1*00807191SEric Biggers /* SPDX-License-Identifier: GPL-2.0 */
2*00807191SEric Biggers /*
3*00807191SEric Biggers * Hardware-accelerated CRC-32 variants for Linux on z Systems
4*00807191SEric Biggers *
5*00807191SEric Biggers * Use the z/Architecture Vector Extension Facility to accelerate the
6*00807191SEric Biggers * computing of CRC-32 checksums.
7*00807191SEric Biggers *
8*00807191SEric Biggers * This CRC-32 implementation algorithm processes the most-significant
9*00807191SEric Biggers * bit first (BE).
10*00807191SEric Biggers *
11*00807191SEric Biggers * Copyright IBM Corp. 2015
12*00807191SEric Biggers * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13*00807191SEric Biggers */
14*00807191SEric Biggers
15*00807191SEric Biggers #include <linux/types.h>
16*00807191SEric Biggers #include <asm/fpu.h>
17*00807191SEric Biggers #include "crc32-vx.h"
18*00807191SEric Biggers
19*00807191SEric Biggers /* Vector register range containing CRC-32 constants */
20*00807191SEric Biggers #define CONST_R1R2 9
21*00807191SEric Biggers #define CONST_R3R4 10
22*00807191SEric Biggers #define CONST_R5 11
23*00807191SEric Biggers #define CONST_R6 12
24*00807191SEric Biggers #define CONST_RU_POLY 13
25*00807191SEric Biggers #define CONST_CRC_POLY 14
26*00807191SEric Biggers
27*00807191SEric Biggers /*
28*00807191SEric Biggers * The CRC-32 constant block contains reduction constants to fold and
29*00807191SEric Biggers * process particular chunks of the input data stream in parallel.
30*00807191SEric Biggers *
31*00807191SEric Biggers * For the CRC-32 variants, the constants are precomputed according to
32*00807191SEric Biggers * these definitions:
33*00807191SEric Biggers *
34*00807191SEric Biggers * R1 = x4*128+64 mod P(x)
35*00807191SEric Biggers * R2 = x4*128 mod P(x)
36*00807191SEric Biggers * R3 = x128+64 mod P(x)
37*00807191SEric Biggers * R4 = x128 mod P(x)
38*00807191SEric Biggers * R5 = x96 mod P(x)
39*00807191SEric Biggers * R6 = x64 mod P(x)
40*00807191SEric Biggers *
41*00807191SEric Biggers * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
42*00807191SEric Biggers *
43*00807191SEric Biggers * where P(x) is the polynomial in the normal domain and the P'(x) is the
44*00807191SEric Biggers * polynomial in the reversed (bitreflected) domain.
45*00807191SEric Biggers *
46*00807191SEric Biggers * Note that the constant definitions below are extended in order to compute
47*00807191SEric Biggers * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
48*00807191SEric Biggers * The rightmost doubleword can be 0 to prevent contribution to the result or
49*00807191SEric Biggers * can be multiplied by 1 to perform an XOR without the need for a separate
50*00807191SEric Biggers * VECTOR EXCLUSIVE OR instruction.
51*00807191SEric Biggers *
52*00807191SEric Biggers * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
53*00807191SEric Biggers *
54*00807191SEric Biggers * P(x) = 0x04C11DB7
55*00807191SEric Biggers * P'(x) = 0xEDB88320
56*00807191SEric Biggers */
57*00807191SEric Biggers
58*00807191SEric Biggers static unsigned long constants_CRC_32_BE[] = {
59*00807191SEric Biggers 0x08833794c, 0x0e6228b11, /* R1, R2 */
60*00807191SEric Biggers 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
61*00807191SEric Biggers 0x0f200aa66, 1UL << 32, /* R5, x32 */
62*00807191SEric Biggers 0x0490d678d, 1, /* R6, 1 */
63*00807191SEric Biggers 0x104d101df, 0, /* u */
64*00807191SEric Biggers 0x104C11DB7, 0, /* P(x) */
65*00807191SEric Biggers };
66*00807191SEric Biggers
67*00807191SEric Biggers /**
68*00807191SEric Biggers * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
69*00807191SEric Biggers * @crc: Initial CRC value, typically ~0.
70*00807191SEric Biggers * @buf: Input buffer pointer, performance might be improved if the
71*00807191SEric Biggers * buffer is on a doubleword boundary.
72*00807191SEric Biggers * @size: Size of the buffer, must be 64 bytes or greater.
73*00807191SEric Biggers *
74*00807191SEric Biggers * Register usage:
75*00807191SEric Biggers * V0: Initial CRC value and intermediate constants and results.
76*00807191SEric Biggers * V1..V4: Data for CRC computation.
77*00807191SEric Biggers * V5..V8: Next data chunks that are fetched from the input buffer.
78*00807191SEric Biggers * V9..V14: CRC-32 constants.
