1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward) 70 }; 71 72 const struct kvm_stats_header kvm_vm_stats_header = { 73 .name_size = KVM_STATS_NAME_SIZE, 74 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 75 .id_offset = sizeof(struct kvm_stats_header), 76 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 77 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 78 sizeof(kvm_vm_stats_desc), 79 }; 80 81 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 82 KVM_GENERIC_VCPU_STATS(), 83 STATS_DESC_COUNTER(VCPU, exit_userspace), 84 STATS_DESC_COUNTER(VCPU, exit_null), 85 STATS_DESC_COUNTER(VCPU, exit_external_request), 86 STATS_DESC_COUNTER(VCPU, exit_io_request), 87 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 88 STATS_DESC_COUNTER(VCPU, exit_stop_request), 89 STATS_DESC_COUNTER(VCPU, exit_validity), 90 STATS_DESC_COUNTER(VCPU, exit_instruction), 91 STATS_DESC_COUNTER(VCPU, exit_pei), 92 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 93 STATS_DESC_COUNTER(VCPU, instruction_lctl), 94 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 95 STATS_DESC_COUNTER(VCPU, instruction_stctl), 96 STATS_DESC_COUNTER(VCPU, instruction_stctg), 97 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 98 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 99 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 100 STATS_DESC_COUNTER(VCPU, deliver_ckc), 101 STATS_DESC_COUNTER(VCPU, deliver_cputm), 102 STATS_DESC_COUNTER(VCPU, deliver_external_call), 103 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 104 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 105 STATS_DESC_COUNTER(VCPU, deliver_virtio), 106 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 107 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 108 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 109 STATS_DESC_COUNTER(VCPU, deliver_program), 110 STATS_DESC_COUNTER(VCPU, deliver_io), 111 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 112 STATS_DESC_COUNTER(VCPU, exit_wait_state), 113 STATS_DESC_COUNTER(VCPU, inject_ckc), 114 STATS_DESC_COUNTER(VCPU, inject_cputm), 115 STATS_DESC_COUNTER(VCPU, inject_external_call), 116 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 117 STATS_DESC_COUNTER(VCPU, inject_mchk), 118 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 119 STATS_DESC_COUNTER(VCPU, inject_program), 120 STATS_DESC_COUNTER(VCPU, inject_restart), 121 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 122 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 123 STATS_DESC_COUNTER(VCPU, instruction_epsw), 124 STATS_DESC_COUNTER(VCPU, instruction_gs), 125 STATS_DESC_COUNTER(VCPU, instruction_io_other), 126 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 127 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 128 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 129 STATS_DESC_COUNTER(VCPU, instruction_ptff), 130 STATS_DESC_COUNTER(VCPU, instruction_sck), 131 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 132 STATS_DESC_COUNTER(VCPU, instruction_stidp), 133 STATS_DESC_COUNTER(VCPU, instruction_spx), 134 STATS_DESC_COUNTER(VCPU, instruction_stpx), 135 STATS_DESC_COUNTER(VCPU, instruction_stap), 136 STATS_DESC_COUNTER(VCPU, instruction_iske), 137 STATS_DESC_COUNTER(VCPU, instruction_ri), 138 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 139 STATS_DESC_COUNTER(VCPU, instruction_sske), 140 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 141 STATS_DESC_COUNTER(VCPU, instruction_stsi), 142 STATS_DESC_COUNTER(VCPU, instruction_stfl), 143 STATS_DESC_COUNTER(VCPU, instruction_tb), 144 STATS_DESC_COUNTER(VCPU, instruction_tpi), 145 STATS_DESC_COUNTER(VCPU, instruction_tprot), 146 STATS_DESC_COUNTER(VCPU, instruction_tsch), 147 STATS_DESC_COUNTER(VCPU, instruction_sie), 148 STATS_DESC_COUNTER(VCPU, instruction_essa), 149 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 150 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 151 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 152 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 153 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 154 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 155 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 156 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 157 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 166 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 167 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 168 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 169 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 170 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 171 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 172 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 175 STATS_DESC_COUNTER(VCPU, pfault_sync) 176 }; 177 178 const struct kvm_stats_header kvm_vcpu_stats_header = { 179 .name_size = KVM_STATS_NAME_SIZE, 180 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 181 .id_offset = sizeof(struct kvm_stats_header), 182 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 183 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 184 sizeof(kvm_vcpu_stats_desc), 185 }; 186 187 /* allow nested virtualization in KVM (if enabled by user space) */ 188 static int nested; 189 module_param(nested, int, S_IRUGO); 190 MODULE_PARM_DESC(nested, "Nested virtualization support"); 191 192 /* allow 1m huge page guest backing, if !nested */ 193 static int hpage; 194 module_param(hpage, int, 0444); 195 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 196 197 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 198 static u8 halt_poll_max_steal = 10; 199 module_param(halt_poll_max_steal, byte, 0644); 200 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 201 202 /* if set to true, the GISA will be initialized and used if available */ 203 static bool use_gisa = true; 204 module_param(use_gisa, bool, 0644); 205 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 206 207 /* maximum diag9c forwarding per second */ 208 unsigned int diag9c_forwarding_hz; 209 module_param(diag9c_forwarding_hz, uint, 0644); 210 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 211 212 /* 213 * allow asynchronous deinit for protected guests; enable by default since 214 * the feature is opt-in anyway 215 */ 216 static int async_destroy = 1; 217 module_param(async_destroy, int, 0444); 218 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 219 220 /* 221 * For now we handle at most 16 double words as this is what the s390 base 222 * kernel handles and stores in the prefix page. If we ever need to go beyond 223 * this, this requires changes to code, but the external uapi can stay. 224 */ 225 #define SIZE_INTERNAL 16 226 227 /* 228 * Base feature mask that defines default mask for facilities. Consists of the 229 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 230 */ 231 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 232 /* 233 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 234 * and defines the facilities that can be enabled via a cpu model. 235 */ 236 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 237 238 static unsigned long kvm_s390_fac_size(void) 239 { 240 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 241 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 242 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 243 sizeof(stfle_fac_list)); 244 245 return SIZE_INTERNAL; 246 } 247 248 /* available cpu features supported by kvm */ 249 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 250 /* available subfunctions indicated via query / "test bit" */ 251 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 252 253 static struct gmap_notifier gmap_notifier; 254 static struct gmap_notifier vsie_gmap_notifier; 255 debug_info_t *kvm_s390_dbf; 256 debug_info_t *kvm_s390_dbf_uv; 257 258 /* Section: not file related */ 259 /* forward declarations */ 260 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 261 unsigned long end); 262 static int sca_switch_to_extended(struct kvm *kvm); 263 264 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 265 { 266 u8 delta_idx = 0; 267 268 /* 269 * The TOD jumps by delta, we have to compensate this by adding 270 * -delta to the epoch. 271 */ 272 delta = -delta; 273 274 /* sign-extension - we're adding to signed values below */ 275 if ((s64)delta < 0) 276 delta_idx = -1; 277 278 scb->epoch += delta; 279 if (scb->ecd & ECD_MEF) { 280 scb->epdx += delta_idx; 281 if (scb->epoch < delta) 282 scb->epdx += 1; 283 } 284 } 285 286 /* 287 * This callback is executed during stop_machine(). All CPUs are therefore 288 * temporarily stopped. In order not to change guest behavior, we have to 289 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 290 * so a CPU won't be stopped while calculating with the epoch. 291 */ 292 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 293 void *v) 294 { 295 struct kvm *kvm; 296 struct kvm_vcpu *vcpu; 297 unsigned long i; 298 unsigned long long *delta = v; 299 300 list_for_each_entry(kvm, &vm_list, vm_list) { 301 kvm_for_each_vcpu(i, vcpu, kvm) { 302 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 303 if (i == 0) { 304 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 305 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 306 } 307 if (vcpu->arch.cputm_enabled) 308 vcpu->arch.cputm_start += *delta; 309 if (vcpu->arch.vsie_block) 310 kvm_clock_sync_scb(vcpu->arch.vsie_block, 311 *delta); 312 } 313 } 314 return NOTIFY_OK; 315 } 316 317 static struct notifier_block kvm_clock_notifier = { 318 .notifier_call = kvm_clock_sync, 319 }; 320 321 static void allow_cpu_feat(unsigned long nr) 322 { 323 set_bit_inv(nr, kvm_s390_available_cpu_feat); 324 } 325 326 static inline int plo_test_bit(unsigned char nr) 327 { 328 unsigned long function = (unsigned long)nr | 0x100; 329 int cc; 330 331 asm volatile( 332 " lgr 0,%[function]\n" 333 /* Parameter registers are ignored for "test bit" */ 334 " plo 0,0,0,0(0)\n" 335 " ipm %0\n" 336 " srl %0,28\n" 337 : "=d" (cc) 338 : [function] "d" (function) 339 : "cc", "0"); 340 return cc == 0; 341 } 342 343 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 344 { 345 asm volatile( 346 " lghi 0,0\n" 347 " lgr 1,%[query]\n" 348 /* Parameter registers are ignored */ 349 " .insn rrf,%[opc] << 16,2,4,6,0\n" 350 : 351 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 352 : "cc", "memory", "0", "1"); 353 } 354 355 #define INSN_SORTL 0xb938 356 #define INSN_DFLTCC 0xb939 357 358 static void __init kvm_s390_cpu_feat_init(void) 359 { 360 int i; 361 362 for (i = 0; i < 256; ++i) { 363 if (plo_test_bit(i)) 364 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 365 } 366 367 if (test_facility(28)) /* TOD-clock steering */ 368 ptff(kvm_s390_available_subfunc.ptff, 369 sizeof(kvm_s390_available_subfunc.ptff), 370 PTFF_QAF); 371 372 if (test_facility(17)) { /* MSA */ 373 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 374 kvm_s390_available_subfunc.kmac); 375 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 376 kvm_s390_available_subfunc.kmc); 377 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 378 kvm_s390_available_subfunc.km); 379 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 380 kvm_s390_available_subfunc.kimd); 381 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 382 kvm_s390_available_subfunc.klmd); 383 } 384 if (test_facility(76)) /* MSA3 */ 385 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 386 kvm_s390_available_subfunc.pckmo); 387 if (test_facility(77)) { /* MSA4 */ 388 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 389 kvm_s390_available_subfunc.kmctr); 390 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 391 kvm_s390_available_subfunc.kmf); 392 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 393 kvm_s390_available_subfunc.kmo); 394 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 395 kvm_s390_available_subfunc.pcc); 396 } 397 if (test_facility(57)) /* MSA5 */ 398 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 399 kvm_s390_available_subfunc.ppno); 400 401 if (test_facility(146)) /* MSA8 */ 402 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 403 kvm_s390_available_subfunc.kma); 404 405 if (test_facility(155)) /* MSA9 */ 406 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 407 kvm_s390_available_subfunc.kdsa); 408 409 if (test_facility(150)) /* SORTL */ 410 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 411 412 if (test_facility(151)) /* DFLTCC */ 413 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 414 415 if (MACHINE_HAS_ESOP) 416 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 417 /* 418 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 419 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 420 */ 421 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 422 !test_facility(3) || !nested) 423 return; 424 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 425 if (sclp.has_64bscao) 426 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 427 if (sclp.has_siif) 428 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 429 if (sclp.has_gpere) 430 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 431 if (sclp.has_gsls) 432 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 433 if (sclp.has_ib) 434 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 435 if (sclp.has_cei) 436 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 437 if (sclp.has_ibs) 438 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 439 if (sclp.has_kss) 440 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 441 /* 442 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 443 * all skey handling functions read/set the skey from the PGSTE 444 * instead of the real storage key. 445 * 446 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 447 * pages being detected as preserved although they are resident. 448 * 449 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 450 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 451 * 452 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 453 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 454 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 455 * 456 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 457 * cannot easily shadow the SCA because of the ipte lock. 458 */ 459 } 460 461 static int __init __kvm_s390_init(void) 462 { 463 int rc = -ENOMEM; 464 465 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 466 if (!kvm_s390_dbf) 467 return -ENOMEM; 468 469 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 470 if (!kvm_s390_dbf_uv) 471 goto err_kvm_uv; 472 473 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 474 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 475 goto err_debug_view; 476 477 kvm_s390_cpu_feat_init(); 478 479 /* Register floating interrupt controller interface. */ 480 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 481 if (rc) { 482 pr_err("A FLIC registration call failed with rc=%d\n", rc); 483 goto err_flic; 484 } 485 486 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 487 rc = kvm_s390_pci_init(); 488 if (rc) { 489 pr_err("Unable to allocate AIFT for PCI\n"); 490 goto err_pci; 491 } 492 } 493 494 rc = kvm_s390_gib_init(GAL_ISC); 495 if (rc) 496 goto err_gib; 497 498 gmap_notifier.notifier_call = kvm_gmap_notifier; 499 gmap_register_pte_notifier(&gmap_notifier); 500 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 501 gmap_register_pte_notifier(&vsie_gmap_notifier); 502 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 503 &kvm_clock_notifier); 504 505 return 0; 506 507 err_gib: 508 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 509 kvm_s390_pci_exit(); 510 err_pci: 511 err_flic: 512 err_debug_view: 513 debug_unregister(kvm_s390_dbf_uv); 514 err_kvm_uv: 515 debug_unregister(kvm_s390_dbf); 516 return rc; 517 } 518 519 static void __kvm_s390_exit(void) 520 { 521 gmap_unregister_pte_notifier(&gmap_notifier); 522 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 523 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 524 &kvm_clock_notifier); 525 526 kvm_s390_gib_destroy(); 527 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 528 kvm_s390_pci_exit(); 529 debug_unregister(kvm_s390_dbf); 530 debug_unregister(kvm_s390_dbf_uv); 531 } 532 533 /* Section: device related */ 534 long kvm_arch_dev_ioctl(struct file *filp, 535 unsigned int ioctl, unsigned long arg) 536 { 537 if (ioctl == KVM_S390_ENABLE_SIE) 538 return s390_enable_sie(); 539 return -EINVAL; 540 } 541 542 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 543 { 544 int r; 545 546 switch (ext) { 547 case KVM_CAP_S390_PSW: 548 case KVM_CAP_S390_GMAP: 549 case KVM_CAP_SYNC_MMU: 550 #ifdef CONFIG_KVM_S390_UCONTROL 551 case KVM_CAP_S390_UCONTROL: 552 #endif 553 case KVM_CAP_ASYNC_PF: 554 case KVM_CAP_SYNC_REGS: 555 case KVM_CAP_ONE_REG: 556 case KVM_CAP_ENABLE_CAP: 557 case KVM_CAP_S390_CSS_SUPPORT: 558 case KVM_CAP_IOEVENTFD: 559 case KVM_CAP_DEVICE_CTRL: 560 case KVM_CAP_S390_IRQCHIP: 561 case KVM_CAP_VM_ATTRIBUTES: 562 case KVM_CAP_MP_STATE: 563 case KVM_CAP_IMMEDIATE_EXIT: 564 case KVM_CAP_S390_INJECT_IRQ: 565 case KVM_CAP_S390_USER_SIGP: 566 case KVM_CAP_S390_USER_STSI: 567 case KVM_CAP_S390_SKEYS: 568 case KVM_CAP_S390_IRQ_STATE: 569 case KVM_CAP_S390_USER_INSTR0: 570 case KVM_CAP_S390_CMMA_MIGRATION: 571 case KVM_CAP_S390_AIS: 572 case KVM_CAP_S390_AIS_MIGRATION: 573 case KVM_CAP_S390_VCPU_RESETS: 574 case KVM_CAP_SET_GUEST_DEBUG: 575 case KVM_CAP_S390_DIAG318: 576 case KVM_CAP_IRQFD_RESAMPLE: 577 r = 1; 578 break; 579 case KVM_CAP_SET_GUEST_DEBUG2: 580 r = KVM_GUESTDBG_VALID_MASK; 581 break; 582 case KVM_CAP_S390_HPAGE_1M: 583 r = 0; 584 if (hpage && !kvm_is_ucontrol(kvm)) 585 r = 1; 586 break; 587 case KVM_CAP_S390_MEM_OP: 588 r = MEM_OP_MAX_SIZE; 589 break; 590 case KVM_CAP_S390_MEM_OP_EXTENSION: 591 /* 592 * Flag bits indicating which extensions are supported. 593 * If r > 0, the base extension must also be supported/indicated, 594 * in order to maintain backwards compatibility. 595 */ 596 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 597 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 598 break; 599 case KVM_CAP_NR_VCPUS: 600 case KVM_CAP_MAX_VCPUS: 601 case KVM_CAP_MAX_VCPU_ID: 602 r = KVM_S390_BSCA_CPU_SLOTS; 603 if (!kvm_s390_use_sca_entries()) 604 r = KVM_MAX_VCPUS; 605 else if (sclp.has_esca && sclp.has_64bscao) 606 r = KVM_S390_ESCA_CPU_SLOTS; 607 if (ext == KVM_CAP_NR_VCPUS) 608 r = min_t(unsigned int, num_online_cpus(), r); 609 break; 610 case KVM_CAP_S390_COW: 611 r = MACHINE_HAS_ESOP; 612 break; 613 case KVM_CAP_S390_VECTOR_REGISTERS: 614 r = MACHINE_HAS_VX; 615 break; 616 case KVM_CAP_S390_RI: 617 r = test_facility(64); 618 break; 619 case KVM_CAP_S390_GS: 620 r = test_facility(133); 621 break; 622 case KVM_CAP_S390_BPB: 623 r = test_facility(82); 624 break; 625 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 626 r = async_destroy && is_prot_virt_host(); 627 break; 628 case KVM_CAP_S390_PROTECTED: 629 r = is_prot_virt_host(); 630 break; 631 case KVM_CAP_S390_PROTECTED_DUMP: { 632 u64 pv_cmds_dump[] = { 633 BIT_UVC_CMD_DUMP_INIT, 634 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 635 BIT_UVC_CMD_DUMP_CPU, 636 BIT_UVC_CMD_DUMP_COMPLETE, 637 }; 638 int i; 639 640 r = is_prot_virt_host(); 641 642 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 643 if (!test_bit_inv(pv_cmds_dump[i], 644 (unsigned long *)&uv_info.inst_calls_list)) { 645 r = 0; 646 break; 647 } 648 } 649 break; 650 } 651 case KVM_CAP_S390_ZPCI_OP: 652 r = kvm_s390_pci_interp_allowed(); 653 break; 654 case KVM_CAP_S390_CPU_TOPOLOGY: 655 r = test_facility(11); 656 break; 657 default: 658 r = 0; 659 } 660 return r; 661 } 662 663 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 664 { 665 int i; 666 gfn_t cur_gfn, last_gfn; 667 unsigned long gaddr, vmaddr; 668 struct gmap *gmap = kvm->arch.gmap; 669 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 670 671 /* Loop over all guest segments */ 672 cur_gfn = memslot->base_gfn; 673 last_gfn = memslot->base_gfn + memslot->npages; 674 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 675 gaddr = gfn_to_gpa(cur_gfn); 676 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 677 if (kvm_is_error_hva(vmaddr)) 678 continue; 679 680 bitmap_zero(bitmap, _PAGE_ENTRIES); 681 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 682 for (i = 0; i < _PAGE_ENTRIES; i++) { 683 if (test_bit(i, bitmap)) 684 mark_page_dirty(kvm, cur_gfn + i); 685 } 686 687 if (fatal_signal_pending(current)) 688 return; 689 cond_resched(); 690 } 691 } 692 693 /* Section: vm related */ 694 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 695 696 /* 697 * Get (and clear) the dirty memory log for a memory slot. 698 */ 699 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 700 struct kvm_dirty_log *log) 701 { 702 int r; 703 unsigned long n; 704 struct kvm_memory_slot *memslot; 705 int is_dirty; 706 707 if (kvm_is_ucontrol(kvm)) 708 return -EINVAL; 709 710 mutex_lock(&kvm->slots_lock); 711 712 r = -EINVAL; 713 if (log->slot >= KVM_USER_MEM_SLOTS) 714 goto out; 715 716 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 717 if (r) 718 goto out; 719 720 /* Clear the dirty log */ 721 if (is_dirty) { 722 n = kvm_dirty_bitmap_bytes(memslot); 723 memset(memslot->dirty_bitmap, 0, n); 724 } 725 r = 0; 726 out: 727 mutex_unlock(&kvm->slots_lock); 728 return r; 729 } 730 731 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 732 { 733 unsigned long i; 734 struct kvm_vcpu *vcpu; 735 736 kvm_for_each_vcpu(i, vcpu, kvm) { 737 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 738 } 739 } 740 741 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 742 { 743 int r; 744 745 if (cap->flags) 746 return -EINVAL; 747 748 switch (cap->cap) { 749 case KVM_CAP_S390_IRQCHIP: 750 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 751 kvm->arch.use_irqchip = 1; 752 r = 0; 753 break; 754 case KVM_CAP_S390_USER_SIGP: 755 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 756 kvm->arch.user_sigp = 1; 757 r = 0; 758 break; 759 case KVM_CAP_S390_VECTOR_REGISTERS: 760 mutex_lock(&kvm->lock); 761 if (kvm->created_vcpus) { 762 r = -EBUSY; 763 } else if (MACHINE_HAS_VX) { 764 set_kvm_facility(kvm->arch.model.fac_mask, 129); 765 set_kvm_facility(kvm->arch.model.fac_list, 129); 766 if (test_facility(134)) { 767 set_kvm_facility(kvm->arch.model.fac_mask, 134); 768 set_kvm_facility(kvm->arch.model.fac_list, 134); 769 } 770 if (test_facility(135)) { 771 set_kvm_facility(kvm->arch.model.fac_mask, 135); 772 set_kvm_facility(kvm->arch.model.fac_list, 135); 773 } 774 if (test_facility(148)) { 775 set_kvm_facility(kvm->arch.model.fac_mask, 148); 776 set_kvm_facility(kvm->arch.model.fac_list, 148); 777 } 778 if (test_facility(152)) { 779 set_kvm_facility(kvm->arch.model.fac_mask, 152); 780 set_kvm_facility(kvm->arch.model.fac_list, 152); 781 } 782 if (test_facility(192)) { 783 set_kvm_facility(kvm->arch.model.fac_mask, 192); 784 set_kvm_facility(kvm->arch.model.fac_list, 192); 785 } 786 r = 0; 787 } else 788 r = -EINVAL; 789 mutex_unlock(&kvm->lock); 790 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 791 r ? "(not available)" : "(success)"); 792 break; 793 case KVM_CAP_S390_RI: 794 r = -EINVAL; 795 mutex_lock(&kvm->lock); 796 if (kvm->created_vcpus) { 797 r = -EBUSY; 798 } else if (test_facility(64)) { 799 set_kvm_facility(kvm->arch.model.fac_mask, 64); 800 set_kvm_facility(kvm->arch.model.fac_list, 64); 801 r = 0; 802 } 803 mutex_unlock(&kvm->lock); 804 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 805 r ? "(not available)" : "(success)"); 806 break; 807 case KVM_CAP_S390_AIS: 808 mutex_lock(&kvm->lock); 809 if (kvm->created_vcpus) { 810 r = -EBUSY; 811 } else { 812 set_kvm_facility(kvm->arch.model.fac_mask, 72); 813 set_kvm_facility(kvm->arch.model.fac_list, 72); 814 r = 0; 815 } 816 mutex_unlock(&kvm->lock); 817 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 818 r ? "(not available)" : "(success)"); 819 break; 820 case KVM_CAP_S390_GS: 821 r = -EINVAL; 822 mutex_lock(&kvm->lock); 823 if (kvm->created_vcpus) { 824 r = -EBUSY; 825 } else if (test_facility(133)) { 826 set_kvm_facility(kvm->arch.model.fac_mask, 133); 827 set_kvm_facility(kvm->arch.model.fac_list, 133); 828 r = 0; 829 } 830 mutex_unlock(&kvm->lock); 831 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 832 r ? "(not available)" : "(success)"); 833 break; 834 case KVM_CAP_S390_HPAGE_1M: 835 mutex_lock(&kvm->lock); 836 if (kvm->created_vcpus) 837 r = -EBUSY; 838 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 839 r = -EINVAL; 840 else { 841 r = 0; 842 mmap_write_lock(kvm->mm); 843 kvm->mm->context.allow_gmap_hpage_1m = 1; 844 mmap_write_unlock(kvm->mm); 845 /* 846 * We might have to create fake 4k page 847 * tables. To avoid that the hardware works on 848 * stale PGSTEs, we emulate these instructions. 