1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/access-regs.h> 37 #include <asm/asm-offsets.h> 38 #include <asm/lowcore.h> 39 #include <asm/stp.h> 40 #include <asm/gmap.h> 41 #include <asm/nmi.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/asm.h> 47 #include <asm/fpu.h> 48 #include <asm/ap.h> 49 #include <asm/uv.h> 50 #include "kvm-s390.h" 51 #include "gaccess.h" 52 #include "pci.h" 53 54 #define CREATE_TRACE_POINTS 55 #include "trace.h" 56 #include "trace-s390.h" 57 58 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 59 #define LOCAL_IRQS 32 60 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 61 (KVM_MAX_VCPUS + LOCAL_IRQS)) 62 63 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 64 KVM_GENERIC_VM_STATS(), 65 STATS_DESC_COUNTER(VM, inject_io), 66 STATS_DESC_COUNTER(VM, inject_float_mchk), 67 STATS_DESC_COUNTER(VM, inject_pfault_done), 68 STATS_DESC_COUNTER(VM, inject_service_signal), 69 STATS_DESC_COUNTER(VM, inject_virtio), 70 STATS_DESC_COUNTER(VM, aen_forward), 71 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 72 STATS_DESC_COUNTER(VM, gmap_shadow_create), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 77 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 78 }; 79 80 const struct kvm_stats_header kvm_vm_stats_header = { 81 .name_size = KVM_STATS_NAME_SIZE, 82 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 83 .id_offset = sizeof(struct kvm_stats_header), 84 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 85 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 86 sizeof(kvm_vm_stats_desc), 87 }; 88 89 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 90 KVM_GENERIC_VCPU_STATS(), 91 STATS_DESC_COUNTER(VCPU, exit_userspace), 92 STATS_DESC_COUNTER(VCPU, exit_null), 93 STATS_DESC_COUNTER(VCPU, exit_external_request), 94 STATS_DESC_COUNTER(VCPU, exit_io_request), 95 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 96 STATS_DESC_COUNTER(VCPU, exit_stop_request), 97 STATS_DESC_COUNTER(VCPU, exit_validity), 98 STATS_DESC_COUNTER(VCPU, exit_instruction), 99 STATS_DESC_COUNTER(VCPU, exit_pei), 100 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 101 STATS_DESC_COUNTER(VCPU, instruction_lctl), 102 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 103 STATS_DESC_COUNTER(VCPU, instruction_stctl), 104 STATS_DESC_COUNTER(VCPU, instruction_stctg), 105 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 106 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 107 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 108 STATS_DESC_COUNTER(VCPU, deliver_ckc), 109 STATS_DESC_COUNTER(VCPU, deliver_cputm), 110 STATS_DESC_COUNTER(VCPU, deliver_external_call), 111 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 113 STATS_DESC_COUNTER(VCPU, deliver_virtio), 114 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 117 STATS_DESC_COUNTER(VCPU, deliver_program), 118 STATS_DESC_COUNTER(VCPU, deliver_io), 119 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 120 STATS_DESC_COUNTER(VCPU, exit_wait_state), 121 STATS_DESC_COUNTER(VCPU, inject_ckc), 122 STATS_DESC_COUNTER(VCPU, inject_cputm), 123 STATS_DESC_COUNTER(VCPU, inject_external_call), 124 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 125 STATS_DESC_COUNTER(VCPU, inject_mchk), 126 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 127 STATS_DESC_COUNTER(VCPU, inject_program), 128 STATS_DESC_COUNTER(VCPU, inject_restart), 129 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 130 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 131 STATS_DESC_COUNTER(VCPU, instruction_epsw), 132 STATS_DESC_COUNTER(VCPU, instruction_gs), 133 STATS_DESC_COUNTER(VCPU, instruction_io_other), 134 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 135 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 136 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 137 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 138 STATS_DESC_COUNTER(VCPU, instruction_ptff), 139 STATS_DESC_COUNTER(VCPU, instruction_sck), 140 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 141 STATS_DESC_COUNTER(VCPU, instruction_stidp), 142 STATS_DESC_COUNTER(VCPU, instruction_spx), 143 STATS_DESC_COUNTER(VCPU, instruction_stpx), 144 STATS_DESC_COUNTER(VCPU, instruction_stap), 145 STATS_DESC_COUNTER(VCPU, instruction_iske), 146 STATS_DESC_COUNTER(VCPU, instruction_ri), 147 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 148 STATS_DESC_COUNTER(VCPU, instruction_sske), 149 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 150 STATS_DESC_COUNTER(VCPU, instruction_stsi), 151 STATS_DESC_COUNTER(VCPU, instruction_stfl), 152 STATS_DESC_COUNTER(VCPU, instruction_tb), 153 STATS_DESC_COUNTER(VCPU, instruction_tpi), 154 STATS_DESC_COUNTER(VCPU, instruction_tprot), 155 STATS_DESC_COUNTER(VCPU, instruction_tsch), 156 STATS_DESC_COUNTER(VCPU, instruction_sie), 157 STATS_DESC_COUNTER(VCPU, instruction_essa), 158 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 174 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 176 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 177 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 178 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 179 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 182 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 183 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 184 STATS_DESC_COUNTER(VCPU, pfault_sync) 185 }; 186 187 const struct kvm_stats_header kvm_vcpu_stats_header = { 188 .name_size = KVM_STATS_NAME_SIZE, 189 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 190 .id_offset = sizeof(struct kvm_stats_header), 191 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 192 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 193 sizeof(kvm_vcpu_stats_desc), 194 }; 195 196 /* allow nested virtualization in KVM (if enabled by user space) */ 197 static int nested; 198 module_param(nested, int, S_IRUGO); 199 MODULE_PARM_DESC(nested, "Nested virtualization support"); 200 201 /* allow 1m huge page guest backing, if !nested */ 202 static int hpage; 203 module_param(hpage, int, 0444); 204 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 205 206 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 207 static u8 halt_poll_max_steal = 10; 208 module_param(halt_poll_max_steal, byte, 0644); 209 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 210 211 /* if set to true, the GISA will be initialized and used if available */ 212 static bool use_gisa = true; 213 module_param(use_gisa, bool, 0644); 214 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 215 216 /* maximum diag9c forwarding per second */ 217 unsigned int diag9c_forwarding_hz; 218 module_param(diag9c_forwarding_hz, uint, 0644); 219 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 220 221 /* 222 * allow asynchronous deinit for protected guests; enable by default since 223 * the feature is opt-in anyway 224 */ 225 static int async_destroy = 1; 226 module_param(async_destroy, int, 0444); 227 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 228 229 /* 230 * For now we handle at most 16 double words as this is what the s390 base 231 * kernel handles and stores in the prefix page. If we ever need to go beyond 232 * this, this requires changes to code, but the external uapi can stay. 233 */ 234 #define SIZE_INTERNAL 16 235 236 /* 237 * Base feature mask that defines default mask for facilities. Consists of the 238 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 239 */ 240 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 241 /* 242 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 243 * and defines the facilities that can be enabled via a cpu model. 244 */ 245 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 246 247 static unsigned long kvm_s390_fac_size(void) 248 { 249 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 250 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 251 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 252 sizeof(stfle_fac_list)); 253 254 return SIZE_INTERNAL; 255 } 256 257 /* available cpu features supported by kvm */ 258 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 259 /* available subfunctions indicated via query / "test bit" */ 260 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 261 262 static struct gmap_notifier gmap_notifier; 263 static struct gmap_notifier vsie_gmap_notifier; 264 debug_info_t *kvm_s390_dbf; 265 debug_info_t *kvm_s390_dbf_uv; 266 267 /* Section: not file related */ 268 /* forward declarations */ 269 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 270 unsigned long end); 271 static int sca_switch_to_extended(struct kvm *kvm); 272 273 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 274 { 275 u8 delta_idx = 0; 276 277 /* 278 * The TOD jumps by delta, we have to compensate this by adding 279 * -delta to the epoch. 280 */ 281 delta = -delta; 282 283 /* sign-extension - we're adding to signed values below */ 284 if ((s64)delta < 0) 285 delta_idx = -1; 286 287 scb->epoch += delta; 288 if (scb->ecd & ECD_MEF) { 289 scb->epdx += delta_idx; 290 if (scb->epoch < delta) 291 scb->epdx += 1; 292 } 293 } 294 295 /* 296 * This callback is executed during stop_machine(). All CPUs are therefore 297 * temporarily stopped. In order not to change guest behavior, we have to 298 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 299 * so a CPU won't be stopped while calculating with the epoch. 300 */ 301 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 302 void *v) 303 { 304 struct kvm *kvm; 305 struct kvm_vcpu *vcpu; 306 unsigned long i; 307 unsigned long long *delta = v; 308 309 list_for_each_entry(kvm, &vm_list, vm_list) { 310 kvm_for_each_vcpu(i, vcpu, kvm) { 311 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 312 if (i == 0) { 313 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 314 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 315 } 316 if (vcpu->arch.cputm_enabled) 317 vcpu->arch.cputm_start += *delta; 318 if (vcpu->arch.vsie_block) 319 kvm_clock_sync_scb(vcpu->arch.vsie_block, 320 *delta); 321 } 322 } 323 return NOTIFY_OK; 324 } 325 326 static struct notifier_block kvm_clock_notifier = { 327 .notifier_call = kvm_clock_sync, 328 }; 329 330 static void allow_cpu_feat(unsigned long nr) 331 { 332 set_bit_inv(nr, kvm_s390_available_cpu_feat); 333 } 334 335 static inline int plo_test_bit(unsigned char nr) 336 { 337 unsigned long function = (unsigned long)nr | 0x100; 338 int cc; 339 340 asm volatile( 341 " lgr 0,%[function]\n" 342 /* Parameter registers are ignored for "test bit" */ 343 " plo 0,0,0,0(0)\n" 344 CC_IPM(cc) 345 : CC_OUT(cc, cc) 346 : [function] "d" (function) 347 : CC_CLOBBER_LIST("0")); 348 return CC_TRANSFORM(cc) == 0; 349 } 350 351 static __always_inline void pfcr_query(u8 (*query)[16]) 352 { 353 asm volatile( 354 " lghi 0,0\n" 355 " .insn rsy,0xeb0000000016,0,0,%[query]\n" 356 : [query] "=QS" (*query) 357 : 358 : "cc", "0"); 359 } 360 361 static __always_inline void __sortl_query(u8 (*query)[32]) 362 { 363 asm volatile( 364 " lghi 0,0\n" 365 " la 1,%[query]\n" 366 /* Parameter registers are ignored */ 367 " .insn rre,0xb9380000,2,4\n" 368 : [query] "=R" (*query) 369 : 370 : "cc", "0", "1"); 371 } 372 373 static __always_inline void __dfltcc_query(u8 (*query)[32]) 374 { 375 asm volatile( 376 " lghi 0,0\n" 377 " la 1,%[query]\n" 378 /* Parameter registers are ignored */ 379 " .insn rrf,0xb9390000,2,4,6,0\n" 380 : [query] "=R" (*query) 381 : 382 : "cc", "0", "1"); 383 } 384 385 static void __init kvm_s390_cpu_feat_init(void) 386 { 387 int i; 388 389 for (i = 0; i < 256; ++i) { 390 if (plo_test_bit(i)) 391 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 392 } 393 394 if (test_facility(28)) /* TOD-clock steering */ 395 ptff(kvm_s390_available_subfunc.ptff, 396 sizeof(kvm_s390_available_subfunc.ptff), 397 PTFF_QAF); 398 399 if (test_facility(17)) { /* MSA */ 400 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 401 kvm_s390_available_subfunc.kmac); 402 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 403 kvm_s390_available_subfunc.kmc); 404 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 405 kvm_s390_available_subfunc.km); 406 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 407 kvm_s390_available_subfunc.kimd); 408 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 409 kvm_s390_available_subfunc.klmd); 410 } 411 if (test_facility(76)) /* MSA3 */ 412 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 413 kvm_s390_available_subfunc.pckmo); 414 if (test_facility(77)) { /* MSA4 */ 415 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 416 kvm_s390_available_subfunc.kmctr); 417 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 418 kvm_s390_available_subfunc.kmf); 419 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 420 kvm_s390_available_subfunc.kmo); 421 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 422 kvm_s390_available_subfunc.pcc); 423 } 424 if (test_facility(57)) /* MSA5 */ 425 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 426 kvm_s390_available_subfunc.ppno); 427 428 if (test_facility(146)) /* MSA8 */ 429 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 430 kvm_s390_available_subfunc.kma); 431 432 if (test_facility(155)) /* MSA9 */ 433 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 434 kvm_s390_available_subfunc.kdsa); 435 436 if (test_facility(150)) /* SORTL */ 437 __sortl_query(&kvm_s390_available_subfunc.sortl); 438 439 if (test_facility(151)) /* DFLTCC */ 440 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc); 441 442 if (test_facility(201)) /* PFCR */ 443 pfcr_query(&kvm_s390_available_subfunc.pfcr); 444 445 if (MACHINE_HAS_ESOP) 446 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 447 /* 448 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 449 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 450 */ 451 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 452 !test_facility(3) || !nested) 453 return; 454 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 455 if (sclp.has_64bscao) 456 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 457 if (sclp.has_siif) 458 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 459 if (sclp.has_gpere) 460 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 461 if (sclp.has_gsls) 462 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 463 if (sclp.has_ib) 464 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 465 if (sclp.has_cei) 466 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 467 if (sclp.has_ibs) 468 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 469 if (sclp.has_kss) 470 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 471 /* 472 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 473 * all skey handling functions read/set the skey from the PGSTE 474 * instead of the real storage key. 475 * 476 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 477 * pages being detected as preserved although they are resident. 478 * 479 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 480 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 481 * 482 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 483 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 484 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 485 * 486 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 487 * cannot easily shadow the SCA because of the ipte lock. 488 */ 489 } 490 491 static int __init __kvm_s390_init(void) 492 { 493 int rc = -ENOMEM; 494 495 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 496 if (!kvm_s390_dbf) 497 return -ENOMEM; 498 499 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 500 if (!kvm_s390_dbf_uv) 501 goto err_kvm_uv; 502 503 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 504 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 505 goto err_debug_view; 506 507 kvm_s390_cpu_feat_init(); 508 509 /* Register floating interrupt controller interface. */ 510 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 511 if (rc) { 512 pr_err("A FLIC registration call failed with rc=%d\n", rc); 513 goto err_flic; 514 } 515 516 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 517 rc = kvm_s390_pci_init(); 518 if (rc) { 519 pr_err("Unable to allocate AIFT for PCI\n"); 520 goto err_pci; 521 } 522 } 523 524 rc = kvm_s390_gib_init(GAL_ISC); 525 if (rc) 526 goto err_gib; 527 528 gmap_notifier.notifier_call = kvm_gmap_notifier; 529 gmap_register_pte_notifier(&gmap_notifier); 530 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 531 gmap_register_pte_notifier(&vsie_gmap_notifier); 532 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 533 &kvm_clock_notifier); 534 535 return 0; 536 537 err_gib: 538 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 539 kvm_s390_pci_exit(); 540 err_pci: 541 err_flic: 542 err_debug_view: 543 debug_unregister(kvm_s390_dbf_uv); 544 err_kvm_uv: 545 debug_unregister(kvm_s390_dbf); 546 return rc; 547 } 548 549 static void __kvm_s390_exit(void) 550 { 551 gmap_unregister_pte_notifier(&gmap_notifier); 552 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 553 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 554 &kvm_clock_notifier); 555 556 kvm_s390_gib_destroy(); 557 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 558 kvm_s390_pci_exit(); 559 debug_unregister(kvm_s390_dbf); 560 debug_unregister(kvm_s390_dbf_uv); 561 } 562 563 /* Section: device related */ 564 long kvm_arch_dev_ioctl(struct file *filp, 565 unsigned int ioctl, unsigned long arg) 566 { 567 if (ioctl == KVM_S390_ENABLE_SIE) 568 return s390_enable_sie(); 569 return -EINVAL; 570 } 571 572 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 573 { 574 int r; 575 576 switch (ext) { 577 case KVM_CAP_S390_PSW: 578 case KVM_CAP_S390_GMAP: 579 case KVM_CAP_SYNC_MMU: 580 #ifdef CONFIG_KVM_S390_UCONTROL 581 case KVM_CAP_S390_UCONTROL: 582 #endif 583 case KVM_CAP_ASYNC_PF: 584 case KVM_CAP_SYNC_REGS: 585 case KVM_CAP_ONE_REG: 586 case KVM_CAP_ENABLE_CAP: 587 case KVM_CAP_S390_CSS_SUPPORT: 588 case KVM_CAP_IOEVENTFD: 589 case KVM_CAP_S390_IRQCHIP: 590 case KVM_CAP_VM_ATTRIBUTES: 591 case KVM_CAP_MP_STATE: 592 case KVM_CAP_IMMEDIATE_EXIT: 593 case KVM_CAP_S390_INJECT_IRQ: 594 case KVM_CAP_S390_USER_SIGP: 595 case KVM_CAP_S390_USER_STSI: 596 case KVM_CAP_S390_SKEYS: 597 case KVM_CAP_S390_IRQ_STATE: 598 case KVM_CAP_S390_USER_INSTR0: 599 case KVM_CAP_S390_CMMA_MIGRATION: 600 case KVM_CAP_S390_AIS: 601 case KVM_CAP_S390_AIS_MIGRATION: 602 case KVM_CAP_S390_VCPU_RESETS: 603 case KVM_CAP_SET_GUEST_DEBUG: 604 case KVM_CAP_S390_DIAG318: 605 case KVM_CAP_IRQFD_RESAMPLE: 606 r = 1; 607 break; 608 case KVM_CAP_SET_GUEST_DEBUG2: 609 r = KVM_GUESTDBG_VALID_MASK; 610 break; 611 case KVM_CAP_S390_HPAGE_1M: 612 r = 0; 613 if (hpage && !(kvm && kvm_is_ucontrol(kvm))) 614 r = 1; 615 break; 616 case KVM_CAP_S390_MEM_OP: 617 r = MEM_OP_MAX_SIZE; 618 break; 619 case KVM_CAP_S390_MEM_OP_EXTENSION: 620 /* 621 * Flag bits indicating which extensions are supported. 622 * If r > 0, the base extension must also be supported/indicated, 623 * in order to maintain backwards compatibility. 