1 /* 2 * hosting zSeries kernel virtual machines 3 * 4 * Copyright IBM Corp. 2008, 2009 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License (version 2 only) 8 * as published by the Free Software Foundation. 9 * 10 * Author(s): Carsten Otte <cotte@de.ibm.com> 11 * Christian Borntraeger <borntraeger@de.ibm.com> 12 * Heiko Carstens <heiko.carstens@de.ibm.com> 13 * Christian Ehrhardt <ehrhardt@de.ibm.com> 14 * Jason J. Herne <jjherne@us.ibm.com> 15 */ 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 34 #include <asm/asm-offsets.h> 35 #include <asm/lowcore.h> 36 #include <asm/stp.h> 37 #include <asm/pgtable.h> 38 #include <asm/gmap.h> 39 #include <asm/nmi.h> 40 #include <asm/switch_to.h> 41 #include <asm/isc.h> 42 #include <asm/sclp.h> 43 #include <asm/cpacf.h> 44 #include <asm/timex.h> 45 #include "kvm-s390.h" 46 #include "gaccess.h" 47 48 #define KMSG_COMPONENT "kvm-s390" 49 #undef pr_fmt 50 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 51 52 #define CREATE_TRACE_POINTS 53 #include "trace.h" 54 #include "trace-s390.h" 55 56 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 57 #define LOCAL_IRQS 32 58 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 59 (KVM_MAX_VCPUS + LOCAL_IRQS)) 60 61 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 62 63 struct kvm_stats_debugfs_item debugfs_entries[] = { 64 { "userspace_handled", VCPU_STAT(exit_userspace) }, 65 { "exit_null", VCPU_STAT(exit_null) }, 66 { "exit_validity", VCPU_STAT(exit_validity) }, 67 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 68 { "exit_external_request", VCPU_STAT(exit_external_request) }, 69 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 70 { "exit_instruction", VCPU_STAT(exit_instruction) }, 71 { "exit_pei", VCPU_STAT(exit_pei) }, 72 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 73 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 74 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, 75 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 76 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 77 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 78 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 79 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 80 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 81 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 82 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 83 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 84 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 85 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 86 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) }, 87 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 88 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 89 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 90 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) }, 91 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 92 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 93 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 94 { "instruction_spx", VCPU_STAT(instruction_spx) }, 95 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 96 { "instruction_stap", VCPU_STAT(instruction_stap) }, 97 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) }, 98 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 99 { "instruction_stsch", VCPU_STAT(instruction_stsch) }, 100 { "instruction_chsc", VCPU_STAT(instruction_chsc) }, 101 { "instruction_essa", VCPU_STAT(instruction_essa) }, 102 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 103 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 104 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 105 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, 106 { "instruction_sie", VCPU_STAT(instruction_sie) }, 107 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 108 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 109 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 110 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 111 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 112 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 113 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 114 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 115 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 116 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 117 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 118 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 119 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 120 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 121 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 122 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 123 { "diagnose_10", VCPU_STAT(diagnose_10) }, 124 { "diagnose_44", VCPU_STAT(diagnose_44) }, 125 { "diagnose_9c", VCPU_STAT(diagnose_9c) }, 126 { "diagnose_258", VCPU_STAT(diagnose_258) }, 127 { "diagnose_308", VCPU_STAT(diagnose_308) }, 128 { "diagnose_500", VCPU_STAT(diagnose_500) }, 129 { NULL } 130 }; 131 132 /* allow nested virtualization in KVM (if enabled by user space) */ 133 static int nested; 134 module_param(nested, int, S_IRUGO); 135 MODULE_PARM_DESC(nested, "Nested virtualization support"); 136 137 /* upper facilities limit for kvm */ 138 unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM }; 139 140 unsigned long kvm_s390_fac_list_mask_size(void) 141 { 142 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64); 143 return ARRAY_SIZE(kvm_s390_fac_list_mask); 144 } 145 146 /* available cpu features supported by kvm */ 147 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 148 /* available subfunctions indicated via query / "test bit" */ 149 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 150 151 static struct gmap_notifier gmap_notifier; 152 static struct gmap_notifier vsie_gmap_notifier; 153 debug_info_t *kvm_s390_dbf; 154 155 /* Section: not file related */ 156 int kvm_arch_hardware_enable(void) 157 { 158 /* every s390 is virtualization enabled ;-) */ 159 return 0; 160 } 161 162 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 163 unsigned long end); 164 165 /* 166 * This callback is executed during stop_machine(). All CPUs are therefore 167 * temporarily stopped. In order not to change guest behavior, we have to 168 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 169 * so a CPU won't be stopped while calculating with the epoch. 170 */ 171 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 172 void *v) 173 { 174 struct kvm *kvm; 175 struct kvm_vcpu *vcpu; 176 int i; 177 unsigned long long *delta = v; 178 179 list_for_each_entry(kvm, &vm_list, vm_list) { 180 kvm->arch.epoch -= *delta; 181 kvm_for_each_vcpu(i, vcpu, kvm) { 182 vcpu->arch.sie_block->epoch -= *delta; 183 if (vcpu->arch.cputm_enabled) 184 vcpu->arch.cputm_start += *delta; 185 if (vcpu->arch.vsie_block) 186 vcpu->arch.vsie_block->epoch -= *delta; 187 } 188 } 189 return NOTIFY_OK; 190 } 191 192 static struct notifier_block kvm_clock_notifier = { 193 .notifier_call = kvm_clock_sync, 194 }; 195 196 int kvm_arch_hardware_setup(void) 197 { 198 gmap_notifier.notifier_call = kvm_gmap_notifier; 199 gmap_register_pte_notifier(&gmap_notifier); 200 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 201 gmap_register_pte_notifier(&vsie_gmap_notifier); 202 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 203 &kvm_clock_notifier); 204 return 0; 205 } 206 207 void kvm_arch_hardware_unsetup(void) 208 { 209 gmap_unregister_pte_notifier(&gmap_notifier); 210 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 211 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 212 &kvm_clock_notifier); 213 } 214 215 static void allow_cpu_feat(unsigned long nr) 216 { 217 set_bit_inv(nr, kvm_s390_available_cpu_feat); 218 } 219 220 static inline int plo_test_bit(unsigned char nr) 221 { 222 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; 223 int cc; 224 225 asm volatile( 226 /* Parameter registers are ignored for "test bit" */ 227 " plo 0,0,0,0(0)\n" 228 " ipm %0\n" 229 " srl %0,28\n" 230 : "=d" (cc) 231 : "d" (r0) 232 : "cc"); 233 return cc == 0; 234 } 235 236 static void kvm_s390_cpu_feat_init(void) 237 { 238 int i; 239 240 for (i = 0; i < 256; ++i) { 241 if (plo_test_bit(i)) 242 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 243 } 244 245 if (test_facility(28)) /* TOD-clock steering */ 246 ptff(kvm_s390_available_subfunc.ptff, 247 sizeof(kvm_s390_available_subfunc.ptff), 248 PTFF_QAF); 249 250 if (test_facility(17)) { /* MSA */ 251 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 252 kvm_s390_available_subfunc.kmac); 253 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 254 kvm_s390_available_subfunc.kmc); 255 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 256 kvm_s390_available_subfunc.km); 257 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 258 kvm_s390_available_subfunc.kimd); 259 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 260 kvm_s390_available_subfunc.klmd); 261 } 262 if (test_facility(76)) /* MSA3 */ 263 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 264 kvm_s390_available_subfunc.pckmo); 265 if (test_facility(77)) { /* MSA4 */ 266 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 267 kvm_s390_available_subfunc.kmctr); 268 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 269 kvm_s390_available_subfunc.kmf); 270 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 271 kvm_s390_available_subfunc.kmo); 272 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 273 kvm_s390_available_subfunc.pcc); 274 } 275 if (test_facility(57)) /* MSA5 */ 276 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 277 kvm_s390_available_subfunc.ppno); 278 279 if (test_facility(146)) /* MSA8 */ 280 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 281 kvm_s390_available_subfunc.kma); 282 283 if (MACHINE_HAS_ESOP) 284 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 285 /* 286 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 287 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 288 */ 289 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 290 !test_facility(3) || !nested) 291 return; 292 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 293 if (sclp.has_64bscao) 294 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 295 if (sclp.has_siif) 296 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 297 if (sclp.has_gpere) 298 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 299 if (sclp.has_gsls) 300 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 301 if (sclp.has_ib) 302 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 303 if (sclp.has_cei) 304 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 305 if (sclp.has_ibs) 306 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 307 if (sclp.has_kss) 308 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 309 /* 310 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 311 * all skey handling functions read/set the skey from the PGSTE 312 * instead of the real storage key. 313 * 314 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 315 * pages being detected as preserved although they are resident. 