849 */ 850 kvm->arch.use_skf = 0; 851 kvm->arch.use_pfmfi = 0; 852 } 853 mutex_unlock(&kvm->lock); 854 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 855 r ? "(not available)" : "(success)"); 856 break; 857 case KVM_CAP_S390_USER_STSI: 858 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 859 kvm->arch.user_stsi = 1; 860 r = 0; 861 break; 862 case KVM_CAP_S390_USER_INSTR0: 863 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 864 kvm->arch.user_instr0 = 1; 865 icpt_operexc_on_all_vcpus(kvm); 866 r = 0; 867 break; 868 case KVM_CAP_S390_CPU_TOPOLOGY: 869 r = -EINVAL; 870 mutex_lock(&kvm->lock); 871 if (kvm->created_vcpus) { 872 r = -EBUSY; 873 } else if (test_facility(11)) { 874 set_kvm_facility(kvm->arch.model.fac_mask, 11); 875 set_kvm_facility(kvm->arch.model.fac_list, 11); 876 r = 0; 877 } 878 mutex_unlock(&kvm->lock); 879 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 880 r ? "(not available)" : "(success)"); 881 break; 882 default: 883 r = -EINVAL; 884 break; 885 } 886 return r; 887 } 888 889 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 890 { 891 int ret; 892 893 switch (attr->attr) { 894 case KVM_S390_VM_MEM_LIMIT_SIZE: 895 ret = 0; 896 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 897 kvm->arch.mem_limit); 898 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 899 ret = -EFAULT; 900 break; 901 default: 902 ret = -ENXIO; 903 break; 904 } 905 return ret; 906 } 907 908 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 909 { 910 int ret; 911 unsigned int idx; 912 switch (attr->attr) { 913 case KVM_S390_VM_MEM_ENABLE_CMMA: 914 ret = -ENXIO; 915 if (!sclp.has_cmma) 916 break; 917 918 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 919 mutex_lock(&kvm->lock); 920 if (kvm->created_vcpus) 921 ret = -EBUSY; 922 else if (kvm->mm->context.allow_gmap_hpage_1m) 923 ret = -EINVAL; 924 else { 925 kvm->arch.use_cmma = 1; 926 /* Not compatible with cmma. */ 927 kvm->arch.use_pfmfi = 0; 928 ret = 0; 929 } 930 mutex_unlock(&kvm->lock); 931 break; 932 case KVM_S390_VM_MEM_CLR_CMMA: 933 ret = -ENXIO; 934 if (!sclp.has_cmma) 935 break; 936 ret = -EINVAL; 937 if (!kvm->arch.use_cmma) 938 break; 939 940 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 941 mutex_lock(&kvm->lock); 942 idx = srcu_read_lock(&kvm->srcu); 943 s390_reset_cmma(kvm->arch.gmap->mm); 944 srcu_read_unlock(&kvm->srcu, idx); 945 mutex_unlock(&kvm->lock); 946 ret = 0; 947 break; 948 case KVM_S390_VM_MEM_LIMIT_SIZE: { 949 unsigned long new_limit; 950 951 if (kvm_is_ucontrol(kvm)) 952 return -EINVAL; 953 954 if (get_user(new_limit, (u64 __user *)attr->addr)) 955 return -EFAULT; 956 957 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 958 new_limit > kvm->arch.mem_limit) 959 return -E2BIG; 960 961 if (!new_limit) 962 return -EINVAL; 963 964 /* gmap_create takes last usable address */ 965 if (new_limit != KVM_S390_NO_MEM_LIMIT) 966 new_limit -= 1; 967 968 ret = -EBUSY; 969 mutex_lock(&kvm->lock); 970 if (!kvm->created_vcpus) { 971 /* gmap_create will round the limit up */ 972 struct gmap *new = gmap_create(current->mm, new_limit); 973 974 if (!new) { 975 ret = -ENOMEM; 976 } else { 977 gmap_remove(kvm->arch.gmap); 978 new->private = kvm; 979 kvm->arch.gmap = new; 980 ret = 0; 981 } 982 } 983 mutex_unlock(&kvm->lock); 984 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 985 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 986 (void *) kvm->arch.gmap->asce); 987 break; 988 } 989 default: 990 ret = -ENXIO; 991 break; 992 } 993 return ret; 994 } 995 996 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 997 998 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 999 { 1000 struct kvm_vcpu *vcpu; 1001 unsigned long i; 1002 1003 kvm_s390_vcpu_block_all(kvm); 1004 1005 kvm_for_each_vcpu(i, vcpu, kvm) { 1006 kvm_s390_vcpu_crypto_setup(vcpu); 1007 /* recreate the shadow crycb by leaving the VSIE handler */ 1008 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1009 } 1010 1011 kvm_s390_vcpu_unblock_all(kvm); 1012 } 1013 1014 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1015 { 1016 mutex_lock(&kvm->lock); 1017 switch (attr->attr) { 1018 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1019 if (!test_kvm_facility(kvm, 76)) { 1020 mutex_unlock(&kvm->lock); 1021 return -EINVAL; 1022 } 1023 get_random_bytes( 1024 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1025 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1026 kvm->arch.crypto.aes_kw = 1; 1027 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1028 break; 1029 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1030 if (!test_kvm_facility(kvm, 76)) { 1031 mutex_unlock(&kvm->lock); 1032 return -EINVAL; 1033 } 1034 get_random_bytes( 1035 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1036 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1037 kvm->arch.crypto.dea_kw = 1; 1038 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1039 break; 1040 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1041 if (!test_kvm_facility(kvm, 76)) { 1042 mutex_unlock(&kvm->lock); 1043 return -EINVAL; 1044 } 1045 kvm->arch.crypto.aes_kw = 0; 1046 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1047 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1048 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1049 break; 1050 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1051 if (!test_kvm_facility(kvm, 76)) { 1052 mutex_unlock(&kvm->lock); 1053 return -EINVAL; 1054 } 1055 kvm->arch.crypto.dea_kw = 0; 1056 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1057 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1058 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1059 break; 1060 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1061 if (!ap_instructions_available()) { 1062 mutex_unlock(&kvm->lock); 1063 return -EOPNOTSUPP; 1064 } 1065 kvm->arch.crypto.apie = 1; 1066 break; 1067 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1068 if (!ap_instructions_available()) { 1069 mutex_unlock(&kvm->lock); 1070 return -EOPNOTSUPP; 1071 } 1072 kvm->arch.crypto.apie = 0; 1073 break; 1074 default: 1075 mutex_unlock(&kvm->lock); 1076 return -ENXIO; 1077 } 1078 1079 kvm_s390_vcpu_crypto_reset_all(kvm); 1080 mutex_unlock(&kvm->lock); 1081 return 0; 1082 } 1083 1084 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1085 { 1086 /* Only set the ECB bits after guest requests zPCI interpretation */ 1087 if (!vcpu->kvm->arch.use_zpci_interp) 1088 return; 1089 1090 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1091 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1092 } 1093 1094 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1095 { 1096 struct kvm_vcpu *vcpu; 1097 unsigned long i; 1098 1099 lockdep_assert_held(&kvm->lock); 1100 1101 if (!kvm_s390_pci_interp_allowed()) 1102 return; 1103 1104 /* 1105 * If host is configured for PCI and the necessary facilities are 1106 * available, turn on interpretation for the life of this guest 1107 */ 1108 kvm->arch.use_zpci_interp = 1; 1109 1110 kvm_s390_vcpu_block_all(kvm); 1111 1112 kvm_for_each_vcpu(i, vcpu, kvm) { 1113 kvm_s390_vcpu_pci_setup(vcpu); 1114 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1115 } 1116 1117 kvm_s390_vcpu_unblock_all(kvm); 1118 } 1119 1120 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1121 { 1122 unsigned long cx; 1123 struct kvm_vcpu *vcpu; 1124 1125 kvm_for_each_vcpu(cx, vcpu, kvm) 1126 kvm_s390_sync_request(req, vcpu); 1127 } 1128 1129 /* 1130 * Must be called with kvm->srcu held to avoid races on memslots, and with 1131 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1132 */ 1133 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1134 { 1135 struct kvm_memory_slot *ms; 1136 struct kvm_memslots *slots; 1137 unsigned long ram_pages = 0; 1138 int bkt; 1139 1140 /* migration mode already enabled */ 1141 if (kvm->arch.migration_mode) 1142 return 0; 1143 slots = kvm_memslots(kvm); 1144 if (!slots || kvm_memslots_empty(slots)) 1145 return -EINVAL; 1146 1147 if (!kvm->arch.use_cmma) { 1148 kvm->arch.migration_mode = 1; 1149 return 0; 1150 } 1151 /* mark all the pages in active slots as dirty */ 1152 kvm_for_each_memslot(ms, bkt, slots) { 1153 if (!ms->dirty_bitmap) 1154 return -EINVAL; 1155 /* 1156 * The second half of the bitmap is only used on x86, 1157 * and would be wasted otherwise, so we put it to good 1158 * use here to keep track of the state of the storage 1159 * attributes. 1160 */ 1161 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1162 ram_pages += ms->npages; 1163 } 1164 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1165 kvm->arch.migration_mode = 1; 1166 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1167 return 0; 1168 } 1169 1170 /* 1171 * Must be called with kvm->slots_lock to avoid races with ourselves and 1172 * kvm_s390_vm_start_migration. 1173 */ 1174 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1175 { 1176 /* migration mode already disabled */ 1177 if (!kvm->arch.migration_mode) 1178 return 0; 1179 kvm->arch.migration_mode = 0; 1180 if (kvm->arch.use_cmma) 1181 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1182 return 0; 1183 } 1184 1185 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1186 struct kvm_device_attr *attr) 1187 { 1188 int res = -ENXIO; 1189 1190 mutex_lock(&kvm->slots_lock); 1191 switch (attr->attr) { 1192 case KVM_S390_VM_MIGRATION_START: 1193 res = kvm_s390_vm_start_migration(kvm); 1194 break; 1195 case KVM_S390_VM_MIGRATION_STOP: 1196 res = kvm_s390_vm_stop_migration(kvm); 1197 break; 1198 default: 1199 break; 1200 } 1201 mutex_unlock(&kvm->slots_lock); 1202 1203 return res; 1204 } 1205 1206 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1207 struct kvm_device_attr *attr) 1208 { 1209 u64 mig = kvm->arch.migration_mode; 1210 1211 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1212 return -ENXIO; 1213 1214 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1215 return -EFAULT; 1216 return 0; 1217 } 1218 1219 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1220 1221 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1222 { 1223 struct kvm_s390_vm_tod_clock gtod; 1224 1225 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1226 return -EFAULT; 1227 1228 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1229 return -EINVAL; 1230 __kvm_s390_set_tod_clock(kvm, >od); 1231 1232 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1233 gtod.epoch_idx, gtod.tod); 1234 1235 return 0; 1236 } 1237 1238 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1239 { 1240 u8 gtod_high; 1241 1242 if (copy_from_user(>od_high, (void __user *)attr->addr, 1243 sizeof(gtod_high))) 1244 return -EFAULT; 1245 1246 if (gtod_high != 0) 1247 return -EINVAL; 1248 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1249 1250 return 0; 1251 } 1252 1253 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1254 { 1255 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1256 1257 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1258 sizeof(gtod.tod))) 1259 return -EFAULT; 1260 1261 __kvm_s390_set_tod_clock(kvm, >od); 1262 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1263 return 0; 1264 } 1265 1266 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1267 { 1268 int ret; 1269 1270 if (attr->flags) 1271 return -EINVAL; 1272 1273 mutex_lock(&kvm->lock); 1274 /* 1275 * For protected guests, the TOD is managed by the ultravisor, so trying 1276 * to change it will never bring the expected results. 1277 */ 1278 if (kvm_s390_pv_is_protected(kvm)) { 1279 ret = -EOPNOTSUPP; 1280 goto out_unlock; 1281 } 1282 1283 switch (attr->attr) { 1284 case KVM_S390_VM_TOD_EXT: 1285 ret = kvm_s390_set_tod_ext(kvm, attr); 1286 break; 1287 case KVM_S390_VM_TOD_HIGH: 1288 ret = kvm_s390_set_tod_high(kvm, attr); 1289 break; 1290 case KVM_S390_VM_TOD_LOW: 1291 ret = kvm_s390_set_tod_low(kvm, attr); 1292 break; 1293 default: 1294 ret = -ENXIO; 1295 break; 1296 } 1297 1298 out_unlock: 1299 mutex_unlock(&kvm->lock); 1300 return ret; 1301 } 1302 1303 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1304 struct kvm_s390_vm_tod_clock *gtod) 1305 { 1306 union tod_clock clk; 1307 1308 preempt_disable(); 1309 1310 store_tod_clock_ext(&clk); 1311 1312 gtod->tod = clk.tod + kvm->arch.epoch; 1313 gtod->epoch_idx = 0; 1314 if (test_kvm_facility(kvm, 139)) { 1315 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1316 if (gtod->tod < clk.tod) 1317 gtod->epoch_idx += 1; 1318 } 1319 1320 preempt_enable(); 1321 } 1322 1323 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1324 { 1325 struct kvm_s390_vm_tod_clock gtod; 1326 1327 memset(>od, 0, sizeof(gtod)); 1328 kvm_s390_get_tod_clock(kvm, >od); 1329 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1330 return -EFAULT; 1331 1332 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1333 gtod.epoch_idx, gtod.tod); 1334 return 0; 1335 } 1336 1337 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1338 { 1339 u8 gtod_high = 0; 1340 1341 if (copy_to_user((void __user *)attr->addr, >od_high, 1342 sizeof(gtod_high))) 1343 return -EFAULT; 1344 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1345 1346 return 0; 1347 } 1348 1349 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1350 { 1351 u64 gtod; 1352 1353 gtod = kvm_s390_get_tod_clock_fast(kvm); 1354 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1355 return -EFAULT; 1356 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1357 1358 return 0; 1359 } 1360 1361 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1362 { 1363 int ret; 1364 1365 if (attr->flags) 1366 return -EINVAL; 1367 1368 switch (attr->attr) { 1369 case KVM_S390_VM_TOD_EXT: 1370 ret = kvm_s390_get_tod_ext(kvm, attr); 1371 break; 1372 case KVM_S390_VM_TOD_HIGH: 1373 ret = kvm_s390_get_tod_high(kvm, attr); 1374 break; 1375 case KVM_S390_VM_TOD_LOW: 1376 ret = kvm_s390_get_tod_low(kvm, attr); 1377 break; 1378 default: 1379 ret = -ENXIO; 1380 break; 1381 } 1382 return ret; 1383 } 1384 1385 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1386 { 1387 struct kvm_s390_vm_cpu_processor *proc; 1388 u16 lowest_ibc, unblocked_ibc; 1389 int ret = 0; 1390 1391 mutex_lock(&kvm->lock); 1392 if (kvm->created_vcpus) { 1393 ret = -EBUSY; 1394 goto out; 1395 } 1396 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1397 if (!proc) { 1398 ret = -ENOMEM; 1399 goto out; 1400 } 1401 if (!copy_from_user(proc, (void __user *)attr->addr, 1402 sizeof(*proc))) { 1403 kvm->arch.model.cpuid = proc->cpuid; 1404 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1405 unblocked_ibc = sclp.ibc & 0xfff; 1406 if (lowest_ibc && proc->ibc) { 1407 if (proc->ibc > unblocked_ibc) 1408 kvm->arch.model.ibc = unblocked_ibc; 1409 else if (proc->ibc < lowest_ibc) 1410 kvm->arch.model.ibc = lowest_ibc; 1411 else 1412 kvm->arch.model.ibc = proc->ibc; 1413 } 1414 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1415 S390_ARCH_FAC_LIST_SIZE_BYTE); 1416 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1417 kvm->arch.model.ibc, 1418 kvm->arch.model.cpuid); 1419 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1420 kvm->arch.model.fac_list[0], 1421 kvm->arch.model.fac_list[1], 1422 kvm->arch.model.fac_list[2]); 1423 } else 1424 ret = -EFAULT; 1425 kfree(proc); 1426 out: 1427 mutex_unlock(&kvm->lock); 1428 return ret; 1429 } 1430 1431 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1432 struct kvm_device_attr *attr) 1433 { 1434 struct kvm_s390_vm_cpu_feat data; 1435 1436 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1437 return -EFAULT; 1438 if (!bitmap_subset((unsigned long *) data.feat, 1439 kvm_s390_available_cpu_feat, 1440 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1441 return -EINVAL; 1442 1443 mutex_lock(&kvm->lock); 1444 if (kvm->created_vcpus) { 1445 mutex_unlock(&kvm->lock); 1446 return -EBUSY; 1447 } 1448 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1449 mutex_unlock(&kvm->lock); 1450 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1451 data.feat[0], 1452 data.feat[1], 1453 data.feat[2]); 1454 return 0; 1455 } 1456 1457 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1458 struct kvm_device_attr *attr) 1459 { 1460 mutex_lock(&kvm->lock); 1461 if (kvm->created_vcpus) { 1462 mutex_unlock(&kvm->lock); 1463 return -EBUSY; 1464 } 1465 1466 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1467 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1468 mutex_unlock(&kvm->lock); 1469 return -EFAULT; 1470 } 1471 mutex_unlock(&kvm->lock); 1472 1473 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1474 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1475 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1476 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1477 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1478 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1479 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1480 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1481 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1482 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1484 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1485 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1486 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1487 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1488 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1489 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1490 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1491 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1492 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1493 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1494 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1495 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1496 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1497 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1498 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1499 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1500 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1501 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1502 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1503 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1504 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1505 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1506 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1508 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1509 