624 */ 625 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 626 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 627 break; 628 case KVM_CAP_NR_VCPUS: 629 case KVM_CAP_MAX_VCPUS: 630 case KVM_CAP_MAX_VCPU_ID: 631 r = KVM_S390_BSCA_CPU_SLOTS; 632 if (!kvm_s390_use_sca_entries()) 633 r = KVM_MAX_VCPUS; 634 else if (sclp.has_esca && sclp.has_64bscao) 635 r = KVM_S390_ESCA_CPU_SLOTS; 636 if (ext == KVM_CAP_NR_VCPUS) 637 r = min_t(unsigned int, num_online_cpus(), r); 638 break; 639 case KVM_CAP_S390_COW: 640 r = MACHINE_HAS_ESOP; 641 break; 642 case KVM_CAP_S390_VECTOR_REGISTERS: 643 r = test_facility(129); 644 break; 645 case KVM_CAP_S390_RI: 646 r = test_facility(64); 647 break; 648 case KVM_CAP_S390_GS: 649 r = test_facility(133); 650 break; 651 case KVM_CAP_S390_BPB: 652 r = test_facility(82); 653 break; 654 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 655 r = async_destroy && is_prot_virt_host(); 656 break; 657 case KVM_CAP_S390_PROTECTED: 658 r = is_prot_virt_host(); 659 break; 660 case KVM_CAP_S390_PROTECTED_DUMP: { 661 u64 pv_cmds_dump[] = { 662 BIT_UVC_CMD_DUMP_INIT, 663 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 664 BIT_UVC_CMD_DUMP_CPU, 665 BIT_UVC_CMD_DUMP_COMPLETE, 666 }; 667 int i; 668 669 r = is_prot_virt_host(); 670 671 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 672 if (!test_bit_inv(pv_cmds_dump[i], 673 (unsigned long *)&uv_info.inst_calls_list)) { 674 r = 0; 675 break; 676 } 677 } 678 break; 679 } 680 case KVM_CAP_S390_ZPCI_OP: 681 r = kvm_s390_pci_interp_allowed(); 682 break; 683 case KVM_CAP_S390_CPU_TOPOLOGY: 684 r = test_facility(11); 685 break; 686 default: 687 r = 0; 688 } 689 return r; 690 } 691 692 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 693 { 694 int i; 695 gfn_t cur_gfn, last_gfn; 696 unsigned long gaddr, vmaddr; 697 struct gmap *gmap = kvm->arch.gmap; 698 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 699 700 /* Loop over all guest segments */ 701 cur_gfn = memslot->base_gfn; 702 last_gfn = memslot->base_gfn + memslot->npages; 703 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 704 gaddr = gfn_to_gpa(cur_gfn); 705 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 706 if (kvm_is_error_hva(vmaddr)) 707 continue; 708 709 bitmap_zero(bitmap, _PAGE_ENTRIES); 710 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 711 for (i = 0; i < _PAGE_ENTRIES; i++) { 712 if (test_bit(i, bitmap)) 713 mark_page_dirty(kvm, cur_gfn + i); 714 } 715 716 if (fatal_signal_pending(current)) 717 return; 718 cond_resched(); 719 } 720 } 721 722 /* Section: vm related */ 723 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 724 725 /* 726 * Get (and clear) the dirty memory log for a memory slot. 727 */ 728 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 729 struct kvm_dirty_log *log) 730 { 731 int r; 732 unsigned long n; 733 struct kvm_memory_slot *memslot; 734 int is_dirty; 735 736 if (kvm_is_ucontrol(kvm)) 737 return -EINVAL; 738 739 mutex_lock(&kvm->slots_lock); 740 741 r = -EINVAL; 742 if (log->slot >= KVM_USER_MEM_SLOTS) 743 goto out; 744 745 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 746 if (r) 747 goto out; 748 749 /* Clear the dirty log */ 750 if (is_dirty) { 751 n = kvm_dirty_bitmap_bytes(memslot); 752 memset(memslot->dirty_bitmap, 0, n); 753 } 754 r = 0; 755 out: 756 mutex_unlock(&kvm->slots_lock); 757 return r; 758 } 759 760 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 761 { 762 unsigned long i; 763 struct kvm_vcpu *vcpu; 764 765 kvm_for_each_vcpu(i, vcpu, kvm) { 766 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 767 } 768 } 769 770 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 771 { 772 int r; 773 774 if (cap->flags) 775 return -EINVAL; 776 777 switch (cap->cap) { 778 case KVM_CAP_S390_IRQCHIP: 779 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 780 kvm->arch.use_irqchip = 1; 781 r = 0; 782 break; 783 case KVM_CAP_S390_USER_SIGP: 784 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 785 kvm->arch.user_sigp = 1; 786 r = 0; 787 break; 788 case KVM_CAP_S390_VECTOR_REGISTERS: 789 mutex_lock(&kvm->lock); 790 if (kvm->created_vcpus) { 791 r = -EBUSY; 792 } else if (cpu_has_vx()) { 793 set_kvm_facility(kvm->arch.model.fac_mask, 129); 794 set_kvm_facility(kvm->arch.model.fac_list, 129); 795 if (test_facility(134)) { 796 set_kvm_facility(kvm->arch.model.fac_mask, 134); 797 set_kvm_facility(kvm->arch.model.fac_list, 134); 798 } 799 if (test_facility(135)) { 800 set_kvm_facility(kvm->arch.model.fac_mask, 135); 801 set_kvm_facility(kvm->arch.model.fac_list, 135); 802 } 803 if (test_facility(148)) { 804 set_kvm_facility(kvm->arch.model.fac_mask, 148); 805 set_kvm_facility(kvm->arch.model.fac_list, 148); 806 } 807 if (test_facility(152)) { 808 set_kvm_facility(kvm->arch.model.fac_mask, 152); 809 set_kvm_facility(kvm->arch.model.fac_list, 152); 810 } 811 if (test_facility(192)) { 812 set_kvm_facility(kvm->arch.model.fac_mask, 192); 813 set_kvm_facility(kvm->arch.model.fac_list, 192); 814 } 815 if (test_facility(198)) { 816 set_kvm_facility(kvm->arch.model.fac_mask, 198); 817 set_kvm_facility(kvm->arch.model.fac_list, 198); 818 } 819 if (test_facility(199)) { 820 set_kvm_facility(kvm->arch.model.fac_mask, 199); 821 set_kvm_facility(kvm->arch.model.fac_list, 199); 822 } 823 r = 0; 824 } else 825 r = -EINVAL; 826 mutex_unlock(&kvm->lock); 827 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 828 r ? "(not available)" : "(success)"); 829 break; 830 case KVM_CAP_S390_RI: 831 r = -EINVAL; 832 mutex_lock(&kvm->lock); 833 if (kvm->created_vcpus) { 834 r = -EBUSY; 835 } else if (test_facility(64)) { 836 set_kvm_facility(kvm->arch.model.fac_mask, 64); 837 set_kvm_facility(kvm->arch.model.fac_list, 64); 838 r = 0; 839 } 840 mutex_unlock(&kvm->lock); 841 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 842 r ? "(not available)" : "(success)"); 843 break; 844 case KVM_CAP_S390_AIS: 845 mutex_lock(&kvm->lock); 846 if (kvm->created_vcpus) { 847 r = -EBUSY; 848 } else { 849 set_kvm_facility(kvm->arch.model.fac_mask, 72); 850 set_kvm_facility(kvm->arch.model.fac_list, 72); 851 r = 0; 852 } 853 mutex_unlock(&kvm->lock); 854 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 855 r ? "(not available)" : "(success)"); 856 break; 857 case KVM_CAP_S390_GS: 858 r = -EINVAL; 859 mutex_lock(&kvm->lock); 860 if (kvm->created_vcpus) { 861 r = -EBUSY; 862 } else if (test_facility(133)) { 863 set_kvm_facility(kvm->arch.model.fac_mask, 133); 864 set_kvm_facility(kvm->arch.model.fac_list, 133); 865 r = 0; 866 } 867 mutex_unlock(&kvm->lock); 868 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 869 r ? "(not available)" : "(success)"); 870 break; 871 case KVM_CAP_S390_HPAGE_1M: 872 mutex_lock(&kvm->lock); 873 if (kvm->created_vcpus) 874 r = -EBUSY; 875 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 876 r = -EINVAL; 877 else { 878 r = 0; 879 mmap_write_lock(kvm->mm); 880 kvm->mm->context.allow_gmap_hpage_1m = 1; 881 mmap_write_unlock(kvm->mm); 882 /* 883 * We might have to create fake 4k page 884 * tables. To avoid that the hardware works on 885 * stale PGSTEs, we emulate these instructions. 886 */ 887 kvm->arch.use_skf = 0; 888 kvm->arch.use_pfmfi = 0; 889 } 890 mutex_unlock(&kvm->lock); 891 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 892 r ? "(not available)" : "(success)"); 893 break; 894 case KVM_CAP_S390_USER_STSI: 895 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 896 kvm->arch.user_stsi = 1; 897 r = 0; 898 break; 899 case KVM_CAP_S390_USER_INSTR0: 900 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 901 kvm->arch.user_instr0 = 1; 902 icpt_operexc_on_all_vcpus(kvm); 903 r = 0; 904 break; 905 case KVM_CAP_S390_CPU_TOPOLOGY: 906 r = -EINVAL; 907 mutex_lock(&kvm->lock); 908 if (kvm->created_vcpus) { 909 r = -EBUSY; 910 } else if (test_facility(11)) { 911 set_kvm_facility(kvm->arch.model.fac_mask, 11); 912 set_kvm_facility(kvm->arch.model.fac_list, 11); 913 r = 0; 914 } 915 mutex_unlock(&kvm->lock); 916 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 917 r ? "(not available)" : "(success)"); 918 break; 919 default: 920 r = -EINVAL; 921 break; 922 } 923 return r; 924 } 925 926 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 927 { 928 int ret; 929 930 switch (attr->attr) { 931 case KVM_S390_VM_MEM_LIMIT_SIZE: 932 ret = 0; 933 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 934 kvm->arch.mem_limit); 935 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 936 ret = -EFAULT; 937 break; 938 default: 939 ret = -ENXIO; 940 break; 941 } 942 return ret; 943 } 944 945 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 946 { 947 int ret; 948 unsigned int idx; 949 switch (attr->attr) { 950 case KVM_S390_VM_MEM_ENABLE_CMMA: 951 ret = -ENXIO; 952 if (!sclp.has_cmma) 953 break; 954 955 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 956 mutex_lock(&kvm->lock); 957 if (kvm->created_vcpus) 958 ret = -EBUSY; 959 else if (kvm->mm->context.allow_gmap_hpage_1m) 960 ret = -EINVAL; 961 else { 962 kvm->arch.use_cmma = 1; 963 /* Not compatible with cmma. */ 964 kvm->arch.use_pfmfi = 0; 965 ret = 0; 966 } 967 mutex_unlock(&kvm->lock); 968 break; 969 case KVM_S390_VM_MEM_CLR_CMMA: 970 ret = -ENXIO; 971 if (!sclp.has_cmma) 972 break; 973 ret = -EINVAL; 974 if (!kvm->arch.use_cmma) 975 break; 976 977 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 978 mutex_lock(&kvm->lock); 979 idx = srcu_read_lock(&kvm->srcu); 980 s390_reset_cmma(kvm->arch.gmap->mm); 981 srcu_read_unlock(&kvm->srcu, idx); 982 mutex_unlock(&kvm->lock); 983 ret = 0; 984 break; 985 case KVM_S390_VM_MEM_LIMIT_SIZE: { 986 unsigned long new_limit; 987 988 if (kvm_is_ucontrol(kvm)) 989 return -EINVAL; 990 991 if (get_user(new_limit, (u64 __user *)attr->addr)) 992 return -EFAULT; 993 994 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 995 new_limit > kvm->arch.mem_limit) 996 return -E2BIG; 997 998 if (!new_limit) 999 return -EINVAL; 1000 1001 /* gmap_create takes last usable address */ 1002 if (new_limit != KVM_S390_NO_MEM_LIMIT) 1003 new_limit -= 1; 1004 1005 ret = -EBUSY; 1006 mutex_lock(&kvm->lock); 1007 if (!kvm->created_vcpus) { 1008 /* gmap_create will round the limit up */ 1009 struct gmap *new = gmap_create(current->mm, new_limit); 1010 1011 if (!new) { 1012 ret = -ENOMEM; 1013 } else { 1014 gmap_remove(kvm->arch.gmap); 1015 new->private = kvm; 1016 kvm->arch.gmap = new; 1017 ret = 0; 1018 } 1019 } 1020 mutex_unlock(&kvm->lock); 1021 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 1022 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 1023 (void *) kvm->arch.gmap->asce); 1024 break; 1025 } 1026 default: 1027 ret = -ENXIO; 1028 break; 1029 } 1030 return ret; 1031 } 1032 1033 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1034 1035 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1036 { 1037 struct kvm_vcpu *vcpu; 1038 unsigned long i; 1039 1040 kvm_s390_vcpu_block_all(kvm); 1041 1042 kvm_for_each_vcpu(i, vcpu, kvm) { 1043 kvm_s390_vcpu_crypto_setup(vcpu); 1044 /* recreate the shadow crycb by leaving the VSIE handler */ 1045 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1046 } 1047 1048 kvm_s390_vcpu_unblock_all(kvm); 1049 } 1050 1051 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1052 { 1053 mutex_lock(&kvm->lock); 1054 switch (attr->attr) { 1055 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1056 if (!test_kvm_facility(kvm, 76)) { 1057 mutex_unlock(&kvm->lock); 1058 return -EINVAL; 1059 } 1060 get_random_bytes( 1061 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1062 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1063 kvm->arch.crypto.aes_kw = 1; 1064 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1065 break; 1066 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1067 if (!test_kvm_facility(kvm, 76)) { 1068 mutex_unlock(&kvm->lock); 1069 return -EINVAL; 1070 } 1071 get_random_bytes( 1072 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1073 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1074 kvm->arch.crypto.dea_kw = 1; 1075 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1076 break; 1077 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1078 if (!test_kvm_facility(kvm, 76)) { 1079 mutex_unlock(&kvm->lock); 1080 return -EINVAL; 1081 } 1082 kvm->arch.crypto.aes_kw = 0; 1083 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1084 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1085 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1086 break; 1087 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1088 if (!test_kvm_facility(kvm, 76)) { 1089 mutex_unlock(&kvm->lock); 1090 return -EINVAL; 1091 } 1092 kvm->arch.crypto.dea_kw = 0; 1093 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1094 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1095 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1096 break; 1097 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1098 if (!ap_instructions_available()) { 1099 mutex_unlock(&kvm->lock); 1100 return -EOPNOTSUPP; 1101 } 1102 kvm->arch.crypto.apie = 1; 1103 break; 1104 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1105 if (!ap_instructions_available()) { 1106 mutex_unlock(&kvm->lock); 1107 return -EOPNOTSUPP; 1108 } 1109 kvm->arch.crypto.apie = 0; 1110 break; 1111 default: 1112 mutex_unlock(&kvm->lock); 1113 return -ENXIO; 1114 } 1115 1116 kvm_s390_vcpu_crypto_reset_all(kvm); 1117 mutex_unlock(&kvm->lock); 1118 return 0; 1119 } 1120 1121 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1122 { 1123 /* Only set the ECB bits after guest requests zPCI interpretation */ 1124 if (!vcpu->kvm->arch.use_zpci_interp) 1125 return; 1126 1127 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1128 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1129 } 1130 1131 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1132 { 1133 struct kvm_vcpu *vcpu; 1134 unsigned long i; 1135 1136 lockdep_assert_held(&kvm->lock); 1137 1138 if (!kvm_s390_pci_interp_allowed()) 1139 return; 1140 1141 /* 1142 * If host is configured for PCI and the necessary facilities are 1143 * available, turn on interpretation for the life of this guest 1144 */ 1145 kvm->arch.use_zpci_interp = 1; 1146 1147 kvm_s390_vcpu_block_all(kvm); 1148 1149 kvm_for_each_vcpu(i, vcpu, kvm) { 1150 kvm_s390_vcpu_pci_setup(vcpu); 1151 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1152 } 1153 1154 kvm_s390_vcpu_unblock_all(kvm); 1155 } 1156 1157 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1158 { 1159 unsigned long cx; 1160 struct kvm_vcpu *vcpu; 1161 1162 kvm_for_each_vcpu(cx, vcpu, kvm) 1163 kvm_s390_sync_request(req, vcpu); 1164 } 1165 1166 /* 1167 * Must be called with kvm->srcu held to avoid races on memslots, and with 1168 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1169 */ 1170 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1171 { 1172 struct kvm_memory_slot *ms; 1173 struct kvm_memslots *slots; 1174 unsigned long ram_pages = 0; 1175 int bkt; 1176 1177 /* migration mode already enabled */ 1178 if (kvm->arch.migration_mode) 1179 return 0; 1180 slots = kvm_memslots(kvm); 1181 if (!slots || kvm_memslots_empty(slots)) 1182 return -EINVAL; 1183 1184 if (!kvm->arch.use_cmma) { 1185 kvm->arch.migration_mode = 1; 1186 return 0; 1187 } 1188 /* mark all the pages in active slots as dirty */ 1189 kvm_for_each_memslot(ms, bkt, slots) { 1190 if (!ms->dirty_bitmap) 1191 return -EINVAL; 1192 /* 1193 * The second half of the bitmap is only used on x86, 1194 * and would be wasted otherwise, so we put it to good 1195 * use here to keep track of the state of the storage 1196 * attributes. 1197 */ 1198 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1199 ram_pages += ms->npages; 1200 } 1201 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1202 kvm->arch.migration_mode = 1; 1203 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1204 return 0; 1205 } 1206 1207 /* 1208 * Must be called with kvm->slots_lock to avoid races with ourselves and 1209 * kvm_s390_vm_start_migration. 1210 */ 1211 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1212 { 1213 /* migration mode already disabled */ 1214 if (!kvm->arch.migration_mode) 1215 return 0; 1216 kvm->arch.migration_mode = 0; 1217 if (kvm->arch.use_cmma) 1218 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1219 return 0; 1220 } 1221 1222 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1223 struct kvm_device_attr *attr) 1224 { 1225 int res = -ENXIO; 1226 1227 mutex_lock(&kvm->slots_lock); 1228 switch (attr->attr) { 1229 case KVM_S390_VM_MIGRATION_START: 1230 res = kvm_s390_vm_start_migration(kvm); 1231 break; 1232 case KVM_S390_VM_MIGRATION_STOP: 1233 res = kvm_s390_vm_stop_migration(kvm); 1234 break; 1235 default: 1236 break; 1237 } 1238 mutex_unlock(&kvm->slots_lock); 1239 1240 return res; 1241 } 1242 1243 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1244 struct kvm_device_attr *attr) 1245 { 1246 u64 mig = kvm->arch.migration_mode; 1247 1248 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1249 return -ENXIO; 1250 1251 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1252 return -EFAULT; 1253 return 0; 1254 } 1255 1256 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1257 1258 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1259 { 1260 struct kvm_s390_vm_tod_clock gtod; 1261 1262 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1263 return -EFAULT; 1264 1265 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1266 return -EINVAL; 1267 __kvm_s390_set_tod_clock(kvm, >od); 1268 1269 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1270 gtod.epoch_idx, gtod.tod); 1271 1272 return 0; 1273 } 1274 1275 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1276 { 1277 u8 gtod_high; 1278 1279 if (copy_from_user(>od_high, (void __user *)attr->addr, 1280 sizeof(gtod_high))) 1281 return -EFAULT; 1282 1283 if (gtod_high != 0) 1284 return -EINVAL; 1285 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1286 1287 return 0; 1288 } 1289 1290 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1291 { 1292 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1293 1294 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1295 sizeof(gtod.tod))) 1296 return -EFAULT; 1297 1298 __kvm_s390_set_tod_clock(kvm, >od); 1299 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1300 return 0; 1301 } 1302 1303 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1304 { 1305 int ret; 1306 1307 if (attr->flags) 1308 return -EINVAL; 1309 1310 mutex_lock(&kvm->lock); 1311 /* 1312 * For protected guests, the TOD is managed by the ultravisor, so trying 1313 * to change it will never bring the expected results. 1314 */ 1315 if (kvm_s390_pv_is_protected(kvm)) { 1316 ret = -EOPNOTSUPP; 1317 goto out_unlock; 1318 } 1319 1320 switch (attr->attr) { 1321 case KVM_S390_VM_TOD_EXT: 1322 ret = kvm_s390_set_tod_ext(kvm, attr); 1323 break; 1324 case KVM_S390_VM_TOD_HIGH: 1325 ret = kvm_s390_set_tod_high(kvm, attr); 1326 break; 1327 case KVM_S390_VM_TOD_LOW: 1328 ret = kvm_s390_set_tod_low(kvm, attr); 1329 break; 1330 default: 1331 ret = -ENXIO; 1332 break; 1333 } 1334 1335 out_unlock: 1336 mutex_unlock(&kvm->lock); 1337 return ret; 1338 } 1339 1340 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1341 struct kvm_s390_vm_tod_clock *gtod) 1342 { 1343 union tod_clock clk; 1344 1345 preempt_disable(); 1346 1347 store_tod_clock_ext(&clk); 1348 1349 gtod->tod = clk.tod + kvm->arch.epoch; 1350 gtod->epoch_idx = 0; 1351 if (test_kvm_facility(kvm, 139)) { 1352 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1353 if (gtod->tod < clk.tod) 1354 gtod->epoch_idx += 1; 1355 } 1356 1357 preempt_enable(); 1358 } 1359 1360 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1361 { 1362 struct kvm_s390_vm_tod_clock gtod; 1363 1364 memset(>od, 0, sizeof(gtod)); 1365 kvm_s390_get_tod_clock(kvm, >od); 1366 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1367 return -EFAULT; 1368 1369 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1370 gtod.epoch_idx, gtod.tod); 1371 return 0; 1372 } 1373 1374 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1375 { 1376 u8 gtod_high = 0; 1377 1378 if (copy_to_user((void __user *)attr->addr, >od_high, 1379 sizeof(gtod_high))) 1380 return -EFAULT; 1381 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1382 1383 return 0; 1384 } 1385 1386 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1387 { 1388 u64 gtod; 1389 1390 gtod = kvm_s390_get_tod_clock_fast(kvm); 1391 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1392 return -EFAULT; 1393 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1394 1395 return 0; 1396 } 1397 1398 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1399 { 1400 int ret; 1401 1402 if (attr->flags) 1403 return -EINVAL; 1404 1405 switch (attr->attr) { 1406 case KVM_S390_VM_TOD_EXT: 1407 ret = kvm_s390_get_tod_ext(kvm, attr); 1408 break; 1409 case KVM_S390_VM_TOD_HIGH: 1410 ret = kvm_s390_get_tod_high(kvm, attr); 1411 break; 1412 case KVM_S390_VM_TOD_LOW: 1413 ret = kvm_s390_get_tod_low(kvm, attr); 1414 break; 1415 default: 1416 ret = -ENXIO; 1417 break; 1418 } 1419 return ret; 1420 } 1421 1422 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1423 { 1424 struct kvm_s390_vm_cpu_processor *proc; 1425 u16 lowest_ibc, unblocked_ibc; 1426 int ret = 0; 1427 1428 mutex_lock(&kvm->lock); 1429 if (kvm->created_vcpus) { 1430 ret = -EBUSY; 1431 goto out; 1432 } 1433 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1434 if (!proc) { 1435 ret = -ENOMEM; 1436 goto out; 1437 } 1438 if (!copy_from_user(proc, (void __user *)attr->addr, 1439 sizeof(*proc))) { 1440 kvm->arch.model.cpuid = proc->cpuid; 1441 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1442 unblocked_ibc = sclp.ibc & 0xfff; 1443 if (lowest_ibc && proc->ibc) { 1444 if (proc->ibc > unblocked_ibc) 1445 kvm->arch.model.ibc = unblocked_ibc; 1446 else if (proc->ibc < lowest_ibc) 1447 kvm->arch.model.ibc = lowest_ibc; 1448 else 1449 kvm->arch.model.ibc = proc->ibc; 1450 } 1451 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1452 S390_ARCH_FAC_LIST_SIZE_BYTE); 1453 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1454 kvm->arch.model.ibc, 1455 kvm->arch.model.cpuid); 1456 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1457 kvm->arch.model.fac_list[0], 1458 kvm->arch.model.fac_list[1], 1459 kvm->arch.model.fac_list[2]); 1460 } else 1461 ret = -EFAULT; 1462 kfree(proc); 1463 out: 1464 mutex_unlock(&kvm->lock); 1465 return ret; 1466 } 1467 1468 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1469 struct kvm_device_attr *attr) 1470 { 1471 struct kvm_s390_vm_cpu_feat data; 1472 1473 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1474 return -EFAULT; 1475 if (!bitmap_subset((unsigned long *) data.feat, 1476 kvm_s390_available_cpu_feat, 1477 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1478 return -EINVAL; 1479 1480 mutex_lock(&kvm->lock); 1481 if (kvm->created_vcpus) { 1482 mutex_unlock(&kvm->lock); 1483 return -EBUSY; 1484 } 1485 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1486 mutex_unlock(&kvm->lock); 1487 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1488 data.feat[0], 1489 data.feat[1], 1490 data.feat[2]); 1491 return 0; 1492 } 1493 1494 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1495 struct kvm_device_attr *attr) 1496 { 1497 mutex_lock(&kvm->lock); 1498 if (kvm->created_vcpus) { 1499 mutex_unlock(&kvm->lock); 1500 return -EBUSY; 1501 } 1502 1503 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1504 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1505 mutex_unlock(&kvm->lock); 1506 return -EFAULT; 1507 } 1508 mutex_unlock(&kvm->lock); 1509 1510 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1511 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1512 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1513 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1514 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1515 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1516 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1518 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1530 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1531 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1532 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1533 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1534 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1536 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1537 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1538 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1539 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1540 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1542 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1543 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1545 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1546 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1547 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1548 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1549 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1550 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1551 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1552 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1553 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1554 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1555 