316 * 317 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 318 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 319 * 320 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 321 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 322 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 323 * 324 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 325 * cannot easily shadow the SCA because of the ipte lock. 326 */ 327 } 328 329 int kvm_arch_init(void *opaque) 330 { 331 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 332 if (!kvm_s390_dbf) 333 return -ENOMEM; 334 335 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { 336 debug_unregister(kvm_s390_dbf); 337 return -ENOMEM; 338 } 339 340 kvm_s390_cpu_feat_init(); 341 342 /* Register floating interrupt controller interface. */ 343 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 344 } 345 346 void kvm_arch_exit(void) 347 { 348 debug_unregister(kvm_s390_dbf); 349 } 350 351 /* Section: device related */ 352 long kvm_arch_dev_ioctl(struct file *filp, 353 unsigned int ioctl, unsigned long arg) 354 { 355 if (ioctl == KVM_S390_ENABLE_SIE) 356 return s390_enable_sie(); 357 return -EINVAL; 358 } 359 360 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 361 { 362 int r; 363 364 switch (ext) { 365 case KVM_CAP_S390_PSW: 366 case KVM_CAP_S390_GMAP: 367 case KVM_CAP_SYNC_MMU: 368 #ifdef CONFIG_KVM_S390_UCONTROL 369 case KVM_CAP_S390_UCONTROL: 370 #endif 371 case KVM_CAP_ASYNC_PF: 372 case KVM_CAP_SYNC_REGS: 373 case KVM_CAP_ONE_REG: 374 case KVM_CAP_ENABLE_CAP: 375 case KVM_CAP_S390_CSS_SUPPORT: 376 case KVM_CAP_IOEVENTFD: 377 case KVM_CAP_DEVICE_CTRL: 378 case KVM_CAP_ENABLE_CAP_VM: 379 case KVM_CAP_S390_IRQCHIP: 380 case KVM_CAP_VM_ATTRIBUTES: 381 case KVM_CAP_MP_STATE: 382 case KVM_CAP_IMMEDIATE_EXIT: 383 case KVM_CAP_S390_INJECT_IRQ: 384 case KVM_CAP_S390_USER_SIGP: 385 case KVM_CAP_S390_USER_STSI: 386 case KVM_CAP_S390_SKEYS: 387 case KVM_CAP_S390_IRQ_STATE: 388 case KVM_CAP_S390_USER_INSTR0: 389 case KVM_CAP_S390_AIS: 390 r = 1; 391 break; 392 case KVM_CAP_S390_MEM_OP: 393 r = MEM_OP_MAX_SIZE; 394 break; 395 case KVM_CAP_NR_VCPUS: 396 case KVM_CAP_MAX_VCPUS: 397 r = KVM_S390_BSCA_CPU_SLOTS; 398 if (!kvm_s390_use_sca_entries()) 399 r = KVM_MAX_VCPUS; 400 else if (sclp.has_esca && sclp.has_64bscao) 401 r = KVM_S390_ESCA_CPU_SLOTS; 402 break; 403 case KVM_CAP_NR_MEMSLOTS: 404 r = KVM_USER_MEM_SLOTS; 405 break; 406 case KVM_CAP_S390_COW: 407 r = MACHINE_HAS_ESOP; 408 break; 409 case KVM_CAP_S390_VECTOR_REGISTERS: 410 r = MACHINE_HAS_VX; 411 break; 412 case KVM_CAP_S390_RI: 413 r = test_facility(64); 414 break; 415 case KVM_CAP_S390_GS: 416 r = test_facility(133); 417 break; 418 default: 419 r = 0; 420 } 421 return r; 422 } 423 424 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 425 struct kvm_memory_slot *memslot) 426 { 427 gfn_t cur_gfn, last_gfn; 428 unsigned long address; 429 struct gmap *gmap = kvm->arch.gmap; 430 431 /* Loop over all guest pages */ 432 last_gfn = memslot->base_gfn + memslot->npages; 433 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) { 434 address = gfn_to_hva_memslot(memslot, cur_gfn); 435 436 if (test_and_clear_guest_dirty(gmap->mm, address)) 437 mark_page_dirty(kvm, cur_gfn); 438 if (fatal_signal_pending(current)) 439 return; 440 cond_resched(); 441 } 442 } 443 444 /* Section: vm related */ 445 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 446 447 /* 448 * Get (and clear) the dirty memory log for a memory slot. 449 */ 450 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 451 struct kvm_dirty_log *log) 452 { 453 int r; 454 unsigned long n; 455 struct kvm_memslots *slots; 456 struct kvm_memory_slot *memslot; 457 int is_dirty = 0; 458 459 if (kvm_is_ucontrol(kvm)) 460 return -EINVAL; 461 462 mutex_lock(&kvm->slots_lock); 463 464 r = -EINVAL; 465 if (log->slot >= KVM_USER_MEM_SLOTS) 466 goto out; 467 468 slots = kvm_memslots(kvm); 469 memslot = id_to_memslot(slots, log->slot); 470 r = -ENOENT; 471 if (!memslot->dirty_bitmap) 472 goto out; 473 474 kvm_s390_sync_dirty_log(kvm, memslot); 475 r = kvm_get_dirty_log(kvm, log, &is_dirty); 476 if (r) 477 goto out; 478 479 /* Clear the dirty log */ 480 if (is_dirty) { 481 n = kvm_dirty_bitmap_bytes(memslot); 482 memset(memslot->dirty_bitmap, 0, n); 483 } 484 r = 0; 485 out: 486 mutex_unlock(&kvm->slots_lock); 487 return r; 488 } 489 490 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 491 { 492 unsigned int i; 493 struct kvm_vcpu *vcpu; 494 495 kvm_for_each_vcpu(i, vcpu, kvm) { 496 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 497 } 498 } 499 500 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 501 { 502 int r; 503 504 if (cap->flags) 505 return -EINVAL; 506 507 switch (cap->cap) { 508 case KVM_CAP_S390_IRQCHIP: 509 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 510 kvm->arch.use_irqchip = 1; 511 r = 0; 512 break; 513 case KVM_CAP_S390_USER_SIGP: 514 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 515 kvm->arch.user_sigp = 1; 516 r = 0; 517 break; 518 case KVM_CAP_S390_VECTOR_REGISTERS: 519 mutex_lock(&kvm->lock); 520 if (kvm->created_vcpus) { 521 r = -EBUSY; 522 } else if (MACHINE_HAS_VX) { 523 set_kvm_facility(kvm->arch.model.fac_mask, 129); 524 set_kvm_facility(kvm->arch.model.fac_list, 129); 525 if (test_facility(134)) { 526 set_kvm_facility(kvm->arch.model.fac_mask, 134); 527 set_kvm_facility(kvm->arch.model.fac_list, 134); 528 } 529 if (test_facility(135)) { 530 set_kvm_facility(kvm->arch.model.fac_mask, 135); 531 set_kvm_facility(kvm->arch.model.fac_list, 135); 532 } 533 r = 0; 534 } else 535 r = -EINVAL; 536 mutex_unlock(&kvm->lock); 537 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 538 r ? "(not available)" : "(success)"); 539 break; 540 case KVM_CAP_S390_RI: 541 r = -EINVAL; 542 mutex_lock(&kvm->lock); 543 if (kvm->created_vcpus) { 544 r = -EBUSY; 545 } else if (test_facility(64)) { 546 set_kvm_facility(kvm->arch.model.fac_mask, 64); 547 set_kvm_facility(kvm->arch.model.fac_list, 64); 548 r = 0; 549 } 550 mutex_unlock(&kvm->lock); 551 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 552 r ? "(not available)" : "(success)"); 553 break; 554 case KVM_CAP_S390_AIS: 555 mutex_lock(&kvm->lock); 556 if (kvm->created_vcpus) { 557 r = -EBUSY; 558 } else { 559 set_kvm_facility(kvm->arch.model.fac_mask, 72); 560 set_kvm_facility(kvm->arch.model.fac_list, 72); 561 r = 0; 562 } 563 mutex_unlock(&kvm->lock); 564 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 565 r ? "(not available)" : "(success)"); 566 break; 567 case KVM_CAP_S390_GS: 568 r = -EINVAL; 569 mutex_lock(&kvm->lock); 570 if (atomic_read(&kvm->online_vcpus)) { 571 r = -EBUSY; 572 } else if (test_facility(133)) { 573 set_kvm_facility(kvm->arch.model.fac_mask, 133); 574 set_kvm_facility(kvm->arch.model.fac_list, 133); 575 r = 0; 576 } 577 mutex_unlock(&kvm->lock); 578 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 579 r ? "(not available)" : "(success)"); 580 break; 581 case KVM_CAP_S390_USER_STSI: 582 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 583 kvm->arch.user_stsi = 1; 584 r = 0; 585 break; 586 case KVM_CAP_S390_USER_INSTR0: 587 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 588 kvm->arch.user_instr0 = 1; 589 icpt_operexc_on_all_vcpus(kvm); 590 r = 0; 591 break; 592 default: 593 r = -EINVAL; 594 break; 595 } 596 return r; 597 } 598 599 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 600 { 601 int ret; 602 603 switch (attr->attr) { 604 case KVM_S390_VM_MEM_LIMIT_SIZE: 605 ret = 0; 606 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 607 kvm->arch.mem_limit); 608 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 609 ret = -EFAULT; 610 break; 611 default: 612 ret = -ENXIO; 613 break; 614 } 615 return ret; 616 } 617 618 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 619 { 620 int ret; 621 unsigned int idx; 622 switch (attr->attr) { 623 case KVM_S390_VM_MEM_ENABLE_CMMA: 624 ret = -ENXIO; 625 if (!sclp.has_cmma) 626 break; 627 628 ret = -EBUSY; 629 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 630 mutex_lock(&kvm->lock); 631 if (!kvm->created_vcpus) { 632 kvm->arch.use_cmma = 1; 633 ret = 0; 634 } 635 mutex_unlock(&kvm->lock); 636 break; 637 case KVM_S390_VM_MEM_CLR_CMMA: 638 ret = -ENXIO; 639 if (!sclp.has_cmma) 640 break; 641 ret = -EINVAL; 642 if (!kvm->arch.use_cmma) 643 break; 644 645 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 646 mutex_lock(&kvm->lock); 647 idx = srcu_read_lock(&kvm->srcu); 648 s390_reset_cmma(kvm->arch.gmap->mm); 649 srcu_read_unlock(&kvm->srcu, idx); 650 mutex_unlock(&kvm->lock); 651 ret = 0; 652 break; 653 case KVM_S390_VM_MEM_LIMIT_SIZE: { 654 unsigned long new_limit; 655 656 if (kvm_is_ucontrol(kvm)) 657 return -EINVAL; 658 659 if (get_user(new_limit, (u64 __user *)attr->addr)) 660 return -EFAULT; 661 662 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 663 new_limit > kvm->arch.mem_limit) 664 return -E2BIG; 665 666 if (!new_limit) 667 return -EINVAL; 668 669 /* gmap_create takes last usable address */ 670 if (new_limit != KVM_S390_NO_MEM_LIMIT) 671 new_limit -= 1; 672 673 ret = -EBUSY; 674 mutex_lock(&kvm->lock); 675 if (!kvm->created_vcpus) { 676 /* gmap_create will round the limit up */ 677 struct gmap *new = gmap_create(current->mm, new_limit); 678 679 if (!new) { 680 ret = -ENOMEM; 681 } else { 682 gmap_remove(kvm->arch.gmap); 683 new->private = kvm; 684 kvm->arch.gmap = new; 685 ret = 0; 686 } 687 } 688 mutex_unlock(&kvm->lock); 689 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 690 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 691 (void *) kvm->arch.gmap->asce); 692 break; 693 } 694 default: 695 ret = -ENXIO; 696 break; 697 } 698 return ret; 699 } 700 701 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 702 703 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 704 { 705 struct kvm_vcpu *vcpu; 706 int i; 707 708 if (!test_kvm_facility(kvm, 76)) 709 return -EINVAL; 710 711 mutex_lock(&kvm->lock); 712 switch (attr->attr) { 713 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 714 get_random_bytes( 715 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 716 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 717 kvm->arch.crypto.aes_kw = 1; 718 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 719 break; 720 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 721 get_random_bytes( 722 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 723 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 724 kvm->arch.crypto.dea_kw = 1; 725 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 726 break; 727 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 728 kvm->arch.crypto.aes_kw = 0; 729 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 730 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 731 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 732 break; 733 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 734 kvm->arch.crypto.dea_kw = 0; 735 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 736 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 737 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 738 break; 739 default: 740 mutex_unlock(&kvm->lock); 741 return -ENXIO; 742 } 743 744 kvm_for_each_vcpu(i, vcpu, kvm) { 745 kvm_s390_vcpu_crypto_setup(vcpu); 746 exit_sie(vcpu); 747 } 748 mutex_unlock(&kvm->lock); 749 return 0; 750 } 751 752 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 753 { 754 u8 gtod_high; 755 756 if (copy_from_user(>od_high, (void __user *)attr->addr, 757 sizeof(gtod_high))) 758 return -EFAULT; 759 760 if (gtod_high != 0) 761 return -EINVAL; 762 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 763 764 return 0; 765 } 766 767 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 768 { 769 u64 gtod; 770 771 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 772 return -EFAULT; 773 774 kvm_s390_set_tod_clock(kvm, gtod); 775 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod); 776 return 0; 777 } 778 779 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 780 { 781 int ret; 782 783 if (attr->flags) 784 return -EINVAL; 785 786 switch (attr->attr) { 787 case KVM_S390_VM_TOD_HIGH: 788 ret = kvm_s390_set_tod_high(kvm, attr); 789 break; 790 case KVM_S390_VM_TOD_LOW: 791 ret = kvm_s390_set_tod_low(kvm, attr); 792 break; 793 default: 794 ret = -ENXIO; 795 break; 796 } 797 return ret; 798 } 799 800 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 801 { 802 u8 gtod_high = 0; 803 804 if (copy_to_user((void __user *)attr->addr, >od_high, 805 