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1510 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1511 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1512 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1513 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1514 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1515 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1516 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1517 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1518 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1519 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1520 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1521 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1522 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1524 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1525 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1526 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1527 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1528 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1530 1531 return 0; 1532 } 1533 1534 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1535 { 1536 int ret = -ENXIO; 1537 1538 switch (attr->attr) { 1539 case KVM_S390_VM_CPU_PROCESSOR: 1540 ret = kvm_s390_set_processor(kvm, attr); 1541 break; 1542 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1543 ret = kvm_s390_set_processor_feat(kvm, attr); 1544 break; 1545 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1546 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1547 break; 1548 } 1549 return ret; 1550 } 1551 1552 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1553 { 1554 struct kvm_s390_vm_cpu_processor *proc; 1555 int ret = 0; 1556 1557 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1558 if (!proc) { 1559 ret = -ENOMEM; 1560 goto out; 1561 } 1562 proc->cpuid = kvm->arch.model.cpuid; 1563 proc->ibc = kvm->arch.model.ibc; 1564 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1565 S390_ARCH_FAC_LIST_SIZE_BYTE); 1566 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1567 kvm->arch.model.ibc, 1568 kvm->arch.model.cpuid); 1569 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1570 kvm->arch.model.fac_list[0], 1571 kvm->arch.model.fac_list[1], 1572 kvm->arch.model.fac_list[2]); 1573 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1574 ret = -EFAULT; 1575 kfree(proc); 1576 out: 1577 return ret; 1578 } 1579 1580 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1581 { 1582 struct kvm_s390_vm_cpu_machine *mach; 1583 int ret = 0; 1584 1585 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1586 if (!mach) { 1587 ret = -ENOMEM; 1588 goto out; 1589 } 1590 get_cpu_id((struct cpuid *) &mach->cpuid); 1591 mach->ibc = sclp.ibc; 1592 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1593 S390_ARCH_FAC_LIST_SIZE_BYTE); 1594 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1595 sizeof(stfle_fac_list)); 1596 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1597 kvm->arch.model.ibc, 1598 kvm->arch.model.cpuid); 1599 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1600 mach->fac_mask[0], 1601 mach->fac_mask[1], 1602 mach->fac_mask[2]); 1603 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1604 mach->fac_list[0], 1605 mach->fac_list[1], 1606 mach->fac_list[2]); 1607 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1608 ret = -EFAULT; 1609 kfree(mach); 1610 out: 1611 return ret; 1612 } 1613 1614 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1615 struct kvm_device_attr *attr) 1616 { 1617 struct kvm_s390_vm_cpu_feat data; 1618 1619 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1620 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1621 return -EFAULT; 1622 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1623 data.feat[0], 1624 data.feat[1], 1625 data.feat[2]); 1626 return 0; 1627 } 1628 1629 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1630 struct kvm_device_attr *attr) 1631 { 1632 struct kvm_s390_vm_cpu_feat data; 1633 1634 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1635 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1636 return -EFAULT; 1637 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1638 data.feat[0], 1639 data.feat[1], 1640 data.feat[2]); 1641 return 0; 1642 } 1643 1644 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1645 struct kvm_device_attr *attr) 1646 { 1647 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1648 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1649 return -EFAULT; 1650 1651 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1652 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1653 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1654 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1655 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1656 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1657 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1658 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1659 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1660 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1661 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1662 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1663 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1664 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1665 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1666 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1667 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1668 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1669 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1670 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1671 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1672 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1673 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1674 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1675 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1676 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1677 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1678 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1679 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1680 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1681 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1682 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1683 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1684 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1685 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1686 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1687 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1688 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1689 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1690 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1691 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1692 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1693 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1694 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1695 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1696 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1698 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1699 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1700 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1701 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1702 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1703 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1704 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1705 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1706 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1707 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1708 1709 return 0; 1710 } 1711 1712 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1713 struct kvm_device_attr *attr) 1714 { 1715 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1716 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1717 return -EFAULT; 1718 1719 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1720 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1721 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1722 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1723 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1724 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1725 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1726 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1727 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1728 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1729 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1730 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1731 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1732 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1733 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1734 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1735 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1736 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1737 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1738 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1739 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1740 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1741 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1742 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1743 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1744 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1745 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1746 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1747 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1748 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1749 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1750 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1751 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1752 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1753 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1754 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1755 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1756 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1757 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1758 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1759 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1760 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1761 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1762 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1763 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1764 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1765 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1766 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1767 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1768 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1769 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1770 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1771 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1772 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1773 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1774 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1775 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1776 1777 return 0; 1778 } 1779 1780 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1781 { 1782 int ret = -ENXIO; 1783 1784 switch (attr->attr) { 1785 case KVM_S390_VM_CPU_PROCESSOR: 1786 ret = kvm_s390_get_processor(kvm, attr); 1787 break; 1788 case KVM_S390_VM_CPU_MACHINE: 1789 ret = kvm_s390_get_machine(kvm, attr); 1790 break; 1791 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1792 ret = kvm_s390_get_processor_feat(kvm, attr); 1793 break; 1794 case KVM_S390_VM_CPU_MACHINE_FEAT: 1795 ret = kvm_s390_get_machine_feat(kvm, attr); 1796 break; 1797 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1798 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1799 break; 1800 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1801 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1802 break; 1803 } 1804 return ret; 1805 } 1806 1807 /** 1808 * kvm_s390_update_topology_change_report - update CPU topology change report 1809 * @kvm: guest KVM description 1810 * @val: set or clear the MTCR bit 1811 * 1812 * Updates the Multiprocessor Topology-Change-Report bit to signal 1813 * the guest with a topology change. 1814 * This is only relevant if the topology facility is present. 1815 * 1816 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1817 */ 1818 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1819 { 1820 union sca_utility new, old; 1821 struct bsca_block *sca; 1822 1823 read_lock(&kvm->arch.sca_lock); 1824 sca = kvm->arch.sca; 1825 do { 1826 old = READ_ONCE(sca->utility); 1827 new = old; 1828 new.mtcr = val; 1829 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1830 read_unlock(&kvm->arch.sca_lock); 1831 } 1832 1833 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1834 struct kvm_device_attr *attr) 1835 { 1836 if (!test_kvm_facility(kvm, 11)) 1837 return -ENXIO; 1838 1839 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1840 return 0; 1841 } 1842 1843 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1844 struct kvm_device_attr *attr) 1845 { 1846 u8 topo; 1847 1848 if (!test_kvm_facility(kvm, 11)) 1849 return -ENXIO; 1850 1851 read_lock(&kvm->arch.sca_lock); 1852 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1853 read_unlock(&kvm->arch.sca_lock); 1854 1855 return put_user(topo, (u8 __user *)attr->addr); 1856 } 1857 1858 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1859 { 1860 int ret; 1861 1862 switch (attr->group) { 1863 case KVM_S390_VM_MEM_CTRL: 1864 ret = kvm_s390_set_mem_control(kvm, attr); 1865 break; 1866 case KVM_S390_VM_TOD: 1867 ret = kvm_s390_set_tod(kvm, attr); 1868 break; 1869 case KVM_S390_VM_CPU_MODEL: 1870 ret = kvm_s390_set_cpu_model(kvm, attr); 1871 break; 1872 case KVM_S390_VM_CRYPTO: 1873 ret = kvm_s390_vm_set_crypto(kvm, attr); 1874 break; 1875 case KVM_S390_VM_MIGRATION: 1876 ret = kvm_s390_vm_set_migration(kvm, attr); 1877 break; 1878 case KVM_S390_VM_CPU_TOPOLOGY: 1879 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1880 break; 1881 default: 1882 ret = -ENXIO; 1883 break; 1884 } 1885 1886 return ret; 1887 } 1888 1889 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1890 { 1891 int ret; 1892 1893 switch (attr->group) { 1894 case KVM_S390_VM_MEM_CTRL: 1895 ret = kvm_s390_get_mem_control(kvm, attr); 1896 break; 1897 case KVM_S390_VM_TOD: 1898 ret = kvm_s390_get_tod(kvm, attr); 1899 break; 1900 case KVM_S390_VM_CPU_MODEL: 1901 ret = kvm_s390_get_cpu_model(kvm, attr); 1902 break; 1903 case KVM_S390_VM_MIGRATION: 1904 ret = kvm_s390_vm_get_migration(kvm, attr); 1905 break; 1906 case KVM_S390_VM_CPU_TOPOLOGY: 1907 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1908 break; 1909 default: 1910 ret = -ENXIO; 1911 break; 1912 } 1913 1914 return ret; 1915 } 1916 1917 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1918 { 1919 int ret; 1920 1921 switch (attr->group) { 1922 case KVM_S390_VM_MEM_CTRL: 1923 switch (attr->attr) { 1924 case KVM_S390_VM_MEM_ENABLE_CMMA: 1925 case KVM_S390_VM_MEM_CLR_CMMA: 1926 ret = sclp.has_cmma ? 0 : -ENXIO; 1927 break; 1928 case KVM_S390_VM_MEM_LIMIT_SIZE: 1929 ret = 0; 1930 break; 1931 default: 1932 ret = -ENXIO; 1933 break; 1934 } 1935 break; 1936 case KVM_S390_VM_TOD: 1937 switch (attr->attr) { 1938 case KVM_S390_VM_TOD_LOW: 1939 case KVM_S390_VM_TOD_HIGH: 1940 ret = 0; 1941 break; 1942 default: 1943 ret = -ENXIO; 1944 break; 1945 } 1946 break; 1947 case KVM_S390_VM_CPU_MODEL: 1948 switch (attr->attr) { 1949 case KVM_S390_VM_CPU_PROCESSOR: 1950 case KVM_S390_VM_CPU_MACHINE: 1951 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1952 case KVM_S390_VM_CPU_MACHINE_FEAT: 1953 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1954 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1955 ret = 0; 1956 break; 1957 default: 1958 ret = -ENXIO; 1959 break; 1960 } 1961 break; 1962 case KVM_S390_VM_CRYPTO: 1963 switch (attr->attr) { 1964 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1965 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1966 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1967 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1968 ret = 0; 1969 break; 1970 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1971 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1972 ret = ap_instructions_available() ? 0 : -ENXIO; 1973 break; 1974 default: 1975 ret = -ENXIO; 1976 break; 1977 } 1978 break; 1979 case KVM_S390_VM_MIGRATION: 1980 ret = 0; 1981 break; 1982 case KVM_S390_VM_CPU_TOPOLOGY: 1983 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 1984 break; 1985 default: 1986 ret = -ENXIO; 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1994 { 1995 uint8_t *keys; 1996 uint64_t hva; 1997 int srcu_idx, i, r = 0; 1998 1999 if (args->flags != 0) 2000 return -EINVAL; 2001 2002 /* Is this guest using storage keys? */ 2003 if (!mm_uses_skeys(current->mm)) 2004 return KVM_S390_GET_SKEYS_NONE; 2005 2006 /* Enforce sane limit on memory allocation */ 2007 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2008 return -EINVAL; 2009 2010 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2011 if (!keys) 2012 return -ENOMEM; 2013 2014 mmap_read_lock(current->mm); 2015 srcu_idx = srcu_read_lock(&kvm->srcu); 2016 for (i = 0; i < args->count; i++) { 2017 hva = gfn_to_hva(kvm, args->start_gfn + i); 2018 if (kvm_is_error_hva(hva)) { 2019 r = -EFAULT; 2020 break; 2021 } 2022 2023 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2024 if (r) 2025 break; 2026 } 2027 srcu_read_unlock(&kvm->srcu, srcu_idx); 2028 mmap_read_unlock(current->mm); 2029 2030 if (!r) { 2031 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2032 sizeof(uint8_t) * args->count); 2033 if (r) 2034 r = -EFAULT; 2035 } 2036 2037 kvfree(keys); 2038 return r; 2039 } 2040 2041 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2042 { 2043 uint8_t *keys; 2044 uint64_t hva; 2045 int srcu_idx, i, r = 0; 2046 bool unlocked; 2047 2048 if (args->flags != 0) 2049 return -EINVAL; 2050 2051 /* Enforce sane limit on memory allocation */ 2052 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2053 return -EINVAL; 2054 2055 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2056 if (!keys) 2057 return -ENOMEM; 2058 2059 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2060 sizeof(uint8_t) * args->count); 2061 if (r) { 2062 r = -EFAULT; 2063 goto out; 2064 } 2065 2066 /* Enable storage key handling for the guest */ 2067 r = s390_enable_skey(); 2068 if (r) 2069 goto out; 2070 2071 i = 0; 2072 mmap_read_lock(current->mm); 2073 srcu_idx = srcu_read_lock(&kvm->srcu); 2074 while (i < args->count) { 2075 unlocked = false; 2076 hva = gfn_to_hva(kvm, args->start_gfn + i); 2077 if (kvm_is_error_hva(hva)) { 2078 r = -EFAULT; 2079 break; 2080 } 2081 2082 /* Lowest order bit is reserved */ 2083 if (keys[i] & 0x01) { 2084 r = -EINVAL; 2085 break; 2086 } 2087 2088 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2089 if (r) { 2090 r = fixup_user_fault(current->mm, hva, 2091 FAULT_FLAG_WRITE, &unlocked); 2092 if (r) 2093 break; 2094 } 2095 if (!r) 2096 i++; 2097 } 2098 srcu_read_unlock(&kvm->srcu, srcu_idx); 2099 mmap_read_unlock(current->mm); 2100 out: 2101 kvfree(keys); 2102 return r; 2103 } 2104 2105 /* 2106 * Base address and length must be sent at the start of each block, therefore 2107 * it's cheaper to send some clean data, as long as it's less than the size of 2108 * two longs. 2109 */ 2110 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2111 /* for consistency */ 2112 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2113 2114 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2115 u8 *res, unsigned long bufsize) 2116 { 2117 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2118 2119 args->count = 0; 2120 while (args->count < bufsize) { 2121 hva = gfn_to_hva(kvm, cur_gfn); 2122 /* 2123 * We return an error if the first value was invalid, but we 2124 * return successfully if at least one value was copied. 2125 */ 2126 if (kvm_is_error_hva(hva)) 2127 return args->count ? 