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1556 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1557 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1558 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1559 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1560 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1561 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1562 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1563 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1564 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1565 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1566 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1567 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1568 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1569 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1570 1571 return 0; 1572 } 1573 1574 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1575 ( \ 1576 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1577 .ap = 1, \ 1578 .ap_intr = 1, \ 1579 }) \ 1580 .feat \ 1581 ) 1582 1583 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1584 { 1585 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1586 unsigned long data, filter; 1587 1588 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1589 if (get_user(data, &ptr->feat)) 1590 return -EFAULT; 1591 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1592 return -EINVAL; 1593 1594 mutex_lock(&kvm->lock); 1595 if (kvm->created_vcpus) { 1596 mutex_unlock(&kvm->lock); 1597 return -EBUSY; 1598 } 1599 kvm->arch.model.uv_feat_guest.feat = data; 1600 mutex_unlock(&kvm->lock); 1601 1602 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1603 1604 return 0; 1605 } 1606 1607 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1608 { 1609 int ret = -ENXIO; 1610 1611 switch (attr->attr) { 1612 case KVM_S390_VM_CPU_PROCESSOR: 1613 ret = kvm_s390_set_processor(kvm, attr); 1614 break; 1615 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1616 ret = kvm_s390_set_processor_feat(kvm, attr); 1617 break; 1618 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1619 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1620 break; 1621 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1622 ret = kvm_s390_set_uv_feat(kvm, attr); 1623 break; 1624 } 1625 return ret; 1626 } 1627 1628 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1629 { 1630 struct kvm_s390_vm_cpu_processor *proc; 1631 int ret = 0; 1632 1633 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1634 if (!proc) { 1635 ret = -ENOMEM; 1636 goto out; 1637 } 1638 proc->cpuid = kvm->arch.model.cpuid; 1639 proc->ibc = kvm->arch.model.ibc; 1640 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1641 S390_ARCH_FAC_LIST_SIZE_BYTE); 1642 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1643 kvm->arch.model.ibc, 1644 kvm->arch.model.cpuid); 1645 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1646 kvm->arch.model.fac_list[0], 1647 kvm->arch.model.fac_list[1], 1648 kvm->arch.model.fac_list[2]); 1649 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1650 ret = -EFAULT; 1651 kfree(proc); 1652 out: 1653 return ret; 1654 } 1655 1656 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1657 { 1658 struct kvm_s390_vm_cpu_machine *mach; 1659 int ret = 0; 1660 1661 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1662 if (!mach) { 1663 ret = -ENOMEM; 1664 goto out; 1665 } 1666 get_cpu_id((struct cpuid *) &mach->cpuid); 1667 mach->ibc = sclp.ibc; 1668 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1669 S390_ARCH_FAC_LIST_SIZE_BYTE); 1670 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1671 sizeof(stfle_fac_list)); 1672 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1673 kvm->arch.model.ibc, 1674 kvm->arch.model.cpuid); 1675 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1676 mach->fac_mask[0], 1677 mach->fac_mask[1], 1678 mach->fac_mask[2]); 1679 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1680 mach->fac_list[0], 1681 mach->fac_list[1], 1682 mach->fac_list[2]); 1683 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1684 ret = -EFAULT; 1685 kfree(mach); 1686 out: 1687 return ret; 1688 } 1689 1690 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1691 struct kvm_device_attr *attr) 1692 { 1693 struct kvm_s390_vm_cpu_feat data; 1694 1695 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1696 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1697 return -EFAULT; 1698 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1699 data.feat[0], 1700 data.feat[1], 1701 data.feat[2]); 1702 return 0; 1703 } 1704 1705 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1706 struct kvm_device_attr *attr) 1707 { 1708 struct kvm_s390_vm_cpu_feat data; 1709 1710 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1711 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1712 return -EFAULT; 1713 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1714 data.feat[0], 1715 data.feat[1], 1716 data.feat[2]); 1717 return 0; 1718 } 1719 1720 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1721 struct kvm_device_attr *attr) 1722 { 1723 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1724 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1725 return -EFAULT; 1726 1727 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1728 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1729 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1730 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1731 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1732 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1733 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1735 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1744 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1745 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1746 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1747 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1748 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1750 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1751 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1752 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1753 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1754 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1755 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1756 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1757 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1759 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1760 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1762 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1764 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1765 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1766 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1767 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1768 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1769 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1770 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1771 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1772 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1773 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1774 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1775 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1776 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1777 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1778 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1779 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1780 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1781 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1782 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1783 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1784 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1785 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1786 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1787 1788 return 0; 1789 } 1790 1791 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1792 struct kvm_device_attr *attr) 1793 { 1794 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1795 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1796 return -EFAULT; 1797 1798 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1799 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1800 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1801 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1802 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1803 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1804 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1805 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1806 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1809 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1812 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1813 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1814 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1815 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1816 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1817 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1818 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1819 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1820 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1821 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1822 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1823 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1824 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1825 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1826 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1827 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1828 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1829 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1830 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1831 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1832 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1833 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1834 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1835 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1836 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1837 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1838 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1839 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1840 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1841 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1842 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1843 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1844 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1845 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1846 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1847 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1848 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1849 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1850 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1851 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1852 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1853 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1854 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1855 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx", 1856 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1857 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1858 1859 return 0; 1860 } 1861 1862 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1863 { 1864 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1865 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1866 1867 if (put_user(feat, &dst->feat)) 1868 return -EFAULT; 1869 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1870 1871 return 0; 1872 } 1873 1874 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1875 { 1876 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1877 unsigned long feat; 1878 1879 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1880 1881 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1882 if (put_user(feat, &dst->feat)) 1883 return -EFAULT; 1884 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1885 1886 return 0; 1887 } 1888 1889 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1890 { 1891 int ret = -ENXIO; 1892 1893 switch (attr->attr) { 1894 case KVM_S390_VM_CPU_PROCESSOR: 1895 ret = kvm_s390_get_processor(kvm, attr); 1896 break; 1897 case KVM_S390_VM_CPU_MACHINE: 1898 ret = kvm_s390_get_machine(kvm, attr); 1899 break; 1900 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1901 ret = kvm_s390_get_processor_feat(kvm, attr); 1902 break; 1903 case KVM_S390_VM_CPU_MACHINE_FEAT: 1904 ret = kvm_s390_get_machine_feat(kvm, attr); 1905 break; 1906 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1907 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1908 break; 1909 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1910 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1911 break; 1912 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1913 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1914 break; 1915 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1916 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1917 break; 1918 } 1919 return ret; 1920 } 1921 1922 /** 1923 * kvm_s390_update_topology_change_report - update CPU topology change report 1924 * @kvm: guest KVM description 1925 * @val: set or clear the MTCR bit 1926 * 1927 * Updates the Multiprocessor Topology-Change-Report bit to signal 1928 * the guest with a topology change. 1929 * This is only relevant if the topology facility is present. 1930 * 1931 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1932 */ 1933 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1934 { 1935 union sca_utility new, old; 1936 struct bsca_block *sca; 1937 1938 read_lock(&kvm->arch.sca_lock); 1939 sca = kvm->arch.sca; 1940 old = READ_ONCE(sca->utility); 1941 do { 1942 new = old; 1943 new.mtcr = val; 1944 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val)); 1945 read_unlock(&kvm->arch.sca_lock); 1946 } 1947 1948 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1949 struct kvm_device_attr *attr) 1950 { 1951 if (!test_kvm_facility(kvm, 11)) 1952 return -ENXIO; 1953 1954 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1955 return 0; 1956 } 1957 1958 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1959 struct kvm_device_attr *attr) 1960 { 1961 u8 topo; 1962 1963 if (!test_kvm_facility(kvm, 11)) 1964 return -ENXIO; 1965 1966 read_lock(&kvm->arch.sca_lock); 1967 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1968 read_unlock(&kvm->arch.sca_lock); 1969 1970 return put_user(topo, (u8 __user *)attr->addr); 1971 } 1972 1973 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1974 { 1975 int ret; 1976 1977 switch (attr->group) { 1978 case KVM_S390_VM_MEM_CTRL: 1979 ret = kvm_s390_set_mem_control(kvm, attr); 1980 break; 1981 case KVM_S390_VM_TOD: 1982 ret = kvm_s390_set_tod(kvm, attr); 1983 break; 1984 case KVM_S390_VM_CPU_MODEL: 1985 ret = kvm_s390_set_cpu_model(kvm, attr); 1986 break; 1987 case KVM_S390_VM_CRYPTO: 1988 ret = kvm_s390_vm_set_crypto(kvm, attr); 1989 break; 1990 case KVM_S390_VM_MIGRATION: 1991 ret = kvm_s390_vm_set_migration(kvm, attr); 1992 break; 1993 case KVM_S390_VM_CPU_TOPOLOGY: 1994 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1995 break; 1996 default: 1997 ret = -ENXIO; 1998 break; 1999 } 2000 2001 return ret; 2002 } 2003 2004 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2005 { 2006 int ret; 2007 2008 switch (attr->group) { 2009 case KVM_S390_VM_MEM_CTRL: 2010 ret = kvm_s390_get_mem_control(kvm, attr); 2011 break; 2012 case KVM_S390_VM_TOD: 2013 ret = kvm_s390_get_tod(kvm, attr); 2014 break; 2015 case KVM_S390_VM_CPU_MODEL: 2016 ret = kvm_s390_get_cpu_model(kvm, attr); 2017 break; 2018 case KVM_S390_VM_MIGRATION: 2019 ret = kvm_s390_vm_get_migration(kvm, attr); 2020 break; 2021 case KVM_S390_VM_CPU_TOPOLOGY: 2022 ret = kvm_s390_get_topo_change_indication(kvm, attr); 2023 break; 2024 default: 2025 ret = -ENXIO; 2026 break; 2027 } 2028 2029 return ret; 2030 } 2031 2032 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2033 { 2034 int ret; 2035 2036 switch (attr->group) { 2037 case KVM_S390_VM_MEM_CTRL: 2038 switch (attr->attr) { 2039 case KVM_S390_VM_MEM_ENABLE_CMMA: 2040 case KVM_S390_VM_MEM_CLR_CMMA: 2041 ret = sclp.has_cmma ? 0 : -ENXIO; 2042 break; 2043 case KVM_S390_VM_MEM_LIMIT_SIZE: 2044 ret = 0; 2045 break; 2046 default: 2047 ret = -ENXIO; 2048 break; 2049 } 2050 break; 2051 case KVM_S390_VM_TOD: 2052 switch (attr->attr) { 2053 case KVM_S390_VM_TOD_LOW: 2054 case KVM_S390_VM_TOD_HIGH: 2055 ret = 0; 2056 break; 2057 default: 2058 ret = -ENXIO; 2059 break; 2060 } 2061 break; 2062 case KVM_S390_VM_CPU_MODEL: 2063 switch (attr->attr) { 2064 case KVM_S390_VM_CPU_PROCESSOR: 2065 case KVM_S390_VM_CPU_MACHINE: 2066 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2067 case KVM_S390_VM_CPU_MACHINE_FEAT: 2068 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2069 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2070 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2071 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2072 ret = 0; 2073 break; 2074 default: 2075 ret = -ENXIO; 2076 break; 2077 } 2078 break; 2079 case KVM_S390_VM_CRYPTO: 2080 switch (attr->attr) { 2081 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2082 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2083 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2084 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2085 ret = 0; 2086 break; 2087 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2088 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2089 ret = ap_instructions_available() ? 0 : -ENXIO; 2090 break; 2091 default: 2092 ret = -ENXIO; 2093 break; 2094 } 2095 break; 2096 case KVM_S390_VM_MIGRATION: 2097 ret = 0; 2098 break; 2099 case KVM_S390_VM_CPU_TOPOLOGY: 2100 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2101 break; 2102 default: 2103 ret = -ENXIO; 2104 break; 2105 } 2106 2107 return ret; 2108 } 2109 2110 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2111 { 2112 uint8_t *keys; 2113 uint64_t hva; 2114 int srcu_idx, i, r = 0; 2115 2116 if (args->flags != 0) 2117 return -EINVAL; 2118 2119 /* Is this guest using storage keys? */ 2120 if (!mm_uses_skeys(current->mm)) 2121 return KVM_S390_GET_SKEYS_NONE; 2122 2123 /* Enforce sane limit on memory allocation */ 2124 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2125 return -EINVAL; 2126 2127 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2128 if (!keys) 2129 return -ENOMEM; 2130 2131 mmap_read_lock(current->mm); 2132 srcu_idx = srcu_read_lock(&kvm->srcu); 2133 for (i = 0; i < args->count; i++) { 2134 hva = gfn_to_hva(kvm, args->start_gfn + i); 2135 if (kvm_is_error_hva(hva)) { 2136 r = -EFAULT; 2137 break; 2138 } 2139 2140 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2141 if (r) 2142 break; 2143 } 2144 srcu_read_unlock(&kvm->srcu, srcu_idx); 2145 mmap_read_unlock(current->mm); 2146 2147 if (!r) { 2148 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2149 sizeof(uint8_t) * args->count); 2150 if (r) 2151 r = -EFAULT; 2152 } 2153 2154 kvfree(keys); 2155 return r; 2156 } 2157 2158 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2159 { 2160 uint8_t *keys; 2161 uint64_t hva; 2162 int srcu_idx, i, r = 0; 2163 bool unlocked; 2164 2165 if (args->flags != 0) 2166 return -EINVAL; 2167 2168 /* Enforce sane limit on memory allocation */ 2169 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2170 return -EINVAL; 2171 2172 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2173 if (!keys) 2174 return -ENOMEM; 2175 2176 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2177 sizeof(uint8_t) * args->count); 2178 if (r) { 2179 r = -EFAULT; 2180 goto out; 2181 } 2182 2183 /* Enable storage key handling for the guest */ 2184 r = s390_enable_skey(); 2185 if (r) 2186 goto out; 2187 2188 i = 0; 2189 mmap_read_lock(current->mm); 2190 srcu_idx = srcu_read_lock(&kvm->srcu); 2191 while (i < args->count) { 2192 unlocked = false; 2193 hva = gfn_to_hva(kvm, args->start_gfn + i); 2194 if (kvm_is_error_hva(hva)) { 2195 r = -EFAULT; 2196 break; 2197 } 2198 2199 /* Lowest order bit is reserved */ 2200 if (keys[i] & 0x01) { 2201 r = -EINVAL; 2202 break; 2203 } 2204 2205 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2206 if (r) { 2207 r = fixup_user_fault(current->mm, hva, 2208 FAULT_FLAG_WRITE, &unlocked); 2209 if (r) 2210 break; 2211 } 2212 if (!r) 2213 i++; 2214 } 2215 srcu_read_unlock(&kvm->srcu, srcu_idx); 2216 mmap_read_unlock(current->mm); 2217 out: 2218 kvfree(keys); 2219 return r; 2220 } 2221 2222 /* 2223 * Base address and length must be sent at the start of each block, therefore 2224 * it's cheaper to send some clean data, as long as it's less than the size of 2225 * two longs. 2226 */ 2227 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2228 /* for consistency */ 2229 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2230 2231 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2232 u8 *res, unsigned long bufsize) 2233 { 2234 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2235 2236 args->count = 0; 2237 while (args->count < bufsize) { 2238 hva = gfn_to_hva(kvm, cur_gfn); 2239 /* 2240 * We return an error if the first value was invalid, but we 2241 * return successfully if at least one value was copied. 2242 */ 2243 if (kvm_is_error_hva(hva)) 2244 return args->count ? 