79*00807191SEric Biggers */
crc32_be_vgfm_16(u32 crc,unsigned char const * buf,size_t size)80*00807191SEric Biggers u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
81*00807191SEric Biggers {
82*00807191SEric Biggers /* Load CRC-32 constants */
83*00807191SEric Biggers fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
84*00807191SEric Biggers fpu_vzero(0);
85*00807191SEric Biggers
86*00807191SEric Biggers /* Load the initial CRC value into the leftmost word of V0. */
87*00807191SEric Biggers fpu_vlvgf(0, crc, 0);
88*00807191SEric Biggers
89*00807191SEric Biggers /* Load a 64-byte data chunk and XOR with CRC */
90*00807191SEric Biggers fpu_vlm(1, 4, buf);
91*00807191SEric Biggers fpu_vx(1, 0, 1);
92*00807191SEric Biggers buf += 64;
93*00807191SEric Biggers size -= 64;
94*00807191SEric Biggers
95*00807191SEric Biggers while (size >= 64) {
96*00807191SEric Biggers /* Load the next 64-byte data chunk into V5 to V8 */
97*00807191SEric Biggers fpu_vlm(5, 8, buf);
98*00807191SEric Biggers
99*00807191SEric Biggers /*
100*00807191SEric Biggers * Perform a GF(2) multiplication of the doublewords in V1 with
101*00807191SEric Biggers * the reduction constants in V0. The intermediate result is
102*00807191SEric Biggers * then folded (accumulated) with the next data chunk in V5 and
103*00807191SEric Biggers * stored in V1. Repeat this step for the register contents
104*00807191SEric Biggers * in V2, V3, and V4 respectively.
105*00807191SEric Biggers */
106*00807191SEric Biggers fpu_vgfmag(1, CONST_R1R2, 1, 5);
107*00807191SEric Biggers fpu_vgfmag(2, CONST_R1R2, 2, 6);
108*00807191SEric Biggers fpu_vgfmag(3, CONST_R1R2, 3, 7);
109*00807191SEric Biggers fpu_vgfmag(4, CONST_R1R2, 4, 8);
110*00807191SEric Biggers buf += 64;
111*00807191SEric Biggers size -= 64;
112*00807191SEric Biggers }
113*00807191SEric Biggers
114*00807191SEric Biggers /* Fold V1 to V4 into a single 128-bit value in V1 */
115*00807191SEric Biggers fpu_vgfmag(1, CONST_R3R4, 1, 2);
116*00807191SEric Biggers fpu_vgfmag(1, CONST_R3R4, 1, 3);
117*00807191SEric Biggers fpu_vgfmag(1, CONST_R3R4, 1, 4);
118*00807191SEric Biggers
119*00807191SEric Biggers while (size >= 16) {
120*00807191SEric Biggers fpu_vl(2, buf);
121*00807191SEric Biggers fpu_vgfmag(1, CONST_R3R4, 1, 2);
122*00807191SEric Biggers buf += 16;
123*00807191SEric Biggers size -= 16;
124*00807191SEric Biggers }
125*00807191SEric Biggers
126*00807191SEric Biggers /*
127*00807191SEric Biggers * The R5 constant is used to fold a 128-bit value into an 96-bit value
128*00807191SEric Biggers * that is XORed with the next 96-bit input data chunk. To use a single
129*00807191SEric Biggers * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
130*00807191SEric Biggers * form an intermediate 96-bit value (with appended zeros) which is then
131*00807191SEric Biggers * XORed with the intermediate reduction result.
132*00807191SEric Biggers */
133*00807191SEric Biggers fpu_vgfmg(1, CONST_R5, 1);
134*00807191SEric Biggers
135*00807191SEric Biggers /*
136*00807191SEric Biggers * Further reduce the remaining 96-bit value to a 64-bit value using a
137*00807191SEric Biggers * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
138*00807191SEric Biggers * intermediate result is then XORed with the product of the leftmost
139*00807191SEric Biggers * doubleword with R6. The result is a 64-bit value and is subject to
140*00807191SEric Biggers * the Barret reduction.
141*00807191SEric Biggers */
142*00807191SEric Biggers fpu_vgfmg(1, CONST_R6, 1);
143*00807191SEric Biggers
144*00807191SEric Biggers /*
145*00807191SEric Biggers * The input values to the Barret reduction are the degree-63 polynomial
146*00807191SEric Biggers * in V1 (R(x)), degree-32 generator polynomial, and the reduction
147*00807191SEric Biggers * constant u. The Barret reduction result is the CRC value of R(x) mod
148*00807191SEric Biggers * P(x).
149*00807191SEric Biggers *
150*00807191SEric Biggers * The Barret reduction algorithm is defined as:
151*00807191SEric Biggers *
152*00807191SEric Biggers * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
153*00807191SEric Biggers * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
154*00807191SEric Biggers * 3. C(x) = R(x) XOR T2(x) mod x^32
155*00807191SEric Biggers *
156*00807191SEric Biggers * Note: To compensate the division by x^32, use the vector unpack
157*00807191SEric Biggers * instruction to move the leftmost word into the leftmost doubleword
158*00807191SEric Biggers * of the vector register. The rightmost doubleword is multiplied
159*00807191SEric Biggers * with zero to not contribute to the intermediate results.
160*00807191SEric Biggers */
161*00807191SEric Biggers
162*00807191SEric Biggers /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
163*00807191SEric Biggers fpu_vupllf(2, 1);
164*00807191SEric Biggers fpu_vgfmg(2, CONST_RU_POLY, 2);
165*00807191SEric Biggers
166*00807191SEric Biggers /*
167*00807191SEric Biggers * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
168*00807191SEric Biggers * V2 and XOR the intermediate result, T2(x), with the value in V1.
169*00807191SEric Biggers * The final result is in the rightmost word of V2.
170*00807191SEric Biggers */
171*00807191SEric Biggers fpu_vupllf(2, 2);
172*00807191SEric Biggers fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
173*00807191SEric Biggers return fpu_vlgvf(2, 3);
174*00807191SEric Biggers }
175