0 : -EFAULT; 2128 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2129 pgstev = 0; 2130 res[args->count++] = (pgstev >> 24) & 0x43; 2131 cur_gfn++; 2132 } 2133 2134 return 0; 2135 } 2136 2137 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2138 gfn_t gfn) 2139 { 2140 return ____gfn_to_memslot(slots, gfn, true); 2141 } 2142 2143 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2144 unsigned long cur_gfn) 2145 { 2146 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2147 unsigned long ofs = cur_gfn - ms->base_gfn; 2148 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2149 2150 if (ms->base_gfn + ms->npages <= cur_gfn) { 2151 mnode = rb_next(mnode); 2152 /* If we are above the highest slot, wrap around */ 2153 if (!mnode) 2154 mnode = rb_first(&slots->gfn_tree); 2155 2156 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2157 ofs = 0; 2158 } 2159 2160 if (cur_gfn < ms->base_gfn) 2161 ofs = 0; 2162 2163 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2164 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2165 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2166 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2167 } 2168 return ms->base_gfn + ofs; 2169 } 2170 2171 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2172 u8 *res, unsigned long bufsize) 2173 { 2174 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2175 struct kvm_memslots *slots = kvm_memslots(kvm); 2176 struct kvm_memory_slot *ms; 2177 2178 if (unlikely(kvm_memslots_empty(slots))) 2179 return 0; 2180 2181 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2182 ms = gfn_to_memslot(kvm, cur_gfn); 2183 args->count = 0; 2184 args->start_gfn = cur_gfn; 2185 if (!ms) 2186 return 0; 2187 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2188 mem_end = kvm_s390_get_gfn_end(slots); 2189 2190 while (args->count < bufsize) { 2191 hva = gfn_to_hva(kvm, cur_gfn); 2192 if (kvm_is_error_hva(hva)) 2193 return 0; 2194 /* Decrement only if we actually flipped the bit to 0 */ 2195 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2196 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2197 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2198 pgstev = 0; 2199 /* Save the value */ 2200 res[args->count++] = (pgstev >> 24) & 0x43; 2201 /* If the next bit is too far away, stop. */ 2202 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2203 return 0; 2204 /* If we reached the previous "next", find the next one */ 2205 if (cur_gfn == next_gfn) 2206 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2207 /* Reached the end of memory or of the buffer, stop */ 2208 if ((next_gfn >= mem_end) || 2209 (next_gfn - args->start_gfn >= bufsize)) 2210 return 0; 2211 cur_gfn++; 2212 /* Reached the end of the current memslot, take the next one. */ 2213 if (cur_gfn - ms->base_gfn >= ms->npages) { 2214 ms = gfn_to_memslot(kvm, cur_gfn); 2215 if (!ms) 2216 return 0; 2217 } 2218 } 2219 return 0; 2220 } 2221 2222 /* 2223 * This function searches for the next page with dirty CMMA attributes, and 2224 * saves the attributes in the buffer up to either the end of the buffer or 2225 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2226 * no trailing clean bytes are saved. 2227 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2228 * output buffer will indicate 0 as length. 2229 */ 2230 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2231 struct kvm_s390_cmma_log *args) 2232 { 2233 unsigned long bufsize; 2234 int srcu_idx, peek, ret; 2235 u8 *values; 2236 2237 if (!kvm->arch.use_cmma) 2238 return -ENXIO; 2239 /* Invalid/unsupported flags were specified */ 2240 if (args->flags & ~KVM_S390_CMMA_PEEK) 2241 return -EINVAL; 2242 /* Migration mode query, and we are not doing a migration */ 2243 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2244 if (!peek && !kvm->arch.migration_mode) 2245 return -EINVAL; 2246 /* CMMA is disabled or was not used, or the buffer has length zero */ 2247 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2248 if (!bufsize || !kvm->mm->context.uses_cmm) { 2249 memset(args, 0, sizeof(*args)); 2250 return 0; 2251 } 2252 /* We are not peeking, and there are no dirty pages */ 2253 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2254 memset(args, 0, sizeof(*args)); 2255 return 0; 2256 } 2257 2258 values = vmalloc(bufsize); 2259 if (!values) 2260 return -ENOMEM; 2261 2262 mmap_read_lock(kvm->mm); 2263 srcu_idx = srcu_read_lock(&kvm->srcu); 2264 if (peek) 2265 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2266 else 2267 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2268 srcu_read_unlock(&kvm->srcu, srcu_idx); 2269 mmap_read_unlock(kvm->mm); 2270 2271 if (kvm->arch.migration_mode) 2272 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2273 else 2274 args->remaining = 0; 2275 2276 if (copy_to_user((void __user *)args->values, values, args->count)) 2277 ret = -EFAULT; 2278 2279 vfree(values); 2280 return ret; 2281 } 2282 2283 /* 2284 * This function sets the CMMA attributes for the given pages. If the input 2285 * buffer has zero length, no action is taken, otherwise the attributes are 2286 * set and the mm->context.uses_cmm flag is set. 2287 */ 2288 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2289 const struct kvm_s390_cmma_log *args) 2290 { 2291 unsigned long hva, mask, pgstev, i; 2292 uint8_t *bits; 2293 int srcu_idx, r = 0; 2294 2295 mask = args->mask; 2296 2297 if (!kvm->arch.use_cmma) 2298 return -ENXIO; 2299 /* invalid/unsupported flags */ 2300 if (args->flags != 0) 2301 return -EINVAL; 2302 /* Enforce sane limit on memory allocation */ 2303 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2304 return -EINVAL; 2305 /* Nothing to do */ 2306 if (args->count == 0) 2307 return 0; 2308 2309 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2310 if (!bits) 2311 return -ENOMEM; 2312 2313 r = copy_from_user(bits, (void __user *)args->values, args->count); 2314 if (r) { 2315 r = -EFAULT; 2316 goto out; 2317 } 2318 2319 mmap_read_lock(kvm->mm); 2320 srcu_idx = srcu_read_lock(&kvm->srcu); 2321 for (i = 0; i < args->count; i++) { 2322 hva = gfn_to_hva(kvm, args->start_gfn + i); 2323 if (kvm_is_error_hva(hva)) { 2324 r = -EFAULT; 2325 break; 2326 } 2327 2328 pgstev = bits[i]; 2329 pgstev = pgstev << 24; 2330 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2331 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2332 } 2333 srcu_read_unlock(&kvm->srcu, srcu_idx); 2334 mmap_read_unlock(kvm->mm); 2335 2336 if (!kvm->mm->context.uses_cmm) { 2337 mmap_write_lock(kvm->mm); 2338 kvm->mm->context.uses_cmm = 1; 2339 mmap_write_unlock(kvm->mm); 2340 } 2341 out: 2342 vfree(bits); 2343 return r; 2344 } 2345 2346 /** 2347 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2348 * non protected. 2349 * @kvm: the VM whose protected vCPUs are to be converted 2350 * @rc: return value for the RC field of the UVC (in case of error) 2351 * @rrc: return value for the RRC field of the UVC (in case of error) 2352 * 2353 * Does not stop in case of error, tries to convert as many 2354 * CPUs as possible. In case of error, the RC and RRC of the last error are 2355 * returned. 2356 * 2357 * Return: 0 in case of success, otherwise -EIO 2358 */ 2359 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2360 { 2361 struct kvm_vcpu *vcpu; 2362 unsigned long i; 2363 u16 _rc, _rrc; 2364 int ret = 0; 2365 2366 /* 2367 * We ignore failures and try to destroy as many CPUs as possible. 2368 * At the same time we must not free the assigned resources when 2369 * this fails, as the ultravisor has still access to that memory. 2370 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2371 * behind. 2372 * We want to return the first failure rc and rrc, though. 2373 */ 2374 kvm_for_each_vcpu(i, vcpu, kvm) { 2375 mutex_lock(&vcpu->mutex); 2376 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2377 *rc = _rc; 2378 *rrc = _rrc; 2379 ret = -EIO; 2380 } 2381 mutex_unlock(&vcpu->mutex); 2382 } 2383 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2384 if (use_gisa) 2385 kvm_s390_gisa_enable(kvm); 2386 return ret; 2387 } 2388 2389 /** 2390 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2391 * to protected. 2392 * @kvm: the VM whose protected vCPUs are to be converted 2393 * @rc: return value for the RC field of the UVC (in case of error) 2394 * @rrc: return value for the RRC field of the UVC (in case of error) 2395 * 2396 * Tries to undo the conversion in case of error. 2397 * 2398 * Return: 0 in case of success, otherwise -EIO 2399 */ 2400 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2401 { 2402 unsigned long i; 2403 int r = 0; 2404 u16 dummy; 2405 2406 struct kvm_vcpu *vcpu; 2407 2408 /* Disable the GISA if the ultravisor does not support AIV. */ 2409 if (!test_bit_inv(BIT_UV_FEAT_AIV, &uv_info.uv_feature_indications)) 2410 kvm_s390_gisa_disable(kvm); 2411 2412 kvm_for_each_vcpu(i, vcpu, kvm) { 2413 mutex_lock(&vcpu->mutex); 2414 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2415 mutex_unlock(&vcpu->mutex); 2416 if (r) 2417 break; 2418 } 2419 if (r) 2420 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2421 return r; 2422 } 2423 2424 /* 2425 * Here we provide user space with a direct interface to query UV 2426 * related data like UV maxima and available features as well as 2427 * feature specific data. 2428 * 2429 * To facilitate future extension of the data structures we'll try to 2430 * write data up to the maximum requested length. 2431 */ 2432 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2433 { 2434 ssize_t len_min; 2435 2436 switch (info->header.id) { 2437 case KVM_PV_INFO_VM: { 2438 len_min = sizeof(info->header) + sizeof(info->vm); 2439 2440 if (info->header.len_max < len_min) 2441 return -EINVAL; 2442 2443 memcpy(info->vm.inst_calls_list, 2444 uv_info.inst_calls_list, 2445 sizeof(uv_info.inst_calls_list)); 2446 2447 /* It's max cpuid not max cpus, so it's off by one */ 2448 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2449 info->vm.max_guests = uv_info.max_num_sec_conf; 2450 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2451 info->vm.feature_indication = uv_info.uv_feature_indications; 2452 2453 return len_min; 2454 } 2455 case KVM_PV_INFO_DUMP: { 2456 len_min = sizeof(info->header) + sizeof(info->dump); 2457 2458 if (info->header.len_max < len_min) 2459 return -EINVAL; 2460 2461 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2462 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2463 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2464 return len_min; 2465 } 2466 default: 2467 return -EINVAL; 2468 } 2469 } 2470 2471 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2472 struct kvm_s390_pv_dmp dmp) 2473 { 2474 int r = -EINVAL; 2475 void __user *result_buff = (void __user *)dmp.buff_addr; 2476 2477 switch (dmp.subcmd) { 2478 case KVM_PV_DUMP_INIT: { 2479 if (kvm->arch.pv.dumping) 2480 break; 2481 2482 /* 2483 * Block SIE entry as concurrent dump UVCs could lead 2484 * to validities. 2485 */ 2486 kvm_s390_vcpu_block_all(kvm); 2487 2488 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2489 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2490 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2491 cmd->rc, cmd->rrc); 2492 if (!r) { 2493 kvm->arch.pv.dumping = true; 2494 } else { 2495 kvm_s390_vcpu_unblock_all(kvm); 2496 r = -EINVAL; 2497 } 2498 break; 2499 } 2500 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2501 if (!kvm->arch.pv.dumping) 2502 break; 2503 2504 /* 2505 * gaddr is an output parameter since we might stop 2506 * early. As dmp will be copied back in our caller, we 2507 * don't need to do it ourselves. 2508 */ 2509 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2510 &cmd->rc, &cmd->rrc); 2511 break; 2512 } 2513 case KVM_PV_DUMP_COMPLETE: { 2514 if (!kvm->arch.pv.dumping) 2515 break; 2516 2517 r = -EINVAL; 2518 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2519 break; 2520 2521 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2522 &cmd->rc, &cmd->rrc); 2523 break; 2524 } 2525 default: 2526 r = -ENOTTY; 2527 break; 2528 } 2529 2530 return r; 2531 } 2532 2533 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2534 { 2535 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2536 void __user *argp = (void __user *)cmd->data; 2537 int r = 0; 2538 u16 dummy; 2539 2540 if (need_lock) 2541 mutex_lock(&kvm->lock); 2542 2543 switch (cmd->cmd) { 2544 case KVM_PV_ENABLE: { 2545 r = -EINVAL; 2546 if (kvm_s390_pv_is_protected(kvm)) 2547 break; 2548 2549 /* 2550 * FMT 4 SIE needs esca. As we never switch back to bsca from 2551 * esca, we need no cleanup in the error cases below 2552 */ 2553 r = sca_switch_to_extended(kvm); 2554 if (r) 2555 break; 2556 2557 mmap_write_lock(current->mm); 2558 r = gmap_mark_unmergeable(); 2559 mmap_write_unlock(current->mm); 2560 if (r) 2561 break; 2562 2563 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2564 if (r) 2565 break; 2566 2567 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2568 if (r) 2569 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2570 2571 /* we need to block service interrupts from now on */ 2572 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2573 break; 2574 } 2575 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2576 r = -EINVAL; 2577 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2578 break; 2579 2580 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2581 /* 2582 * If a CPU could not be destroyed, destroy VM will also fail. 2583 * There is no point in trying to destroy it. Instead return 2584 * the rc and rrc from the first CPU that failed destroying. 2585 */ 2586 if (r) 2587 break; 2588 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2589 2590 /* no need to block service interrupts any more */ 2591 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2592 break; 2593 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2594 r = -EINVAL; 2595 if (!async_destroy) 2596 break; 2597 /* kvm->lock must not be held; this is asserted inside the function. */ 2598 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2599 break; 2600 case KVM_PV_DISABLE: { 2601 r = -EINVAL; 2602 if (!kvm_s390_pv_is_protected(kvm)) 2603 break; 2604 2605 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2606 /* 2607 * If a CPU could not be destroyed, destroy VM will also fail. 2608 * There is no point in trying to destroy it. Instead return 2609 * the rc and rrc from the first CPU that failed destroying. 2610 */ 2611 if (r) 2612 break; 2613 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2614 2615 /* no need to block service interrupts any more */ 2616 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2617 break; 2618 } 2619 case KVM_PV_SET_SEC_PARMS: { 2620 struct kvm_s390_pv_sec_parm parms = {}; 2621 void *hdr; 2622 2623 r = -EINVAL; 2624 if (!kvm_s390_pv_is_protected(kvm)) 2625 break; 2626 2627 r = -EFAULT; 2628 if (copy_from_user(&parms, argp, sizeof(parms))) 2629 break; 2630 2631 /* Currently restricted to 8KB */ 2632 r = -EINVAL; 2633 if (parms.length > PAGE_SIZE * 2) 2634 break; 2635 2636 r = -ENOMEM; 2637 hdr = vmalloc(parms.length); 2638 if (!hdr) 2639 break; 2640 2641 r = -EFAULT; 2642 if (!copy_from_user(hdr, (void __user *)parms.origin, 2643 parms.length)) 2644 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2645 &cmd->rc, &cmd->rrc); 2646 2647 vfree(hdr); 2648 break; 2649 } 2650 case KVM_PV_UNPACK: { 2651 struct kvm_s390_pv_unp unp = {}; 2652 2653 r = -EINVAL; 2654 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2655 break; 2656 2657 r = -EFAULT; 2658 if (copy_from_user(&unp, argp, sizeof(unp))) 2659 break; 2660 2661 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2662 &cmd->rc, &cmd->rrc); 2663 break; 2664 } 2665 case KVM_PV_VERIFY: { 2666 r = -EINVAL; 2667 if (!kvm_s390_pv_is_protected(kvm)) 2668 break; 2669 2670 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2671 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2672 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2673 cmd->rrc); 2674 break; 2675 } 2676 case KVM_PV_PREP_RESET: { 2677 r = -EINVAL; 2678 if (!kvm_s390_pv_is_protected(kvm)) 2679 break; 2680 2681 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2682 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2683 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2684 cmd->rc, cmd->rrc); 2685 break; 2686 } 2687 case KVM_PV_UNSHARE_ALL: { 2688 r = -EINVAL; 2689 if (!kvm_s390_pv_is_protected(kvm)) 2690 break; 2691 2692 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2693 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2694 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2695 cmd->rc, cmd->rrc); 2696 break; 2697 } 2698 case KVM_PV_INFO: { 2699 struct kvm_s390_pv_info info = {}; 2700 ssize_t data_len; 2701 2702 /* 2703 * No need to check the VM protection here. 2704 * 2705 * Maybe user space wants to query some of the data 2706 * when the VM is still unprotected. If we see the 2707 * need to fence a new data command we can still 2708 * return an error in the info handler. 2709 */ 2710 2711 r = -EFAULT; 2712 if (copy_from_user(&info, argp, sizeof(info.header))) 2713 break; 2714 2715 r = -EINVAL; 2716 if (info.header.len_max < sizeof(info.header)) 2717 break; 2718 2719 data_len = kvm_s390_handle_pv_info(&info); 2720 if (data_len < 0) { 2721 r = data_len; 2722 break; 2723 } 2724 /* 2725 * If a data command struct is extended (multiple 2726 * times) this can be used to determine how much of it 2727 * is valid. 2728 */ 2729 info.header.len_written = data_len; 2730 2731 r = -EFAULT; 2732 if (copy_to_user(argp, &info, data_len)) 2733 break; 2734 2735 r = 0; 2736 break; 2737 } 2738 case KVM_PV_DUMP: { 2739 struct kvm_s390_pv_dmp dmp; 2740 2741 r = -EINVAL; 2742 if (!kvm_s390_pv_is_protected(kvm)) 2743 break; 2744 2745 r = -EFAULT; 2746 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2747 break; 2748 2749 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2750 if (r) 2751 break; 2752 2753 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2754 r = -EFAULT; 2755 break; 2756 } 2757 2758 break; 2759 } 2760 default: 2761 r = -ENOTTY; 2762 } 2763 if (need_lock) 2764 mutex_unlock(&kvm->lock); 2765 2766 return r; 2767 } 2768 2769 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2770 { 2771 if (mop->flags & ~supported_flags || !mop->size) 2772 return -EINVAL; 2773 if (mop->size > MEM_OP_MAX_SIZE) 2774 return -E2BIG; 2775 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2776 if (mop->key > 0xf) 2777 return -EINVAL; 2778 } else { 2779 mop->key = 0; 2780 } 2781 return 0; 2782 } 2783 2784 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2785 { 2786 void __user *uaddr = (void __user *)mop->buf; 2787 enum gacc_mode acc_mode; 2788 void *tmpbuf = NULL; 2789 int r, srcu_idx; 2790 2791 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2792 KVM_S390_MEMOP_F_CHECK_ONLY); 2793 if (r) 2794 return r; 2795 2796 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2797 tmpbuf = vmalloc(mop->size); 2798 if (!tmpbuf) 2799 return -ENOMEM; 2800 } 2801 2802 srcu_idx = srcu_read_lock(&kvm->srcu); 2803 2804 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2805 r = PGM_ADDRESSING; 2806 goto out_unlock; 2807 } 2808 2809 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2810 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2811 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2812 goto out_unlock; 2813 } 2814 if (acc_mode == GACC_FETCH) { 2815 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2816 mop->size, GACC_FETCH, mop->key); 2817 if (r) 2818 goto out_unlock; 2819 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2820 r = -EFAULT; 2821 } else { 2822 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2823 r = -EFAULT; 2824 goto out_unlock; 2825 } 2826 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2827 mop->size, GACC_STORE, mop->key); 2828 } 2829 2830 out_unlock: 2831 srcu_read_unlock(&kvm->srcu, srcu_idx); 2832 2833 vfree(tmpbuf); 2834 return r; 2835 } 2836 2837 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2838 { 2839 void __user *uaddr = (void __user *)mop->buf; 2840 void __user *old_addr = (void __user *)mop->old_addr; 2841 union { 2842 __uint128_t quad; 2843 char raw[sizeof(__uint128_t)]; 2844 } old = { .quad = 0}, new = { .quad = 0 }; 2845 unsigned int off_in_quad = sizeof(new) - mop->size; 2846 int r, srcu_idx; 2847 bool success; 2848 2849 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2850 if (r) 2851 return r; 2852 /* 2853 * This validates off_in_quad. Checking that size is a power 2854 * of two is not necessary, as cmpxchg_guest_abs_with_key 2855 * takes care of that 2856 */ 2857 if (mop->size > sizeof(new)) 2858 return -EINVAL; 2859 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2860 return -EFAULT; 2861 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2862 return -EFAULT; 2863 2864 srcu_idx = srcu_read_lock(&kvm->srcu); 2865 2866 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2867 r = PGM_ADDRESSING; 2868 goto out_unlock; 2869 } 2870 2871 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2872 new.quad, mop->key, &success); 2873 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2874 r = -EFAULT; 2875 2876 out_unlock: 2877 srcu_read_unlock(&kvm->srcu, srcu_idx); 2878 return r; 2879 } 2880 2881 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2882 { 2883 /* 2884 * This is technically a heuristic only, if the kvm->lock is not 2885 * taken, it is not guaranteed that the vm is/remains non-protected. 2886 * This is ok from a kernel perspective, wrongdoing is detected 2887 * on the access, -EFAULT is returned and the vm may crash the 2888 * next time it accesses the memory in question. 