0 : -EFAULT; 2245 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2246 pgstev = 0; 2247 res[args->count++] = (pgstev >> 24) & 0x43; 2248 cur_gfn++; 2249 } 2250 2251 return 0; 2252 } 2253 2254 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2255 gfn_t gfn) 2256 { 2257 return ____gfn_to_memslot(slots, gfn, true); 2258 } 2259 2260 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2261 unsigned long cur_gfn) 2262 { 2263 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2264 unsigned long ofs = cur_gfn - ms->base_gfn; 2265 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2266 2267 if (ms->base_gfn + ms->npages <= cur_gfn) { 2268 mnode = rb_next(mnode); 2269 /* If we are above the highest slot, wrap around */ 2270 if (!mnode) 2271 mnode = rb_first(&slots->gfn_tree); 2272 2273 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2274 ofs = 0; 2275 } 2276 2277 if (cur_gfn < ms->base_gfn) 2278 ofs = 0; 2279 2280 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2281 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2282 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2283 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2284 } 2285 return ms->base_gfn + ofs; 2286 } 2287 2288 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2289 u8 *res, unsigned long bufsize) 2290 { 2291 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2292 struct kvm_memslots *slots = kvm_memslots(kvm); 2293 struct kvm_memory_slot *ms; 2294 2295 if (unlikely(kvm_memslots_empty(slots))) 2296 return 0; 2297 2298 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2299 ms = gfn_to_memslot(kvm, cur_gfn); 2300 args->count = 0; 2301 args->start_gfn = cur_gfn; 2302 if (!ms) 2303 return 0; 2304 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2305 mem_end = kvm_s390_get_gfn_end(slots); 2306 2307 while (args->count < bufsize) { 2308 hva = gfn_to_hva(kvm, cur_gfn); 2309 if (kvm_is_error_hva(hva)) 2310 return 0; 2311 /* Decrement only if we actually flipped the bit to 0 */ 2312 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2313 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2314 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2315 pgstev = 0; 2316 /* Save the value */ 2317 res[args->count++] = (pgstev >> 24) & 0x43; 2318 /* If the next bit is too far away, stop. */ 2319 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2320 return 0; 2321 /* If we reached the previous "next", find the next one */ 2322 if (cur_gfn == next_gfn) 2323 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2324 /* Reached the end of memory or of the buffer, stop */ 2325 if ((next_gfn >= mem_end) || 2326 (next_gfn - args->start_gfn >= bufsize)) 2327 return 0; 2328 cur_gfn++; 2329 /* Reached the end of the current memslot, take the next one. */ 2330 if (cur_gfn - ms->base_gfn >= ms->npages) { 2331 ms = gfn_to_memslot(kvm, cur_gfn); 2332 if (!ms) 2333 return 0; 2334 } 2335 } 2336 return 0; 2337 } 2338 2339 /* 2340 * This function searches for the next page with dirty CMMA attributes, and 2341 * saves the attributes in the buffer up to either the end of the buffer or 2342 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2343 * no trailing clean bytes are saved. 2344 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2345 * output buffer will indicate 0 as length. 2346 */ 2347 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2348 struct kvm_s390_cmma_log *args) 2349 { 2350 unsigned long bufsize; 2351 int srcu_idx, peek, ret; 2352 u8 *values; 2353 2354 if (!kvm->arch.use_cmma) 2355 return -ENXIO; 2356 /* Invalid/unsupported flags were specified */ 2357 if (args->flags & ~KVM_S390_CMMA_PEEK) 2358 return -EINVAL; 2359 /* Migration mode query, and we are not doing a migration */ 2360 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2361 if (!peek && !kvm->arch.migration_mode) 2362 return -EINVAL; 2363 /* CMMA is disabled or was not used, or the buffer has length zero */ 2364 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2365 if (!bufsize || !kvm->mm->context.uses_cmm) { 2366 memset(args, 0, sizeof(*args)); 2367 return 0; 2368 } 2369 /* We are not peeking, and there are no dirty pages */ 2370 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2371 memset(args, 0, sizeof(*args)); 2372 return 0; 2373 } 2374 2375 values = vmalloc(bufsize); 2376 if (!values) 2377 return -ENOMEM; 2378 2379 mmap_read_lock(kvm->mm); 2380 srcu_idx = srcu_read_lock(&kvm->srcu); 2381 if (peek) 2382 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2383 else 2384 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2385 srcu_read_unlock(&kvm->srcu, srcu_idx); 2386 mmap_read_unlock(kvm->mm); 2387 2388 if (kvm->arch.migration_mode) 2389 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2390 else 2391 args->remaining = 0; 2392 2393 if (copy_to_user((void __user *)args->values, values, args->count)) 2394 ret = -EFAULT; 2395 2396 vfree(values); 2397 return ret; 2398 } 2399 2400 /* 2401 * This function sets the CMMA attributes for the given pages. If the input 2402 * buffer has zero length, no action is taken, otherwise the attributes are 2403 * set and the mm->context.uses_cmm flag is set. 2404 */ 2405 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2406 const struct kvm_s390_cmma_log *args) 2407 { 2408 unsigned long hva, mask, pgstev, i; 2409 uint8_t *bits; 2410 int srcu_idx, r = 0; 2411 2412 mask = args->mask; 2413 2414 if (!kvm->arch.use_cmma) 2415 return -ENXIO; 2416 /* invalid/unsupported flags */ 2417 if (args->flags != 0) 2418 return -EINVAL; 2419 /* Enforce sane limit on memory allocation */ 2420 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2421 return -EINVAL; 2422 /* Nothing to do */ 2423 if (args->count == 0) 2424 return 0; 2425 2426 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2427 if (!bits) 2428 return -ENOMEM; 2429 2430 r = copy_from_user(bits, (void __user *)args->values, args->count); 2431 if (r) { 2432 r = -EFAULT; 2433 goto out; 2434 } 2435 2436 mmap_read_lock(kvm->mm); 2437 srcu_idx = srcu_read_lock(&kvm->srcu); 2438 for (i = 0; i < args->count; i++) { 2439 hva = gfn_to_hva(kvm, args->start_gfn + i); 2440 if (kvm_is_error_hva(hva)) { 2441 r = -EFAULT; 2442 break; 2443 } 2444 2445 pgstev = bits[i]; 2446 pgstev = pgstev << 24; 2447 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2448 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2449 } 2450 srcu_read_unlock(&kvm->srcu, srcu_idx); 2451 mmap_read_unlock(kvm->mm); 2452 2453 if (!kvm->mm->context.uses_cmm) { 2454 mmap_write_lock(kvm->mm); 2455 kvm->mm->context.uses_cmm = 1; 2456 mmap_write_unlock(kvm->mm); 2457 } 2458 out: 2459 vfree(bits); 2460 return r; 2461 } 2462 2463 /** 2464 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2465 * non protected. 2466 * @kvm: the VM whose protected vCPUs are to be converted 2467 * @rc: return value for the RC field of the UVC (in case of error) 2468 * @rrc: return value for the RRC field of the UVC (in case of error) 2469 * 2470 * Does not stop in case of error, tries to convert as many 2471 * CPUs as possible. In case of error, the RC and RRC of the last error are 2472 * returned. 2473 * 2474 * Return: 0 in case of success, otherwise -EIO 2475 */ 2476 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2477 { 2478 struct kvm_vcpu *vcpu; 2479 unsigned long i; 2480 u16 _rc, _rrc; 2481 int ret = 0; 2482 2483 /* 2484 * We ignore failures and try to destroy as many CPUs as possible. 2485 * At the same time we must not free the assigned resources when 2486 * this fails, as the ultravisor has still access to that memory. 2487 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2488 * behind. 2489 * We want to return the first failure rc and rrc, though. 2490 */ 2491 kvm_for_each_vcpu(i, vcpu, kvm) { 2492 mutex_lock(&vcpu->mutex); 2493 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2494 *rc = _rc; 2495 *rrc = _rrc; 2496 ret = -EIO; 2497 } 2498 mutex_unlock(&vcpu->mutex); 2499 } 2500 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2501 if (use_gisa) 2502 kvm_s390_gisa_enable(kvm); 2503 return ret; 2504 } 2505 2506 /** 2507 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2508 * to protected. 2509 * @kvm: the VM whose protected vCPUs are to be converted 2510 * @rc: return value for the RC field of the UVC (in case of error) 2511 * @rrc: return value for the RRC field of the UVC (in case of error) 2512 * 2513 * Tries to undo the conversion in case of error. 2514 * 2515 * Return: 0 in case of success, otherwise -EIO 2516 */ 2517 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2518 { 2519 unsigned long i; 2520 int r = 0; 2521 u16 dummy; 2522 2523 struct kvm_vcpu *vcpu; 2524 2525 /* Disable the GISA if the ultravisor does not support AIV. */ 2526 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2527 kvm_s390_gisa_disable(kvm); 2528 2529 kvm_for_each_vcpu(i, vcpu, kvm) { 2530 mutex_lock(&vcpu->mutex); 2531 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2532 mutex_unlock(&vcpu->mutex); 2533 if (r) 2534 break; 2535 } 2536 if (r) 2537 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2538 return r; 2539 } 2540 2541 /* 2542 * Here we provide user space with a direct interface to query UV 2543 * related data like UV maxima and available features as well as 2544 * feature specific data. 2545 * 2546 * To facilitate future extension of the data structures we'll try to 2547 * write data up to the maximum requested length. 2548 */ 2549 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2550 { 2551 ssize_t len_min; 2552 2553 switch (info->header.id) { 2554 case KVM_PV_INFO_VM: { 2555 len_min = sizeof(info->header) + sizeof(info->vm); 2556 2557 if (info->header.len_max < len_min) 2558 return -EINVAL; 2559 2560 memcpy(info->vm.inst_calls_list, 2561 uv_info.inst_calls_list, 2562 sizeof(uv_info.inst_calls_list)); 2563 2564 /* It's max cpuid not max cpus, so it's off by one */ 2565 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2566 info->vm.max_guests = uv_info.max_num_sec_conf; 2567 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2568 info->vm.feature_indication = uv_info.uv_feature_indications; 2569 2570 return len_min; 2571 } 2572 case KVM_PV_INFO_DUMP: { 2573 len_min = sizeof(info->header) + sizeof(info->dump); 2574 2575 if (info->header.len_max < len_min) 2576 return -EINVAL; 2577 2578 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2579 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2580 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2581 return len_min; 2582 } 2583 default: 2584 return -EINVAL; 2585 } 2586 } 2587 2588 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2589 struct kvm_s390_pv_dmp dmp) 2590 { 2591 int r = -EINVAL; 2592 void __user *result_buff = (void __user *)dmp.buff_addr; 2593 2594 switch (dmp.subcmd) { 2595 case KVM_PV_DUMP_INIT: { 2596 if (kvm->arch.pv.dumping) 2597 break; 2598 2599 /* 2600 * Block SIE entry as concurrent dump UVCs could lead 2601 * to validities. 2602 */ 2603 kvm_s390_vcpu_block_all(kvm); 2604 2605 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2606 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2607 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2608 cmd->rc, cmd->rrc); 2609 if (!r) { 2610 kvm->arch.pv.dumping = true; 2611 } else { 2612 kvm_s390_vcpu_unblock_all(kvm); 2613 r = -EINVAL; 2614 } 2615 break; 2616 } 2617 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2618 if (!kvm->arch.pv.dumping) 2619 break; 2620 2621 /* 2622 * gaddr is an output parameter since we might stop 2623 * early. As dmp will be copied back in our caller, we 2624 * don't need to do it ourselves. 2625 */ 2626 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2627 &cmd->rc, &cmd->rrc); 2628 break; 2629 } 2630 case KVM_PV_DUMP_COMPLETE: { 2631 if (!kvm->arch.pv.dumping) 2632 break; 2633 2634 r = -EINVAL; 2635 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2636 break; 2637 2638 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2639 &cmd->rc, &cmd->rrc); 2640 break; 2641 } 2642 default: 2643 r = -ENOTTY; 2644 break; 2645 } 2646 2647 return r; 2648 } 2649 2650 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2651 { 2652 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2653 void __user *argp = (void __user *)cmd->data; 2654 int r = 0; 2655 u16 dummy; 2656 2657 if (need_lock) 2658 mutex_lock(&kvm->lock); 2659 2660 switch (cmd->cmd) { 2661 case KVM_PV_ENABLE: { 2662 r = -EINVAL; 2663 if (kvm_s390_pv_is_protected(kvm)) 2664 break; 2665 2666 /* 2667 * FMT 4 SIE needs esca. As we never switch back to bsca from 2668 * esca, we need no cleanup in the error cases below 2669 */ 2670 r = sca_switch_to_extended(kvm); 2671 if (r) 2672 break; 2673 2674 r = s390_disable_cow_sharing(); 2675 if (r) 2676 break; 2677 2678 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2679 if (r) 2680 break; 2681 2682 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2683 if (r) 2684 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2685 2686 /* we need to block service interrupts from now on */ 2687 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2688 break; 2689 } 2690 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2691 r = -EINVAL; 2692 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2693 break; 2694 2695 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2696 /* 2697 * If a CPU could not be destroyed, destroy VM will also fail. 2698 * There is no point in trying to destroy it. Instead return 2699 * the rc and rrc from the first CPU that failed destroying. 2700 */ 2701 if (r) 2702 break; 2703 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2704 2705 /* no need to block service interrupts any more */ 2706 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2707 break; 2708 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2709 r = -EINVAL; 2710 if (!async_destroy) 2711 break; 2712 /* kvm->lock must not be held; this is asserted inside the function. */ 2713 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2714 break; 2715 case KVM_PV_DISABLE: { 2716 r = -EINVAL; 2717 if (!kvm_s390_pv_is_protected(kvm)) 2718 break; 2719 2720 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2721 /* 2722 * If a CPU could not be destroyed, destroy VM will also fail. 2723 * There is no point in trying to destroy it. Instead return 2724 * the rc and rrc from the first CPU that failed destroying. 2725 */ 2726 if (r) 2727 break; 2728 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2729 2730 /* no need to block service interrupts any more */ 2731 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2732 break; 2733 } 2734 case KVM_PV_SET_SEC_PARMS: { 2735 struct kvm_s390_pv_sec_parm parms = {}; 2736 void *hdr; 2737 2738 r = -EINVAL; 2739 if (!kvm_s390_pv_is_protected(kvm)) 2740 break; 2741 2742 r = -EFAULT; 2743 if (copy_from_user(&parms, argp, sizeof(parms))) 2744 break; 2745 2746 /* Currently restricted to 8KB */ 2747 r = -EINVAL; 2748 if (parms.length > PAGE_SIZE * 2) 2749 break; 2750 2751 r = -ENOMEM; 2752 hdr = vmalloc(parms.length); 2753 if (!hdr) 2754 break; 2755 2756 r = -EFAULT; 2757 if (!copy_from_user(hdr, (void __user *)parms.origin, 2758 parms.length)) 2759 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2760 &cmd->rc, &cmd->rrc); 2761 2762 vfree(hdr); 2763 break; 2764 } 2765 case KVM_PV_UNPACK: { 2766 struct kvm_s390_pv_unp unp = {}; 2767 2768 r = -EINVAL; 2769 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2770 break; 2771 2772 r = -EFAULT; 2773 if (copy_from_user(&unp, argp, sizeof(unp))) 2774 break; 2775 2776 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2777 &cmd->rc, &cmd->rrc); 2778 break; 2779 } 2780 case KVM_PV_VERIFY: { 2781 r = -EINVAL; 2782 if (!kvm_s390_pv_is_protected(kvm)) 2783 break; 2784 2785 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2786 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2787 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2788 cmd->rrc); 2789 break; 2790 } 2791 case KVM_PV_PREP_RESET: { 2792 r = -EINVAL; 2793 if (!kvm_s390_pv_is_protected(kvm)) 2794 break; 2795 2796 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2797 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2798 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2799 cmd->rc, cmd->rrc); 2800 break; 2801 } 2802 case KVM_PV_UNSHARE_ALL: { 2803 r = -EINVAL; 2804 if (!kvm_s390_pv_is_protected(kvm)) 2805 break; 2806 2807 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2808 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2809 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2810 cmd->rc, cmd->rrc); 2811 break; 2812 } 2813 case KVM_PV_INFO: { 2814 struct kvm_s390_pv_info info = {}; 2815 ssize_t data_len; 2816 2817 /* 2818 * No need to check the VM protection here. 2819 * 2820 * Maybe user space wants to query some of the data 2821 * when the VM is still unprotected. If we see the 2822 * need to fence a new data command we can still 2823 * return an error in the info handler. 2824 */ 2825 2826 r = -EFAULT; 2827 if (copy_from_user(&info, argp, sizeof(info.header))) 2828 break; 2829 2830 r = -EINVAL; 2831 if (info.header.len_max < sizeof(info.header)) 2832 break; 2833 2834 data_len = kvm_s390_handle_pv_info(&info); 2835 if (data_len < 0) { 2836 r = data_len; 2837 break; 2838 } 2839 /* 2840 * If a data command struct is extended (multiple 2841 * times) this can be used to determine how much of it 2842 * is valid. 2843 */ 2844 info.header.len_written = data_len; 2845 2846 r = -EFAULT; 2847 if (copy_to_user(argp, &info, data_len)) 2848 break; 2849 2850 r = 0; 2851 break; 2852 } 2853 case KVM_PV_DUMP: { 2854 struct kvm_s390_pv_dmp dmp; 2855 2856 r = -EINVAL; 2857 if (!kvm_s390_pv_is_protected(kvm)) 2858 break; 2859 2860 r = -EFAULT; 2861 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2862 break; 2863 2864 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2865 if (r) 2866 break; 2867 2868 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2869 r = -EFAULT; 2870 break; 2871 } 2872 2873 break; 2874 } 2875 default: 2876 r = -ENOTTY; 2877 } 2878 if (need_lock) 2879 mutex_unlock(&kvm->lock); 2880 2881 return r; 2882 } 2883 2884 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2885 { 2886 if (mop->flags & ~supported_flags || !mop->size) 2887 return -EINVAL; 2888 if (mop->size > MEM_OP_MAX_SIZE) 2889 return -E2BIG; 2890 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2891 if (mop->key > 0xf) 2892 return -EINVAL; 2893 } else { 2894 mop->key = 0; 2895 } 2896 return 0; 2897 } 2898 2899 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2900 { 2901 void __user *uaddr = (void __user *)mop->buf; 2902 enum gacc_mode acc_mode; 2903 void *tmpbuf = NULL; 2904 int r, srcu_idx; 2905 2906 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2907 KVM_S390_MEMOP_F_CHECK_ONLY); 2908 if (r) 2909 return r; 2910 2911 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2912 tmpbuf = vmalloc(mop->size); 2913 if (!tmpbuf) 2914 return -ENOMEM; 2915 } 2916 2917 srcu_idx = srcu_read_lock(&kvm->srcu); 2918 2919 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2920 r = PGM_ADDRESSING; 2921 goto out_unlock; 2922 } 2923 2924 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2925 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2926 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2927 goto out_unlock; 2928 } 2929 if (acc_mode == GACC_FETCH) { 2930 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2931 mop->size, GACC_FETCH, mop->key); 2932 if (r) 2933 goto out_unlock; 2934 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2935 r = -EFAULT; 2936 } else { 2937 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2938 r = -EFAULT; 2939 goto out_unlock; 2940 } 2941 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2942 mop->size, GACC_STORE, mop->key); 2943 } 2944 2945 out_unlock: 2946 srcu_read_unlock(&kvm->srcu, srcu_idx); 2947 2948 vfree(tmpbuf); 2949 return r; 2950 } 2951 2952 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2953 { 2954 void __user *uaddr = (void __user *)mop->buf; 2955 void __user *old_addr = (void __user *)mop->old_addr; 2956 union { 2957 __uint128_t quad; 2958 char raw[sizeof(__uint128_t)]; 2959 } old = { .quad = 0}, new = { .quad = 0 }; 2960 unsigned int off_in_quad = sizeof(new) - mop->size; 2961 int r, srcu_idx; 2962 bool success; 2963 2964 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2965 if (r) 2966 return r; 2967 /* 2968 * This validates off_in_quad. Checking that size is a power 2969 * of two is not necessary, as cmpxchg_guest_abs_with_key 2970 * takes care of that 2971 */ 2972 if (mop->size > sizeof(new)) 2973 return -EINVAL; 2974 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2975 return -EFAULT; 2976 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2977 return -EFAULT; 2978 2979 srcu_idx = srcu_read_lock(&kvm->srcu); 2980 2981 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2982 r = PGM_ADDRESSING; 2983 goto out_unlock; 2984 } 2985 2986 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2987 new.quad, mop->key, &success); 2988 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2989 r = -EFAULT; 2990 2991 out_unlock: 2992 srcu_read_unlock(&kvm->srcu, srcu_idx); 2993 return r; 2994 } 2995 2996 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2997 { 2998 /* 2999 * This is technically a heuristic only, if the kvm->lock is not 3000 * taken, it is not guaranteed that the vm is/remains non-protected. 3001 * This is ok from a kernel perspective, wrongdoing is detected 3002 * on the access, -EFAULT is returned and the vm may crash the 3003 * next time it accesses the memory in question. 