sizeof(gtod_high))) 806 return -EFAULT; 807 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 808 809 return 0; 810 } 811 812 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 813 { 814 u64 gtod; 815 816 gtod = kvm_s390_get_tod_clock_fast(kvm); 817 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 818 return -EFAULT; 819 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 820 821 return 0; 822 } 823 824 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 825 { 826 int ret; 827 828 if (attr->flags) 829 return -EINVAL; 830 831 switch (attr->attr) { 832 case KVM_S390_VM_TOD_HIGH: 833 ret = kvm_s390_get_tod_high(kvm, attr); 834 break; 835 case KVM_S390_VM_TOD_LOW: 836 ret = kvm_s390_get_tod_low(kvm, attr); 837 break; 838 default: 839 ret = -ENXIO; 840 break; 841 } 842 return ret; 843 } 844 845 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 846 { 847 struct kvm_s390_vm_cpu_processor *proc; 848 u16 lowest_ibc, unblocked_ibc; 849 int ret = 0; 850 851 mutex_lock(&kvm->lock); 852 if (kvm->created_vcpus) { 853 ret = -EBUSY; 854 goto out; 855 } 856 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 857 if (!proc) { 858 ret = -ENOMEM; 859 goto out; 860 } 861 if (!copy_from_user(proc, (void __user *)attr->addr, 862 sizeof(*proc))) { 863 kvm->arch.model.cpuid = proc->cpuid; 864 lowest_ibc = sclp.ibc >> 16 & 0xfff; 865 unblocked_ibc = sclp.ibc & 0xfff; 866 if (lowest_ibc && proc->ibc) { 867 if (proc->ibc > unblocked_ibc) 868 kvm->arch.model.ibc = unblocked_ibc; 869 else if (proc->ibc < lowest_ibc) 870 kvm->arch.model.ibc = lowest_ibc; 871 else 872 kvm->arch.model.ibc = proc->ibc; 873 } 874 memcpy(kvm->arch.model.fac_list, proc->fac_list, 875 S390_ARCH_FAC_LIST_SIZE_BYTE); 876 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 877 kvm->arch.model.ibc, 878 kvm->arch.model.cpuid); 879 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 880 kvm->arch.model.fac_list[0], 881 kvm->arch.model.fac_list[1], 882 kvm->arch.model.fac_list[2]); 883 } else 884 ret = -EFAULT; 885 kfree(proc); 886 out: 887 mutex_unlock(&kvm->lock); 888 return ret; 889 } 890 891 static int kvm_s390_set_processor_feat(struct kvm *kvm, 892 struct kvm_device_attr *attr) 893 { 894 struct kvm_s390_vm_cpu_feat data; 895 int ret = -EBUSY; 896 897 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 898 return -EFAULT; 899 if (!bitmap_subset((unsigned long *) data.feat, 900 kvm_s390_available_cpu_feat, 901 KVM_S390_VM_CPU_FEAT_NR_BITS)) 902 return -EINVAL; 903 904 mutex_lock(&kvm->lock); 905 if (!atomic_read(&kvm->online_vcpus)) { 906 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 907 KVM_S390_VM_CPU_FEAT_NR_BITS); 908 ret = 0; 909 } 910 mutex_unlock(&kvm->lock); 911 return ret; 912 } 913 914 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 915 struct kvm_device_attr *attr) 916 { 917 /* 918 * Once supported by kernel + hw, we have to store the subfunctions 919 * in kvm->arch and remember that user space configured them. 920 */ 921 return -ENXIO; 922 } 923 924 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 925 { 926 int ret = -ENXIO; 927 928 switch (attr->attr) { 929 case KVM_S390_VM_CPU_PROCESSOR: 930 ret = kvm_s390_set_processor(kvm, attr); 931 break; 932 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 933 ret = kvm_s390_set_processor_feat(kvm, attr); 934 break; 935 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 936 ret = kvm_s390_set_processor_subfunc(kvm, attr); 937 break; 938 } 939 return ret; 940 } 941 942 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 943 { 944 struct kvm_s390_vm_cpu_processor *proc; 945 int ret = 0; 946 947 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 948 if (!proc) { 949 ret = -ENOMEM; 950 goto out; 951 } 952 proc->cpuid = kvm->arch.model.cpuid; 953 proc->ibc = kvm->arch.model.ibc; 954 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 955 S390_ARCH_FAC_LIST_SIZE_BYTE); 956 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 957 kvm->arch.model.ibc, 958 kvm->arch.model.cpuid); 959 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 960 kvm->arch.model.fac_list[0], 961 kvm->arch.model.fac_list[1], 962 kvm->arch.model.fac_list[2]); 963 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 964 ret = -EFAULT; 965 kfree(proc); 966 out: 967 return ret; 968 } 969 970 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 971 { 972 struct kvm_s390_vm_cpu_machine *mach; 973 int ret = 0; 974 975 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 976 if (!mach) { 977 ret = -ENOMEM; 978 goto out; 979 } 980 get_cpu_id((struct cpuid *) &mach->cpuid); 981 mach->ibc = sclp.ibc; 982 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 983 S390_ARCH_FAC_LIST_SIZE_BYTE); 984 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 985 sizeof(S390_lowcore.stfle_fac_list)); 986 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 987 kvm->arch.model.ibc, 988 kvm->arch.model.cpuid); 989 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 990 mach->fac_mask[0], 991 mach->fac_mask[1], 992 mach->fac_mask[2]); 993 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 994 mach->fac_list[0], 995 mach->fac_list[1], 996 mach->fac_list[2]); 997 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 998 ret = -EFAULT; 999 kfree(mach); 1000 out: 1001 return ret; 1002 } 1003 1004 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1005 struct kvm_device_attr *attr) 1006 { 1007 struct kvm_s390_vm_cpu_feat data; 1008 1009 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 1010 KVM_S390_VM_CPU_FEAT_NR_BITS); 1011 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1012 return -EFAULT; 1013 return 0; 1014 } 1015 1016 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1017 struct kvm_device_attr *attr) 1018 { 1019 struct kvm_s390_vm_cpu_feat data; 1020 1021 bitmap_copy((unsigned long *) data.feat, 1022 kvm_s390_available_cpu_feat, 1023 KVM_S390_VM_CPU_FEAT_NR_BITS); 1024 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1025 return -EFAULT; 1026 return 0; 1027 } 1028 1029 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1030 struct kvm_device_attr *attr) 1031 { 1032 /* 1033 * Once we can actually configure subfunctions (kernel + hw support), 1034 * we have to check if they were already set by user space, if so copy 1035 * them from kvm->arch. 1036 */ 1037 return -ENXIO; 1038 } 1039 1040 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1041 struct kvm_device_attr *attr) 1042 { 1043 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1044 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1045 return -EFAULT; 1046 return 0; 1047 } 1048 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1049 { 1050 int ret = -ENXIO; 1051 1052 switch (attr->attr) { 1053 case KVM_S390_VM_CPU_PROCESSOR: 1054 ret = kvm_s390_get_processor(kvm, attr); 1055 break; 1056 case KVM_S390_VM_CPU_MACHINE: 1057 ret = kvm_s390_get_machine(kvm, attr); 1058 break; 1059 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1060 ret = kvm_s390_get_processor_feat(kvm, attr); 1061 break; 1062 case KVM_S390_VM_CPU_MACHINE_FEAT: 1063 ret = kvm_s390_get_machine_feat(kvm, attr); 1064 break; 1065 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1066 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1067 break; 1068 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1069 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1070 break; 1071 } 1072 return ret; 1073 } 1074 1075 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1076 { 1077 int ret; 1078 1079 switch (attr->group) { 1080 case KVM_S390_VM_MEM_CTRL: 1081 ret = kvm_s390_set_mem_control(kvm, attr); 1082 break; 1083 case KVM_S390_VM_TOD: 1084 ret = kvm_s390_set_tod(kvm, attr); 1085 break; 1086 case KVM_S390_VM_CPU_MODEL: 1087 ret = kvm_s390_set_cpu_model(kvm, attr); 1088 break; 1089 case KVM_S390_VM_CRYPTO: 1090 ret = kvm_s390_vm_set_crypto(kvm, attr); 1091 break; 1092 default: 1093 ret = -ENXIO; 1094 break; 1095 } 1096 1097 return ret; 1098 } 1099 1100 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1101 { 1102 int ret; 1103 1104 switch (attr->group) { 1105 case KVM_S390_VM_MEM_CTRL: 1106 ret = kvm_s390_get_mem_control(kvm, attr); 1107 break; 1108 case KVM_S390_VM_TOD: 1109 ret = kvm_s390_get_tod(kvm, attr); 1110 break; 1111 case KVM_S390_VM_CPU_MODEL: 1112 ret = kvm_s390_get_cpu_model(kvm, attr); 1113 break; 1114 default: 1115 ret = -ENXIO; 1116 break; 1117 } 1118 1119 return ret; 1120 } 1121 1122 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1123 { 1124 int ret; 1125 1126 switch (attr->group) { 1127 case KVM_S390_VM_MEM_CTRL: 1128 switch (attr->attr) { 1129 case KVM_S390_VM_MEM_ENABLE_CMMA: 1130 case KVM_S390_VM_MEM_CLR_CMMA: 1131 ret = sclp.has_cmma ? 0 : -ENXIO; 1132 break; 1133 case KVM_S390_VM_MEM_LIMIT_SIZE: 1134 ret = 0; 1135 break; 1136 default: 1137 ret = -ENXIO; 1138 break; 1139 } 1140 break; 1141 case KVM_S390_VM_TOD: 1142 switch (attr->attr) { 1143 case KVM_S390_VM_TOD_LOW: 1144 case KVM_S390_VM_TOD_HIGH: 1145 ret = 0; 1146 break; 1147 default: 1148 ret = -ENXIO; 1149 break; 1150 } 1151 break; 1152 case KVM_S390_VM_CPU_MODEL: 1153 switch (attr->attr) { 1154 case KVM_S390_VM_CPU_PROCESSOR: 1155 case KVM_S390_VM_CPU_MACHINE: 1156 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1157 case KVM_S390_VM_CPU_MACHINE_FEAT: 1158 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1159 ret = 0; 1160 break; 1161 /* configuring subfunctions is not supported yet */ 1162 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1163 default: 1164 ret = -ENXIO; 1165 break; 1166 } 1167 break; 1168 case KVM_S390_VM_CRYPTO: 1169 switch (attr->attr) { 1170 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1171 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1172 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1173 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1174 ret = 0; 1175 break; 1176 default: 1177 ret = -ENXIO; 1178 break; 1179 } 1180 break; 1181 default: 1182 ret = -ENXIO; 1183 break; 1184 } 1185 1186 return ret; 1187 } 1188 1189 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1190 { 1191 uint8_t *keys; 1192 uint64_t hva; 1193 int i, r = 0; 1194 1195 if (args->flags != 0) 1196 return -EINVAL; 1197 1198 /* Is this guest using storage keys? */ 1199 if (!mm_use_skey(current->mm)) 1200 return KVM_S390_GET_SKEYS_NONE; 1201 1202 /* Enforce sane limit on memory allocation */ 1203 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1204 return -EINVAL; 1205 1206 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1207 if (!keys) 1208 return -ENOMEM; 1209 1210 down_read(¤t->mm->mmap_sem); 1211 for (i = 0; i < args->count; i++) { 1212 hva = gfn_to_hva(kvm, args->start_gfn + i); 1213 if (kvm_is_error_hva(hva)) { 1214 r = -EFAULT; 1215 break; 1216 } 1217 1218 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1219 if (r) 1220 break; 1221 } 1222 up_read(¤t->mm->mmap_sem); 1223 1224 if (!r) { 1225 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1226 sizeof(uint8_t) * args->count); 1227 if (r) 1228 r = -EFAULT; 1229 } 1230 1231 kvfree(keys); 1232 return r; 1233 } 1234 1235 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1236 { 1237 uint8_t *keys; 1238 uint64_t hva; 1239 int i, r = 0; 1240 1241 if (args->flags != 0) 1242 return -EINVAL; 1243 1244 /* Enforce sane limit on memory allocation */ 1245 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1246 return -EINVAL; 1247 1248 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1249 if (!keys) 1250 return -ENOMEM; 1251 1252 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1253 sizeof(uint8_t) * args->count); 1254 if (r) { 1255 r = -EFAULT; 1256 goto out; 1257 } 1258 1259 /* Enable storage key handling for the guest */ 1260 r = s390_enable_skey(); 1261 if (r) 1262 goto out; 1263 1264 down_read(¤t->mm->mmap_sem); 1265 for (i = 0; i < args->count; i++) { 1266 hva = gfn_to_hva(kvm, args->start_gfn + i); 1267 if (kvm_is_error_hva(hva)) { 1268 r = -EFAULT; 1269 break; 1270 } 1271 1272 /* Lowest order bit is reserved */ 1273 if (keys[i] & 0x01) { 1274 r = -EINVAL; 1275 break; 1276 } 1277 1278 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1279 if (r) 1280 break; 1281 } 1282 up_read(¤t->mm->mmap_sem); 1283 out: 1284 kvfree(keys); 1285 return r; 1286 } 1287 1288 long kvm_arch_vm_ioctl(struct file *filp, 1289 unsigned int ioctl, unsigned long arg) 1290 { 1291 struct kvm *kvm = filp->private_data; 1292 void __user *argp = (void __user *)arg; 1293 struct kvm_device_attr attr; 1294 int r; 1295 1296 switch (ioctl) { 1297 case KVM_S390_INTERRUPT: { 1298 struct kvm_s390_interrupt s390int; 1299 1300 r = -EFAULT; 1301 if (copy_from_user(&s390int, argp, sizeof(s390int))) 1302 break; 1303 r = kvm_s390_inject_vm(kvm, &s390int); 1304 break; 1305 } 1306 case KVM_ENABLE_CAP: { 1307 struct kvm_enable_cap cap; 1308 r = -EFAULT; 1309 if (copy_from_user(&cap, argp, sizeof(cap))) 1310 break; 1311 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1312 break; 1313 } 1314 case KVM_CREATE_IRQCHIP: { 1315 struct kvm_irq_routing_entry routing; 1316 1317 r = -EINVAL; 1318 if (kvm->arch.use_irqchip) { 1319 /* Set up dummy routing. */ 1320 memset(&routing, 0, sizeof(routing)); 1321 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 1322 } 1323 break; 1324 } 1325 case KVM_SET_DEVICE_ATTR: { 1326 r = -EFAULT; 1327 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1328 break; 1329 r = kvm_s390_vm_set_attr(kvm, &attr); 1330 break; 1331 } 1332 case KVM_GET_DEVICE_ATTR: { 1333 r = -EFAULT; 1334 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1335 break; 1336 r = kvm_s390_vm_get_attr(kvm, &attr); 1337 break; 1338 } 1339 case KVM_HAS_DEVICE_ATTR: { 1340 r = -EFAULT; 1341 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1342 break; 1343 r = kvm_s390_vm_has_attr(kvm, &attr); 1344 break; 1345 } 1346 case KVM_S390_GET_SKEYS: { 1347 struct kvm_s390_skeys args; 1348 1349 r = -EFAULT; 1350 if (copy_from_user(&args, argp, 1351 sizeof(struct kvm_s390_skeys))) 1352 break; 1353 r = kvm_s390_get_skeys(kvm, &args); 1354 break; 1355 } 1356 case KVM_S390_SET_SKEYS: { 1357 struct kvm_s390_skeys args; 1358 1359 r = -EFAULT; 1360 if (copy_from_user(&args, argp, 1361 sizeof(struct kvm_s390_skeys))) 1362 break; 1363 r = kvm_s390_set_skeys(kvm, &args); 1364 break; 1365 } 1366 default: 1367 r = -ENOTTY; 1368 } 1369 1370 return r; 1371 } 1372 1373 static int kvm_s390_query_ap_config(u8 *config) 1374 { 1375 u32 fcn_code = 0x04000000UL; 1376 u32 cc = 0; 1377 1378 memset(config, 0, 128); 1379 asm volatile( 1380 "lgr 0,%1\n" 1381 "lgr 2,%2\n" 1382 ".long 0xb2af0000\n" /* PQAP(QCI) */ 1383 "0: ipm %0\n" 1384 "srl %0,28\n" 1385 "1:\n" 1386 EX_TABLE(0b, 1b) 1387 : "+r" (cc) 1388 : "r" (fcn_code), "r" (config) 1389 : "cc", "0", "2", "memory" 1390 ); 1391 1392 return cc; 1393 } 1394 1395 static int kvm_s390_apxa_installed(void) 1396 { 1397 u8 config[128]; 1398 int cc; 1399 1400 if (test_facility(12)) { 1401 cc = kvm_s390_query_ap_config(config); 1402 1403 if (cc) 1404 pr_err("PQAP(QCI) failed with cc=%d", cc); 1405 else 1406 return config[0] & 0x40; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static void kvm_s390_set_crycb_format(struct kvm *kvm) 1413 { 1414 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 1415 1416 if (kvm_s390_apxa_installed()) 1417 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 1418 else 1419 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 1420 } 1421 1422 static u64 kvm_s390_get_initial_cpuid(void) 1423 { 1424 struct cpuid cpuid; 1425 1426 get_cpu_id(&cpuid); 1427 cpuid.version = 0xff; 1428 return *((u64 *) &cpuid); 1429 } 1430 1431 static void kvm_s390_crypto_init(struct kvm *kvm) 1432 { 1433 if (!test_kvm_facility(kvm, 76)) 1434 return; 1435 1436 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 1437 kvm_s390_set_crycb_format(kvm); 1438 1439 /* Enable AES/DEA protected key functions by default */ 1440 kvm->arch.crypto.aes_kw = 1; 1441 kvm->arch.crypto.dea_kw = 1; 1442 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1443 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1444 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1445 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1446 } 1447 1448 static void sca_dispose(struct kvm *kvm) 1449 { 1450 if (kvm->arch.use_esca) 1451 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 1452 else 1453 free_page((unsigned long)(kvm->arch.sca)); 1454 kvm->arch.sca = NULL; 1455 } 1456 1457 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 1458 { 1459 gfp_t alloc_flags = GFP_KERNEL; 1460 int i, rc; 1461 char debug_name[16]; 1462 static unsigned long sca_offset; 1463 1464 rc = -EINVAL; 1465 #ifdef CONFIG_KVM_S390_UCONTROL 1466 if (type & ~KVM_VM_S390_UCONTROL) 1467 goto out_err; 1468 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 1469 goto out_err; 1470 #else 1471 if (type) 1472 goto out_err; 1473 #endif 1474 1475 rc = s390_enable_sie(); 1476 if (rc) 1477 goto out_err; 1478 1479 rc = -ENOMEM; 1480 1481 ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500); 1482 1483 kvm->arch.use_esca = 0; /* start with basic SCA */ 1484 if (!sclp.has_64bscao) 1485 alloc_flags |= GFP_DMA; 1486 rwlock_init(&kvm->arch.sca_lock); 1487 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 1488 if (!kvm->arch.sca) 1489 goto out_err; 1490 spin_lock(&kvm_lock); 1491 sca_offset += 16; 1492 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 1493 sca_offset = 0; 1494 kvm->arch.sca = (struct bsca_block *) 1495 ((char *) kvm->arch.sca + sca_offset); 1496 spin_unlock(&kvm_lock); 1497 1498 sprintf(debug_name, "kvm-%u", current->pid); 1499 1500 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 1501 if (!kvm->arch.dbf) 1502 goto out_err; 1503 1504 kvm->arch.sie_page2 = 1505 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 1506 if (!kvm->arch.sie_page2) 1507 goto out_err; 1508 1509 /* Populate the facility mask initially. */ 1510 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list, 1511 sizeof(S390_lowcore.stfle_fac_list)); 1512 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) { 1513 if (i < kvm_s390_fac_list_mask_size()) 1514 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i]; 1515 else 1516 kvm->arch.model.fac_mask[i] = 0UL; 1517 } 1518 1519 /* Populate the facility list initially. */ 1520 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 1521 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask, 1522 S390_ARCH_FAC_LIST_SIZE_BYTE); 1523 1524 set_kvm_facility(kvm->arch.model.fac_mask, 74); 1525 set_kvm_facility(kvm->arch.model.fac_list, 74); 1526 1527 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 1528 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 1529 1530 kvm_s390_crypto_init(kvm); 1531 1532 mutex_init(&kvm->arch.float_int.ais_lock); 1533 kvm->arch.float_int.simm = 0; 1534 kvm->arch.float_int.nimm = 0; 1535 spin_lock_init(&kvm->arch.float_int.lock); 1536 for (i = 0; i < FIRQ_LIST_COUNT; i++) 1537 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 1538 init_waitqueue_head(&kvm->arch.ipte_wq); 1539 mutex_init(&kvm->arch.ipte_mutex); 1540 1541 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 1542 VM_EVENT(kvm, 3, "vm created with type %lu", type); 1543 1544 if (type & KVM_VM_S390_UCONTROL) { 1545 kvm->arch.gmap = NULL; 1546 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 1547 } else { 1548 if (sclp.hamax == U64_MAX) 1549 kvm->arch.mem_limit = TASK_SIZE_MAX; 1550 else 1551 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 1552 sclp.hamax + 1); 1553 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 1554 if (!kvm->arch.gmap) 1555 goto out_err; 1556 kvm->arch.gmap->private = kvm; 1557 kvm->arch.gmap->pfault_enabled = 0; 1558 } 1559 1560 kvm->arch.css_support = 0; 1561 kvm->arch.use_irqchip = 0; 1562 kvm->arch.epoch = 0; 1563 1564 spin_lock_init(&kvm->arch.start_stop_lock); 1565 kvm_s390_vsie_init(kvm); 1566 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 1567 1568 return 0; 1569 out_err: 1570 free_page((unsigned long)kvm->arch.sie_page2); 1571 debug_unregister(kvm->arch.dbf); 1572 sca_dispose(kvm); 1573 KVM_EVENT(3, "creation of vm failed: %d", rc); 1574 return rc; 1575 } 1576 1577 bool kvm_arch_has_vcpu_debugfs(void) 1578 { 1579 return false; 1580 } 1581 1582 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 1583 { 1584 return 0; 1585 } 1586 1587 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 1588 { 1589 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 1590 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 1591 kvm_s390_clear_local_irqs(vcpu); 1592 kvm_clear_async_pf_completion_queue(vcpu); 1593 if (!kvm_is_ucontrol(vcpu->kvm)) 1594 sca_del_vcpu(vcpu); 1595 1596 if (kvm_is_ucontrol(vcpu->kvm)) 1597 gmap_remove(vcpu->arch.gmap); 1598 1599 if (vcpu->kvm->arch.use_cmma) 1600 kvm_s390_vcpu_unsetup_cmma(vcpu); 1601 free_page((unsigned long)(vcpu->arch.sie_block)); 1602 1603 kvm_vcpu_uninit(vcpu); 1604 kmem_cache_free(kvm_vcpu_cache, vcpu); 1605 } 1606 1607 static void kvm_free_vcpus(struct kvm *kvm) 1608 { 1609 unsigned int i; 1610 struct kvm_vcpu *vcpu; 1611 1612 kvm_for_each_vcpu(i, vcpu, kvm) 1613 kvm_arch_vcpu_destroy(vcpu); 1614 1615 mutex_lock(&kvm->lock); 1616 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 1617 kvm->vcpus[i] = NULL; 1618 1619 atomic_set(&kvm->online_vcpus, 0); 1620 mutex_unlock(&kvm->lock); 1621 } 1622 1623 void kvm_arch_destroy_vm(struct kvm *kvm) 1624 { 1625 kvm_free_vcpus(kvm); 1626 sca_dispose(kvm); 1627 debug_unregister(kvm->arch.dbf); 1628 free_page((unsigned long)kvm->arch.sie_page2); 1629 if (!kvm_is_ucontrol(kvm)) 1630 gmap_remove(kvm->arch.gmap); 1631 kvm_s390_destroy_adapters(kvm); 1632 kvm_s390_clear_float_irqs(kvm); 1633 kvm_s390_vsie_destroy(kvm); 1634 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 1635 } 1636 1637 /* Section: vcpu related */ 1638 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 1639 { 1640 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 1641 if (!vcpu->arch.gmap) 1642 return -ENOMEM; 1643 vcpu->arch.gmap->private = vcpu->kvm; 1644 1645 return 0; 1646 } 1647 1648 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 1649 { 1650 if (!kvm_s390_use_sca_entries()) 1651 return; 1652 read_lock(&vcpu->kvm->arch.sca_lock); 1653 if (vcpu->kvm->arch.use_esca) { 1654 struct esca_block *sca = vcpu->kvm->arch.sca; 1655 1656 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1657 sca->cpu[vcpu->vcpu_id].sda = 0; 1658 } else { 1659 struct bsca_block *sca = vcpu->kvm->arch.sca; 1660 1661 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1662 sca->cpu[vcpu->vcpu_id].sda = 0; 1663 } 1664 read_unlock(&vcpu->kvm->arch.sca_lock); 1665 } 1666 1667 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 1668 { 1669 if (!kvm_s390_use_sca_entries()) { 1670 struct bsca_block *sca = vcpu->kvm->arch.sca; 1671 1672 /* we still need the basic sca for the ipte control */ 1673 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1674 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1675 } 1676 read_lock(&vcpu->kvm->arch.sca_lock); 1677 if (vcpu->kvm->arch.use_esca) { 1678 struct esca_block *sca = vcpu->kvm->arch.sca; 1679 1680 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1681 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1682 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 1683 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 1684 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1685 } else { 1686 struct bsca_block *sca = vcpu->kvm->arch.sca; 1687 1688 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1689 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1690 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1691 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1692 } 1693 read_unlock(&vcpu->kvm->arch.sca_lock); 1694 } 1695 1696 /* Basic SCA to Extended SCA data copy routines */ 1697 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 1698 { 1699 d->sda = s->sda; 1700 d->sigp_ctrl.c = s->sigp_ctrl.c; 1701 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 1702 } 1703 1704 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 1705 { 1706 int i; 1707 1708 d->ipte_control = s->ipte_control; 1709 d->mcn[0] = s->mcn; 1710 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 1711 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 1712 } 1713 1714 static int sca_switch_to_extended(struct kvm *kvm) 1715 { 1716 struct bsca_block *old_sca = kvm->arch.sca; 1717 struct esca_block *new_sca; 1718 struct kvm_vcpu *vcpu; 1719 unsigned int vcpu_idx; 1720 u32 scaol, scaoh; 1721 1722 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); 1723 if (!new_sca) 1724 return -ENOMEM; 1725 1726 scaoh = (u32)((u64)(new_sca) >> 32); 1727 scaol = (u32)(u64)(new_sca) & ~0x3fU; 1728 1729 kvm_s390_vcpu_block_all(kvm); 1730 write_lock(&kvm->arch.sca_lock); 1731 1732 sca_copy_b_to_e(new_sca, old_sca); 1733 1734 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 1735 vcpu->arch.sie_block->scaoh = scaoh; 1736 vcpu->arch.sie_block->scaol = scaol; 1737 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 1738 } 1739 kvm->arch.sca = new_sca; 1740 kvm->arch.use_esca = 1; 1741 1742 write_unlock(&kvm->arch.sca_lock); 1743 kvm_s390_vcpu_unblock_all(kvm); 1744 1745 free_page((unsigned long)old_sca); 1746 1747 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 1748 old_sca, kvm->arch.sca); 1749 return 0; 1750 } 1751 1752 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 1753 { 1754 int rc; 1755 1756 if (!kvm_s390_use_sca_entries()) { 1757 if (id < KVM_MAX_VCPUS) 1758 return true; 1759 return false; 1760 } 1761 if (id < KVM_S390_BSCA_CPU_SLOTS) 1762 return true; 1763 if (!sclp.has_esca || !sclp.has_64bscao) 1764 return false; 1765 1766 mutex_lock(&kvm->lock); 1767 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 1768 mutex_unlock(&kvm->lock); 1769 1770 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 1771 } 1772 1773 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1774 { 1775 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1776 kvm_clear_async_pf_completion_queue(vcpu); 1777 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 1778 KVM_SYNC_GPRS | 1779 KVM_SYNC_ACRS | 1780 KVM_SYNC_CRS | 1781 KVM_SYNC_ARCH0 | 1782 KVM_SYNC_PFAULT; 1783 kvm_s390_set_prefix(vcpu, 0); 1784 if (test_kvm_facility(vcpu->kvm, 64)) 1785 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 1786 if (test_kvm_facility(vcpu->kvm, 133)) 1787 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 1788 /* fprs can be synchronized via vrs, even if the guest has no vx. With 1789 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 1790 */ 1791 if (MACHINE_HAS_VX) 1792 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 1793 else 1794 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 1795 1796 if (kvm_is_ucontrol(vcpu->kvm)) 1797 return __kvm_ucontrol_vcpu_init(vcpu); 1798 1799 return 0; 1800 } 1801 1802 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1803 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1804 { 1805 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 1806 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1807 vcpu->arch.cputm_start = get_tod_clock_fast(); 1808 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1809 } 1810 1811 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1812 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1813 { 1814 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 1815 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1816 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1817 vcpu->arch.cputm_start = 0; 1818 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1819 } 1820 1821 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1822 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1823 { 1824 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 1825 vcpu->arch.cputm_enabled = true; 1826 __start_cpu_timer_accounting(vcpu); 1827 } 1828 1829 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1830 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1831 { 1832 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 1833 __stop_cpu_timer_accounting(vcpu); 1834 vcpu->arch.cputm_enabled = false; 1835 } 1836 1837 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1838 { 1839 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1840 __enable_cpu_timer_accounting(vcpu); 1841 preempt_enable(); 1842 } 1843 1844 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1845 { 1846 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1847 __disable_cpu_timer_accounting(vcpu); 1848 preempt_enable(); 1849 } 1850 1851 /* set the cpu timer - may only be called from the VCPU thread itself */ 1852 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 1853 { 1854 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1855 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1856 if (vcpu->arch.cputm_enabled) 1857 vcpu->arch.cputm_start = get_tod_clock_fast(); 1858 vcpu->arch.sie_block->cputm = cputm; 1859 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1860 preempt_enable(); 1861 } 1862 1863 /* update and get the cpu timer - can also be called from other VCPU threads */ 1864 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 1865 { 1866 unsigned int seq; 1867 __u64 value; 1868 1869 if (unlikely(!vcpu->arch.cputm_enabled)) 1870 return vcpu->arch.sie_block->cputm; 1871 1872 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1873 do { 1874 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 1875 /* 1876 * If the writer would ever execute a read in the critical 1877 * section, e.g. in irq context, we have a deadlock. 1878 */ 1879 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 1880 value = vcpu->arch.sie_block->cputm; 1881 /* if cputm_start is 0, accounting is being started/stopped */ 1882 if (likely(vcpu->arch.cputm_start)) 1883 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1884 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 1885 preempt_enable(); 1886 return value; 1887 } 1888 1889 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1890 { 1891 1892 gmap_enable(vcpu->arch.enabled_gmap); 1893 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1894 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1895 __start_cpu_timer_accounting(vcpu); 1896 vcpu->cpu = cpu; 1897 } 1898 1899 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1900 { 1901 vcpu->cpu = -1; 1902 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1903 __stop_cpu_timer_accounting(vcpu); 1904 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1905 vcpu->arch.enabled_gmap = gmap_get_enabled(); 1906 gmap_disable(vcpu->arch.enabled_gmap); 1907 1908 } 1909 1910 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 1911 { 1912 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 1913 vcpu->arch.sie_block->gpsw.mask = 0UL; 1914 vcpu->arch.sie_block->gpsw.addr = 0UL; 1915 kvm_s390_set_prefix(vcpu, 0); 1916 kvm_s390_set_cpu_timer(vcpu, 0); 1917 vcpu->arch.sie_block->ckc = 0UL; 1918 vcpu->arch.sie_block->todpr = 0; 1919 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 1920 vcpu->arch.sie_block->gcr[0] = 0xE0UL; 1921 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL; 1922 /* make sure the new fpc will be lazily loaded */ 1923 save_fpu_regs(); 1924 current->thread.fpu.fpc = 0; 1925 vcpu->arch.sie_block->gbea = 1; 1926 vcpu->arch.sie_block->pp = 0; 1927 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1928 kvm_clear_async_pf_completion_queue(vcpu); 1929 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 1930 kvm_s390_vcpu_stop(vcpu); 1931 kvm_s390_clear_local_irqs(vcpu); 1932 } 1933 1934 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1935 { 1936 mutex_lock(&vcpu->kvm->lock); 1937 preempt_disable(); 1938 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 1939 preempt_enable(); 1940 mutex_unlock(&vcpu->kvm->lock); 1941 if (!kvm_is_ucontrol(vcpu->kvm)) { 1942 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 1943 sca_add_vcpu(vcpu); 1944 } 1945 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 1946 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 1947 /* make vcpu_load load the right gmap on the first trigger */ 1948 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 1949 } 1950 1951 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 1952 { 1953 if (!test_kvm_facility(vcpu->kvm, 76)) 1954 return; 1955 1956 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 1957 1958 if (vcpu->kvm->arch.crypto.aes_kw) 1959 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 1960 if (vcpu->kvm->arch.crypto.dea_kw) 1961 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 1962 1963 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 1964 } 1965 1966 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 1967 { 1968 free_page(vcpu->arch.sie_block->cbrlo); 1969 vcpu->arch.sie_block->cbrlo = 0; 1970 } 1971 1972 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 1973 { 1974 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 1975 if (!vcpu->arch.sie_block->cbrlo) 1976 return -ENOMEM; 1977 1978 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 1979 vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI; 1980 return 0; 1981 } 1982 1983 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 1984 { 1985 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 1986 1987 vcpu->arch.sie_block->ibc = model->ibc; 1988 if (test_kvm_facility(vcpu->kvm, 7)) 1989 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 1990 } 1991 1992 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1993 { 1994 int rc = 0; 1995 1996 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 1997 CPUSTAT_SM | 1998 CPUSTAT_STOPPED); 1999 2000 if (test_kvm_facility(vcpu->kvm, 78)) 2001 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags); 2002 else if (test_kvm_facility(vcpu->kvm, 8)) 2003 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags); 2004 2005 kvm_s390_vcpu_setup_model(vcpu); 2006 2007 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 2008 if (MACHINE_HAS_ESOP) 2009 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 2010 if (test_kvm_facility(vcpu->kvm, 9)) 2011 vcpu->arch.sie_block->ecb |= ECB_SRSI; 2012 if (test_kvm_facility(vcpu->kvm, 73)) 2013 vcpu->arch.sie_block->ecb |= ECB_TE; 2014 2015 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi) 2016 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 2017 if (test_kvm_facility(vcpu->kvm, 130)) 2018 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 2019 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 2020 if (sclp.has_cei) 2021 vcpu->arch.sie_block->eca |= ECA_CEI; 2022 if (sclp.has_ib) 2023 vcpu->arch.sie_block->eca |= ECA_IB; 2024 if (sclp.has_siif) 2025 vcpu->arch.sie_block->eca |= ECA_SII; 2026 if (sclp.has_sigpif) 2027 vcpu->arch.sie_block->eca |= ECA_SIGPI; 2028 if (test_kvm_facility(vcpu->kvm, 129)) { 2029 vcpu->arch.sie_block->eca |= ECA_VX; 2030 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 2031 } 2032 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) 2033 | SDNXC; 2034 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 2035 2036 if (sclp.has_kss) 2037 atomic_or(CPUSTAT_KSS, &vcpu->arch.sie_block->cpuflags); 2038 else 2039 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 2040 2041 if (vcpu->kvm->arch.use_cmma) { 2042 rc = kvm_s390_vcpu_setup_cmma(vcpu); 2043 if (rc) 2044 return rc; 2045 } 2046 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2047 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 2048 2049 kvm_s390_vcpu_crypto_setup(vcpu); 