2889 * There is no sane usecase to do switching and a memop on two 2890 * different CPUs at the same time. 2891 */ 2892 if (kvm_s390_pv_get_handle(kvm)) 2893 return -EINVAL; 2894 2895 switch (mop->op) { 2896 case KVM_S390_MEMOP_ABSOLUTE_READ: 2897 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2898 return kvm_s390_vm_mem_op_abs(kvm, mop); 2899 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2900 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2901 default: 2902 return -EINVAL; 2903 } 2904 } 2905 2906 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2907 { 2908 struct kvm *kvm = filp->private_data; 2909 void __user *argp = (void __user *)arg; 2910 struct kvm_device_attr attr; 2911 int r; 2912 2913 switch (ioctl) { 2914 case KVM_S390_INTERRUPT: { 2915 struct kvm_s390_interrupt s390int; 2916 2917 r = -EFAULT; 2918 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2919 break; 2920 r = kvm_s390_inject_vm(kvm, &s390int); 2921 break; 2922 } 2923 case KVM_CREATE_IRQCHIP: { 2924 struct kvm_irq_routing_entry routing; 2925 2926 r = -EINVAL; 2927 if (kvm->arch.use_irqchip) { 2928 /* Set up dummy routing. */ 2929 memset(&routing, 0, sizeof(routing)); 2930 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 2931 } 2932 break; 2933 } 2934 case KVM_SET_DEVICE_ATTR: { 2935 r = -EFAULT; 2936 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2937 break; 2938 r = kvm_s390_vm_set_attr(kvm, &attr); 2939 break; 2940 } 2941 case KVM_GET_DEVICE_ATTR: { 2942 r = -EFAULT; 2943 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2944 break; 2945 r = kvm_s390_vm_get_attr(kvm, &attr); 2946 break; 2947 } 2948 case KVM_HAS_DEVICE_ATTR: { 2949 r = -EFAULT; 2950 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2951 break; 2952 r = kvm_s390_vm_has_attr(kvm, &attr); 2953 break; 2954 } 2955 case KVM_S390_GET_SKEYS: { 2956 struct kvm_s390_skeys args; 2957 2958 r = -EFAULT; 2959 if (copy_from_user(&args, argp, 2960 sizeof(struct kvm_s390_skeys))) 2961 break; 2962 r = kvm_s390_get_skeys(kvm, &args); 2963 break; 2964 } 2965 case KVM_S390_SET_SKEYS: { 2966 struct kvm_s390_skeys args; 2967 2968 r = -EFAULT; 2969 if (copy_from_user(&args, argp, 2970 sizeof(struct kvm_s390_skeys))) 2971 break; 2972 r = kvm_s390_set_skeys(kvm, &args); 2973 break; 2974 } 2975 case KVM_S390_GET_CMMA_BITS: { 2976 struct kvm_s390_cmma_log args; 2977 2978 r = -EFAULT; 2979 if (copy_from_user(&args, argp, sizeof(args))) 2980 break; 2981 mutex_lock(&kvm->slots_lock); 2982 r = kvm_s390_get_cmma_bits(kvm, &args); 2983 mutex_unlock(&kvm->slots_lock); 2984 if (!r) { 2985 r = copy_to_user(argp, &args, sizeof(args)); 2986 if (r) 2987 r = -EFAULT; 2988 } 2989 break; 2990 } 2991 case KVM_S390_SET_CMMA_BITS: { 2992 struct kvm_s390_cmma_log args; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&args, argp, sizeof(args))) 2996 break; 2997 mutex_lock(&kvm->slots_lock); 2998 r = kvm_s390_set_cmma_bits(kvm, &args); 2999 mutex_unlock(&kvm->slots_lock); 3000 break; 3001 } 3002 case KVM_S390_PV_COMMAND: { 3003 struct kvm_pv_cmd args; 3004 3005 /* protvirt means user cpu state */ 3006 kvm_s390_set_user_cpu_state_ctrl(kvm); 3007 r = 0; 3008 if (!is_prot_virt_host()) { 3009 r = -EINVAL; 3010 break; 3011 } 3012 if (copy_from_user(&args, argp, sizeof(args))) { 3013 r = -EFAULT; 3014 break; 3015 } 3016 if (args.flags) { 3017 r = -EINVAL; 3018 break; 3019 } 3020 /* must be called without kvm->lock */ 3021 r = kvm_s390_handle_pv(kvm, &args); 3022 if (copy_to_user(argp, &args, sizeof(args))) { 3023 r = -EFAULT; 3024 break; 3025 } 3026 break; 3027 } 3028 case KVM_S390_MEM_OP: { 3029 struct kvm_s390_mem_op mem_op; 3030 3031 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3032 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3033 else 3034 r = -EFAULT; 3035 break; 3036 } 3037 case KVM_S390_ZPCI_OP: { 3038 struct kvm_s390_zpci_op args; 3039 3040 r = -EINVAL; 3041 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3042 break; 3043 if (copy_from_user(&args, argp, sizeof(args))) { 3044 r = -EFAULT; 3045 break; 3046 } 3047 r = kvm_s390_pci_zpci_op(kvm, &args); 3048 break; 3049 } 3050 default: 3051 r = -ENOTTY; 3052 } 3053 3054 return r; 3055 } 3056 3057 static int kvm_s390_apxa_installed(void) 3058 { 3059 struct ap_config_info info; 3060 3061 if (ap_instructions_available()) { 3062 if (ap_qci(&info) == 0) 3063 return info.apxa; 3064 } 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * The format of the crypto control block (CRYCB) is specified in the 3 low 3071 * order bits of the CRYCB designation (CRYCBD) field as follows: 3072 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3073 * AP extended addressing (APXA) facility are installed. 3074 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3075 * Format 2: Both the APXA and MSAX3 facilities are installed 3076 */ 3077 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3078 { 3079 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 3080 3081 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3082 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3083 3084 /* Check whether MSAX3 is installed */ 3085 if (!test_kvm_facility(kvm, 76)) 3086 return; 3087 3088 if (kvm_s390_apxa_installed()) 3089 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3090 else 3091 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3092 } 3093 3094 /* 3095 * kvm_arch_crypto_set_masks 3096 * 3097 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3098 * to be set. 3099 * @apm: the mask identifying the accessible AP adapters 3100 * @aqm: the mask identifying the accessible AP domains 3101 * @adm: the mask identifying the accessible AP control domains 3102 * 3103 * Set the masks that identify the adapters, domains and control domains to 3104 * which the KVM guest is granted access. 3105 * 3106 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3107 * function. 3108 */ 3109 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3110 unsigned long *aqm, unsigned long *adm) 3111 { 3112 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3113 3114 kvm_s390_vcpu_block_all(kvm); 3115 3116 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3117 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3118 memcpy(crycb->apcb1.apm, apm, 32); 3119 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3120 apm[0], apm[1], apm[2], apm[3]); 3121 memcpy(crycb->apcb1.aqm, aqm, 32); 3122 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3123 aqm[0], aqm[1], aqm[2], aqm[3]); 3124 memcpy(crycb->apcb1.adm, adm, 32); 3125 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3126 adm[0], adm[1], adm[2], adm[3]); 3127 break; 3128 case CRYCB_FORMAT1: 3129 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3130 memcpy(crycb->apcb0.apm, apm, 8); 3131 memcpy(crycb->apcb0.aqm, aqm, 2); 3132 memcpy(crycb->apcb0.adm, adm, 2); 3133 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3134 apm[0], *((unsigned short *)aqm), 3135 *((unsigned short *)adm)); 3136 break; 3137 default: /* Can not happen */ 3138 break; 3139 } 3140 3141 /* recreate the shadow crycb for each vcpu */ 3142 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3143 kvm_s390_vcpu_unblock_all(kvm); 3144 } 3145 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3146 3147 /* 3148 * kvm_arch_crypto_clear_masks 3149 * 3150 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3151 * to be cleared. 3152 * 3153 * Clear the masks that identify the adapters, domains and control domains to 3154 * which the KVM guest is granted access. 3155 * 3156 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3157 * function. 3158 */ 3159 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3160 { 3161 kvm_s390_vcpu_block_all(kvm); 3162 3163 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3164 sizeof(kvm->arch.crypto.crycb->apcb0)); 3165 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3166 sizeof(kvm->arch.crypto.crycb->apcb1)); 3167 3168 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3169 /* recreate the shadow crycb for each vcpu */ 3170 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3171 kvm_s390_vcpu_unblock_all(kvm); 3172 } 3173 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3174 3175 static u64 kvm_s390_get_initial_cpuid(void) 3176 { 3177 struct cpuid cpuid; 3178 3179 get_cpu_id(&cpuid); 3180 cpuid.version = 0xff; 3181 return *((u64 *) &cpuid); 3182 } 3183 3184 static void kvm_s390_crypto_init(struct kvm *kvm) 3185 { 3186 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3187 kvm_s390_set_crycb_format(kvm); 3188 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3189 3190 if (!test_kvm_facility(kvm, 76)) 3191 return; 3192 3193 /* Enable AES/DEA protected key functions by default */ 3194 kvm->arch.crypto.aes_kw = 1; 3195 kvm->arch.crypto.dea_kw = 1; 3196 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3197 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3198 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3199 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3200 } 3201 3202 static void sca_dispose(struct kvm *kvm) 3203 { 3204 if (kvm->arch.use_esca) 3205 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3206 else 3207 free_page((unsigned long)(kvm->arch.sca)); 3208 kvm->arch.sca = NULL; 3209 } 3210 3211 void kvm_arch_free_vm(struct kvm *kvm) 3212 { 3213 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3214 kvm_s390_pci_clear_list(kvm); 3215 3216 __kvm_arch_free_vm(kvm); 3217 } 3218 3219 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3220 { 3221 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3222 int i, rc; 3223 char debug_name[16]; 3224 static unsigned long sca_offset; 3225 3226 rc = -EINVAL; 3227 #ifdef CONFIG_KVM_S390_UCONTROL 3228 if (type & ~KVM_VM_S390_UCONTROL) 3229 goto out_err; 3230 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3231 goto out_err; 3232 #else 3233 if (type) 3234 goto out_err; 3235 #endif 3236 3237 rc = s390_enable_sie(); 3238 if (rc) 3239 goto out_err; 3240 3241 rc = -ENOMEM; 3242 3243 if (!sclp.has_64bscao) 3244 alloc_flags |= GFP_DMA; 3245 rwlock_init(&kvm->arch.sca_lock); 3246 /* start with basic SCA */ 3247 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3248 if (!kvm->arch.sca) 3249 goto out_err; 3250 mutex_lock(&kvm_lock); 3251 sca_offset += 16; 3252 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3253 sca_offset = 0; 3254 kvm->arch.sca = (struct bsca_block *) 3255 ((char *) kvm->arch.sca + sca_offset); 3256 mutex_unlock(&kvm_lock); 3257 3258 sprintf(debug_name, "kvm-%u", current->pid); 3259 3260 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3261 if (!kvm->arch.dbf) 3262 goto out_err; 3263 3264 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3265 kvm->arch.sie_page2 = 3266 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3267 if (!kvm->arch.sie_page2) 3268 goto out_err; 3269 3270 kvm->arch.sie_page2->kvm = kvm; 3271 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3272 3273 for (i = 0; i < kvm_s390_fac_size(); i++) { 3274 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3275 (kvm_s390_fac_base[i] | 3276 kvm_s390_fac_ext[i]); 3277 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3278 kvm_s390_fac_base[i]; 3279 } 3280 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3281 3282 /* we are always in czam mode - even on pre z14 machines */ 3283 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3284 set_kvm_facility(kvm->arch.model.fac_list, 138); 3285 /* we emulate STHYI in kvm */ 3286 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3287 set_kvm_facility(kvm->arch.model.fac_list, 74); 3288 if (MACHINE_HAS_TLB_GUEST) { 3289 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3290 set_kvm_facility(kvm->arch.model.fac_list, 147); 3291 } 3292 3293 if (css_general_characteristics.aiv && test_facility(65)) 3294 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3295 3296 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3297 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3298 3299 kvm_s390_crypto_init(kvm); 3300 3301 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3302 mutex_lock(&kvm->lock); 3303 kvm_s390_pci_init_list(kvm); 3304 kvm_s390_vcpu_pci_enable_interp(kvm); 3305 mutex_unlock(&kvm->lock); 3306 } 3307 3308 mutex_init(&kvm->arch.float_int.ais_lock); 3309 spin_lock_init(&kvm->arch.float_int.lock); 3310 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3311 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3312 init_waitqueue_head(&kvm->arch.ipte_wq); 3313 mutex_init(&kvm->arch.ipte_mutex); 3314 3315 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3316 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3317 3318 if (type & KVM_VM_S390_UCONTROL) { 3319 kvm->arch.gmap = NULL; 3320 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3321 } else { 3322 if (sclp.hamax == U64_MAX) 3323 kvm->arch.mem_limit = TASK_SIZE_MAX; 3324 else 3325 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3326 sclp.hamax + 1); 3327 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3328 if (!kvm->arch.gmap) 3329 goto out_err; 3330 kvm->arch.gmap->private = kvm; 3331 kvm->arch.gmap->pfault_enabled = 0; 3332 } 3333 3334 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3335 kvm->arch.use_skf = sclp.has_skey; 3336 spin_lock_init(&kvm->arch.start_stop_lock); 3337 kvm_s390_vsie_init(kvm); 3338 if (use_gisa) 3339 kvm_s390_gisa_init(kvm); 3340 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3341 kvm->arch.pv.set_aside = NULL; 3342 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3343 3344 return 0; 3345 out_err: 3346 free_page((unsigned long)kvm->arch.sie_page2); 3347 debug_unregister(kvm->arch.dbf); 3348 sca_dispose(kvm); 3349 KVM_EVENT(3, "creation of vm failed: %d", rc); 3350 return rc; 3351 } 3352 3353 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3354 { 3355 u16 rc, rrc; 3356 3357 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3358 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3359 kvm_s390_clear_local_irqs(vcpu); 3360 kvm_clear_async_pf_completion_queue(vcpu); 3361 if (!kvm_is_ucontrol(vcpu->kvm)) 3362 sca_del_vcpu(vcpu); 3363 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3364 3365 if (kvm_is_ucontrol(vcpu->kvm)) 3366 gmap_remove(vcpu->arch.gmap); 3367 3368 if (vcpu->kvm->arch.use_cmma) 3369 kvm_s390_vcpu_unsetup_cmma(vcpu); 3370 /* We can not hold the vcpu mutex here, we are already dying */ 3371 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3372 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3373 free_page((unsigned long)(vcpu->arch.sie_block)); 3374 } 3375 3376 void kvm_arch_destroy_vm(struct kvm *kvm) 3377 { 3378 u16 rc, rrc; 3379 3380 kvm_destroy_vcpus(kvm); 3381 sca_dispose(kvm); 3382 kvm_s390_gisa_destroy(kvm); 3383 /* 3384 * We are already at the end of life and kvm->lock is not taken. 3385 * This is ok as the file descriptor is closed by now and nobody 3386 * can mess with the pv state. 3387 */ 3388 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3389 /* 3390 * Remove the mmu notifier only when the whole KVM VM is torn down, 3391 * and only if one was registered to begin with. If the VM is 3392 * currently not protected, but has been previously been protected, 3393 * then it's possible that the notifier is still registered. 3394 */ 3395 if (kvm->arch.pv.mmu_notifier.ops) 3396 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3397 3398 debug_unregister(kvm->arch.dbf); 3399 free_page((unsigned long)kvm->arch.sie_page2); 3400 if (!kvm_is_ucontrol(kvm)) 3401 gmap_remove(kvm->arch.gmap); 3402 kvm_s390_destroy_adapters(kvm); 3403 kvm_s390_clear_float_irqs(kvm); 3404 kvm_s390_vsie_destroy(kvm); 3405 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3406 } 3407 3408 /* Section: vcpu related */ 3409 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3410 { 3411 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3412 if (!vcpu->arch.gmap) 3413 return -ENOMEM; 3414 vcpu->arch.gmap->private = vcpu->kvm; 3415 3416 return 0; 3417 } 3418 3419 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3420 { 3421 if (!kvm_s390_use_sca_entries()) 3422 return; 3423 read_lock(&vcpu->kvm->arch.sca_lock); 3424 if (vcpu->kvm->arch.use_esca) { 3425 struct esca_block *sca = vcpu->kvm->arch.sca; 3426 3427 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3428 sca->cpu[vcpu->vcpu_id].sda = 0; 3429 } else { 3430 struct bsca_block *sca = vcpu->kvm->arch.sca; 3431 3432 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3433 sca->cpu[vcpu->vcpu_id].sda = 0; 3434 } 3435 read_unlock(&vcpu->kvm->arch.sca_lock); 3436 } 3437 3438 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3439 { 3440 if (!kvm_s390_use_sca_entries()) { 3441 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3442 3443 /* we still need the basic sca for the ipte control */ 3444 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3445 vcpu->arch.sie_block->scaol = sca_phys; 3446 return; 3447 } 3448 read_lock(&vcpu->kvm->arch.sca_lock); 3449 if (vcpu->kvm->arch.use_esca) { 3450 struct esca_block *sca = vcpu->kvm->arch.sca; 3451 phys_addr_t sca_phys = virt_to_phys(sca); 3452 3453 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3454 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3455 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3456 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3457 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3458 } else { 3459 struct bsca_block *sca = vcpu->kvm->arch.sca; 3460 phys_addr_t sca_phys = virt_to_phys(sca); 3461 3462 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3463 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3464 vcpu->arch.sie_block->scaol = sca_phys; 3465 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3466 } 3467 read_unlock(&vcpu->kvm->arch.sca_lock); 3468 } 3469 3470 /* Basic SCA to Extended SCA data copy routines */ 3471 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3472 { 3473 d->sda = s->sda; 3474 d->sigp_ctrl.c = s->sigp_ctrl.c; 3475 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3476 } 3477 3478 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3479 { 3480 int i; 3481 3482 d->ipte_control = s->ipte_control; 3483 d->mcn[0] = s->mcn; 3484 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3485 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3486 } 3487 3488 static int sca_switch_to_extended(struct kvm *kvm) 3489 { 3490 struct bsca_block *old_sca = kvm->arch.sca; 3491 struct esca_block *new_sca; 3492 struct kvm_vcpu *vcpu; 3493 unsigned long vcpu_idx; 3494 u32 scaol, scaoh; 3495 phys_addr_t new_sca_phys; 3496 3497 if (kvm->arch.use_esca) 3498 return 0; 3499 3500 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3501 if (!new_sca) 3502 return -ENOMEM; 3503 3504 new_sca_phys = virt_to_phys(new_sca); 3505 scaoh = new_sca_phys >> 32; 3506 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3507 3508 kvm_s390_vcpu_block_all(kvm); 3509 write_lock(&kvm->arch.sca_lock); 3510 3511 sca_copy_b_to_e(new_sca, old_sca); 3512 3513 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3514 vcpu->arch.sie_block->scaoh = scaoh; 3515 vcpu->arch.sie_block->scaol = scaol; 3516 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3517 } 3518 kvm->arch.sca = new_sca; 3519 kvm->arch.use_esca = 1; 3520 3521 write_unlock(&kvm->arch.sca_lock); 3522 kvm_s390_vcpu_unblock_all(kvm); 3523 3524 free_page((unsigned long)old_sca); 3525 3526 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3527 old_sca, kvm->arch.sca); 3528 return 0; 3529 } 3530 3531 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3532 { 3533 int rc; 3534 3535 if (!kvm_s390_use_sca_entries()) { 3536 if (id < KVM_MAX_VCPUS) 3537 return true; 3538 return false; 3539 } 3540 if (id < KVM_S390_BSCA_CPU_SLOTS) 3541 return true; 3542 if (!sclp.has_esca || !sclp.has_64bscao) 3543 return false; 3544 3545 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3546 3547 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3548 } 3549 3550 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3551 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3552 { 3553 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3554 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3555 vcpu->arch.cputm_start = get_tod_clock_fast(); 3556 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3557 } 3558 3559 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3560 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3561 { 3562 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3563 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3564 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3565 vcpu->arch.cputm_start = 0; 3566 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3567 } 3568 3569 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3570 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3571 { 3572 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3573 vcpu->arch.cputm_enabled = true; 3574 __start_cpu_timer_accounting(vcpu); 3575 } 3576 3577 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3578 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3579 { 3580 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3581 __stop_cpu_timer_accounting(vcpu); 3582 vcpu->arch.cputm_enabled = false; 3583 } 3584 3585 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3586 { 3587 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3588 __enable_cpu_timer_accounting(vcpu); 3589 preempt_enable(); 3590 } 3591 3592 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3593 { 3594 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3595 __disable_cpu_timer_accounting(vcpu); 3596 preempt_enable(); 3597 } 3598 3599 /* set the cpu timer - may only be called from the VCPU thread itself */ 3600 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3601 { 3602 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3603 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3604 if (vcpu->arch.cputm_enabled) 3605 vcpu->arch.cputm_start = get_tod_clock_fast(); 3606 vcpu->arch.sie_block->cputm = cputm; 3607 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3608 preempt_enable(); 3609 } 3610 3611 /* update and get the cpu timer - can also be called from other VCPU threads */ 3612 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3613 { 3614 unsigned int seq; 3615 __u64 value; 3616 3617 if (unlikely(!vcpu->arch.cputm_enabled)) 3618 return vcpu->arch.sie_block->cputm; 3619 3620 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3621 do { 3622 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3623 /* 3624 * If the writer would ever execute a read in the critical 3625 * section, e.g. in irq context, we have a deadlock. 