3004 * There is no sane usecase to do switching and a memop on two 3005 * different CPUs at the same time. 3006 */ 3007 if (kvm_s390_pv_get_handle(kvm)) 3008 return -EINVAL; 3009 3010 switch (mop->op) { 3011 case KVM_S390_MEMOP_ABSOLUTE_READ: 3012 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 3013 return kvm_s390_vm_mem_op_abs(kvm, mop); 3014 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 3015 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 3016 default: 3017 return -EINVAL; 3018 } 3019 } 3020 3021 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 3022 { 3023 struct kvm *kvm = filp->private_data; 3024 void __user *argp = (void __user *)arg; 3025 struct kvm_device_attr attr; 3026 int r; 3027 3028 switch (ioctl) { 3029 case KVM_S390_INTERRUPT: { 3030 struct kvm_s390_interrupt s390int; 3031 3032 r = -EFAULT; 3033 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3034 break; 3035 r = kvm_s390_inject_vm(kvm, &s390int); 3036 break; 3037 } 3038 case KVM_CREATE_IRQCHIP: { 3039 r = -EINVAL; 3040 if (kvm->arch.use_irqchip) 3041 r = 0; 3042 break; 3043 } 3044 case KVM_SET_DEVICE_ATTR: { 3045 r = -EFAULT; 3046 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3047 break; 3048 r = kvm_s390_vm_set_attr(kvm, &attr); 3049 break; 3050 } 3051 case KVM_GET_DEVICE_ATTR: { 3052 r = -EFAULT; 3053 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3054 break; 3055 r = kvm_s390_vm_get_attr(kvm, &attr); 3056 break; 3057 } 3058 case KVM_HAS_DEVICE_ATTR: { 3059 r = -EFAULT; 3060 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3061 break; 3062 r = kvm_s390_vm_has_attr(kvm, &attr); 3063 break; 3064 } 3065 case KVM_S390_GET_SKEYS: { 3066 struct kvm_s390_skeys args; 3067 3068 r = -EFAULT; 3069 if (copy_from_user(&args, argp, 3070 sizeof(struct kvm_s390_skeys))) 3071 break; 3072 r = kvm_s390_get_skeys(kvm, &args); 3073 break; 3074 } 3075 case KVM_S390_SET_SKEYS: { 3076 struct kvm_s390_skeys args; 3077 3078 r = -EFAULT; 3079 if (copy_from_user(&args, argp, 3080 sizeof(struct kvm_s390_skeys))) 3081 break; 3082 r = kvm_s390_set_skeys(kvm, &args); 3083 break; 3084 } 3085 case KVM_S390_GET_CMMA_BITS: { 3086 struct kvm_s390_cmma_log args; 3087 3088 r = -EFAULT; 3089 if (copy_from_user(&args, argp, sizeof(args))) 3090 break; 3091 mutex_lock(&kvm->slots_lock); 3092 r = kvm_s390_get_cmma_bits(kvm, &args); 3093 mutex_unlock(&kvm->slots_lock); 3094 if (!r) { 3095 r = copy_to_user(argp, &args, sizeof(args)); 3096 if (r) 3097 r = -EFAULT; 3098 } 3099 break; 3100 } 3101 case KVM_S390_SET_CMMA_BITS: { 3102 struct kvm_s390_cmma_log args; 3103 3104 r = -EFAULT; 3105 if (copy_from_user(&args, argp, sizeof(args))) 3106 break; 3107 mutex_lock(&kvm->slots_lock); 3108 r = kvm_s390_set_cmma_bits(kvm, &args); 3109 mutex_unlock(&kvm->slots_lock); 3110 break; 3111 } 3112 case KVM_S390_PV_COMMAND: { 3113 struct kvm_pv_cmd args; 3114 3115 /* protvirt means user cpu state */ 3116 kvm_s390_set_user_cpu_state_ctrl(kvm); 3117 r = 0; 3118 if (!is_prot_virt_host()) { 3119 r = -EINVAL; 3120 break; 3121 } 3122 if (copy_from_user(&args, argp, sizeof(args))) { 3123 r = -EFAULT; 3124 break; 3125 } 3126 if (args.flags) { 3127 r = -EINVAL; 3128 break; 3129 } 3130 /* must be called without kvm->lock */ 3131 r = kvm_s390_handle_pv(kvm, &args); 3132 if (copy_to_user(argp, &args, sizeof(args))) { 3133 r = -EFAULT; 3134 break; 3135 } 3136 break; 3137 } 3138 case KVM_S390_MEM_OP: { 3139 struct kvm_s390_mem_op mem_op; 3140 3141 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3142 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3143 else 3144 r = -EFAULT; 3145 break; 3146 } 3147 case KVM_S390_ZPCI_OP: { 3148 struct kvm_s390_zpci_op args; 3149 3150 r = -EINVAL; 3151 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3152 break; 3153 if (copy_from_user(&args, argp, sizeof(args))) { 3154 r = -EFAULT; 3155 break; 3156 } 3157 r = kvm_s390_pci_zpci_op(kvm, &args); 3158 break; 3159 } 3160 default: 3161 r = -ENOTTY; 3162 } 3163 3164 return r; 3165 } 3166 3167 static int kvm_s390_apxa_installed(void) 3168 { 3169 struct ap_config_info info; 3170 3171 if (ap_instructions_available()) { 3172 if (ap_qci(&info) == 0) 3173 return info.apxa; 3174 } 3175 3176 return 0; 3177 } 3178 3179 /* 3180 * The format of the crypto control block (CRYCB) is specified in the 3 low 3181 * order bits of the CRYCB designation (CRYCBD) field as follows: 3182 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3183 * AP extended addressing (APXA) facility are installed. 3184 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3185 * Format 2: Both the APXA and MSAX3 facilities are installed 3186 */ 3187 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3188 { 3189 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); 3190 3191 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3192 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3193 3194 /* Check whether MSAX3 is installed */ 3195 if (!test_kvm_facility(kvm, 76)) 3196 return; 3197 3198 if (kvm_s390_apxa_installed()) 3199 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3200 else 3201 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3202 } 3203 3204 /* 3205 * kvm_arch_crypto_set_masks 3206 * 3207 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3208 * to be set. 3209 * @apm: the mask identifying the accessible AP adapters 3210 * @aqm: the mask identifying the accessible AP domains 3211 * @adm: the mask identifying the accessible AP control domains 3212 * 3213 * Set the masks that identify the adapters, domains and control domains to 3214 * which the KVM guest is granted access. 3215 * 3216 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3217 * function. 3218 */ 3219 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3220 unsigned long *aqm, unsigned long *adm) 3221 { 3222 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3223 3224 kvm_s390_vcpu_block_all(kvm); 3225 3226 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3227 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3228 memcpy(crycb->apcb1.apm, apm, 32); 3229 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3230 apm[0], apm[1], apm[2], apm[3]); 3231 memcpy(crycb->apcb1.aqm, aqm, 32); 3232 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3233 aqm[0], aqm[1], aqm[2], aqm[3]); 3234 memcpy(crycb->apcb1.adm, adm, 32); 3235 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3236 adm[0], adm[1], adm[2], adm[3]); 3237 break; 3238 case CRYCB_FORMAT1: 3239 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3240 memcpy(crycb->apcb0.apm, apm, 8); 3241 memcpy(crycb->apcb0.aqm, aqm, 2); 3242 memcpy(crycb->apcb0.adm, adm, 2); 3243 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3244 apm[0], *((unsigned short *)aqm), 3245 *((unsigned short *)adm)); 3246 break; 3247 default: /* Can not happen */ 3248 break; 3249 } 3250 3251 /* recreate the shadow crycb for each vcpu */ 3252 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3253 kvm_s390_vcpu_unblock_all(kvm); 3254 } 3255 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3256 3257 /* 3258 * kvm_arch_crypto_clear_masks 3259 * 3260 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3261 * to be cleared. 3262 * 3263 * Clear the masks that identify the adapters, domains and control domains to 3264 * which the KVM guest is granted access. 3265 * 3266 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3267 * function. 3268 */ 3269 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3270 { 3271 kvm_s390_vcpu_block_all(kvm); 3272 3273 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3274 sizeof(kvm->arch.crypto.crycb->apcb0)); 3275 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3276 sizeof(kvm->arch.crypto.crycb->apcb1)); 3277 3278 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3279 /* recreate the shadow crycb for each vcpu */ 3280 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3281 kvm_s390_vcpu_unblock_all(kvm); 3282 } 3283 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3284 3285 static u64 kvm_s390_get_initial_cpuid(void) 3286 { 3287 struct cpuid cpuid; 3288 3289 get_cpu_id(&cpuid); 3290 cpuid.version = 0xff; 3291 return *((u64 *) &cpuid); 3292 } 3293 3294 static void kvm_s390_crypto_init(struct kvm *kvm) 3295 { 3296 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3297 kvm_s390_set_crycb_format(kvm); 3298 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3299 3300 if (!test_kvm_facility(kvm, 76)) 3301 return; 3302 3303 /* Enable AES/DEA protected key functions by default */ 3304 kvm->arch.crypto.aes_kw = 1; 3305 kvm->arch.crypto.dea_kw = 1; 3306 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3307 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3308 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3309 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3310 } 3311 3312 static void sca_dispose(struct kvm *kvm) 3313 { 3314 if (kvm->arch.use_esca) 3315 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3316 else 3317 free_page((unsigned long)(kvm->arch.sca)); 3318 kvm->arch.sca = NULL; 3319 } 3320 3321 void kvm_arch_free_vm(struct kvm *kvm) 3322 { 3323 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3324 kvm_s390_pci_clear_list(kvm); 3325 3326 __kvm_arch_free_vm(kvm); 3327 } 3328 3329 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3330 { 3331 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3332 int i, rc; 3333 char debug_name[16]; 3334 static unsigned long sca_offset; 3335 3336 rc = -EINVAL; 3337 #ifdef CONFIG_KVM_S390_UCONTROL 3338 if (type & ~KVM_VM_S390_UCONTROL) 3339 goto out_err; 3340 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3341 goto out_err; 3342 #else 3343 if (type) 3344 goto out_err; 3345 #endif 3346 3347 rc = s390_enable_sie(); 3348 if (rc) 3349 goto out_err; 3350 3351 rc = -ENOMEM; 3352 3353 if (!sclp.has_64bscao) 3354 alloc_flags |= GFP_DMA; 3355 rwlock_init(&kvm->arch.sca_lock); 3356 /* start with basic SCA */ 3357 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3358 if (!kvm->arch.sca) 3359 goto out_err; 3360 mutex_lock(&kvm_lock); 3361 sca_offset += 16; 3362 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3363 sca_offset = 0; 3364 kvm->arch.sca = (struct bsca_block *) 3365 ((char *) kvm->arch.sca + sca_offset); 3366 mutex_unlock(&kvm_lock); 3367 3368 sprintf(debug_name, "kvm-%u", current->pid); 3369 3370 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3371 if (!kvm->arch.dbf) 3372 goto out_err; 3373 3374 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3375 kvm->arch.sie_page2 = 3376 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3377 if (!kvm->arch.sie_page2) 3378 goto out_err; 3379 3380 kvm->arch.sie_page2->kvm = kvm; 3381 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3382 3383 for (i = 0; i < kvm_s390_fac_size(); i++) { 3384 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3385 (kvm_s390_fac_base[i] | 3386 kvm_s390_fac_ext[i]); 3387 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3388 kvm_s390_fac_base[i]; 3389 } 3390 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3391 3392 /* we are always in czam mode - even on pre z14 machines */ 3393 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3394 set_kvm_facility(kvm->arch.model.fac_list, 138); 3395 /* we emulate STHYI in kvm */ 3396 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3397 set_kvm_facility(kvm->arch.model.fac_list, 74); 3398 if (MACHINE_HAS_TLB_GUEST) { 3399 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3400 set_kvm_facility(kvm->arch.model.fac_list, 147); 3401 } 3402 3403 if (css_general_characteristics.aiv && test_facility(65)) 3404 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3405 3406 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3407 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3408 3409 kvm->arch.model.uv_feat_guest.feat = 0; 3410 3411 kvm_s390_crypto_init(kvm); 3412 3413 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3414 mutex_lock(&kvm->lock); 3415 kvm_s390_pci_init_list(kvm); 3416 kvm_s390_vcpu_pci_enable_interp(kvm); 3417 mutex_unlock(&kvm->lock); 3418 } 3419 3420 mutex_init(&kvm->arch.float_int.ais_lock); 3421 spin_lock_init(&kvm->arch.float_int.lock); 3422 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3423 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3424 init_waitqueue_head(&kvm->arch.ipte_wq); 3425 mutex_init(&kvm->arch.ipte_mutex); 3426 3427 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3428 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3429 3430 if (type & KVM_VM_S390_UCONTROL) { 3431 kvm->arch.gmap = NULL; 3432 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3433 } else { 3434 if (sclp.hamax == U64_MAX) 3435 kvm->arch.mem_limit = TASK_SIZE_MAX; 3436 else 3437 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3438 sclp.hamax + 1); 3439 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3440 if (!kvm->arch.gmap) 3441 goto out_err; 3442 kvm->arch.gmap->private = kvm; 3443 kvm->arch.gmap->pfault_enabled = 0; 3444 } 3445 3446 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3447 kvm->arch.use_skf = sclp.has_skey; 3448 spin_lock_init(&kvm->arch.start_stop_lock); 3449 kvm_s390_vsie_init(kvm); 3450 if (use_gisa) 3451 kvm_s390_gisa_init(kvm); 3452 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3453 kvm->arch.pv.set_aside = NULL; 3454 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3455 3456 return 0; 3457 out_err: 3458 free_page((unsigned long)kvm->arch.sie_page2); 3459 debug_unregister(kvm->arch.dbf); 3460 sca_dispose(kvm); 3461 KVM_EVENT(3, "creation of vm failed: %d", rc); 3462 return rc; 3463 } 3464 3465 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3466 { 3467 u16 rc, rrc; 3468 3469 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3470 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3471 kvm_s390_clear_local_irqs(vcpu); 3472 kvm_clear_async_pf_completion_queue(vcpu); 3473 if (!kvm_is_ucontrol(vcpu->kvm)) 3474 sca_del_vcpu(vcpu); 3475 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3476 3477 if (kvm_is_ucontrol(vcpu->kvm)) 3478 gmap_remove(vcpu->arch.gmap); 3479 3480 if (vcpu->kvm->arch.use_cmma) 3481 kvm_s390_vcpu_unsetup_cmma(vcpu); 3482 /* We can not hold the vcpu mutex here, we are already dying */ 3483 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3484 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3485 free_page((unsigned long)(vcpu->arch.sie_block)); 3486 } 3487 3488 void kvm_arch_destroy_vm(struct kvm *kvm) 3489 { 3490 u16 rc, rrc; 3491 3492 kvm_destroy_vcpus(kvm); 3493 sca_dispose(kvm); 3494 kvm_s390_gisa_destroy(kvm); 3495 /* 3496 * We are already at the end of life and kvm->lock is not taken. 3497 * This is ok as the file descriptor is closed by now and nobody 3498 * can mess with the pv state. 3499 */ 3500 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3501 /* 3502 * Remove the mmu notifier only when the whole KVM VM is torn down, 3503 * and only if one was registered to begin with. If the VM is 3504 * currently not protected, but has been previously been protected, 3505 * then it's possible that the notifier is still registered. 3506 */ 3507 if (kvm->arch.pv.mmu_notifier.ops) 3508 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3509 3510 debug_unregister(kvm->arch.dbf); 3511 free_page((unsigned long)kvm->arch.sie_page2); 3512 if (!kvm_is_ucontrol(kvm)) 3513 gmap_remove(kvm->arch.gmap); 3514 kvm_s390_destroy_adapters(kvm); 3515 kvm_s390_clear_float_irqs(kvm); 3516 kvm_s390_vsie_destroy(kvm); 3517 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3518 } 3519 3520 /* Section: vcpu related */ 3521 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3522 { 3523 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3524 if (!vcpu->arch.gmap) 3525 return -ENOMEM; 3526 vcpu->arch.gmap->private = vcpu->kvm; 3527 3528 return 0; 3529 } 3530 3531 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3532 { 3533 if (!kvm_s390_use_sca_entries()) 3534 return; 3535 read_lock(&vcpu->kvm->arch.sca_lock); 3536 if (vcpu->kvm->arch.use_esca) { 3537 struct esca_block *sca = vcpu->kvm->arch.sca; 3538 3539 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3540 sca->cpu[vcpu->vcpu_id].sda = 0; 3541 } else { 3542 struct bsca_block *sca = vcpu->kvm->arch.sca; 3543 3544 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3545 sca->cpu[vcpu->vcpu_id].sda = 0; 3546 } 3547 read_unlock(&vcpu->kvm->arch.sca_lock); 3548 } 3549 3550 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3551 { 3552 if (!kvm_s390_use_sca_entries()) { 3553 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3554 3555 /* we still need the basic sca for the ipte control */ 3556 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3557 vcpu->arch.sie_block->scaol = sca_phys; 3558 return; 3559 } 3560 read_lock(&vcpu->kvm->arch.sca_lock); 3561 if (vcpu->kvm->arch.use_esca) { 3562 struct esca_block *sca = vcpu->kvm->arch.sca; 3563 phys_addr_t sca_phys = virt_to_phys(sca); 3564 3565 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3566 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3567 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3568 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3569 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3570 } else { 3571 struct bsca_block *sca = vcpu->kvm->arch.sca; 3572 phys_addr_t sca_phys = virt_to_phys(sca); 3573 3574 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3575 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3576 vcpu->arch.sie_block->scaol = sca_phys; 3577 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3578 } 3579 read_unlock(&vcpu->kvm->arch.sca_lock); 3580 } 3581 3582 /* Basic SCA to Extended SCA data copy routines */ 3583 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3584 { 3585 d->sda = s->sda; 3586 d->sigp_ctrl.c = s->sigp_ctrl.c; 3587 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3588 } 3589 3590 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3591 { 3592 int i; 3593 3594 d->ipte_control = s->ipte_control; 3595 d->mcn[0] = s->mcn; 3596 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3597 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3598 } 3599 3600 static int sca_switch_to_extended(struct kvm *kvm) 3601 { 3602 struct bsca_block *old_sca = kvm->arch.sca; 3603 struct esca_block *new_sca; 3604 struct kvm_vcpu *vcpu; 3605 unsigned long vcpu_idx; 3606 u32 scaol, scaoh; 3607 phys_addr_t new_sca_phys; 3608 3609 if (kvm->arch.use_esca) 3610 return 0; 3611 3612 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3613 if (!new_sca) 3614 return -ENOMEM; 3615 3616 new_sca_phys = virt_to_phys(new_sca); 3617 scaoh = new_sca_phys >> 32; 3618 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3619 3620 kvm_s390_vcpu_block_all(kvm); 3621 write_lock(&kvm->arch.sca_lock); 3622 3623 sca_copy_b_to_e(new_sca, old_sca); 3624 3625 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3626 vcpu->arch.sie_block->scaoh = scaoh; 3627 vcpu->arch.sie_block->scaol = scaol; 3628 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3629 } 3630 kvm->arch.sca = new_sca; 3631 kvm->arch.use_esca = 1; 3632 3633 write_unlock(&kvm->arch.sca_lock); 3634 kvm_s390_vcpu_unblock_all(kvm); 3635 3636 free_page((unsigned long)old_sca); 3637 3638 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3639 old_sca, kvm->arch.sca); 3640 return 0; 3641 } 3642 3643 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3644 { 3645 int rc; 3646 3647 if (!kvm_s390_use_sca_entries()) { 3648 if (id < KVM_MAX_VCPUS) 3649 return true; 3650 return false; 3651 } 3652 if (id < KVM_S390_BSCA_CPU_SLOTS) 3653 return true; 3654 if (!sclp.has_esca || !sclp.has_64bscao) 3655 return false; 3656 3657 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3658 3659 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3660 } 3661 3662 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3663 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3664 { 3665 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3666 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3667 vcpu->arch.cputm_start = get_tod_clock_fast(); 3668 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3669 } 3670 3671 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3672 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3673 { 3674 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3675 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3676 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3677 vcpu->arch.cputm_start = 0; 3678 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3679 } 3680 3681 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3682 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3683 { 3684 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3685 vcpu->arch.cputm_enabled = true; 3686 __start_cpu_timer_accounting(vcpu); 3687 } 3688 3689 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3690 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3691 { 3692 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3693 __stop_cpu_timer_accounting(vcpu); 3694 vcpu->arch.cputm_enabled = false; 3695 } 3696 3697 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3698 { 3699 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3700 __enable_cpu_timer_accounting(vcpu); 3701 preempt_enable(); 3702 } 3703 3704 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3705 { 3706 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3707 __disable_cpu_timer_accounting(vcpu); 3708 preempt_enable(); 3709 } 3710 3711 /* set the cpu timer - may only be called from the VCPU thread itself */ 3712 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3713 { 3714 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3715 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3716 if (vcpu->arch.cputm_enabled) 3717 vcpu->arch.cputm_start = get_tod_clock_fast(); 3718 vcpu->arch.sie_block->cputm = cputm; 3719 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3720 preempt_enable(); 3721 } 3722 3723 /* update and get the cpu timer - can also be called from other VCPU threads */ 3724 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3725 { 3726 unsigned int seq; 3727 __u64 value; 3728 3729 if (unlikely(!vcpu->arch.cputm_enabled)) 3730 return vcpu->arch.sie_block->cputm; 3731 3732 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3733 do { 3734 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3735 /* 3736 * If the writer would ever execute a read in the critical 3737 * section, e.g. in irq context, we have a deadlock. 