2050 2051 return rc; 2052 } 2053 2054 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 2055 unsigned int id) 2056 { 2057 struct kvm_vcpu *vcpu; 2058 struct sie_page *sie_page; 2059 int rc = -EINVAL; 2060 2061 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 2062 goto out; 2063 2064 rc = -ENOMEM; 2065 2066 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2067 if (!vcpu) 2068 goto out; 2069 2070 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 2071 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 2072 if (!sie_page) 2073 goto out_free_cpu; 2074 2075 vcpu->arch.sie_block = &sie_page->sie_block; 2076 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 2077 2078 /* the real guest size will always be smaller than msl */ 2079 vcpu->arch.sie_block->mso = 0; 2080 vcpu->arch.sie_block->msl = sclp.hamax; 2081 2082 vcpu->arch.sie_block->icpua = id; 2083 spin_lock_init(&vcpu->arch.local_int.lock); 2084 vcpu->arch.local_int.float_int = &kvm->arch.float_int; 2085 vcpu->arch.local_int.wq = &vcpu->wq; 2086 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags; 2087 seqcount_init(&vcpu->arch.cputm_seqcount); 2088 2089 rc = kvm_vcpu_init(vcpu, kvm, id); 2090 if (rc) 2091 goto out_free_sie_block; 2092 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, 2093 vcpu->arch.sie_block); 2094 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 2095 2096 return vcpu; 2097 out_free_sie_block: 2098 free_page((unsigned long)(vcpu->arch.sie_block)); 2099 out_free_cpu: 2100 kmem_cache_free(kvm_vcpu_cache, vcpu); 2101 out: 2102 return ERR_PTR(rc); 2103 } 2104 2105 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 2106 { 2107 return kvm_s390_vcpu_has_irq(vcpu, 0); 2108 } 2109 2110 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 2111 { 2112 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2113 exit_sie(vcpu); 2114 } 2115 2116 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 2117 { 2118 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2119 } 2120 2121 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 2122 { 2123 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2124 exit_sie(vcpu); 2125 } 2126 2127 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 2128 { 2129 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2130 } 2131 2132 /* 2133 * Kick a guest cpu out of SIE and wait until SIE is not running. 2134 * If the CPU is not running (e.g. waiting as idle) the function will 2135 * return immediately. */ 2136 void exit_sie(struct kvm_vcpu *vcpu) 2137 { 2138 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags); 2139 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 2140 cpu_relax(); 2141 } 2142 2143 /* Kick a guest cpu out of SIE to process a request synchronously */ 2144 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 2145 { 2146 kvm_make_request(req, vcpu); 2147 kvm_s390_vcpu_request(vcpu); 2148 } 2149 2150 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 2151 unsigned long end) 2152 { 2153 struct kvm *kvm = gmap->private; 2154 struct kvm_vcpu *vcpu; 2155 unsigned long prefix; 2156 int i; 2157 2158 if (gmap_is_shadow(gmap)) 2159 return; 2160 if (start >= 1UL << 31) 2161 /* We are only interested in prefix pages */ 2162 return; 2163 kvm_for_each_vcpu(i, vcpu, kvm) { 2164 /* match against both prefix pages */ 2165 prefix = kvm_s390_get_prefix(vcpu); 2166 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 2167 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 2168 start, end); 2169 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 2170 } 2171 } 2172 } 2173 2174 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 2175 { 2176 /* kvm common code refers to this, but never calls it */ 2177 BUG(); 2178 return 0; 2179 } 2180 2181 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 2182 struct kvm_one_reg *reg) 2183 { 2184 int r = -EINVAL; 2185 2186 switch (reg->id) { 2187 case KVM_REG_S390_TODPR: 2188 r = put_user(vcpu->arch.sie_block->todpr, 2189 (u32 __user *)reg->addr); 2190 break; 2191 case KVM_REG_S390_EPOCHDIFF: 2192 r = put_user(vcpu->arch.sie_block->epoch, 2193 (u64 __user *)reg->addr); 2194 break; 2195 case KVM_REG_S390_CPU_TIMER: 2196 r = put_user(kvm_s390_get_cpu_timer(vcpu), 2197 (u64 __user *)reg->addr); 2198 break; 2199 case KVM_REG_S390_CLOCK_COMP: 2200 r = put_user(vcpu->arch.sie_block->ckc, 2201 (u64 __user *)reg->addr); 2202 break; 2203 case KVM_REG_S390_PFTOKEN: 2204 r = put_user(vcpu->arch.pfault_token, 2205 (u64 __user *)reg->addr); 2206 break; 2207 case KVM_REG_S390_PFCOMPARE: 2208 r = put_user(vcpu->arch.pfault_compare, 2209 (u64 __user *)reg->addr); 2210 break; 2211 case KVM_REG_S390_PFSELECT: 2212 r = put_user(vcpu->arch.pfault_select, 2213 (u64 __user *)reg->addr); 2214 break; 2215 case KVM_REG_S390_PP: 2216 r = put_user(vcpu->arch.sie_block->pp, 2217 (u64 __user *)reg->addr); 2218 break; 2219 case KVM_REG_S390_GBEA: 2220 r = put_user(vcpu->arch.sie_block->gbea, 2221 (u64 __user *)reg->addr); 2222 break; 2223 default: 2224 break; 2225 } 2226 2227 return r; 2228 } 2229 2230 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 2231 struct kvm_one_reg *reg) 2232 { 2233 int r = -EINVAL; 2234 __u64 val; 2235 2236 switch (reg->id) { 2237 case KVM_REG_S390_TODPR: 2238 r = get_user(vcpu->arch.sie_block->todpr, 2239 (u32 __user *)reg->addr); 2240 break; 2241 case KVM_REG_S390_EPOCHDIFF: 2242 r = get_user(vcpu->arch.sie_block->epoch, 2243 (u64 __user *)reg->addr); 2244 break; 2245 case KVM_REG_S390_CPU_TIMER: 2246 r = get_user(val, (u64 __user *)reg->addr); 2247 if (!r) 2248 kvm_s390_set_cpu_timer(vcpu, val); 2249 break; 2250 case KVM_REG_S390_CLOCK_COMP: 2251 r = get_user(vcpu->arch.sie_block->ckc, 2252 (u64 __user *)reg->addr); 2253 break; 2254 case KVM_REG_S390_PFTOKEN: 2255 r = get_user(vcpu->arch.pfault_token, 2256 (u64 __user *)reg->addr); 2257 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2258 kvm_clear_async_pf_completion_queue(vcpu); 2259 break; 2260 case KVM_REG_S390_PFCOMPARE: 2261 r = get_user(vcpu->arch.pfault_compare, 2262 (u64 __user *)reg->addr); 2263 break; 2264 case KVM_REG_S390_PFSELECT: 2265 r = get_user(vcpu->arch.pfault_select, 2266 (u64 __user *)reg->addr); 2267 break; 2268 case KVM_REG_S390_PP: 2269 r = get_user(vcpu->arch.sie_block->pp, 2270 (u64 __user *)reg->addr); 2271 break; 2272 case KVM_REG_S390_GBEA: 2273 r = get_user(vcpu->arch.sie_block->gbea, 2274 (u64 __user *)reg->addr); 2275 break; 2276 default: 2277 break; 2278 } 2279 2280 return r; 2281 } 2282 2283 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 2284 { 2285 kvm_s390_vcpu_initial_reset(vcpu); 2286 return 0; 2287 } 2288 2289 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2290 { 2291 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 2292 return 0; 2293 } 2294 2295 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2296 { 2297 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 2298 return 0; 2299 } 2300 2301 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 2302 struct kvm_sregs *sregs) 2303 { 2304 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 2305 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 2306 return 0; 2307 } 2308 2309 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 2310 struct kvm_sregs *sregs) 2311 { 2312 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 2313 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 2314 return 0; 2315 } 2316 2317 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2318 { 2319 if (test_fp_ctl(fpu->fpc)) 2320 return -EINVAL; 2321 vcpu->run->s.regs.fpc = fpu->fpc; 2322 if (MACHINE_HAS_VX) 2323 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 2324 (freg_t *) fpu->fprs); 2325 else 2326 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 2327 return 0; 2328 } 2329 2330 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2331 { 2332 /* make sure we have the latest values */ 2333 save_fpu_regs(); 2334 if (MACHINE_HAS_VX) 2335 convert_vx_to_fp((freg_t *) fpu->fprs, 2336 (__vector128 *) vcpu->run->s.regs.vrs); 2337 else 2338 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 2339 fpu->fpc = vcpu->run->s.regs.fpc; 2340 return 0; 2341 } 2342 2343 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 2344 { 2345 int rc = 0; 2346 2347 if (!is_vcpu_stopped(vcpu)) 2348 rc = -EBUSY; 2349 else { 2350 vcpu->run->psw_mask = psw.mask; 2351 vcpu->run->psw_addr = psw.addr; 2352 } 2353 return rc; 2354 } 2355 2356 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 2357 struct kvm_translation *tr) 2358 { 2359 return -EINVAL; /* not implemented yet */ 2360 } 2361 2362 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 2363 KVM_GUESTDBG_USE_HW_BP | \ 2364 KVM_GUESTDBG_ENABLE) 2365 2366 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 2367 struct kvm_guest_debug *dbg) 2368 { 2369 int rc = 0; 2370 2371 vcpu->guest_debug = 0; 2372 kvm_s390_clear_bp_data(vcpu); 2373 2374 if (dbg->control & ~VALID_GUESTDBG_FLAGS) 2375 return -EINVAL; 2376 if (!sclp.has_gpere) 2377 return -EINVAL; 2378 2379 if (dbg->control & KVM_GUESTDBG_ENABLE) { 2380 vcpu->guest_debug = dbg->control; 2381 /* enforce guest PER */ 2382 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2383 2384 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 2385 rc = kvm_s390_import_bp_data(vcpu, dbg); 2386 } else { 2387 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2388 vcpu->arch.guestdbg.last_bp = 0; 2389 } 2390 2391 if (rc) { 2392 vcpu->guest_debug = 0; 2393 kvm_s390_clear_bp_data(vcpu); 2394 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2395 } 2396 2397 return rc; 2398 } 2399 2400 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2401 struct kvm_mp_state *mp_state) 2402 { 2403 /* CHECK_STOP and LOAD are not supported yet */ 2404 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 2405 KVM_MP_STATE_OPERATING; 2406 } 2407 2408 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2409 struct kvm_mp_state *mp_state) 2410 { 2411 int rc = 0; 2412 2413 /* user space knows about this interface - let it control the state */ 2414 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 2415 2416 switch (mp_state->mp_state) { 2417 case KVM_MP_STATE_STOPPED: 2418 kvm_s390_vcpu_stop(vcpu); 2419 break; 2420 case KVM_MP_STATE_OPERATING: 2421 kvm_s390_vcpu_start(vcpu); 2422 break; 2423 case KVM_MP_STATE_LOAD: 2424 case KVM_MP_STATE_CHECK_STOP: 2425 /* fall through - CHECK_STOP and LOAD are not supported yet */ 2426 default: 2427 rc = -ENXIO; 2428 } 2429 2430 return rc; 2431 } 2432 2433 static bool ibs_enabled(struct kvm_vcpu *vcpu) 2434 { 2435 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS; 2436 } 2437 2438 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 2439 { 2440 retry: 2441 kvm_s390_vcpu_request_handled(vcpu); 2442 if (!vcpu->requests) 2443 return 0; 2444 /* 2445 * We use MMU_RELOAD just to re-arm the ipte notifier for the 2446 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 2447 * This ensures that the ipte instruction for this request has 2448 * already finished. We might race against a second unmapper that 2449 * wants to set the blocking bit. Lets just retry the request loop. 2450 */ 2451 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 2452 int rc; 2453 rc = gmap_mprotect_notify(vcpu->arch.gmap, 2454 kvm_s390_get_prefix(vcpu), 2455 PAGE_SIZE * 2, PROT_WRITE); 2456 if (rc) { 2457 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 2458 return rc; 2459 } 2460 goto retry; 2461 } 2462 2463 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 2464 vcpu->arch.sie_block->ihcpu = 0xffff; 2465 goto retry; 2466 } 2467 2468 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 2469 if (!ibs_enabled(vcpu)) { 2470 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 2471 atomic_or(CPUSTAT_IBS, 2472 &vcpu->arch.sie_block->cpuflags); 2473 } 2474 goto retry; 2475 } 2476 2477 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 2478 if (ibs_enabled(vcpu)) { 2479 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 2480 atomic_andnot(CPUSTAT_IBS, 2481 &vcpu->arch.sie_block->cpuflags); 2482 } 2483 goto retry; 2484 } 2485 2486 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 2487 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 2488 goto retry; 2489 } 2490 2491 /* nothing to do, just clear the request */ 2492 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 2493 2494 return 0; 2495 } 2496 2497 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod) 2498 { 2499 struct kvm_vcpu *vcpu; 2500 int i; 2501 2502 mutex_lock(&kvm->lock); 2503 preempt_disable(); 2504 kvm->arch.epoch = tod - get_tod_clock(); 2505 kvm_s390_vcpu_block_all(kvm); 2506 kvm_for_each_vcpu(i, vcpu, kvm) 2507 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 2508 kvm_s390_vcpu_unblock_all(kvm); 2509 preempt_enable(); 2510 mutex_unlock(&kvm->lock); 2511 } 2512 2513 /** 2514 * kvm_arch_fault_in_page - fault-in guest page if necessary 2515 * @vcpu: The corresponding virtual cpu 2516 * @gpa: Guest physical address 2517 * @writable: Whether the page should be writable or not 2518 * 2519 * Make sure that a guest page has been faulted-in on the host. 2520 * 2521 * Return: Zero on success, negative error code otherwise. 