3626 */ 3627 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3628 value = vcpu->arch.sie_block->cputm; 3629 /* if cputm_start is 0, accounting is being started/stopped */ 3630 if (likely(vcpu->arch.cputm_start)) 3631 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3632 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3633 preempt_enable(); 3634 return value; 3635 } 3636 3637 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3638 { 3639 3640 gmap_enable(vcpu->arch.enabled_gmap); 3641 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3642 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3643 __start_cpu_timer_accounting(vcpu); 3644 vcpu->cpu = cpu; 3645 } 3646 3647 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3648 { 3649 vcpu->cpu = -1; 3650 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3651 __stop_cpu_timer_accounting(vcpu); 3652 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3653 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3654 gmap_disable(vcpu->arch.enabled_gmap); 3655 3656 } 3657 3658 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3659 { 3660 mutex_lock(&vcpu->kvm->lock); 3661 preempt_disable(); 3662 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3663 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3664 preempt_enable(); 3665 mutex_unlock(&vcpu->kvm->lock); 3666 if (!kvm_is_ucontrol(vcpu->kvm)) { 3667 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3668 sca_add_vcpu(vcpu); 3669 } 3670 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3671 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3672 /* make vcpu_load load the right gmap on the first trigger */ 3673 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3674 } 3675 3676 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3677 { 3678 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3679 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3680 return true; 3681 return false; 3682 } 3683 3684 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3685 { 3686 /* At least one ECC subfunction must be present */ 3687 return kvm_has_pckmo_subfunc(kvm, 32) || 3688 kvm_has_pckmo_subfunc(kvm, 33) || 3689 kvm_has_pckmo_subfunc(kvm, 34) || 3690 kvm_has_pckmo_subfunc(kvm, 40) || 3691 kvm_has_pckmo_subfunc(kvm, 41); 3692 3693 } 3694 3695 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3696 { 3697 /* 3698 * If the AP instructions are not being interpreted and the MSAX3 3699 * facility is not configured for the guest, there is nothing to set up. 3700 */ 3701 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3702 return; 3703 3704 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3705 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3706 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3707 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3708 3709 if (vcpu->kvm->arch.crypto.apie) 3710 vcpu->arch.sie_block->eca |= ECA_APIE; 3711 3712 /* Set up protected key support */ 3713 if (vcpu->kvm->arch.crypto.aes_kw) { 3714 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3715 /* ecc is also wrapped with AES key */ 3716 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3717 vcpu->arch.sie_block->ecd |= ECD_ECC; 3718 } 3719 3720 if (vcpu->kvm->arch.crypto.dea_kw) 3721 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3722 } 3723 3724 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3725 { 3726 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3727 vcpu->arch.sie_block->cbrlo = 0; 3728 } 3729 3730 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3731 { 3732 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3733 3734 if (!cbrlo_page) 3735 return -ENOMEM; 3736 3737 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3738 return 0; 3739 } 3740 3741 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3742 { 3743 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3744 3745 vcpu->arch.sie_block->ibc = model->ibc; 3746 if (test_kvm_facility(vcpu->kvm, 7)) 3747 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3748 } 3749 3750 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3751 { 3752 int rc = 0; 3753 u16 uvrc, uvrrc; 3754 3755 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3756 CPUSTAT_SM | 3757 CPUSTAT_STOPPED); 3758 3759 if (test_kvm_facility(vcpu->kvm, 78)) 3760 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3761 else if (test_kvm_facility(vcpu->kvm, 8)) 3762 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3763 3764 kvm_s390_vcpu_setup_model(vcpu); 3765 3766 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3767 if (MACHINE_HAS_ESOP) 3768 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3769 if (test_kvm_facility(vcpu->kvm, 9)) 3770 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3771 if (test_kvm_facility(vcpu->kvm, 11)) 3772 vcpu->arch.sie_block->ecb |= ECB_PTF; 3773 if (test_kvm_facility(vcpu->kvm, 73)) 3774 vcpu->arch.sie_block->ecb |= ECB_TE; 3775 if (!kvm_is_ucontrol(vcpu->kvm)) 3776 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3777 3778 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3779 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3780 if (test_kvm_facility(vcpu->kvm, 130)) 3781 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3782 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3783 if (sclp.has_cei) 3784 vcpu->arch.sie_block->eca |= ECA_CEI; 3785 if (sclp.has_ib) 3786 vcpu->arch.sie_block->eca |= ECA_IB; 3787 if (sclp.has_siif) 3788 vcpu->arch.sie_block->eca |= ECA_SII; 3789 if (sclp.has_sigpif) 3790 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3791 if (test_kvm_facility(vcpu->kvm, 129)) { 3792 vcpu->arch.sie_block->eca |= ECA_VX; 3793 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3794 } 3795 if (test_kvm_facility(vcpu->kvm, 139)) 3796 vcpu->arch.sie_block->ecd |= ECD_MEF; 3797 if (test_kvm_facility(vcpu->kvm, 156)) 3798 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3799 if (vcpu->arch.sie_block->gd) { 3800 vcpu->arch.sie_block->eca |= ECA_AIV; 3801 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3802 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3803 } 3804 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3805 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3806 3807 if (sclp.has_kss) 3808 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3809 else 3810 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3811 3812 if (vcpu->kvm->arch.use_cmma) { 3813 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3814 if (rc) 3815 return rc; 3816 } 3817 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3818 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3819 3820 vcpu->arch.sie_block->hpid = HPID_KVM; 3821 3822 kvm_s390_vcpu_crypto_setup(vcpu); 3823 3824 kvm_s390_vcpu_pci_setup(vcpu); 3825 3826 mutex_lock(&vcpu->kvm->lock); 3827 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3828 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3829 if (rc) 3830 kvm_s390_vcpu_unsetup_cmma(vcpu); 3831 } 3832 mutex_unlock(&vcpu->kvm->lock); 3833 3834 return rc; 3835 } 3836 3837 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3838 { 3839 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3840 return -EINVAL; 3841 return 0; 3842 } 3843 3844 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3845 { 3846 struct sie_page *sie_page; 3847 int rc; 3848 3849 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3850 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3851 if (!sie_page) 3852 return -ENOMEM; 3853 3854 vcpu->arch.sie_block = &sie_page->sie_block; 3855 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3856 3857 /* the real guest size will always be smaller than msl */ 3858 vcpu->arch.sie_block->mso = 0; 3859 vcpu->arch.sie_block->msl = sclp.hamax; 3860 3861 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3862 spin_lock_init(&vcpu->arch.local_int.lock); 3863 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3864 seqcount_init(&vcpu->arch.cputm_seqcount); 3865 3866 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3867 kvm_clear_async_pf_completion_queue(vcpu); 3868 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3869 KVM_SYNC_GPRS | 3870 KVM_SYNC_ACRS | 3871 KVM_SYNC_CRS | 3872 KVM_SYNC_ARCH0 | 3873 KVM_SYNC_PFAULT | 3874 KVM_SYNC_DIAG318; 3875 kvm_s390_set_prefix(vcpu, 0); 3876 if (test_kvm_facility(vcpu->kvm, 64)) 3877 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3878 if (test_kvm_facility(vcpu->kvm, 82)) 3879 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3880 if (test_kvm_facility(vcpu->kvm, 133)) 3881 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3882 if (test_kvm_facility(vcpu->kvm, 156)) 3883 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3884 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3885 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 3886 */ 3887 if (MACHINE_HAS_VX) 3888 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3889 else 3890 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3891 3892 if (kvm_is_ucontrol(vcpu->kvm)) { 3893 rc = __kvm_ucontrol_vcpu_init(vcpu); 3894 if (rc) 3895 goto out_free_sie_block; 3896 } 3897 3898 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3899 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3900 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3901 3902 rc = kvm_s390_vcpu_setup(vcpu); 3903 if (rc) 3904 goto out_ucontrol_uninit; 3905 3906 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3907 return 0; 3908 3909 out_ucontrol_uninit: 3910 if (kvm_is_ucontrol(vcpu->kvm)) 3911 gmap_remove(vcpu->arch.gmap); 3912 out_free_sie_block: 3913 free_page((unsigned long)(vcpu->arch.sie_block)); 3914 return rc; 3915 } 3916 3917 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3918 { 3919 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 3920 return kvm_s390_vcpu_has_irq(vcpu, 0); 3921 } 3922 3923 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 3924 { 3925 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 3926 } 3927 3928 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 3929 { 3930 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3931 exit_sie(vcpu); 3932 } 3933 3934 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 3935 { 3936 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3937 } 3938 3939 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 3940 { 3941 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3942 exit_sie(vcpu); 3943 } 3944 3945 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 3946 { 3947 return atomic_read(&vcpu->arch.sie_block->prog20) & 3948 (PROG_BLOCK_SIE | PROG_REQUEST); 3949 } 3950 3951 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 3952 { 3953 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3954 } 3955 3956 /* 3957 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 3958 * If the CPU is not running (e.g. waiting as idle) the function will 3959 * return immediately. */ 3960 void exit_sie(struct kvm_vcpu *vcpu) 3961 { 3962 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 3963 kvm_s390_vsie_kick(vcpu); 3964 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 3965 cpu_relax(); 3966 } 3967 3968 /* Kick a guest cpu out of SIE to process a request synchronously */ 3969 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 3970 { 3971 __kvm_make_request(req, vcpu); 3972 kvm_s390_vcpu_request(vcpu); 3973 } 3974 3975 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 3976 unsigned long end) 3977 { 3978 struct kvm *kvm = gmap->private; 3979 struct kvm_vcpu *vcpu; 3980 unsigned long prefix; 3981 unsigned long i; 3982 3983 if (gmap_is_shadow(gmap)) 3984 return; 3985 if (start >= 1UL << 31) 3986 /* We are only interested in prefix pages */ 3987 return; 3988 kvm_for_each_vcpu(i, vcpu, kvm) { 3989 /* match against both prefix pages */ 3990 prefix = kvm_s390_get_prefix(vcpu); 3991 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 3992 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 3993 start, end); 3994 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 3995 } 3996 } 3997 } 3998 3999 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4000 { 4001 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4002 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 4003 READ_ONCE(halt_poll_max_steal)) { 4004 vcpu->stat.halt_no_poll_steal++; 4005 return true; 4006 } 4007 return false; 4008 } 4009 4010 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4011 { 4012 /* kvm common code refers to this, but never calls it */ 4013 BUG(); 4014 return 0; 4015 } 4016 4017 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4018 struct kvm_one_reg *reg) 4019 { 4020 int r = -EINVAL; 4021 4022 switch (reg->id) { 4023 case KVM_REG_S390_TODPR: 4024 r = put_user(vcpu->arch.sie_block->todpr, 4025 (u32 __user *)reg->addr); 4026 break; 4027 case KVM_REG_S390_EPOCHDIFF: 4028 r = put_user(vcpu->arch.sie_block->epoch, 4029 (u64 __user *)reg->addr); 4030 break; 4031 case KVM_REG_S390_CPU_TIMER: 4032 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4033 (u64 __user *)reg->addr); 4034 break; 4035 case KVM_REG_S390_CLOCK_COMP: 4036 r = put_user(vcpu->arch.sie_block->ckc, 4037 (u64 __user *)reg->addr); 4038 break; 4039 case KVM_REG_S390_PFTOKEN: 4040 r = put_user(vcpu->arch.pfault_token, 4041 (u64 __user *)reg->addr); 4042 break; 4043 case KVM_REG_S390_PFCOMPARE: 4044 r = put_user(vcpu->arch.pfault_compare, 4045 (u64 __user *)reg->addr); 4046 break; 4047 case KVM_REG_S390_PFSELECT: 4048 r = put_user(vcpu->arch.pfault_select, 4049 (u64 __user *)reg->addr); 4050 break; 4051 case KVM_REG_S390_PP: 4052 r = put_user(vcpu->arch.sie_block->pp, 4053 (u64 __user *)reg->addr); 4054 break; 4055 case KVM_REG_S390_GBEA: 4056 r = put_user(vcpu->arch.sie_block->gbea, 4057 (u64 __user *)reg->addr); 4058 break; 4059 default: 4060 break; 4061 } 4062 4063 return r; 4064 } 4065 4066 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4067 struct kvm_one_reg *reg) 4068 { 4069 int r = -EINVAL; 4070 __u64 val; 4071 4072 switch (reg->id) { 4073 case KVM_REG_S390_TODPR: 4074 r = get_user(vcpu->arch.sie_block->todpr, 4075 (u32 __user *)reg->addr); 4076 break; 4077 case KVM_REG_S390_EPOCHDIFF: 4078 r = get_user(vcpu->arch.sie_block->epoch, 4079 (u64 __user *)reg->addr); 4080 break; 4081 case KVM_REG_S390_CPU_TIMER: 4082 r = get_user(val, (u64 __user *)reg->addr); 4083 if (!r) 4084 kvm_s390_set_cpu_timer(vcpu, val); 4085 break; 4086 case KVM_REG_S390_CLOCK_COMP: 4087 r = get_user(vcpu->arch.sie_block->ckc, 4088 (u64 __user *)reg->addr); 4089 break; 4090 case KVM_REG_S390_PFTOKEN: 4091 r = get_user(vcpu->arch.pfault_token, 4092 (u64 __user *)reg->addr); 4093 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4094 kvm_clear_async_pf_completion_queue(vcpu); 4095 break; 4096 case KVM_REG_S390_PFCOMPARE: 4097 r = get_user(vcpu->arch.pfault_compare, 4098 (u64 __user *)reg->addr); 4099 break; 4100 case KVM_REG_S390_PFSELECT: 4101 r = get_user(vcpu->arch.pfault_select, 4102 (u64 __user *)reg->addr); 4103 break; 4104 case KVM_REG_S390_PP: 4105 r = get_user(vcpu->arch.sie_block->pp, 4106 (u64 __user *)reg->addr); 4107 break; 4108 case KVM_REG_S390_GBEA: 4109 r = get_user(vcpu->arch.sie_block->gbea, 4110 (u64 __user *)reg->addr); 4111 break; 4112 default: 4113 break; 4114 } 4115 4116 return r; 4117 } 4118 4119 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4120 { 4121 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4122 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4123 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4124 4125 kvm_clear_async_pf_completion_queue(vcpu); 4126 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4127 kvm_s390_vcpu_stop(vcpu); 4128 kvm_s390_clear_local_irqs(vcpu); 4129 } 4130 4131 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4132 { 4133 /* Initial reset is a superset of the normal reset */ 4134 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4135 4136 /* 4137 * This equals initial cpu reset in pop, but we don't switch to ESA. 4138 * We do not only reset the internal data, but also ... 4139 */ 4140 vcpu->arch.sie_block->gpsw.mask = 0; 4141 vcpu->arch.sie_block->gpsw.addr = 0; 4142 kvm_s390_set_prefix(vcpu, 0); 4143 kvm_s390_set_cpu_timer(vcpu, 0); 4144 vcpu->arch.sie_block->ckc = 0; 4145 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4146 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4147 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4148 4149 /* ... the data in sync regs */ 4150 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4151 vcpu->run->s.regs.ckc = 0; 4152 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4153 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4154 vcpu->run->psw_addr = 0; 4155 vcpu->run->psw_mask = 0; 4156 vcpu->run->s.regs.todpr = 0; 4157 vcpu->run->s.regs.cputm = 0; 4158 vcpu->run->s.regs.ckc = 0; 4159 vcpu->run->s.regs.pp = 0; 4160 vcpu->run->s.regs.gbea = 1; 4161 vcpu->run->s.regs.fpc = 0; 4162 /* 4163 * Do not reset these registers in the protected case, as some of 4164 * them are overlayed and they are not accessible in this case 4165 * anyway. 4166 */ 4167 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4168 vcpu->arch.sie_block->gbea = 1; 4169 vcpu->arch.sie_block->pp = 0; 4170 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4171 vcpu->arch.sie_block->todpr = 0; 4172 } 4173 } 4174 4175 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4176 { 4177 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4178 4179 /* Clear reset is a superset of the initial reset */ 4180 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4181 4182 memset(®s->gprs, 0, sizeof(regs->gprs)); 4183 memset(®s->vrs, 0, sizeof(regs->vrs)); 4184 memset(®s->acrs, 0, sizeof(regs->acrs)); 4185 memset(®s->gscb, 0, sizeof(regs->gscb)); 4186 4187 regs->etoken = 0; 4188 regs->etoken_extension = 0; 4189 } 4190 4191 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4192 { 4193 vcpu_load(vcpu); 4194 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4195 vcpu_put(vcpu); 4196 return 0; 4197 } 4198 4199 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4200 { 4201 vcpu_load(vcpu); 4202 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4203 vcpu_put(vcpu); 4204 return 0; 4205 } 4206 4207 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4208 struct kvm_sregs *sregs) 4209 { 4210 vcpu_load(vcpu); 4211 4212 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4213 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4214 4215 vcpu_put(vcpu); 4216 return 0; 4217 } 4218 4219 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4220 struct kvm_sregs *sregs) 4221 { 4222 vcpu_load(vcpu); 4223 4224 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4225 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4226 4227 vcpu_put(vcpu); 4228 return 0; 4229 } 4230 4231 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4232 { 4233 int ret = 0; 4234 4235 vcpu_load(vcpu); 4236 4237 if (test_fp_ctl(fpu->fpc)) { 4238 ret = -EINVAL; 4239 goto out; 4240 } 4241 vcpu->run->s.regs.fpc = fpu->fpc; 4242 if (MACHINE_HAS_VX) 4243 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4244 (freg_t *) fpu->fprs); 4245 else 4246 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4247 4248 out: 4249 vcpu_put(vcpu); 4250 return ret; 4251 } 4252 4253 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4254 { 4255 vcpu_load(vcpu); 4256 4257 /* make sure we have the latest values */ 4258 save_fpu_regs(); 4259 if (MACHINE_HAS_VX) 4260 convert_vx_to_fp((freg_t *) fpu->fprs, 4261 (__vector128 *) vcpu->run->s.regs.vrs); 4262 else 4263 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4264 fpu->fpc = vcpu->run->s.regs.fpc; 4265 4266 vcpu_put(vcpu); 4267 return 0; 4268 } 4269 4270 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4271 { 4272 int rc = 0; 4273 4274 if (!is_vcpu_stopped(vcpu)) 4275 rc = -EBUSY; 4276 else { 4277 vcpu->run->psw_mask = psw.mask; 4278 vcpu->run->psw_addr = psw.addr; 4279 } 4280 return rc; 4281 } 4282 4283 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4284 struct kvm_translation *tr) 4285 { 4286 return -EINVAL; /* not implemented yet */ 4287 } 4288 4289 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4290 KVM_GUESTDBG_USE_HW_BP | \ 4291 KVM_GUESTDBG_ENABLE) 4292 4293 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4294 struct kvm_guest_debug *dbg) 4295 { 4296 int rc = 0; 4297 4298 vcpu_load(vcpu); 4299 4300 vcpu->guest_debug = 0; 4301 kvm_s390_clear_bp_data(vcpu); 4302 4303 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4304 rc = -EINVAL; 4305 goto out; 4306 } 4307 if (!sclp.has_gpere) { 4308 rc = -EINVAL; 4309 goto out; 4310 } 4311 4312 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4313 vcpu->guest_debug = dbg->control; 4314 /* enforce guest PER */ 4315 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4316 4317 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4318 rc = kvm_s390_import_bp_data(vcpu, dbg); 4319 } else { 4320 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4321 vcpu->arch.guestdbg.last_bp = 0; 4322 } 4323 4324 if (rc) { 4325 vcpu->guest_debug = 0; 4326 kvm_s390_clear_bp_data(vcpu); 4327 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4328 } 4329 4330 out: 4331 vcpu_put(vcpu); 4332 return rc; 4333 } 4334 4335 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4336 struct kvm_mp_state *mp_state) 4337 { 4338 int ret; 4339 4340 vcpu_load(vcpu); 4341 4342 /* CHECK_STOP and LOAD are not supported yet */ 4343 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4344 KVM_MP_STATE_OPERATING; 4345 4346 vcpu_put(vcpu); 4347 return ret; 4348 } 4349 4350 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4351 struct kvm_mp_state *mp_state) 4352 { 4353 int rc = 0; 4354 4355 vcpu_load(vcpu); 4356 4357 /* user space knows about this interface - let it control the state */ 4358 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4359 4360 switch (mp_state->mp_state) { 4361 case KVM_MP_STATE_STOPPED: 4362 rc = kvm_s390_vcpu_stop(vcpu); 4363 break; 4364 case KVM_MP_STATE_OPERATING: 4365 rc = kvm_s390_vcpu_start(vcpu); 4366 break; 4367 case KVM_MP_STATE_LOAD: 4368 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4369 rc = -ENXIO; 4370 break; 4371 } 4372 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4373 break; 4374 case KVM_MP_STATE_CHECK_STOP: 4375 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4376 default: 4377 rc = -ENXIO; 4378 } 4379 4380 vcpu_put(vcpu); 4381 return rc; 4382 } 4383 4384 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4385 { 4386 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4387 } 4388 4389 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4390 { 4391 retry: 4392 kvm_s390_vcpu_request_handled(vcpu); 4393 if (!kvm_request_pending(vcpu)) 4394 return 0; 4395 /* 4396 * If the guest prefix changed, re-arm the ipte notifier for the 4397 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4398 * This ensures that the ipte instruction for this request has 4399 * already finished. We might race against a second unmapper that 4400 * wants to set the blocking bit. Lets just retry the request loop. 4401 */ 4402 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4403 int rc; 4404 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4405 kvm_s390_get_prefix(vcpu), 4406 PAGE_SIZE * 2, PROT_WRITE); 4407 if (rc) { 4408 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4409 return rc; 4410 } 4411 goto retry; 4412 } 4413 4414 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4415 vcpu->arch.sie_block->ihcpu = 0xffff; 4416 goto retry; 4417 } 4418 4419 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4420 if (!ibs_enabled(vcpu)) { 4421 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4422 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4423 } 4424 goto retry; 4425 } 4426 4427 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4428 if (ibs_enabled(vcpu)) { 4429 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4430 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4431 } 4432 goto retry; 4433 } 4434 4435 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4436 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4437 goto retry; 4438 } 4439 4440 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4441 /* 4442 * Disable CMM virtualization; we will emulate the ESSA 4443 * instruction manually, in order to provide additional 4444 * functionalities needed for live migration. 