3738 */ 3739 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3740 value = vcpu->arch.sie_block->cputm; 3741 /* if cputm_start is 0, accounting is being started/stopped */ 3742 if (likely(vcpu->arch.cputm_start)) 3743 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3744 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3745 preempt_enable(); 3746 return value; 3747 } 3748 3749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3750 { 3751 3752 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3753 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3754 __start_cpu_timer_accounting(vcpu); 3755 vcpu->cpu = cpu; 3756 } 3757 3758 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3759 { 3760 vcpu->cpu = -1; 3761 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3762 __stop_cpu_timer_accounting(vcpu); 3763 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3764 3765 } 3766 3767 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3768 { 3769 mutex_lock(&vcpu->kvm->lock); 3770 preempt_disable(); 3771 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3772 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3773 preempt_enable(); 3774 mutex_unlock(&vcpu->kvm->lock); 3775 if (!kvm_is_ucontrol(vcpu->kvm)) { 3776 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3777 sca_add_vcpu(vcpu); 3778 } 3779 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3780 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3781 } 3782 3783 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3784 { 3785 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3786 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3787 return true; 3788 return false; 3789 } 3790 3791 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3792 { 3793 /* At least one ECC subfunction must be present */ 3794 return kvm_has_pckmo_subfunc(kvm, 32) || 3795 kvm_has_pckmo_subfunc(kvm, 33) || 3796 kvm_has_pckmo_subfunc(kvm, 34) || 3797 kvm_has_pckmo_subfunc(kvm, 40) || 3798 kvm_has_pckmo_subfunc(kvm, 41); 3799 3800 } 3801 3802 static bool kvm_has_pckmo_hmac(struct kvm *kvm) 3803 { 3804 /* At least one HMAC subfunction must be present */ 3805 return kvm_has_pckmo_subfunc(kvm, 118) || 3806 kvm_has_pckmo_subfunc(kvm, 122); 3807 } 3808 3809 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3810 { 3811 /* 3812 * If the AP instructions are not being interpreted and the MSAX3 3813 * facility is not configured for the guest, there is nothing to set up. 3814 */ 3815 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3816 return; 3817 3818 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3819 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3820 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3821 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC); 3822 3823 if (vcpu->kvm->arch.crypto.apie) 3824 vcpu->arch.sie_block->eca |= ECA_APIE; 3825 3826 /* Set up protected key support */ 3827 if (vcpu->kvm->arch.crypto.aes_kw) { 3828 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3829 /* ecc/hmac is also wrapped with AES key */ 3830 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3831 vcpu->arch.sie_block->ecd |= ECD_ECC; 3832 if (kvm_has_pckmo_hmac(vcpu->kvm)) 3833 vcpu->arch.sie_block->ecd |= ECD_HMAC; 3834 } 3835 3836 if (vcpu->kvm->arch.crypto.dea_kw) 3837 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3838 } 3839 3840 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3841 { 3842 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3843 vcpu->arch.sie_block->cbrlo = 0; 3844 } 3845 3846 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3847 { 3848 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3849 3850 if (!cbrlo_page) 3851 return -ENOMEM; 3852 3853 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3854 return 0; 3855 } 3856 3857 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3858 { 3859 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3860 3861 vcpu->arch.sie_block->ibc = model->ibc; 3862 if (test_kvm_facility(vcpu->kvm, 7)) 3863 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3864 } 3865 3866 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3867 { 3868 int rc = 0; 3869 u16 uvrc, uvrrc; 3870 3871 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3872 CPUSTAT_SM | 3873 CPUSTAT_STOPPED); 3874 3875 if (test_kvm_facility(vcpu->kvm, 78)) 3876 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3877 else if (test_kvm_facility(vcpu->kvm, 8)) 3878 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3879 3880 kvm_s390_vcpu_setup_model(vcpu); 3881 3882 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3883 if (MACHINE_HAS_ESOP) 3884 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3885 if (test_kvm_facility(vcpu->kvm, 9)) 3886 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3887 if (test_kvm_facility(vcpu->kvm, 11)) 3888 vcpu->arch.sie_block->ecb |= ECB_PTF; 3889 if (test_kvm_facility(vcpu->kvm, 73)) 3890 vcpu->arch.sie_block->ecb |= ECB_TE; 3891 if (!kvm_is_ucontrol(vcpu->kvm)) 3892 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3893 3894 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3895 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3896 if (test_kvm_facility(vcpu->kvm, 130)) 3897 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3898 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3899 if (sclp.has_cei) 3900 vcpu->arch.sie_block->eca |= ECA_CEI; 3901 if (sclp.has_ib) 3902 vcpu->arch.sie_block->eca |= ECA_IB; 3903 if (sclp.has_siif) 3904 vcpu->arch.sie_block->eca |= ECA_SII; 3905 if (sclp.has_sigpif) 3906 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3907 if (test_kvm_facility(vcpu->kvm, 129)) { 3908 vcpu->arch.sie_block->eca |= ECA_VX; 3909 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3910 } 3911 if (test_kvm_facility(vcpu->kvm, 139)) 3912 vcpu->arch.sie_block->ecd |= ECD_MEF; 3913 if (test_kvm_facility(vcpu->kvm, 156)) 3914 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3915 if (vcpu->arch.sie_block->gd) { 3916 vcpu->arch.sie_block->eca |= ECA_AIV; 3917 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3918 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3919 } 3920 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3921 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3922 3923 if (sclp.has_kss) 3924 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3925 else 3926 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3927 3928 if (vcpu->kvm->arch.use_cmma) { 3929 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3930 if (rc) 3931 return rc; 3932 } 3933 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3934 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3935 3936 vcpu->arch.sie_block->hpid = HPID_KVM; 3937 3938 kvm_s390_vcpu_crypto_setup(vcpu); 3939 3940 kvm_s390_vcpu_pci_setup(vcpu); 3941 3942 mutex_lock(&vcpu->kvm->lock); 3943 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3944 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3945 if (rc) 3946 kvm_s390_vcpu_unsetup_cmma(vcpu); 3947 } 3948 mutex_unlock(&vcpu->kvm->lock); 3949 3950 return rc; 3951 } 3952 3953 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3954 { 3955 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3956 return -EINVAL; 3957 return 0; 3958 } 3959 3960 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3961 { 3962 struct sie_page *sie_page; 3963 int rc; 3964 3965 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3966 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3967 if (!sie_page) 3968 return -ENOMEM; 3969 3970 vcpu->arch.sie_block = &sie_page->sie_block; 3971 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3972 3973 /* the real guest size will always be smaller than msl */ 3974 vcpu->arch.sie_block->mso = 0; 3975 vcpu->arch.sie_block->msl = sclp.hamax; 3976 3977 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3978 spin_lock_init(&vcpu->arch.local_int.lock); 3979 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3980 seqcount_init(&vcpu->arch.cputm_seqcount); 3981 3982 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3983 kvm_clear_async_pf_completion_queue(vcpu); 3984 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3985 KVM_SYNC_GPRS | 3986 KVM_SYNC_ACRS | 3987 KVM_SYNC_CRS | 3988 KVM_SYNC_ARCH0 | 3989 KVM_SYNC_PFAULT | 3990 KVM_SYNC_DIAG318; 3991 vcpu->arch.acrs_loaded = false; 3992 kvm_s390_set_prefix(vcpu, 0); 3993 if (test_kvm_facility(vcpu->kvm, 64)) 3994 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3995 if (test_kvm_facility(vcpu->kvm, 82)) 3996 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3997 if (test_kvm_facility(vcpu->kvm, 133)) 3998 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3999 if (test_kvm_facility(vcpu->kvm, 156)) 4000 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 4001 /* fprs can be synchronized via vrs, even if the guest has no vx. With 4002 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 4003 */ 4004 if (cpu_has_vx()) 4005 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 4006 else 4007 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 4008 4009 if (kvm_is_ucontrol(vcpu->kvm)) { 4010 rc = __kvm_ucontrol_vcpu_init(vcpu); 4011 if (rc) 4012 goto out_free_sie_block; 4013 } 4014 4015 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 4016 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4017 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4018 4019 rc = kvm_s390_vcpu_setup(vcpu); 4020 if (rc) 4021 goto out_ucontrol_uninit; 4022 4023 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 4024 return 0; 4025 4026 out_ucontrol_uninit: 4027 if (kvm_is_ucontrol(vcpu->kvm)) 4028 gmap_remove(vcpu->arch.gmap); 4029 out_free_sie_block: 4030 free_page((unsigned long)(vcpu->arch.sie_block)); 4031 return rc; 4032 } 4033 4034 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 4035 { 4036 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4037 return kvm_s390_vcpu_has_irq(vcpu, 0); 4038 } 4039 4040 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4041 { 4042 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4043 } 4044 4045 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4046 { 4047 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4048 exit_sie(vcpu); 4049 } 4050 4051 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4052 { 4053 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4054 } 4055 4056 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4057 { 4058 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4059 exit_sie(vcpu); 4060 } 4061 4062 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4063 { 4064 return atomic_read(&vcpu->arch.sie_block->prog20) & 4065 (PROG_BLOCK_SIE | PROG_REQUEST); 4066 } 4067 4068 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4069 { 4070 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4071 } 4072 4073 /* 4074 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4075 * If the CPU is not running (e.g. waiting as idle) the function will 4076 * return immediately. */ 4077 void exit_sie(struct kvm_vcpu *vcpu) 4078 { 4079 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4080 kvm_s390_vsie_kick(vcpu); 4081 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4082 cpu_relax(); 4083 } 4084 4085 /* Kick a guest cpu out of SIE to process a request synchronously */ 4086 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4087 { 4088 __kvm_make_request(req, vcpu); 4089 kvm_s390_vcpu_request(vcpu); 4090 } 4091 4092 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4093 unsigned long end) 4094 { 4095 struct kvm *kvm = gmap->private; 4096 struct kvm_vcpu *vcpu; 4097 unsigned long prefix; 4098 unsigned long i; 4099 4100 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4101 4102 if (gmap_is_shadow(gmap)) 4103 return; 4104 if (start >= 1UL << 31) 4105 /* We are only interested in prefix pages */ 4106 return; 4107 kvm_for_each_vcpu(i, vcpu, kvm) { 4108 /* match against both prefix pages */ 4109 prefix = kvm_s390_get_prefix(vcpu); 4110 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4111 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4112 start, end); 4113 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4114 } 4115 } 4116 } 4117 4118 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4119 { 4120 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4121 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >= 4122 READ_ONCE(halt_poll_max_steal)) { 4123 vcpu->stat.halt_no_poll_steal++; 4124 return true; 4125 } 4126 return false; 4127 } 4128 4129 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4130 { 4131 /* kvm common code refers to this, but never calls it */ 4132 BUG(); 4133 return 0; 4134 } 4135 4136 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4137 struct kvm_one_reg *reg) 4138 { 4139 int r = -EINVAL; 4140 4141 switch (reg->id) { 4142 case KVM_REG_S390_TODPR: 4143 r = put_user(vcpu->arch.sie_block->todpr, 4144 (u32 __user *)reg->addr); 4145 break; 4146 case KVM_REG_S390_EPOCHDIFF: 4147 r = put_user(vcpu->arch.sie_block->epoch, 4148 (u64 __user *)reg->addr); 4149 break; 4150 case KVM_REG_S390_CPU_TIMER: 4151 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4152 (u64 __user *)reg->addr); 4153 break; 4154 case KVM_REG_S390_CLOCK_COMP: 4155 r = put_user(vcpu->arch.sie_block->ckc, 4156 (u64 __user *)reg->addr); 4157 break; 4158 case KVM_REG_S390_PFTOKEN: 4159 r = put_user(vcpu->arch.pfault_token, 4160 (u64 __user *)reg->addr); 4161 break; 4162 case KVM_REG_S390_PFCOMPARE: 4163 r = put_user(vcpu->arch.pfault_compare, 4164 (u64 __user *)reg->addr); 4165 break; 4166 case KVM_REG_S390_PFSELECT: 4167 r = put_user(vcpu->arch.pfault_select, 4168 (u64 __user *)reg->addr); 4169 break; 4170 case KVM_REG_S390_PP: 4171 r = put_user(vcpu->arch.sie_block->pp, 4172 (u64 __user *)reg->addr); 4173 break; 4174 case KVM_REG_S390_GBEA: 4175 r = put_user(vcpu->arch.sie_block->gbea, 4176 (u64 __user *)reg->addr); 4177 break; 4178 default: 4179 break; 4180 } 4181 4182 return r; 4183 } 4184 4185 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4186 struct kvm_one_reg *reg) 4187 { 4188 int r = -EINVAL; 4189 __u64 val; 4190 4191 switch (reg->id) { 4192 case KVM_REG_S390_TODPR: 4193 r = get_user(vcpu->arch.sie_block->todpr, 4194 (u32 __user *)reg->addr); 4195 break; 4196 case KVM_REG_S390_EPOCHDIFF: 4197 r = get_user(vcpu->arch.sie_block->epoch, 4198 (u64 __user *)reg->addr); 4199 break; 4200 case KVM_REG_S390_CPU_TIMER: 4201 r = get_user(val, (u64 __user *)reg->addr); 4202 if (!r) 4203 kvm_s390_set_cpu_timer(vcpu, val); 4204 break; 4205 case KVM_REG_S390_CLOCK_COMP: 4206 r = get_user(vcpu->arch.sie_block->ckc, 4207 (u64 __user *)reg->addr); 4208 break; 4209 case KVM_REG_S390_PFTOKEN: 4210 r = get_user(vcpu->arch.pfault_token, 4211 (u64 __user *)reg->addr); 4212 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4213 kvm_clear_async_pf_completion_queue(vcpu); 4214 break; 4215 case KVM_REG_S390_PFCOMPARE: 4216 r = get_user(vcpu->arch.pfault_compare, 4217 (u64 __user *)reg->addr); 4218 break; 4219 case KVM_REG_S390_PFSELECT: 4220 r = get_user(vcpu->arch.pfault_select, 4221 (u64 __user *)reg->addr); 4222 break; 4223 case KVM_REG_S390_PP: 4224 r = get_user(vcpu->arch.sie_block->pp, 4225 (u64 __user *)reg->addr); 4226 break; 4227 case KVM_REG_S390_GBEA: 4228 r = get_user(vcpu->arch.sie_block->gbea, 4229 (u64 __user *)reg->addr); 4230 break; 4231 default: 4232 break; 4233 } 4234 4235 return r; 4236 } 4237 4238 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4239 { 4240 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4241 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4242 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4243 4244 kvm_clear_async_pf_completion_queue(vcpu); 4245 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4246 kvm_s390_vcpu_stop(vcpu); 4247 kvm_s390_clear_local_irqs(vcpu); 4248 } 4249 4250 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4251 { 4252 /* Initial reset is a superset of the normal reset */ 4253 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4254 4255 /* 4256 * This equals initial cpu reset in pop, but we don't switch to ESA. 4257 * We do not only reset the internal data, but also ... 4258 */ 4259 vcpu->arch.sie_block->gpsw.mask = 0; 4260 vcpu->arch.sie_block->gpsw.addr = 0; 4261 kvm_s390_set_prefix(vcpu, 0); 4262 kvm_s390_set_cpu_timer(vcpu, 0); 4263 vcpu->arch.sie_block->ckc = 0; 4264 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4265 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4266 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4267 4268 /* ... the data in sync regs */ 4269 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4270 vcpu->run->s.regs.ckc = 0; 4271 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4272 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4273 vcpu->run->psw_addr = 0; 4274 vcpu->run->psw_mask = 0; 4275 vcpu->run->s.regs.todpr = 0; 4276 vcpu->run->s.regs.cputm = 0; 4277 vcpu->run->s.regs.ckc = 0; 4278 vcpu->run->s.regs.pp = 0; 4279 vcpu->run->s.regs.gbea = 1; 4280 vcpu->run->s.regs.fpc = 0; 4281 /* 4282 * Do not reset these registers in the protected case, as some of 4283 * them are overlaid and they are not accessible in this case 4284 * anyway. 4285 */ 4286 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4287 vcpu->arch.sie_block->gbea = 1; 4288 vcpu->arch.sie_block->pp = 0; 4289 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4290 vcpu->arch.sie_block->todpr = 0; 4291 } 4292 } 4293 4294 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4295 { 4296 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4297 4298 /* Clear reset is a superset of the initial reset */ 4299 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4300 4301 memset(®s->gprs, 0, sizeof(regs->gprs)); 4302 memset(®s->vrs, 0, sizeof(regs->vrs)); 4303 memset(®s->acrs, 0, sizeof(regs->acrs)); 4304 memset(®s->gscb, 0, sizeof(regs->gscb)); 4305 4306 regs->etoken = 0; 4307 regs->etoken_extension = 0; 4308 } 4309 4310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4311 { 4312 vcpu_load(vcpu); 4313 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4314 vcpu_put(vcpu); 4315 return 0; 4316 } 4317 4318 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4319 { 4320 vcpu_load(vcpu); 4321 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4322 vcpu_put(vcpu); 4323 return 0; 4324 } 4325 4326 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4327 struct kvm_sregs *sregs) 4328 { 4329 vcpu_load(vcpu); 4330 4331 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4332 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4333 4334 vcpu_put(vcpu); 4335 return 0; 4336 } 4337 4338 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4339 struct kvm_sregs *sregs) 4340 { 4341 vcpu_load(vcpu); 4342 4343 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4344 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4345 4346 vcpu_put(vcpu); 4347 return 0; 4348 } 4349 4350 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4351 { 4352 int ret = 0; 4353 4354 vcpu_load(vcpu); 4355 4356 vcpu->run->s.regs.fpc = fpu->fpc; 4357 if (cpu_has_vx()) 4358 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4359 (freg_t *) fpu->fprs); 4360 else 4361 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4362 4363 vcpu_put(vcpu); 4364 return ret; 4365 } 4366 4367 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4368 { 4369 vcpu_load(vcpu); 4370 4371 if (cpu_has_vx()) 4372 convert_vx_to_fp((freg_t *) fpu->fprs, 4373 (__vector128 *) vcpu->run->s.regs.vrs); 4374 else 4375 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4376 fpu->fpc = vcpu->run->s.regs.fpc; 4377 4378 vcpu_put(vcpu); 4379 return 0; 4380 } 4381 4382 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4383 { 4384 int rc = 0; 4385 4386 if (!is_vcpu_stopped(vcpu)) 4387 rc = -EBUSY; 4388 else { 4389 vcpu->run->psw_mask = psw.mask; 4390 vcpu->run->psw_addr = psw.addr; 4391 } 4392 return rc; 4393 } 4394 4395 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4396 struct kvm_translation *tr) 4397 { 4398 return -EINVAL; /* not implemented yet */ 4399 } 4400 4401 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4402 KVM_GUESTDBG_USE_HW_BP | \ 4403 KVM_GUESTDBG_ENABLE) 4404 4405 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4406 struct kvm_guest_debug *dbg) 4407 { 4408 int rc = 0; 4409 4410 vcpu_load(vcpu); 4411 4412 vcpu->guest_debug = 0; 4413 kvm_s390_clear_bp_data(vcpu); 4414 4415 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4416 rc = -EINVAL; 4417 goto out; 4418 } 4419 if (!sclp.has_gpere) { 4420 rc = -EINVAL; 4421 goto out; 4422 } 4423 4424 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4425 vcpu->guest_debug = dbg->control; 4426 /* enforce guest PER */ 4427 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4428 4429 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4430 rc = kvm_s390_import_bp_data(vcpu, dbg); 4431 } else { 4432 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4433 vcpu->arch.guestdbg.last_bp = 0; 4434 } 4435 4436 if (rc) { 4437 vcpu->guest_debug = 0; 4438 kvm_s390_clear_bp_data(vcpu); 4439 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4440 } 4441 4442 out: 4443 vcpu_put(vcpu); 4444 return rc; 4445 } 4446 4447 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4448 struct kvm_mp_state *mp_state) 4449 { 4450 int ret; 4451 4452 vcpu_load(vcpu); 4453 4454 /* CHECK_STOP and LOAD are not supported yet */ 4455 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4456 KVM_MP_STATE_OPERATING; 4457 4458 vcpu_put(vcpu); 4459 return ret; 4460 } 4461 4462 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4463 struct kvm_mp_state *mp_state) 4464 { 4465 int rc = 0; 4466 4467 vcpu_load(vcpu); 4468 4469 /* user space knows about this interface - let it control the state */ 4470 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4471 4472 switch (mp_state->mp_state) { 4473 case KVM_MP_STATE_STOPPED: 4474 rc = kvm_s390_vcpu_stop(vcpu); 4475 break; 4476 case KVM_MP_STATE_OPERATING: 4477 rc = kvm_s390_vcpu_start(vcpu); 4478 break; 4479 case KVM_MP_STATE_LOAD: 4480 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4481 rc = -ENXIO; 4482 break; 4483 } 4484 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4485 break; 4486 case KVM_MP_STATE_CHECK_STOP: 4487 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4488 default: 4489 rc = -ENXIO; 4490 } 4491 4492 vcpu_put(vcpu); 4493 return rc; 4494 } 4495 4496 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4497 { 4498 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4499 } 4500 4501 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4502 { 4503 retry: 4504 kvm_s390_vcpu_request_handled(vcpu); 4505 if (!kvm_request_pending(vcpu)) 4506 return 0; 4507 /* 4508 * If the guest prefix changed, re-arm the ipte notifier for the 4509 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4510 * This ensures that the ipte instruction for this request has 4511 * already finished. We might race against a second unmapper that 4512 * wants to set the blocking bit. Lets just retry the request loop. 4513 */ 4514 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4515 int rc; 4516 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4517 kvm_s390_get_prefix(vcpu), 4518 PAGE_SIZE * 2, PROT_WRITE); 4519 if (rc) { 4520 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4521 return rc; 4522 } 4523 goto retry; 4524 } 4525 4526 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4527 vcpu->arch.sie_block->ihcpu = 0xffff; 4528 goto retry; 4529 } 4530 4531 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4532 if (!ibs_enabled(vcpu)) { 4533 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4534 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4535 } 4536 goto retry; 4537 } 4538 4539 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4540 if (ibs_enabled(vcpu)) { 4541 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4542 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4543 } 4544 goto retry; 4545 } 4546 4547 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4548 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4549 goto retry; 4550 } 4551 4552 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4553 /* 4554 * Disable CMM virtualization; we will emulate the ESSA 4555 * instruction manually, in order to provide additional 4556 * functionalities needed for live migration. 