2522 */ 2523 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 2524 { 2525 return gmap_fault(vcpu->arch.gmap, gpa, 2526 writable ? FAULT_FLAG_WRITE : 0); 2527 } 2528 2529 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 2530 unsigned long token) 2531 { 2532 struct kvm_s390_interrupt inti; 2533 struct kvm_s390_irq irq; 2534 2535 if (start_token) { 2536 irq.u.ext.ext_params2 = token; 2537 irq.type = KVM_S390_INT_PFAULT_INIT; 2538 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 2539 } else { 2540 inti.type = KVM_S390_INT_PFAULT_DONE; 2541 inti.parm64 = token; 2542 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 2543 } 2544 } 2545 2546 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2547 struct kvm_async_pf *work) 2548 { 2549 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 2550 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 2551 } 2552 2553 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2554 struct kvm_async_pf *work) 2555 { 2556 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 2557 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 2558 } 2559 2560 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2561 struct kvm_async_pf *work) 2562 { 2563 /* s390 will always inject the page directly */ 2564 } 2565 2566 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 2567 { 2568 /* 2569 * s390 will always inject the page directly, 2570 * but we still want check_async_completion to cleanup 2571 */ 2572 return true; 2573 } 2574 2575 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 2576 { 2577 hva_t hva; 2578 struct kvm_arch_async_pf arch; 2579 int rc; 2580 2581 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2582 return 0; 2583 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 2584 vcpu->arch.pfault_compare) 2585 return 0; 2586 if (psw_extint_disabled(vcpu)) 2587 return 0; 2588 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 2589 return 0; 2590 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul)) 2591 return 0; 2592 if (!vcpu->arch.gmap->pfault_enabled) 2593 return 0; 2594 2595 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 2596 hva += current->thread.gmap_addr & ~PAGE_MASK; 2597 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 2598 return 0; 2599 2600 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 2601 return rc; 2602 } 2603 2604 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 2605 { 2606 int rc, cpuflags; 2607 2608 /* 2609 * On s390 notifications for arriving pages will be delivered directly 2610 * to the guest but the house keeping for completed pfaults is 2611 * handled outside the worker. 2612 */ 2613 kvm_check_async_pf_completion(vcpu); 2614 2615 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 2616 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 2617 2618 if (need_resched()) 2619 schedule(); 2620 2621 if (test_cpu_flag(CIF_MCCK_PENDING)) 2622 s390_handle_mcck(); 2623 2624 if (!kvm_is_ucontrol(vcpu->kvm)) { 2625 rc = kvm_s390_deliver_pending_interrupts(vcpu); 2626 if (rc) 2627 return rc; 2628 } 2629 2630 rc = kvm_s390_handle_requests(vcpu); 2631 if (rc) 2632 return rc; 2633 2634 if (guestdbg_enabled(vcpu)) { 2635 kvm_s390_backup_guest_per_regs(vcpu); 2636 kvm_s390_patch_guest_per_regs(vcpu); 2637 } 2638 2639 vcpu->arch.sie_block->icptcode = 0; 2640 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 2641 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 2642 trace_kvm_s390_sie_enter(vcpu, cpuflags); 2643 2644 return 0; 2645 } 2646 2647 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 2648 { 2649 struct kvm_s390_pgm_info pgm_info = { 2650 .code = PGM_ADDRESSING, 2651 }; 2652 u8 opcode, ilen; 2653 int rc; 2654 2655 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 2656 trace_kvm_s390_sie_fault(vcpu); 2657 2658 /* 2659 * We want to inject an addressing exception, which is defined as a 2660 * suppressing or terminating exception. However, since we came here 2661 * by a DAT access exception, the PSW still points to the faulting 2662 * instruction since DAT exceptions are nullifying. So we've got 2663 * to look up the current opcode to get the length of the instruction 2664 * to be able to forward the PSW. 2665 */ 2666 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 2667 ilen = insn_length(opcode); 2668 if (rc < 0) { 2669 return rc; 2670 } else if (rc) { 2671 /* Instruction-Fetching Exceptions - we can't detect the ilen. 2672 * Forward by arbitrary ilc, injection will take care of 2673 * nullification if necessary. 2674 */ 2675 pgm_info = vcpu->arch.pgm; 2676 ilen = 4; 2677 } 2678 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 2679 kvm_s390_forward_psw(vcpu, ilen); 2680 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 2681 } 2682 2683 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 2684 { 2685 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 2686 vcpu->arch.sie_block->icptcode); 2687 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 2688 2689 if (guestdbg_enabled(vcpu)) 2690 kvm_s390_restore_guest_per_regs(vcpu); 2691 2692 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 2693 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 2694 2695 if (vcpu->arch.sie_block->icptcode > 0) { 2696 int rc = kvm_handle_sie_intercept(vcpu); 2697 2698 if (rc != -EOPNOTSUPP) 2699 return rc; 2700 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 2701 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 2702 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 2703 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 2704 return -EREMOTE; 2705 } else if (exit_reason != -EFAULT) { 2706 vcpu->stat.exit_null++; 2707 return 0; 2708 } else if (kvm_is_ucontrol(vcpu->kvm)) { 2709 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 2710 vcpu->run->s390_ucontrol.trans_exc_code = 2711 current->thread.gmap_addr; 2712 vcpu->run->s390_ucontrol.pgm_code = 0x10; 2713 return -EREMOTE; 2714 } else if (current->thread.gmap_pfault) { 2715 trace_kvm_s390_major_guest_pfault(vcpu); 2716 current->thread.gmap_pfault = 0; 2717 if (kvm_arch_setup_async_pf(vcpu)) 2718 return 0; 2719 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 2720 } 2721 return vcpu_post_run_fault_in_sie(vcpu); 2722 } 2723 2724 static int __vcpu_run(struct kvm_vcpu *vcpu) 2725 { 2726 int rc, exit_reason; 2727 2728 /* 2729 * We try to hold kvm->srcu during most of vcpu_run (except when run- 2730 * ning the guest), so that memslots (and other stuff) are protected 2731 */ 2732 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2733 2734 do { 2735 rc = vcpu_pre_run(vcpu); 2736 if (rc) 2737 break; 2738 2739 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2740 /* 2741 * As PF_VCPU will be used in fault handler, between 2742 * guest_enter and guest_exit should be no uaccess. 2743 */ 2744 local_irq_disable(); 2745 guest_enter_irqoff(); 2746 __disable_cpu_timer_accounting(vcpu); 2747 local_irq_enable(); 2748 exit_reason = sie64a(vcpu->arch.sie_block, 2749 vcpu->run->s.regs.gprs); 2750 local_irq_disable(); 2751 __enable_cpu_timer_accounting(vcpu); 2752 guest_exit_irqoff(); 2753 local_irq_enable(); 2754 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2755 2756 rc = vcpu_post_run(vcpu, exit_reason); 2757 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 2758 2759 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2760 return rc; 2761 } 2762 2763 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2764 { 2765 struct runtime_instr_cb *riccb; 2766 struct gs_cb *gscb; 2767 2768 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 2769 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 2770 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 2771 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 2772 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 2773 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 2774 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 2775 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 2776 /* some control register changes require a tlb flush */ 2777 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2778 } 2779 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 2780 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 2781 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 2782 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 2783 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 2784 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 2785 } 2786 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 2787 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 2788 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 2789 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 2790 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2791 kvm_clear_async_pf_completion_queue(vcpu); 2792 } 2793 /* 2794 * If userspace sets the riccb (e.g. after migration) to a valid state, 2795 * we should enable RI here instead of doing the lazy enablement. 2796 */ 2797 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 2798 test_kvm_facility(vcpu->kvm, 64) && 2799 riccb->valid && 2800 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 2801 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 2802 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 2803 } 2804 /* 2805 * If userspace sets the gscb (e.g. after migration) to non-zero, 2806 * we should enable GS here instead of doing the lazy enablement. 