4445 */ 4446 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4447 goto retry; 4448 } 4449 4450 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4451 /* 4452 * Re-enable CMM virtualization if CMMA is available and 4453 * CMM has been used. 4454 */ 4455 if ((vcpu->kvm->arch.use_cmma) && 4456 (vcpu->kvm->mm->context.uses_cmm)) 4457 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4458 goto retry; 4459 } 4460 4461 /* we left the vsie handler, nothing to do, just clear the request */ 4462 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4463 4464 return 0; 4465 } 4466 4467 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4468 { 4469 struct kvm_vcpu *vcpu; 4470 union tod_clock clk; 4471 unsigned long i; 4472 4473 preempt_disable(); 4474 4475 store_tod_clock_ext(&clk); 4476 4477 kvm->arch.epoch = gtod->tod - clk.tod; 4478 kvm->arch.epdx = 0; 4479 if (test_kvm_facility(kvm, 139)) { 4480 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4481 if (kvm->arch.epoch > gtod->tod) 4482 kvm->arch.epdx -= 1; 4483 } 4484 4485 kvm_s390_vcpu_block_all(kvm); 4486 kvm_for_each_vcpu(i, vcpu, kvm) { 4487 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4488 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4489 } 4490 4491 kvm_s390_vcpu_unblock_all(kvm); 4492 preempt_enable(); 4493 } 4494 4495 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4496 { 4497 if (!mutex_trylock(&kvm->lock)) 4498 return 0; 4499 __kvm_s390_set_tod_clock(kvm, gtod); 4500 mutex_unlock(&kvm->lock); 4501 return 1; 4502 } 4503 4504 /** 4505 * kvm_arch_fault_in_page - fault-in guest page if necessary 4506 * @vcpu: The corresponding virtual cpu 4507 * @gpa: Guest physical address 4508 * @writable: Whether the page should be writable or not 4509 * 4510 * Make sure that a guest page has been faulted-in on the host. 4511 * 4512 * Return: Zero on success, negative error code otherwise. 4513 */ 4514 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4515 { 4516 return gmap_fault(vcpu->arch.gmap, gpa, 4517 writable ? FAULT_FLAG_WRITE : 0); 4518 } 4519 4520 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4521 unsigned long token) 4522 { 4523 struct kvm_s390_interrupt inti; 4524 struct kvm_s390_irq irq; 4525 4526 if (start_token) { 4527 irq.u.ext.ext_params2 = token; 4528 irq.type = KVM_S390_INT_PFAULT_INIT; 4529 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4530 } else { 4531 inti.type = KVM_S390_INT_PFAULT_DONE; 4532 inti.parm64 = token; 4533 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4534 } 4535 } 4536 4537 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4538 struct kvm_async_pf *work) 4539 { 4540 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4541 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4542 4543 return true; 4544 } 4545 4546 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4547 struct kvm_async_pf *work) 4548 { 4549 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4550 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4551 } 4552 4553 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4554 struct kvm_async_pf *work) 4555 { 4556 /* s390 will always inject the page directly */ 4557 } 4558 4559 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4560 { 4561 /* 4562 * s390 will always inject the page directly, 4563 * but we still want check_async_completion to cleanup 4564 */ 4565 return true; 4566 } 4567 4568 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4569 { 4570 hva_t hva; 4571 struct kvm_arch_async_pf arch; 4572 4573 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4574 return false; 4575 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4576 vcpu->arch.pfault_compare) 4577 return false; 4578 if (psw_extint_disabled(vcpu)) 4579 return false; 4580 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4581 return false; 4582 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4583 return false; 4584 if (!vcpu->arch.gmap->pfault_enabled) 4585 return false; 4586 4587 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4588 hva += current->thread.gmap_addr & ~PAGE_MASK; 4589 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4590 return false; 4591 4592 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4593 } 4594 4595 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4596 { 4597 int rc, cpuflags; 4598 4599 /* 4600 * On s390 notifications for arriving pages will be delivered directly 4601 * to the guest but the house keeping for completed pfaults is 4602 * handled outside the worker. 4603 */ 4604 kvm_check_async_pf_completion(vcpu); 4605 4606 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4607 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4608 4609 if (need_resched()) 4610 schedule(); 4611 4612 if (!kvm_is_ucontrol(vcpu->kvm)) { 4613 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4614 if (rc) 4615 return rc; 4616 } 4617 4618 rc = kvm_s390_handle_requests(vcpu); 4619 if (rc) 4620 return rc; 4621 4622 if (guestdbg_enabled(vcpu)) { 4623 kvm_s390_backup_guest_per_regs(vcpu); 4624 kvm_s390_patch_guest_per_regs(vcpu); 4625 } 4626 4627 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4628 4629 vcpu->arch.sie_block->icptcode = 0; 4630 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4631 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4632 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4633 4634 return 0; 4635 } 4636 4637 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4638 { 4639 struct kvm_s390_pgm_info pgm_info = { 4640 .code = PGM_ADDRESSING, 4641 }; 4642 u8 opcode, ilen; 4643 int rc; 4644 4645 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4646 trace_kvm_s390_sie_fault(vcpu); 4647 4648 /* 4649 * We want to inject an addressing exception, which is defined as a 4650 * suppressing or terminating exception. However, since we came here 4651 * by a DAT access exception, the PSW still points to the faulting 4652 * instruction since DAT exceptions are nullifying. So we've got 4653 * to look up the current opcode to get the length of the instruction 4654 * to be able to forward the PSW. 4655 */ 4656 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4657 ilen = insn_length(opcode); 4658 if (rc < 0) { 4659 return rc; 4660 } else if (rc) { 4661 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4662 * Forward by arbitrary ilc, injection will take care of 4663 * nullification if necessary. 4664 */ 4665 pgm_info = vcpu->arch.pgm; 4666 ilen = 4; 4667 } 4668 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4669 kvm_s390_forward_psw(vcpu, ilen); 4670 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4671 } 4672 4673 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4674 { 4675 struct mcck_volatile_info *mcck_info; 4676 struct sie_page *sie_page; 4677 4678 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4679 vcpu->arch.sie_block->icptcode); 4680 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4681 4682 if (guestdbg_enabled(vcpu)) 4683 kvm_s390_restore_guest_per_regs(vcpu); 4684 4685 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4686 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4687 4688 if (exit_reason == -EINTR) { 4689 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4690 sie_page = container_of(vcpu->arch.sie_block, 4691 struct sie_page, sie_block); 4692 mcck_info = &sie_page->mcck_info; 4693 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4694 return 0; 4695 } 4696 4697 if (vcpu->arch.sie_block->icptcode > 0) { 4698 int rc = kvm_handle_sie_intercept(vcpu); 4699 4700 if (rc != -EOPNOTSUPP) 4701 return rc; 4702 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4703 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4704 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4705 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4706 return -EREMOTE; 4707 } else if (exit_reason != -EFAULT) { 4708 vcpu->stat.exit_null++; 4709 return 0; 4710 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4711 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4712 vcpu->run->s390_ucontrol.trans_exc_code = 4713 current->thread.gmap_addr; 4714 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4715 return -EREMOTE; 4716 } else if (current->thread.gmap_pfault) { 4717 trace_kvm_s390_major_guest_pfault(vcpu); 4718 current->thread.gmap_pfault = 0; 4719 if (kvm_arch_setup_async_pf(vcpu)) 4720 return 0; 4721 vcpu->stat.pfault_sync++; 4722 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4723 } 4724 return vcpu_post_run_fault_in_sie(vcpu); 4725 } 4726 4727 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4728 static int __vcpu_run(struct kvm_vcpu *vcpu) 4729 { 4730 int rc, exit_reason; 4731 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4732 4733 /* 4734 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4735 * ning the guest), so that memslots (and other stuff) are protected 4736 */ 4737 kvm_vcpu_srcu_read_lock(vcpu); 4738 4739 do { 4740 rc = vcpu_pre_run(vcpu); 4741 if (rc) 4742 break; 4743 4744 kvm_vcpu_srcu_read_unlock(vcpu); 4745 /* 4746 * As PF_VCPU will be used in fault handler, between 4747 * guest_enter and guest_exit should be no uaccess. 4748 */ 4749 local_irq_disable(); 4750 guest_enter_irqoff(); 4751 __disable_cpu_timer_accounting(vcpu); 4752 local_irq_enable(); 4753 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4754 memcpy(sie_page->pv_grregs, 4755 vcpu->run->s.regs.gprs, 4756 sizeof(sie_page->pv_grregs)); 4757 } 4758 if (test_cpu_flag(CIF_FPU)) 4759 load_fpu_regs(); 4760 exit_reason = sie64a(vcpu->arch.sie_block, 4761 vcpu->run->s.regs.gprs); 4762 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4763 memcpy(vcpu->run->s.regs.gprs, 4764 sie_page->pv_grregs, 4765 sizeof(sie_page->pv_grregs)); 4766 /* 4767 * We're not allowed to inject interrupts on intercepts 4768 * that leave the guest state in an "in-between" state 4769 * where the next SIE entry will do a continuation. 4770 * Fence interrupts in our "internal" PSW. 4771 */ 4772 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4773 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4774 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4775 } 4776 } 4777 local_irq_disable(); 4778 __enable_cpu_timer_accounting(vcpu); 4779 guest_exit_irqoff(); 4780 local_irq_enable(); 4781 kvm_vcpu_srcu_read_lock(vcpu); 4782 4783 rc = vcpu_post_run(vcpu, exit_reason); 4784 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4785 4786 kvm_vcpu_srcu_read_unlock(vcpu); 4787 return rc; 4788 } 4789 4790 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4791 { 4792 struct kvm_run *kvm_run = vcpu->run; 4793 struct runtime_instr_cb *riccb; 4794 struct gs_cb *gscb; 4795 4796 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4797 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4798 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4799 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4800 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4801 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4802 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4803 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4804 } 4805 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4806 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4807 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4808 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4809 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4810 kvm_clear_async_pf_completion_queue(vcpu); 4811 } 4812 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4813 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4814 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4815 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4816 } 4817 /* 4818 * If userspace sets the riccb (e.g. after migration) to a valid state, 4819 * we should enable RI here instead of doing the lazy enablement. 4820 */ 4821 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4822 test_kvm_facility(vcpu->kvm, 64) && 4823 riccb->v && 4824 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4825 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4826 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4827 } 4828 /* 4829 * If userspace sets the gscb (e.g. after migration) to non-zero, 4830 * we should enable GS here instead of doing the lazy enablement. 4831 */ 4832 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4833 test_kvm_facility(vcpu->kvm, 133) && 4834 gscb->gssm && 4835 !vcpu->arch.gs_enabled) { 4836 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4837 vcpu->arch.sie_block->ecb |= ECB_GS; 4838 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4839 vcpu->arch.gs_enabled = 1; 4840 } 4841 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4842 test_kvm_facility(vcpu->kvm, 82)) { 4843 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4844 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4845 } 4846 if (MACHINE_HAS_GS) { 4847 preempt_disable(); 4848 __ctl_set_bit(2, 4); 4849 if (current->thread.gs_cb) { 4850 vcpu->arch.host_gscb = current->thread.gs_cb; 4851 save_gs_cb(vcpu->arch.host_gscb); 4852 } 4853 if (vcpu->arch.gs_enabled) { 4854 current->thread.gs_cb = (struct gs_cb *) 4855 &vcpu->run->s.regs.gscb; 4856 restore_gs_cb(current->thread.gs_cb); 4857 } 4858 preempt_enable(); 4859 } 4860 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4861 } 4862 4863 static void sync_regs(struct kvm_vcpu *vcpu) 4864 { 4865 struct kvm_run *kvm_run = vcpu->run; 4866 4867 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4868 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4869 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4870 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4871 /* some control register changes require a tlb flush */ 4872 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4873 } 4874 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4875 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4876 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4877 } 4878 save_access_regs(vcpu->arch.host_acrs); 4879 restore_access_regs(vcpu->run->s.regs.acrs); 4880 /* save host (userspace) fprs/vrs */ 4881 save_fpu_regs(); 4882 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4883 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4884 if (MACHINE_HAS_VX) 4885 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4886 else 4887 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4888 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4889 if (test_fp_ctl(current->thread.fpu.fpc)) 4890 /* User space provided an invalid FPC, let's clear it */ 4891 current->thread.fpu.fpc = 0; 4892 4893 /* Sync fmt2 only data */ 4894 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4895 sync_regs_fmt2(vcpu); 4896 } else { 4897 /* 4898 * In several places we have to modify our internal view to 4899 * not do things that are disallowed by the ultravisor. For 4900 * example we must not inject interrupts after specific exits 4901 * (e.g. 112 prefix page not secure). We do this by turning 4902 * off the machine check, external and I/O interrupt bits 4903 * of our PSW copy. To avoid getting validity intercepts, we 4904 * do only accept the condition code from userspace. 4905 */ 4906 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4907 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4908 PSW_MASK_CC; 4909 } 4910 4911 kvm_run->kvm_dirty_regs = 0; 4912 } 4913 4914 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4915 { 4916 struct kvm_run *kvm_run = vcpu->run; 4917 4918 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4919 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4920 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4921 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4922 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4923 if (MACHINE_HAS_GS) { 4924 preempt_disable(); 4925 __ctl_set_bit(2, 4); 4926 if (vcpu->arch.gs_enabled) 4927 save_gs_cb(current->thread.gs_cb); 4928 current->thread.gs_cb = vcpu->arch.host_gscb; 4929 restore_gs_cb(vcpu->arch.host_gscb); 4930 if (!vcpu->arch.host_gscb) 4931 __ctl_clear_bit(2, 4); 4932 vcpu->arch.host_gscb = NULL; 4933 preempt_enable(); 4934 } 4935 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 4936 } 4937 4938 static void store_regs(struct kvm_vcpu *vcpu) 4939 { 4940 struct kvm_run *kvm_run = vcpu->run; 4941 4942 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 4943 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 4944 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 4945 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 4946 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 4947 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 4948 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 4949 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 4950 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 4951 save_access_regs(vcpu->run->s.regs.acrs); 4952 restore_access_regs(vcpu->arch.host_acrs); 4953 /* Save guest register state */ 4954 save_fpu_regs(); 4955 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 4956 /* Restore will be done lazily at return */ 4957 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 4958 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 4959 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 4960 store_regs_fmt2(vcpu); 4961 } 4962 4963 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 4964 { 4965 struct kvm_run *kvm_run = vcpu->run; 4966 int rc; 4967 4968 /* 4969 * Running a VM while dumping always has the potential to 4970 * produce inconsistent dump data. But for PV vcpus a SIE 4971 * entry while dumping could also lead to a fatal validity 4972 * intercept which we absolutely want to avoid. 