception(struct pt_regs *regs)
354 {
355 	union teid teid = { .val = regs->int_parm_long };
356 
357 	/*
358 	 * Protection exceptions are suppressing, decrement psw address.
359 	 * The exception to this rule are aborted transactions, for these
360 	 * the PSW already points to the correct location.
361 	 */
362 	if (!(regs->int_code & 0x200))
363 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
364 	/*
365 	 * Check for low-address protection.  This needs to be treated
366 	 * as a special case because the translation exception code
367 	 * field is not guaranteed to contain valid data in this case.
368 	 */
369 	if (unlikely(!teid.b61)) {
370 		if (user_mode(regs)) {
371 			/* Low-address protection in user mode: cannot happen */
372 			die(regs, "Low-address protection");
373 		}
374 		/*
375 		 * Low-address protection in kernel mode means
376 		 * NULL pointer write access in kernel mode.
377 		 */
378 		return handle_fault_error_nolock(regs, 0);
379 	}
380 	if (unlikely(MACHINE_HAS_NX && teid.b56)) {
381 		regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
382 		return handle_fault_error_nolock(regs, SEGV_ACCERR);
383 	}
384 	do_exception(regs, VM_WRITE);
385 }
386 NOKPROBE_SYMBOL(do_protection_exception);
387 
388 void do_dat_exception(struct pt_regs *regs)
389 {
390 	do_exception(regs, VM_ACCESS_FLAGS);
391 }
392 NOKPROBE_SYMBOL(do_dat_exception);
393 
394 #if IS_ENABLED(CONFIG_PGSTE)
395 
396 void do_secure_storage_access(struct pt_regs *regs)
397 {
398 	union teid teid = { .val = regs->int_parm_long };
399 	unsigned long addr = get_fault_address(regs);
400 	struct vm_area_struct *vma;
401 	struct folio_walk fw;
402 	struct mm_struct *mm;
403 	struct folio *folio;
404 	int rc;
405 
406 	/*
407 	 * Bit 61 indicates if the address is valid, if it is not the
408 	 * kernel should be stopped or SIGSEGV should be sent to the
409 	 * process. Bit 61 is not reliable without the misc UV feature,
410 	 * therefore this needs to be checked too.
411 	 */
412 	if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
413 		/*
414 		 * When this happens, userspace did something that it
415 		 * was not supposed to do, e.g. branching into secure
416 		 * memory. Trigger a segmentation fault.
417 		 */
418 		if (user_mode(regs)) {
419 			send_sig(SIGSEGV, current, 0);
420 			return;
421 		}
422 		/*
423 		 * The kernel should never run into this case and
424 		 * there is no way out of this situation.
425 		 */
426 		panic("Unexpected PGM 0x3d with TEID bit 61=0");
427 	}
428 	if (is_kernel_fault(regs)) {
429 		folio = phys_to_folio(addr);
430 		if (unlikely(!folio_try_get(folio)))
431 			return;
432 		rc = arch_make_folio_accessible(folio);
433 		folio_put(folio);
434 		if (rc)
435 			BUG();
436 	} else {
437 		mm = current->mm;
438 		mmap_read_lock(mm);
439 		vma = find_vma(mm, addr);
440 		if (!vma)
441 			return handle_fault_error(regs, SEGV_MAPERR);
442 		folio = folio_walk_start(&fw, vma, addr, 0);
443 		if (!folio) {
444 			mmap_read_unlock(mm);
445 			return;
446 		}
447 		/* arch_make_folio_accessible() needs a raised refcount. */
448 		folio_get(folio);
449 		rc = arch_make_folio_accessible(folio);
450 		folio_put(folio);
451 		folio_walk_end(&fw, vma);
452 		if (rc)
453 			send_sig(SIGSEGV, current, 0);
454 		mmap_read_unlock(mm);
455 	}
456 }
457 NOKPROBE_SYMBOL(do_secure_storage_access);
458 
459 #endif /* CONFIG_PGSTE */
460