4557 */ 4558 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4559 goto retry; 4560 } 4561 4562 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4563 /* 4564 * Re-enable CMM virtualization if CMMA is available and 4565 * CMM has been used. 4566 */ 4567 if ((vcpu->kvm->arch.use_cmma) && 4568 (vcpu->kvm->mm->context.uses_cmm)) 4569 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4570 goto retry; 4571 } 4572 4573 /* we left the vsie handler, nothing to do, just clear the request */ 4574 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4575 4576 return 0; 4577 } 4578 4579 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4580 { 4581 struct kvm_vcpu *vcpu; 4582 union tod_clock clk; 4583 unsigned long i; 4584 4585 preempt_disable(); 4586 4587 store_tod_clock_ext(&clk); 4588 4589 kvm->arch.epoch = gtod->tod - clk.tod; 4590 kvm->arch.epdx = 0; 4591 if (test_kvm_facility(kvm, 139)) { 4592 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4593 if (kvm->arch.epoch > gtod->tod) 4594 kvm->arch.epdx -= 1; 4595 } 4596 4597 kvm_s390_vcpu_block_all(kvm); 4598 kvm_for_each_vcpu(i, vcpu, kvm) { 4599 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4600 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4601 } 4602 4603 kvm_s390_vcpu_unblock_all(kvm); 4604 preempt_enable(); 4605 } 4606 4607 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4608 { 4609 if (!mutex_trylock(&kvm->lock)) 4610 return 0; 4611 __kvm_s390_set_tod_clock(kvm, gtod); 4612 mutex_unlock(&kvm->lock); 4613 return 1; 4614 } 4615 4616 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4617 unsigned long token) 4618 { 4619 struct kvm_s390_interrupt inti; 4620 struct kvm_s390_irq irq; 4621 4622 if (start_token) { 4623 irq.u.ext.ext_params2 = token; 4624 irq.type = KVM_S390_INT_PFAULT_INIT; 4625 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4626 } else { 4627 inti.type = KVM_S390_INT_PFAULT_DONE; 4628 inti.parm64 = token; 4629 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4630 } 4631 } 4632 4633 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4634 struct kvm_async_pf *work) 4635 { 4636 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4637 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4638 4639 return true; 4640 } 4641 4642 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4643 struct kvm_async_pf *work) 4644 { 4645 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4646 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4647 } 4648 4649 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4650 struct kvm_async_pf *work) 4651 { 4652 /* s390 will always inject the page directly */ 4653 } 4654 4655 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4656 { 4657 /* 4658 * s390 will always inject the page directly, 4659 * but we still want check_async_completion to cleanup 4660 */ 4661 return true; 4662 } 4663 4664 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4665 { 4666 hva_t hva; 4667 struct kvm_arch_async_pf arch; 4668 4669 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4670 return false; 4671 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4672 vcpu->arch.pfault_compare) 4673 return false; 4674 if (psw_extint_disabled(vcpu)) 4675 return false; 4676 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4677 return false; 4678 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4679 return false; 4680 if (!vcpu->arch.gmap->pfault_enabled) 4681 return false; 4682 4683 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr); 4684 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4685 return false; 4686 4687 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch); 4688 } 4689 4690 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4691 { 4692 int rc, cpuflags; 4693 4694 /* 4695 * On s390 notifications for arriving pages will be delivered directly 4696 * to the guest but the house keeping for completed pfaults is 4697 * handled outside the worker. 4698 */ 4699 kvm_check_async_pf_completion(vcpu); 4700 4701 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4702 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4703 4704 if (need_resched()) 4705 schedule(); 4706 4707 if (!kvm_is_ucontrol(vcpu->kvm)) { 4708 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4709 if (rc || guestdbg_exit_pending(vcpu)) 4710 return rc; 4711 } 4712 4713 rc = kvm_s390_handle_requests(vcpu); 4714 if (rc) 4715 return rc; 4716 4717 if (guestdbg_enabled(vcpu)) { 4718 kvm_s390_backup_guest_per_regs(vcpu); 4719 kvm_s390_patch_guest_per_regs(vcpu); 4720 } 4721 4722 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4723 4724 vcpu->arch.sie_block->icptcode = 0; 4725 current->thread.gmap_int_code = 0; 4726 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4727 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4728 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4729 4730 return 0; 4731 } 4732 4733 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu) 4734 { 4735 struct kvm_s390_pgm_info pgm_info = { 4736 .code = PGM_ADDRESSING, 4737 }; 4738 u8 opcode, ilen; 4739 int rc; 4740 4741 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4742 trace_kvm_s390_sie_fault(vcpu); 4743 4744 /* 4745 * We want to inject an addressing exception, which is defined as a 4746 * suppressing or terminating exception. However, since we came here 4747 * by a DAT access exception, the PSW still points to the faulting 4748 * instruction since DAT exceptions are nullifying. So we've got 4749 * to look up the current opcode to get the length of the instruction 4750 * to be able to forward the PSW. 4751 */ 4752 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4753 ilen = insn_length(opcode); 4754 if (rc < 0) { 4755 return rc; 4756 } else if (rc) { 4757 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4758 * Forward by arbitrary ilc, injection will take care of 4759 * nullification if necessary. 4760 */ 4761 pgm_info = vcpu->arch.pgm; 4762 ilen = 4; 4763 } 4764 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4765 kvm_s390_forward_psw(vcpu, ilen); 4766 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4767 } 4768 4769 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu) 4770 { 4771 unsigned int flags = 0; 4772 unsigned long gaddr; 4773 int rc = 0; 4774 4775 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE; 4776 if (kvm_s390_cur_gmap_fault_is_write()) 4777 flags = FAULT_FLAG_WRITE; 4778 4779 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) { 4780 case 0: 4781 vcpu->stat.exit_null++; 4782 break; 4783 case PGM_NON_SECURE_STORAGE_ACCESS: 4784 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4785 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4786 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4787 /* 4788 * This is normal operation; a page belonging to a protected 4789 * guest has not been imported yet. Try to import the page into 4790 * the protected guest. 4791 */ 4792 if (gmap_convert_to_secure(vcpu->arch.gmap, gaddr) == -EINVAL) 4793 send_sig(SIGSEGV, current, 0); 4794 break; 4795 case PGM_SECURE_STORAGE_ACCESS: 4796 case PGM_SECURE_STORAGE_VIOLATION: 4797 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4798 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4799 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4800 /* 4801 * This can happen after a reboot with asynchronous teardown; 4802 * the new guest (normal or protected) will run on top of the 4803 * previous protected guest. The old pages need to be destroyed 4804 * so the new guest can use them. 4805 */ 4806 if (gmap_destroy_page(vcpu->arch.gmap, gaddr)) { 4807 /* 4808 * Either KVM messed up the secure guest mapping or the 4809 * same page is mapped into multiple secure guests. 4810 * 4811 * This exception is only triggered when a guest 2 is 4812 * running and can therefore never occur in kernel 4813 * context. 4814 */ 4815 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n", 4816 current->thread.gmap_int_code, current->comm, 4817 current->pid); 4818 send_sig(SIGSEGV, current, 0); 4819 } 4820 break; 4821 case PGM_PROTECTION: 4822 case PGM_SEGMENT_TRANSLATION: 4823 case PGM_PAGE_TRANSLATION: 4824 case PGM_ASCE_TYPE: 4825 case PGM_REGION_FIRST_TRANS: 4826 case PGM_REGION_SECOND_TRANS: 4827 case PGM_REGION_THIRD_TRANS: 4828 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4829 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4830 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4831 if (vcpu->arch.gmap->pfault_enabled) { 4832 rc = gmap_fault(vcpu->arch.gmap, gaddr, flags | FAULT_FLAG_RETRY_NOWAIT); 4833 if (rc == -EFAULT) 4834 return vcpu_post_run_addressing_exception(vcpu); 4835 if (rc == -EAGAIN) { 4836 trace_kvm_s390_major_guest_pfault(vcpu); 4837 if (kvm_arch_setup_async_pf(vcpu)) 4838 return 0; 4839 vcpu->stat.pfault_sync++; 4840 } else { 4841 return rc; 4842 } 4843 } 4844 rc = gmap_fault(vcpu->arch.gmap, gaddr, flags); 4845 if (rc == -EFAULT) { 4846 if (kvm_is_ucontrol(vcpu->kvm)) { 4847 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4848 vcpu->run->s390_ucontrol.trans_exc_code = gaddr; 4849 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4850 return -EREMOTE; 4851 } 4852 return vcpu_post_run_addressing_exception(vcpu); 4853 } 4854 break; 4855 default: 4856 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4857 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4858 send_sig(SIGSEGV, current, 0); 4859 break; 4860 } 4861 return rc; 4862 } 4863 4864 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4865 { 4866 struct mcck_volatile_info *mcck_info; 4867 struct sie_page *sie_page; 4868 int rc; 4869 4870 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4871 vcpu->arch.sie_block->icptcode); 4872 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4873 4874 if (guestdbg_enabled(vcpu)) 4875 kvm_s390_restore_guest_per_regs(vcpu); 4876 4877 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4878 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4879 4880 if (exit_reason == -EINTR) { 4881 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4882 sie_page = container_of(vcpu->arch.sie_block, 4883 struct sie_page, sie_block); 4884 mcck_info = &sie_page->mcck_info; 4885 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4886 return 0; 4887 } 4888 4889 if (vcpu->arch.sie_block->icptcode > 0) { 4890 rc = kvm_handle_sie_intercept(vcpu); 4891 4892 if (rc != -EOPNOTSUPP) 4893 return rc; 4894 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4895 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4896 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4897 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4898 return -EREMOTE; 4899 } 4900 4901 return vcpu_post_run_handle_fault(vcpu); 4902 } 4903 4904 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4905 static int __vcpu_run(struct kvm_vcpu *vcpu) 4906 { 4907 int rc, exit_reason; 4908 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4909 4910 /* 4911 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4912 * ning the guest), so that memslots (and other stuff) are protected 4913 */ 4914 kvm_vcpu_srcu_read_lock(vcpu); 4915 4916 do { 4917 rc = vcpu_pre_run(vcpu); 4918 if (rc || guestdbg_exit_pending(vcpu)) 4919 break; 4920 4921 kvm_vcpu_srcu_read_unlock(vcpu); 4922 /* 4923 * As PF_VCPU will be used in fault handler, between 4924 * guest_enter and guest_exit should be no uaccess. 4925 */ 4926 local_irq_disable(); 4927 guest_enter_irqoff(); 4928 __disable_cpu_timer_accounting(vcpu); 4929 local_irq_enable(); 4930 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4931 memcpy(sie_page->pv_grregs, 4932 vcpu->run->s.regs.gprs, 4933 sizeof(sie_page->pv_grregs)); 4934 } 4935 exit_reason = sie64a(vcpu->arch.sie_block, 4936 vcpu->run->s.regs.gprs, 4937 vcpu->arch.gmap->asce); 4938 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4939 memcpy(vcpu->run->s.regs.gprs, 4940 sie_page->pv_grregs, 4941 sizeof(sie_page->pv_grregs)); 4942 /* 4943 * We're not allowed to inject interrupts on intercepts 4944 * that leave the guest state in an "in-between" state 4945 * where the next SIE entry will do a continuation. 4946 * Fence interrupts in our "internal" PSW. 4947 */ 4948 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4949 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4950 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4951 } 4952 } 4953 local_irq_disable(); 4954 __enable_cpu_timer_accounting(vcpu); 4955 guest_exit_irqoff(); 4956 local_irq_enable(); 4957 kvm_vcpu_srcu_read_lock(vcpu); 4958 4959 rc = vcpu_post_run(vcpu, exit_reason); 4960 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4961 4962 kvm_vcpu_srcu_read_unlock(vcpu); 4963 return rc; 4964 } 4965 4966 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4967 { 4968 struct kvm_run *kvm_run = vcpu->run; 4969 struct runtime_instr_cb *riccb; 4970 struct gs_cb *gscb; 4971 4972 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4973 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4974 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4975 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4976 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4977 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4978 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4979 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4980 } 4981 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4982 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4983 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4984 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4985 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4986 kvm_clear_async_pf_completion_queue(vcpu); 4987 } 4988 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4989 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4990 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4991 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4992 } 4993 /* 4994 * If userspace sets the riccb (e.g. after migration) to a valid state, 4995 * we should enable RI here instead of doing the lazy enablement. 4996 */ 4997 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4998 test_kvm_facility(vcpu->kvm, 64) && 4999 riccb->v && 5000 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 5001 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 5002 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 5003 } 5004 /* 5005 * If userspace sets the gscb (e.g. after migration) to non-zero, 5006 * we should enable GS here instead of doing the lazy enablement. 5007 */ 5008 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 5009 test_kvm_facility(vcpu->kvm, 133) && 5010 gscb->gssm && 5011 !vcpu->arch.gs_enabled) { 5012 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 5013 vcpu->arch.sie_block->ecb |= ECB_GS; 5014 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 5015 vcpu->arch.gs_enabled = 1; 5016 } 5017 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 5018 test_kvm_facility(vcpu->kvm, 82)) { 5019 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 5020 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 5021 } 5022 if (MACHINE_HAS_GS) { 5023 preempt_disable(); 5024 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5025 if (current->thread.gs_cb) { 5026 vcpu->arch.host_gscb = current->thread.gs_cb; 5027 save_gs_cb(vcpu->arch.host_gscb); 5028 } 5029 if (vcpu->arch.gs_enabled) { 5030 current->thread.gs_cb = (struct gs_cb *) 5031 &vcpu->run->s.regs.gscb; 5032 restore_gs_cb(current->thread.gs_cb); 5033 } 5034 preempt_enable(); 5035 } 5036 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 5037 } 5038 5039 static void sync_regs(struct kvm_vcpu *vcpu) 5040 { 5041 struct kvm_run *kvm_run = vcpu->run; 5042 5043 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 5044 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 5045 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 5046 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 5047 /* some control register changes require a tlb flush */ 5048 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5049 } 5050 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5051 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 5052 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 5053 } 5054 save_access_regs(vcpu->arch.host_acrs); 5055 restore_access_regs(vcpu->run->s.regs.acrs); 5056 vcpu->arch.acrs_loaded = true; 5057 kvm_s390_fpu_load(vcpu->run); 5058 /* Sync fmt2 only data */ 5059 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 5060 sync_regs_fmt2(vcpu); 5061 } else { 5062 /* 5063 * In several places we have to modify our internal view to 5064 * not do things that are disallowed by the ultravisor. For 5065 * example we must not inject interrupts after specific exits 5066 * (e.g. 112 prefix page not secure). We do this by turning 5067 * off the machine check, external and I/O interrupt bits 5068 * of our PSW copy. To avoid getting validity intercepts, we 5069 * do only accept the condition code from userspace. 5070 */ 5071 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 5072 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 5073 PSW_MASK_CC; 5074 } 5075 5076 kvm_run->kvm_dirty_regs = 0; 5077 } 5078 5079 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 5080 { 5081 struct kvm_run *kvm_run = vcpu->run; 5082 5083 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 5084 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 5085 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 5086 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 5087 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 5088 if (MACHINE_HAS_GS) { 5089 preempt_disable(); 5090 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5091 if (vcpu->arch.gs_enabled) 5092 save_gs_cb(current->thread.gs_cb); 5093 current->thread.gs_cb = vcpu->arch.host_gscb; 5094 restore_gs_cb(vcpu->arch.host_gscb); 5095 if (!vcpu->arch.host_gscb) 5096 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 5097 vcpu->arch.host_gscb = NULL; 5098 preempt_enable(); 5099 } 5100 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5101 } 5102 5103 static void store_regs(struct kvm_vcpu *vcpu) 5104 { 5105 struct kvm_run *kvm_run = vcpu->run; 5106 5107 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5108 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5109 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5110 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5111 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5112 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5113 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5114 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5115 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5116 save_access_regs(vcpu->run->s.regs.acrs); 5117 restore_access_regs(vcpu->arch.host_acrs); 5118 vcpu->arch.acrs_loaded = false; 5119 kvm_s390_fpu_store(vcpu->run); 5120 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5121 store_regs_fmt2(vcpu); 5122 } 5123 5124 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5125 { 5126 struct kvm_run *kvm_run = vcpu->run; 5127 DECLARE_KERNEL_FPU_ONSTACK32(fpu); 5128 int rc; 5129 5130 /* 5131 * Running a VM while dumping always has the potential to 5132 * produce inconsistent dump data. But for PV vcpus a SIE 5133 * entry while dumping could also lead to a fatal validity 5134 * intercept which we absolutely want to avoid. 