4973 */ 4974 if (vcpu->kvm->arch.pv.dumping) 4975 return -EINVAL; 4976 4977 if (kvm_run->immediate_exit) 4978 return -EINTR; 4979 4980 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 4981 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 4982 return -EINVAL; 4983 4984 vcpu_load(vcpu); 4985 4986 if (guestdbg_exit_pending(vcpu)) { 4987 kvm_s390_prepare_debug_exit(vcpu); 4988 rc = 0; 4989 goto out; 4990 } 4991 4992 kvm_sigset_activate(vcpu); 4993 4994 /* 4995 * no need to check the return value of vcpu_start as it can only have 4996 * an error for protvirt, but protvirt means user cpu state 4997 */ 4998 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 4999 kvm_s390_vcpu_start(vcpu); 5000 } else if (is_vcpu_stopped(vcpu)) { 5001 pr_err_ratelimited("can't run stopped vcpu %d\n", 5002 vcpu->vcpu_id); 5003 rc = -EINVAL; 5004 goto out; 5005 } 5006 5007 sync_regs(vcpu); 5008 enable_cpu_timer_accounting(vcpu); 5009 5010 might_fault(); 5011 rc = __vcpu_run(vcpu); 5012 5013 if (signal_pending(current) && !rc) { 5014 kvm_run->exit_reason = KVM_EXIT_INTR; 5015 rc = -EINTR; 5016 } 5017 5018 if (guestdbg_exit_pending(vcpu) && !rc) { 5019 kvm_s390_prepare_debug_exit(vcpu); 5020 rc = 0; 5021 } 5022 5023 if (rc == -EREMOTE) { 5024 /* userspace support is needed, kvm_run has been prepared */ 5025 rc = 0; 5026 } 5027 5028 disable_cpu_timer_accounting(vcpu); 5029 store_regs(vcpu); 5030 5031 kvm_sigset_deactivate(vcpu); 5032 5033 vcpu->stat.exit_userspace++; 5034 out: 5035 vcpu_put(vcpu); 5036 return rc; 5037 } 5038 5039 /* 5040 * store status at address 5041 * we use have two special cases: 5042 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5043 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5044 */ 5045 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5046 { 5047 unsigned char archmode = 1; 5048 freg_t fprs[NUM_FPRS]; 5049 unsigned int px; 5050 u64 clkcomp, cputm; 5051 int rc; 5052 5053 px = kvm_s390_get_prefix(vcpu); 5054 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5055 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5056 return -EFAULT; 5057 gpa = 0; 5058 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5059 if (write_guest_real(vcpu, 163, &archmode, 1)) 5060 return -EFAULT; 5061 gpa = px; 5062 } else 5063 gpa -= __LC_FPREGS_SAVE_AREA; 5064 5065 /* manually convert vector registers if necessary */ 5066 if (MACHINE_HAS_VX) { 5067 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5068 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5069 fprs, 128); 5070 } else { 5071 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5072 vcpu->run->s.regs.fprs, 128); 5073 } 5074 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5075 vcpu->run->s.regs.gprs, 128); 5076 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5077 &vcpu->arch.sie_block->gpsw, 16); 5078 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5079 &px, 4); 5080 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5081 &vcpu->run->s.regs.fpc, 4); 5082 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5083 &vcpu->arch.sie_block->todpr, 4); 5084 cputm = kvm_s390_get_cpu_timer(vcpu); 5085 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5086 &cputm, 8); 5087 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5088 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5089 &clkcomp, 8); 5090 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5091 &vcpu->run->s.regs.acrs, 64); 5092 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5093 &vcpu->arch.sie_block->gcr, 128); 5094 return rc ? -EFAULT : 0; 5095 } 5096 5097 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5098 { 5099 /* 5100 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5101 * switch in the run ioctl. Let's update our copies before we save 5102 * it into the save area 5103 */ 5104 save_fpu_regs(); 5105 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5106 save_access_regs(vcpu->run->s.regs.acrs); 5107 5108 return kvm_s390_store_status_unloaded(vcpu, addr); 5109 } 5110 5111 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5112 { 5113 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5114 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5115 } 5116 5117 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5118 { 5119 unsigned long i; 5120 struct kvm_vcpu *vcpu; 5121 5122 kvm_for_each_vcpu(i, vcpu, kvm) { 5123 __disable_ibs_on_vcpu(vcpu); 5124 } 5125 } 5126 5127 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5128 { 5129 if (!sclp.has_ibs) 5130 return; 5131 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5132 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5133 } 5134 5135 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5136 { 5137 int i, online_vcpus, r = 0, started_vcpus = 0; 5138 5139 if (!is_vcpu_stopped(vcpu)) 5140 return 0; 5141 5142 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5143 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5144 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5145 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5146 5147 /* Let's tell the UV that we want to change into the operating state */ 5148 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5149 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5150 if (r) { 5151 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5152 return r; 5153 } 5154 } 5155 5156 for (i = 0; i < online_vcpus; i++) { 5157 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5158 started_vcpus++; 5159 } 5160 5161 if (started_vcpus == 0) { 5162 /* we're the only active VCPU -> speed it up */ 5163 __enable_ibs_on_vcpu(vcpu); 5164 } else if (started_vcpus == 1) { 5165 /* 5166 * As we are starting a second VCPU, we have to disable 5167 * the IBS facility on all VCPUs to remove potentially 5168 * outstanding ENABLE requests. 5169 */ 5170 __disable_ibs_on_all_vcpus(vcpu->kvm); 5171 } 5172 5173 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5174 /* 5175 * The real PSW might have changed due to a RESTART interpreted by the 5176 * ultravisor. We block all interrupts and let the next sie exit 5177 * refresh our view. 5178 */ 5179 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5180 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5181 /* 5182 * Another VCPU might have used IBS while we were offline. 5183 * Let's play safe and flush the VCPU at startup. 5184 */ 5185 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5186 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5187 return 0; 5188 } 5189 5190 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5191 { 5192 int i, online_vcpus, r = 0, started_vcpus = 0; 5193 struct kvm_vcpu *started_vcpu = NULL; 5194 5195 if (is_vcpu_stopped(vcpu)) 5196 return 0; 5197 5198 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5199 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5200 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5201 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5202 5203 /* Let's tell the UV that we want to change into the stopped state */ 5204 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5205 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5206 if (r) { 5207 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5208 return r; 5209 } 5210 } 5211 5212 /* 5213 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5214 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5215 * have been fully processed. This will ensure that the VCPU 5216 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5217 */ 5218 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5219 kvm_s390_clear_stop_irq(vcpu); 5220 5221 __disable_ibs_on_vcpu(vcpu); 5222 5223 for (i = 0; i < online_vcpus; i++) { 5224 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5225 5226 if (!is_vcpu_stopped(tmp)) { 5227 started_vcpus++; 5228 started_vcpu = tmp; 5229 } 5230 } 5231 5232 if (started_vcpus == 1) { 5233 /* 5234 * As we only have one VCPU left, we want to enable the 5235 * IBS facility for that VCPU to speed it up. 5236 */ 5237 __enable_ibs_on_vcpu(started_vcpu); 5238 } 5239 5240 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5241 return 0; 5242 } 5243 5244 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5245 struct kvm_enable_cap *cap) 5246 { 5247 int r; 5248 5249 if (cap->flags) 5250 return -EINVAL; 5251 5252 switch (cap->cap) { 5253 case KVM_CAP_S390_CSS_SUPPORT: 5254 if (!vcpu->kvm->arch.css_support) { 5255 vcpu->kvm->arch.css_support = 1; 5256 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5257 trace_kvm_s390_enable_css(vcpu->kvm); 5258 } 5259 r = 0; 5260 break; 5261 default: 5262 r = -EINVAL; 5263 break; 5264 } 5265 return r; 5266 } 5267 5268 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5269 struct kvm_s390_mem_op *mop) 5270 { 5271 void __user *uaddr = (void __user *)mop->buf; 5272 void *sida_addr; 5273 int r = 0; 5274 5275 if (mop->flags || !mop->size) 5276 return -EINVAL; 5277 if (mop->size + mop->sida_offset < mop->size) 5278 return -EINVAL; 5279 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5280 return -E2BIG; 5281 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5282 return -EINVAL; 5283 5284 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5285 5286 switch (mop->op) { 5287 case KVM_S390_MEMOP_SIDA_READ: 5288 if (copy_to_user(uaddr, sida_addr, mop->size)) 5289 r = -EFAULT; 5290 5291 break; 5292 case KVM_S390_MEMOP_SIDA_WRITE: 5293 if (copy_from_user(sida_addr, uaddr, mop->size)) 5294 r = -EFAULT; 5295 break; 5296 } 5297 return r; 5298 } 5299 5300 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5301 struct kvm_s390_mem_op *mop) 5302 { 5303 void __user *uaddr = (void __user *)mop->buf; 5304 enum gacc_mode acc_mode; 5305 void *tmpbuf = NULL; 5306 int r; 5307 5308 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5309 KVM_S390_MEMOP_F_CHECK_ONLY | 5310 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5311 if (r) 5312 return r; 5313 if (mop->ar >= NUM_ACRS) 5314 return -EINVAL; 5315 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5316 return -EINVAL; 5317 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5318 tmpbuf = vmalloc(mop->size); 5319 if (!tmpbuf) 5320 return -ENOMEM; 5321 } 5322 5323 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5324 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5325 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5326 acc_mode, mop->key); 5327 goto out_inject; 5328 } 5329 if (acc_mode == GACC_FETCH) { 5330 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5331 mop->size, mop->key); 5332 if (r) 5333 goto out_inject; 5334 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5335 r = -EFAULT; 5336 goto out_free; 5337 } 5338 } else { 5339 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5340 r = -EFAULT; 5341 goto out_free; 5342 } 5343 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5344 mop->size, mop->key); 5345 } 5346 5347 out_inject: 5348 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5349 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5350 5351 out_free: 5352 vfree(tmpbuf); 5353 return r; 5354 } 5355 5356 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5357 struct kvm_s390_mem_op *mop) 5358 { 5359 int r, srcu_idx; 5360 5361 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5362 5363 switch (mop->op) { 5364 case KVM_S390_MEMOP_LOGICAL_READ: 5365 case KVM_S390_MEMOP_LOGICAL_WRITE: 5366 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5367 break; 5368 case KVM_S390_MEMOP_SIDA_READ: 5369 case KVM_S390_MEMOP_SIDA_WRITE: 5370 /* we are locked against sida going away by the vcpu->mutex */ 5371 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5372 break; 5373 default: 5374 r = -EINVAL; 5375 } 5376 5377 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5378 return r; 5379 } 5380 5381 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5382 unsigned int ioctl, unsigned long arg) 5383 { 5384 struct kvm_vcpu *vcpu = filp->private_data; 5385 void __user *argp = (void __user *)arg; 5386 5387 switch (ioctl) { 5388 case KVM_S390_IRQ: { 5389 struct kvm_s390_irq s390irq; 5390 5391 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5392 return -EFAULT; 5393 return kvm_s390_inject_vcpu(vcpu, &s390irq); 5394 } 5395 case KVM_S390_INTERRUPT: { 5396 struct kvm_s390_interrupt s390int; 5397 struct kvm_s390_irq s390irq = {}; 5398 5399 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5400 return -EFAULT; 5401 if (s390int_to_s390irq(&s390int, &s390irq)) 5402 return -EINVAL; 5403 return kvm_s390_inject_vcpu(vcpu, &s390irq); 5404 } 5405 } 5406 return -ENOIOCTLCMD; 5407 } 5408 5409 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5410 struct kvm_pv_cmd *cmd) 5411 { 5412 struct kvm_s390_pv_dmp dmp; 5413 void *data; 5414 int ret; 5415 5416 /* Dump initialization is a prerequisite */ 5417 if (!vcpu->kvm->arch.pv.dumping) 5418 return -EINVAL; 5419 5420 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5421 return -EFAULT; 5422 5423 /* We only handle this subcmd right now */ 5424 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5425 return -EINVAL; 5426 5427 /* CPU dump length is the same as create cpu storage donation. */ 5428 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5429 return -EINVAL; 5430 5431 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5432 if (!data) 5433 return -ENOMEM; 5434 5435 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5436 5437 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5438 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5439 5440 if (ret) 5441 ret = -EINVAL; 5442 5443 /* On success copy over the dump data */ 5444 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5445 ret = -EFAULT; 5446 5447 kvfree(data); 5448 return ret; 5449 } 5450 5451 long kvm_arch_vcpu_ioctl(struct file *filp, 5452 unsigned int ioctl, unsigned long arg) 5453 { 5454 struct kvm_vcpu *vcpu = filp->private_data; 5455 void __user *argp = (void __user *)arg; 5456 int idx; 5457 long r; 5458 u16 rc, rrc; 5459 5460 vcpu_load(vcpu); 5461 5462 switch (ioctl) { 5463 case KVM_S390_STORE_STATUS: 5464 idx = srcu_read_lock(&vcpu->kvm->srcu); 5465 r = kvm_s390_store_status_unloaded(vcpu, arg); 5466 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5467 break; 5468 case KVM_S390_SET_INITIAL_PSW: { 5469 psw_t psw; 5470 5471 r = -EFAULT; 5472 if (copy_from_user(&psw, argp, sizeof(psw))) 5473 break; 5474 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5475 break; 5476 } 5477 case KVM_S390_CLEAR_RESET: 5478 r = 0; 5479 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5480 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5481 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5482 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5483 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5484 rc, rrc); 5485 } 5486 break; 5487 case KVM_S390_INITIAL_RESET: 5488 r = 0; 5489 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5490 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5491 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5492 UVC_CMD_CPU_RESET_INITIAL, 5493 &rc, &rrc); 5494 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5495 rc, rrc); 5496 } 5497 break; 5498 case KVM_S390_NORMAL_RESET: 5499 r = 0; 5500 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5501 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5502 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5503 UVC_CMD_CPU_RESET, &rc, &rrc); 5504 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5505 rc, rrc); 5506 } 5507 break; 5508 case KVM_SET_ONE_REG: 5509 case KVM_GET_ONE_REG: { 5510 struct kvm_one_reg reg; 5511 r = -EINVAL; 5512 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5513 break; 5514 r = -EFAULT; 5515 if (copy_from_user(®, argp, sizeof(reg))) 5516 break; 5517 if (ioctl == KVM_SET_ONE_REG) 5518 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5519 else 5520 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5521 break; 5522 } 5523 #ifdef CONFIG_KVM_S390_UCONTROL 5524 case KVM_S390_UCAS_MAP: { 5525 struct kvm_s390_ucas_mapping ucasmap; 5526 5527 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5528 r = -EFAULT; 5529 break; 5530 } 5531 5532 if (!kvm_is_ucontrol(vcpu->kvm)) { 5533 r = -EINVAL; 5534 break; 5535 } 5536 5537 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5538 ucasmap.vcpu_addr, ucasmap.length); 5539 break; 5540 } 5541 case KVM_S390_UCAS_UNMAP: { 5542 struct kvm_s390_ucas_mapping ucasmap; 5543 5544 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5545 r = -EFAULT; 5546 break; 5547 } 5548 5549 if (!kvm_is_ucontrol(vcpu->kvm)) { 5550 r = -EINVAL; 5551 break; 5552 } 5553 5554 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5555 ucasmap.length); 5556 break; 5557 } 5558 #endif 5559 case KVM_S390_VCPU_FAULT: { 5560 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5561 break; 5562 } 5563 case KVM_ENABLE_CAP: 5564 { 5565 struct kvm_enable_cap cap; 5566 r = -EFAULT; 5567 if (copy_from_user(&cap, argp, sizeof(cap))) 5568 break; 5569 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5570 break; 5571 } 5572 case KVM_S390_MEM_OP: { 5573 struct kvm_s390_mem_op mem_op; 5574 5575 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5576 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5577 else 5578 r = -EFAULT; 5579 break; 5580 } 5581 case KVM_S390_SET_IRQ_STATE: { 5582 struct kvm_s390_irq_state irq_state; 5583 5584 r = -EFAULT; 5585 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5586 break; 5587 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5588 irq_state.len == 0 || 5589 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5590 r = -EINVAL; 5591 break; 5592 } 5593 /* do not use irq_state.flags, it will break old QEMUs */ 5594 r = kvm_s390_set_irq_state(vcpu, 5595 (void __user *) irq_state.buf, 5596 irq_state.len); 5597 break; 5598 } 5599 case KVM_S390_GET_IRQ_STATE: { 5600 struct kvm_s390_irq_state irq_state; 5601 5602 r = -EFAULT; 5603 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5604 break; 5605 if (irq_state.len == 0) { 5606 r = -EINVAL; 5607 break; 5608 } 5609 /* do not use irq_state.flags, it will break old QEMUs */ 5610 r = kvm_s390_get_irq_state(vcpu, 5611 (__u8 __user *) irq_state.buf, 5612 irq_state.len); 5613 break; 5614 } 5615 case KVM_S390_PV_CPU_COMMAND: { 5616 struct kvm_pv_cmd cmd; 5617 5618 r = -EINVAL; 5619 if (!is_prot_virt_host()) 5620 break; 5621 5622 r = -EFAULT; 5623 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5624 break; 5625 5626 r = -EINVAL; 5627 if (cmd.flags) 5628 break; 5629 5630 /* We only handle this cmd right now */ 5631 if (cmd.cmd != KVM_PV_DUMP) 5632 break; 5633 5634 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5635 5636 /* Always copy over UV rc / rrc data */ 5637 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5638 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5639 r = -EFAULT; 5640 break; 5641 } 5642 default: 5643 r = -ENOTTY; 5644 } 5645 5646 vcpu_put(vcpu); 5647 return r; 5648 } 5649 5650 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5651 { 5652 #ifdef CONFIG_KVM_S390_UCONTROL 5653 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5654 && (kvm_is_ucontrol(vcpu->kvm))) { 5655 vmf->page = virt_to_page(vcpu->arch.sie_block); 5656 get_page(vmf->page); 5657 return 0; 5658 } 5659 #endif 5660 return VM_FAULT_SIGBUS; 5661 } 5662 5663 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5664 { 5665 return true; 5666 } 5667 5668 /* Section: memory related */ 5669 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5670 const struct kvm_memory_slot *old, 5671 struct kvm_memory_slot *new, 5672 enum kvm_mr_change change) 5673 { 5674 gpa_t size; 5675 5676 /* When we are protected, we should not change the memory slots */ 5677 if (kvm_s390_pv_get_handle(kvm)) 5678 return -EINVAL; 5679 5680 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5681 /* 5682 * A few sanity checks. We can have memory slots which have to be 5683 * located/ended at a segment boundary (1MB). The memory in userland is 5684 * ok to be fragmented into various different vmas. It is okay to mmap() 5685 * and munmap() stuff in this slot after doing this call at any time 5686 */ 5687 5688 if (new->userspace_addr & 0xffffful) 5689 return -EINVAL; 5690 5691 size = new->npages * PAGE_SIZE; 5692 if (size & 0xffffful) 5693 return -EINVAL; 5694 5695 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5696 return -EINVAL; 5697 } 5698 5699 if (!kvm->arch.migration_mode) 5700 return 0; 5701 5702 /* 5703 * Turn off migration mode when: 5704 * - userspace creates a new memslot with dirty logging off, 5705 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5706 * dirty logging is turned off. 5707 * Migration mode expects dirty page logging being enabled to store 5708 * its dirty bitmap. 5709 */ 5710 if (change != KVM_MR_DELETE && 5711 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5712 WARN(kvm_s390_vm_stop_migration(kvm), 5713 "Failed to stop migration mode"); 5714 5715 return 0; 5716 } 5717 5718 void kvm_arch_commit_memory_region(struct kvm *kvm, 5719 struct kvm_memory_slot *old, 5720 const struct kvm_memory_slot *new, 5721 enum kvm_mr_change change) 5722 { 5723 int rc = 0; 5724 5725 switch (change) { 5726 case KVM_MR_DELETE: 5727 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5728 old->npages * PAGE_SIZE); 5729 break; 5730 case KVM_MR_MOVE: 5731 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5732 old->npages * PAGE_SIZE); 5733 if (rc) 5734 break; 5735 fallthrough; 5736 case KVM_MR_CREATE: 5737 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5738 new->base_gfn * PAGE_SIZE, 5739 new->npages * PAGE_SIZE); 5740 break; 5741 case KVM_MR_FLAGS_ONLY: 5742 break; 5743 default: 5744 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5745 } 5746 if (rc) 5747 pr_warn("failed to commit memory region\n"); 5748 return; 5749 } 5750 5751 static inline unsigned long nonhyp_mask(int i) 5752 { 5753 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5754 5755 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5756 } 5757 5758 static int __init kvm_s390_init(void) 5759 { 5760 int i, r; 5761 5762 if (!sclp.has_sief2) { 5763 pr_info("SIE is not available\n"); 5764 return -ENODEV; 5765 } 5766 5767 if (nested && hpage) { 5768 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5769 return -EINVAL; 5770 } 5771 5772 for (i = 0; i < 16; i++) 5773 kvm_s390_fac_base[i] |= 5774 stfle_fac_list[i] & nonhyp_mask(i); 5775 5776 r = __kvm_s390_init(); 5777 if (r) 5778 return r; 5779 5780 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5781 if (r) { 5782 __kvm_s390_exit(); 5783 return r; 5784 } 5785 return 0; 5786 } 5787 5788 static void __exit kvm_s390_exit(void) 5789 { 5790 kvm_exit(); 5791 5792 __kvm_s390_exit(); 5793 } 5794 5795 module_init(kvm_s390_init); 5796 module_exit(kvm_s390_exit); 5797 5798 /* 5799 * Enable autoloading of the kvm module. 5800 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5801 * since x86 takes a different approach. 5802 */ 5803 #include <linux/miscdevice.h> 5804 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5805 MODULE_ALIAS("devname:kvm"); 5806