5135 */ 5136 if (vcpu->kvm->arch.pv.dumping) 5137 return -EINVAL; 5138 5139 if (!vcpu->wants_to_run) 5140 return -EINTR; 5141 5142 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5143 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5144 return -EINVAL; 5145 5146 vcpu_load(vcpu); 5147 5148 if (guestdbg_exit_pending(vcpu)) { 5149 kvm_s390_prepare_debug_exit(vcpu); 5150 rc = 0; 5151 goto out; 5152 } 5153 5154 kvm_sigset_activate(vcpu); 5155 5156 /* 5157 * no need to check the return value of vcpu_start as it can only have 5158 * an error for protvirt, but protvirt means user cpu state 5159 */ 5160 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5161 kvm_s390_vcpu_start(vcpu); 5162 } else if (is_vcpu_stopped(vcpu)) { 5163 pr_err_ratelimited("can't run stopped vcpu %d\n", 5164 vcpu->vcpu_id); 5165 rc = -EINVAL; 5166 goto out; 5167 } 5168 5169 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); 5170 sync_regs(vcpu); 5171 enable_cpu_timer_accounting(vcpu); 5172 5173 might_fault(); 5174 rc = __vcpu_run(vcpu); 5175 5176 if (signal_pending(current) && !rc) { 5177 kvm_run->exit_reason = KVM_EXIT_INTR; 5178 rc = -EINTR; 5179 } 5180 5181 if (guestdbg_exit_pending(vcpu) && !rc) { 5182 kvm_s390_prepare_debug_exit(vcpu); 5183 rc = 0; 5184 } 5185 5186 if (rc == -EREMOTE) { 5187 /* userspace support is needed, kvm_run has been prepared */ 5188 rc = 0; 5189 } 5190 5191 disable_cpu_timer_accounting(vcpu); 5192 store_regs(vcpu); 5193 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); 5194 5195 kvm_sigset_deactivate(vcpu); 5196 5197 vcpu->stat.exit_userspace++; 5198 out: 5199 vcpu_put(vcpu); 5200 return rc; 5201 } 5202 5203 /* 5204 * store status at address 5205 * we use have two special cases: 5206 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5207 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5208 */ 5209 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5210 { 5211 unsigned char archmode = 1; 5212 freg_t fprs[NUM_FPRS]; 5213 unsigned int px; 5214 u64 clkcomp, cputm; 5215 int rc; 5216 5217 px = kvm_s390_get_prefix(vcpu); 5218 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5219 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5220 return -EFAULT; 5221 gpa = 0; 5222 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5223 if (write_guest_real(vcpu, 163, &archmode, 1)) 5224 return -EFAULT; 5225 gpa = px; 5226 } else 5227 gpa -= __LC_FPREGS_SAVE_AREA; 5228 5229 /* manually convert vector registers if necessary */ 5230 if (cpu_has_vx()) { 5231 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5232 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5233 fprs, 128); 5234 } else { 5235 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5236 vcpu->run->s.regs.fprs, 128); 5237 } 5238 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5239 vcpu->run->s.regs.gprs, 128); 5240 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5241 &vcpu->arch.sie_block->gpsw, 16); 5242 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5243 &px, 4); 5244 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5245 &vcpu->run->s.regs.fpc, 4); 5246 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5247 &vcpu->arch.sie_block->todpr, 4); 5248 cputm = kvm_s390_get_cpu_timer(vcpu); 5249 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5250 &cputm, 8); 5251 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5252 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5253 &clkcomp, 8); 5254 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5255 &vcpu->run->s.regs.acrs, 64); 5256 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5257 &vcpu->arch.sie_block->gcr, 128); 5258 return rc ? -EFAULT : 0; 5259 } 5260 5261 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5262 { 5263 /* 5264 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5265 * switch in the run ioctl. Let's update our copies before we save 5266 * it into the save area 5267 */ 5268 kvm_s390_fpu_store(vcpu->run); 5269 save_access_regs(vcpu->run->s.regs.acrs); 5270 5271 return kvm_s390_store_status_unloaded(vcpu, addr); 5272 } 5273 5274 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5275 { 5276 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5277 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5278 } 5279 5280 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5281 { 5282 unsigned long i; 5283 struct kvm_vcpu *vcpu; 5284 5285 kvm_for_each_vcpu(i, vcpu, kvm) { 5286 __disable_ibs_on_vcpu(vcpu); 5287 } 5288 } 5289 5290 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5291 { 5292 if (!sclp.has_ibs) 5293 return; 5294 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5295 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5296 } 5297 5298 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5299 { 5300 int i, online_vcpus, r = 0, started_vcpus = 0; 5301 5302 if (!is_vcpu_stopped(vcpu)) 5303 return 0; 5304 5305 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5306 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5307 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5308 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5309 5310 /* Let's tell the UV that we want to change into the operating state */ 5311 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5312 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5313 if (r) { 5314 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5315 return r; 5316 } 5317 } 5318 5319 for (i = 0; i < online_vcpus; i++) { 5320 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5321 started_vcpus++; 5322 } 5323 5324 if (started_vcpus == 0) { 5325 /* we're the only active VCPU -> speed it up */ 5326 __enable_ibs_on_vcpu(vcpu); 5327 } else if (started_vcpus == 1) { 5328 /* 5329 * As we are starting a second VCPU, we have to disable 5330 * the IBS facility on all VCPUs to remove potentially 5331 * outstanding ENABLE requests. 5332 */ 5333 __disable_ibs_on_all_vcpus(vcpu->kvm); 5334 } 5335 5336 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5337 /* 5338 * The real PSW might have changed due to a RESTART interpreted by the 5339 * ultravisor. We block all interrupts and let the next sie exit 5340 * refresh our view. 5341 */ 5342 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5343 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5344 /* 5345 * Another VCPU might have used IBS while we were offline. 5346 * Let's play safe and flush the VCPU at startup. 5347 */ 5348 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5349 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5350 return 0; 5351 } 5352 5353 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5354 { 5355 int i, online_vcpus, r = 0, started_vcpus = 0; 5356 struct kvm_vcpu *started_vcpu = NULL; 5357 5358 if (is_vcpu_stopped(vcpu)) 5359 return 0; 5360 5361 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5362 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5363 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5364 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5365 5366 /* Let's tell the UV that we want to change into the stopped state */ 5367 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5368 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5369 if (r) { 5370 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5371 return r; 5372 } 5373 } 5374 5375 /* 5376 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5377 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5378 * have been fully processed. This will ensure that the VCPU 5379 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5380 */ 5381 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5382 kvm_s390_clear_stop_irq(vcpu); 5383 5384 __disable_ibs_on_vcpu(vcpu); 5385 5386 for (i = 0; i < online_vcpus; i++) { 5387 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5388 5389 if (!is_vcpu_stopped(tmp)) { 5390 started_vcpus++; 5391 started_vcpu = tmp; 5392 } 5393 } 5394 5395 if (started_vcpus == 1) { 5396 /* 5397 * As we only have one VCPU left, we want to enable the 5398 * IBS facility for that VCPU to speed it up. 5399 */ 5400 __enable_ibs_on_vcpu(started_vcpu); 5401 } 5402 5403 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5404 return 0; 5405 } 5406 5407 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5408 struct kvm_enable_cap *cap) 5409 { 5410 int r; 5411 5412 if (cap->flags) 5413 return -EINVAL; 5414 5415 switch (cap->cap) { 5416 case KVM_CAP_S390_CSS_SUPPORT: 5417 if (!vcpu->kvm->arch.css_support) { 5418 vcpu->kvm->arch.css_support = 1; 5419 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5420 trace_kvm_s390_enable_css(vcpu->kvm); 5421 } 5422 r = 0; 5423 break; 5424 default: 5425 r = -EINVAL; 5426 break; 5427 } 5428 return r; 5429 } 5430 5431 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5432 struct kvm_s390_mem_op *mop) 5433 { 5434 void __user *uaddr = (void __user *)mop->buf; 5435 void *sida_addr; 5436 int r = 0; 5437 5438 if (mop->flags || !mop->size) 5439 return -EINVAL; 5440 if (mop->size + mop->sida_offset < mop->size) 5441 return -EINVAL; 5442 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5443 return -E2BIG; 5444 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5445 return -EINVAL; 5446 5447 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5448 5449 switch (mop->op) { 5450 case KVM_S390_MEMOP_SIDA_READ: 5451 if (copy_to_user(uaddr, sida_addr, mop->size)) 5452 r = -EFAULT; 5453 5454 break; 5455 case KVM_S390_MEMOP_SIDA_WRITE: 5456 if (copy_from_user(sida_addr, uaddr, mop->size)) 5457 r = -EFAULT; 5458 break; 5459 } 5460 return r; 5461 } 5462 5463 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5464 struct kvm_s390_mem_op *mop) 5465 { 5466 void __user *uaddr = (void __user *)mop->buf; 5467 enum gacc_mode acc_mode; 5468 void *tmpbuf = NULL; 5469 int r; 5470 5471 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5472 KVM_S390_MEMOP_F_CHECK_ONLY | 5473 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5474 if (r) 5475 return r; 5476 if (mop->ar >= NUM_ACRS) 5477 return -EINVAL; 5478 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5479 return -EINVAL; 5480 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5481 tmpbuf = vmalloc(mop->size); 5482 if (!tmpbuf) 5483 return -ENOMEM; 5484 } 5485 5486 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5487 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5488 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5489 acc_mode, mop->key); 5490 goto out_inject; 5491 } 5492 if (acc_mode == GACC_FETCH) { 5493 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5494 mop->size, mop->key); 5495 if (r) 5496 goto out_inject; 5497 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5498 r = -EFAULT; 5499 goto out_free; 5500 } 5501 } else { 5502 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5503 r = -EFAULT; 5504 goto out_free; 5505 } 5506 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5507 mop->size, mop->key); 5508 } 5509 5510 out_inject: 5511 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5512 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5513 5514 out_free: 5515 vfree(tmpbuf); 5516 return r; 5517 } 5518 5519 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5520 struct kvm_s390_mem_op *mop) 5521 { 5522 int r, srcu_idx; 5523 5524 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5525 5526 switch (mop->op) { 5527 case KVM_S390_MEMOP_LOGICAL_READ: 5528 case KVM_S390_MEMOP_LOGICAL_WRITE: 5529 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5530 break; 5531 case KVM_S390_MEMOP_SIDA_READ: 5532 case KVM_S390_MEMOP_SIDA_WRITE: 5533 /* we are locked against sida going away by the vcpu->mutex */ 5534 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5535 break; 5536 default: 5537 r = -EINVAL; 5538 } 5539 5540 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5541 return r; 5542 } 5543 5544 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5545 unsigned int ioctl, unsigned long arg) 5546 { 5547 struct kvm_vcpu *vcpu = filp->private_data; 5548 void __user *argp = (void __user *)arg; 5549 int rc; 5550 5551 switch (ioctl) { 5552 case KVM_S390_IRQ: { 5553 struct kvm_s390_irq s390irq; 5554 5555 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5556 return -EFAULT; 5557 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5558 break; 5559 } 5560 case KVM_S390_INTERRUPT: { 5561 struct kvm_s390_interrupt s390int; 5562 struct kvm_s390_irq s390irq = {}; 5563 5564 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5565 return -EFAULT; 5566 if (s390int_to_s390irq(&s390int, &s390irq)) 5567 return -EINVAL; 5568 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5569 break; 5570 } 5571 default: 5572 rc = -ENOIOCTLCMD; 5573 break; 5574 } 5575 5576 /* 5577 * To simplify single stepping of userspace-emulated instructions, 5578 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5579 * should_handle_per_ifetch()). However, if userspace emulation injects 5580 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5581 * after (and not before) the interrupt delivery. 5582 */ 5583 if (!rc) 5584 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5585 5586 return rc; 5587 } 5588 5589 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5590 struct kvm_pv_cmd *cmd) 5591 { 5592 struct kvm_s390_pv_dmp dmp; 5593 void *data; 5594 int ret; 5595 5596 /* Dump initialization is a prerequisite */ 5597 if (!vcpu->kvm->arch.pv.dumping) 5598 return -EINVAL; 5599 5600 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5601 return -EFAULT; 5602 5603 /* We only handle this subcmd right now */ 5604 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5605 return -EINVAL; 5606 5607 /* CPU dump length is the same as create cpu storage donation. */ 5608 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5609 return -EINVAL; 5610 5611 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5612 if (!data) 5613 return -ENOMEM; 5614 5615 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5616 5617 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5618 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5619 5620 if (ret) 5621 ret = -EINVAL; 5622 5623 /* On success copy over the dump data */ 5624 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5625 ret = -EFAULT; 5626 5627 kvfree(data); 5628 return ret; 5629 } 5630 5631 long kvm_arch_vcpu_ioctl(struct file *filp, 5632 unsigned int ioctl, unsigned long arg) 5633 { 5634 struct kvm_vcpu *vcpu = filp->private_data; 5635 void __user *argp = (void __user *)arg; 5636 int idx; 5637 long r; 5638 u16 rc, rrc; 5639 5640 vcpu_load(vcpu); 5641 5642 switch (ioctl) { 5643 case KVM_S390_STORE_STATUS: 5644 idx = srcu_read_lock(&vcpu->kvm->srcu); 5645 r = kvm_s390_store_status_unloaded(vcpu, arg); 5646 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5647 break; 5648 case KVM_S390_SET_INITIAL_PSW: { 5649 psw_t psw; 5650 5651 r = -EFAULT; 5652 if (copy_from_user(&psw, argp, sizeof(psw))) 5653 break; 5654 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5655 break; 5656 } 5657 case KVM_S390_CLEAR_RESET: 5658 r = 0; 5659 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5660 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5661 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5662 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5663 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5664 rc, rrc); 5665 } 5666 break; 5667 case KVM_S390_INITIAL_RESET: 5668 r = 0; 5669 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5670 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5671 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5672 UVC_CMD_CPU_RESET_INITIAL, 5673 &rc, &rrc); 5674 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5675 rc, rrc); 5676 } 5677 break; 5678 case KVM_S390_NORMAL_RESET: 5679 r = 0; 5680 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5681 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5682 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5683 UVC_CMD_CPU_RESET, &rc, &rrc); 5684 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5685 rc, rrc); 5686 } 5687 break; 5688 case KVM_SET_ONE_REG: 5689 case KVM_GET_ONE_REG: { 5690 struct kvm_one_reg reg; 5691 r = -EINVAL; 5692 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5693 break; 5694 r = -EFAULT; 5695 if (copy_from_user(®, argp, sizeof(reg))) 5696 break; 5697 if (ioctl == KVM_SET_ONE_REG) 5698 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5699 else 5700 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5701 break; 5702 } 5703 #ifdef CONFIG_KVM_S390_UCONTROL 5704 case KVM_S390_UCAS_MAP: { 5705 struct kvm_s390_ucas_mapping ucasmap; 5706 5707 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5708 r = -EFAULT; 5709 break; 5710 } 5711 5712 if (!kvm_is_ucontrol(vcpu->kvm)) { 5713 r = -EINVAL; 5714 break; 5715 } 5716 5717 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5718 ucasmap.vcpu_addr, ucasmap.length); 5719 break; 5720 } 5721 case KVM_S390_UCAS_UNMAP: { 5722 struct kvm_s390_ucas_mapping ucasmap; 5723 5724 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5725 r = -EFAULT; 5726 break; 5727 } 5728 5729 if (!kvm_is_ucontrol(vcpu->kvm)) { 5730 r = -EINVAL; 5731 break; 5732 } 5733 5734 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5735 ucasmap.length); 5736 break; 5737 } 5738 #endif 5739 case KVM_S390_VCPU_FAULT: { 5740 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5741 break; 5742 } 5743 case KVM_ENABLE_CAP: 5744 { 5745 struct kvm_enable_cap cap; 5746 r = -EFAULT; 5747 if (copy_from_user(&cap, argp, sizeof(cap))) 5748 break; 5749 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5750 break; 5751 } 5752 case KVM_S390_MEM_OP: { 5753 struct kvm_s390_mem_op mem_op; 5754 5755 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5756 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5757 else 5758 r = -EFAULT; 5759 break; 5760 } 5761 case KVM_S390_SET_IRQ_STATE: { 5762 struct kvm_s390_irq_state irq_state; 5763 5764 r = -EFAULT; 5765 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5766 break; 5767 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5768 irq_state.len == 0 || 5769 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5770 r = -EINVAL; 5771 break; 5772 } 5773 /* do not use irq_state.flags, it will break old QEMUs */ 5774 r = kvm_s390_set_irq_state(vcpu, 5775 (void __user *) irq_state.buf, 5776 irq_state.len); 5777 break; 5778 } 5779 case KVM_S390_GET_IRQ_STATE: { 5780 struct kvm_s390_irq_state irq_state; 5781 5782 r = -EFAULT; 5783 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5784 break; 5785 if (irq_state.len == 0) { 5786 r = -EINVAL; 5787 break; 5788 } 5789 /* do not use irq_state.flags, it will break old QEMUs */ 5790 r = kvm_s390_get_irq_state(vcpu, 5791 (__u8 __user *) irq_state.buf, 5792 irq_state.len); 5793 break; 5794 } 5795 case KVM_S390_PV_CPU_COMMAND: { 5796 struct kvm_pv_cmd cmd; 5797 5798 r = -EINVAL; 5799 if (!is_prot_virt_host()) 5800 break; 5801 5802 r = -EFAULT; 5803 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5804 break; 5805 5806 r = -EINVAL; 5807 if (cmd.flags) 5808 break; 5809 5810 /* We only handle this cmd right now */ 5811 if (cmd.cmd != KVM_PV_DUMP) 5812 break; 5813 5814 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5815 5816 /* Always copy over UV rc / rrc data */ 5817 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5818 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5819 r = -EFAULT; 5820 break; 5821 } 5822 default: 5823 r = -ENOTTY; 5824 } 5825 5826 vcpu_put(vcpu); 5827 return r; 5828 } 5829 5830 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5831 { 5832 #ifdef CONFIG_KVM_S390_UCONTROL 5833 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5834 && (kvm_is_ucontrol(vcpu->kvm))) { 5835 vmf->page = virt_to_page(vcpu->arch.sie_block); 5836 get_page(vmf->page); 5837 return 0; 5838 } 5839 #endif 5840 return VM_FAULT_SIGBUS; 5841 } 5842 5843 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5844 { 5845 return true; 5846 } 5847 5848 /* Section: memory related */ 5849 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5850 const struct kvm_memory_slot *old, 5851 struct kvm_memory_slot *new, 5852 enum kvm_mr_change change) 5853 { 5854 gpa_t size; 5855 5856 if (kvm_is_ucontrol(kvm)) 5857 return -EINVAL; 5858 5859 /* When we are protected, we should not change the memory slots */ 5860 if (kvm_s390_pv_get_handle(kvm)) 5861 return -EINVAL; 5862 5863 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5864 /* 5865 * A few sanity checks. We can have memory slots which have to be 5866 * located/ended at a segment boundary (1MB). The memory in userland is 5867 * ok to be fragmented into various different vmas. It is okay to mmap() 5868 * and munmap() stuff in this slot after doing this call at any time 5869 */ 5870 5871 if (new->userspace_addr & 0xffffful) 5872 return -EINVAL; 5873 5874 size = new->npages * PAGE_SIZE; 5875 if (size & 0xffffful) 5876 return -EINVAL; 5877 5878 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5879 return -EINVAL; 5880 } 5881 5882 if (!kvm->arch.migration_mode) 5883 return 0; 5884 5885 /* 5886 * Turn off migration mode when: 5887 * - userspace creates a new memslot with dirty logging off, 5888 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5889 * dirty logging is turned off. 5890 * Migration mode expects dirty page logging being enabled to store 5891 * its dirty bitmap. 5892 */ 5893 if (change != KVM_MR_DELETE && 5894 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5895 WARN(kvm_s390_vm_stop_migration(kvm), 5896 "Failed to stop migration mode"); 5897 5898 return 0; 5899 } 5900 5901 void kvm_arch_commit_memory_region(struct kvm *kvm, 5902 struct kvm_memory_slot *old, 5903 const struct kvm_memory_slot *new, 5904 enum kvm_mr_change change) 5905 { 5906 int rc = 0; 5907 5908 switch (change) { 5909 case KVM_MR_DELETE: 5910 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5911 old->npages * PAGE_SIZE); 5912 break; 5913 case KVM_MR_MOVE: 5914 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5915 old->npages * PAGE_SIZE); 5916 if (rc) 5917 break; 5918 fallthrough; 5919 case KVM_MR_CREATE: 5920 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5921 new->base_gfn * PAGE_SIZE, 5922 new->npages * PAGE_SIZE); 5923 break; 5924 case KVM_MR_FLAGS_ONLY: 5925 break; 5926 default: 5927 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5928 } 5929 if (rc) 5930 pr_warn("failed to commit memory region\n"); 5931 return; 5932 } 5933 5934 static inline unsigned long nonhyp_mask(int i) 5935 { 5936 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5937 5938 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5939 } 5940 5941 static int __init kvm_s390_init(void) 5942 { 5943 int i, r; 5944 5945 if (!sclp.has_sief2) { 5946 pr_info("SIE is not available\n"); 5947 return -ENODEV; 5948 } 5949 5950 if (nested && hpage) { 5951 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5952 return -EINVAL; 5953 } 5954 5955 for (i = 0; i < 16; i++) 5956 kvm_s390_fac_base[i] |= 5957 stfle_fac_list[i] & nonhyp_mask(i); 5958 5959 r = __kvm_s390_init(); 5960 if (r) 5961 return r; 5962 5963 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5964 if (r) { 5965 __kvm_s390_exit(); 5966 return r; 5967 } 5968 return 0; 5969 } 5970 5971 static void __exit kvm_s390_exit(void) 5972 { 5973 kvm_exit(); 5974 5975 __kvm_s390_exit(); 5976 } 5977 5978 module_init(kvm_s390_init); 5979 module_exit(kvm_s390_exit); 5980 5981 /* 5982 * Enable autoloading of the kvm module. 5983 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5984 * since x86 takes a different approach. 5985 */ 5986 #include <linux/miscdevice.h> 5987 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5988 MODULE_ALIAS("devname:kvm"); 5989