2807 */ 2808 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 2809 test_kvm_facility(vcpu->kvm, 133) && 2810 gscb->gssm && 2811 !vcpu->arch.gs_enabled) { 2812 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 2813 vcpu->arch.sie_block->ecb |= ECB_GS; 2814 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 2815 vcpu->arch.gs_enabled = 1; 2816 } 2817 save_access_regs(vcpu->arch.host_acrs); 2818 restore_access_regs(vcpu->run->s.regs.acrs); 2819 /* save host (userspace) fprs/vrs */ 2820 save_fpu_regs(); 2821 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 2822 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 2823 if (MACHINE_HAS_VX) 2824 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 2825 else 2826 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 2827 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 2828 if (test_fp_ctl(current->thread.fpu.fpc)) 2829 /* User space provided an invalid FPC, let's clear it */ 2830 current->thread.fpu.fpc = 0; 2831 if (MACHINE_HAS_GS) { 2832 preempt_disable(); 2833 __ctl_set_bit(2, 4); 2834 if (current->thread.gs_cb) { 2835 vcpu->arch.host_gscb = current->thread.gs_cb; 2836 save_gs_cb(vcpu->arch.host_gscb); 2837 } 2838 if (vcpu->arch.gs_enabled) { 2839 current->thread.gs_cb = (struct gs_cb *) 2840 &vcpu->run->s.regs.gscb; 2841 restore_gs_cb(current->thread.gs_cb); 2842 } 2843 preempt_enable(); 2844 } 2845 2846 kvm_run->kvm_dirty_regs = 0; 2847 } 2848 2849 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2850 { 2851 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 2852 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 2853 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 2854 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 2855 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 2856 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 2857 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 2858 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 2859 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 2860 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 2861 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 2862 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 2863 save_access_regs(vcpu->run->s.regs.acrs); 2864 restore_access_regs(vcpu->arch.host_acrs); 2865 /* Save guest register state */ 2866 save_fpu_regs(); 2867 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 2868 /* Restore will be done lazily at return */ 2869 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 2870 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 2871 if (MACHINE_HAS_GS) { 2872 __ctl_set_bit(2, 4); 2873 if (vcpu->arch.gs_enabled) 2874 save_gs_cb(current->thread.gs_cb); 2875 preempt_disable(); 2876 current->thread.gs_cb = vcpu->arch.host_gscb; 2877 restore_gs_cb(vcpu->arch.host_gscb); 2878 preempt_enable(); 2879 if (!vcpu->arch.host_gscb) 2880 __ctl_clear_bit(2, 4); 2881 vcpu->arch.host_gscb = NULL; 2882 } 2883 2884 } 2885 2886 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2887 { 2888 int rc; 2889 sigset_t sigsaved; 2890 2891 if (kvm_run->immediate_exit) 2892 return -EINTR; 2893 2894 if (guestdbg_exit_pending(vcpu)) { 2895 kvm_s390_prepare_debug_exit(vcpu); 2896 return 0; 2897 } 2898 2899 if (vcpu->sigset_active) 2900 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 2901 2902 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 2903 kvm_s390_vcpu_start(vcpu); 2904 } else if (is_vcpu_stopped(vcpu)) { 2905 pr_err_ratelimited("can't run stopped vcpu %d\n", 2906 vcpu->vcpu_id); 2907 return -EINVAL; 2908 } 2909 2910 sync_regs(vcpu, kvm_run); 2911 enable_cpu_timer_accounting(vcpu); 2912 2913 might_fault(); 2914 rc = __vcpu_run(vcpu); 2915 2916 if (signal_pending(current) && !rc) { 2917 kvm_run->exit_reason = KVM_EXIT_INTR; 2918 rc = -EINTR; 2919 } 2920 2921 if (guestdbg_exit_pending(vcpu) && !rc) { 2922 kvm_s390_prepare_debug_exit(vcpu); 2923 rc = 0; 2924 } 2925 2926 if (rc == -EREMOTE) { 2927 /* userspace support is needed, kvm_run has been prepared */ 2928 rc = 0; 2929 } 2930 2931 disable_cpu_timer_accounting(vcpu); 2932 store_regs(vcpu, kvm_run); 2933 2934 if (vcpu->sigset_active) 2935 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2936 2937 vcpu->stat.exit_userspace++; 2938 return rc; 2939 } 2940 2941 /* 2942 * store status at address 2943 * we use have two special cases: 2944 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 2945 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 2946 */ 2947 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 2948 { 2949 unsigned char archmode = 1; 2950 freg_t fprs[NUM_FPRS]; 2951 unsigned int px; 2952 u64 clkcomp, cputm; 2953 int rc; 2954 2955 px = kvm_s390_get_prefix(vcpu); 2956 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 2957 if (write_guest_abs(vcpu, 163, &archmode, 1)) 2958 return -EFAULT; 2959 gpa = 0; 2960 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 2961 if (write_guest_real(vcpu, 163, &archmode, 1)) 2962 return -EFAULT; 2963 gpa = px; 2964 } else 2965 gpa -= __LC_FPREGS_SAVE_AREA; 2966 2967 /* manually convert vector registers if necessary */ 2968 if (MACHINE_HAS_VX) { 2969 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 2970 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2971 fprs, 128); 2972 } else { 2973 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2974 vcpu->run->s.regs.fprs, 128); 2975 } 2976 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 2977 vcpu->run->s.regs.gprs, 128); 2978 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 2979 &vcpu->arch.sie_block->gpsw, 16); 2980 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 2981 &px, 4); 2982 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 2983 &vcpu->run->s.regs.fpc, 4); 2984 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 2985 &vcpu->arch.sie_block->todpr, 4); 2986 cputm = kvm_s390_get_cpu_timer(vcpu); 2987 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 2988 &cputm, 8); 2989 clkcomp = vcpu->arch.sie_block->ckc >> 8; 2990 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 2991 &clkcomp, 8); 2992 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 2993 &vcpu->run->s.regs.acrs, 64); 2994 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 2995 &vcpu->arch.sie_block->gcr, 128); 2996 return rc ? -EFAULT : 0; 2997 } 2998 2999 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 3000 { 3001 /* 3002 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 3003 * switch in the run ioctl. Let's update our copies before we save 3004 * it into the save area 3005 */ 3006 save_fpu_regs(); 3007 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 3008 save_access_regs(vcpu->run->s.regs.acrs); 3009 3010 return kvm_s390_store_status_unloaded(vcpu, addr); 3011 } 3012 3013 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3014 { 3015 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 3016 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 3017 } 3018 3019 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 3020 { 3021 unsigned int i; 3022 struct kvm_vcpu *vcpu; 3023 3024 kvm_for_each_vcpu(i, vcpu, kvm) { 3025 __disable_ibs_on_vcpu(vcpu); 3026 } 3027 } 3028 3029 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3030 { 3031 if (!sclp.has_ibs) 3032 return; 3033 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 3034 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 3035 } 3036 3037 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 3038 { 3039 int i, online_vcpus, started_vcpus = 0; 3040 3041 if (!is_vcpu_stopped(vcpu)) 3042 return; 3043 3044 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 3045 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3046 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3047 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3048 3049 for (i = 0; i < online_vcpus; i++) { 3050 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 3051 started_vcpus++; 3052 } 3053 3054 if (started_vcpus == 0) { 3055 /* we're the only active VCPU -> speed it up */ 3056 __enable_ibs_on_vcpu(vcpu); 3057 } else if (started_vcpus == 1) { 3058 /* 3059 * As we are starting a second VCPU, we have to disable 3060 * the IBS facility on all VCPUs to remove potentially 3061 * oustanding ENABLE requests. 3062 */ 3063 __disable_ibs_on_all_vcpus(vcpu->kvm); 3064 } 3065 3066 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 3067 /* 3068 * Another VCPU might have used IBS while we were offline. 3069 * Let's play safe and flush the VCPU at startup. 3070 */ 3071 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3072 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3073 return; 3074 } 3075 3076 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 3077 { 3078 int i, online_vcpus, started_vcpus = 0; 3079 struct kvm_vcpu *started_vcpu = NULL; 3080 3081 if (is_vcpu_stopped(vcpu)) 3082 return; 3083 3084 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 3085 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3086 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3087 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3088 3089 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 3090 kvm_s390_clear_stop_irq(vcpu); 3091 3092 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 3093 __disable_ibs_on_vcpu(vcpu); 3094 3095 for (i = 0; i < online_vcpus; i++) { 3096 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 3097 started_vcpus++; 3098 started_vcpu = vcpu->kvm->vcpus[i]; 3099 } 3100 } 3101 3102 if (started_vcpus == 1) { 3103 /* 3104 * As we only have one VCPU left, we want to enable the 3105 * IBS facility for that VCPU to speed it up. 3106 */ 3107 __enable_ibs_on_vcpu(started_vcpu); 3108 } 3109 3110 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3111 return; 3112 } 3113 3114 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3115 struct kvm_enable_cap *cap) 3116 { 3117 int r; 3118 3119 if (cap->flags) 3120 return -EINVAL; 3121 3122 switch (cap->cap) { 3123 case KVM_CAP_S390_CSS_SUPPORT: 3124 if (!vcpu->kvm->arch.css_support) { 3125 vcpu->kvm->arch.css_support = 1; 3126 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 3127 trace_kvm_s390_enable_css(vcpu->kvm); 3128 } 3129 r = 0; 3130 break; 3131 default: 3132 r = -EINVAL; 3133 break; 3134 } 3135 return r; 3136 } 3137 3138 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 3139 struct kvm_s390_mem_op *mop) 3140 { 3141 void __user *uaddr = (void __user *)mop->buf; 3142 void *tmpbuf = NULL; 3143 int r, srcu_idx; 3144 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 3145 | KVM_S390_MEMOP_F_CHECK_ONLY; 3146 3147 if (mop->flags & ~supported_flags) 3148 return -EINVAL; 3149 3150 if (mop->size > MEM_OP_MAX_SIZE) 3151 return -E2BIG; 3152 3153 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 3154 tmpbuf = vmalloc(mop->size); 3155 if (!tmpbuf) 3156 return -ENOMEM; 3157 } 3158 3159 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3160 3161 switch (mop->op) { 3162 case KVM_S390_MEMOP_LOGICAL_READ: 3163 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3164 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3165 mop->size, GACC_FETCH); 3166 break; 3167 } 3168 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3169 if (r == 0) { 3170 if (copy_to_user(uaddr, tmpbuf, mop->size)) 3171 r = -EFAULT; 3172 } 3173 break; 3174 case KVM_S390_MEMOP_LOGICAL_WRITE: 3175 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3176 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3177 mop->size, GACC_STORE); 3178 break; 3179 } 3180 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 3181 r = -EFAULT; 3182 break; 3183 } 3184 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3185 break; 3186 default: 3187 r = -EINVAL; 3188 } 3189 3190 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 3191 3192 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 3193 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 3194 3195 vfree(tmpbuf); 3196 return r; 3197 } 3198 3199 long kvm_arch_vcpu_ioctl(struct file *filp, 3200 unsigned int ioctl, unsigned long arg) 3201 { 3202 struct kvm_vcpu *vcpu = filp->private_data; 3203 void __user *argp = (void __user *)arg; 3204 int idx; 3205 long r; 3206 3207 switch (ioctl) { 3208 case KVM_S390_IRQ: { 3209 struct kvm_s390_irq s390irq; 3210 3211 r = -EFAULT; 3212 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 3213 break; 3214 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3215 break; 3216 } 3217 case KVM_S390_INTERRUPT: { 3218 struct kvm_s390_interrupt s390int; 3219 struct kvm_s390_irq s390irq; 3220 3221 r = -EFAULT; 3222 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3223 break; 3224 if (s390int_to_s390irq(&s390int, &s390irq)) 3225 return -EINVAL; 3226 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3227 break; 3228 } 3229 case KVM_S390_STORE_STATUS: 3230 idx = srcu_read_lock(&vcpu->kvm->srcu); 3231 r = kvm_s390_vcpu_store_status(vcpu, arg); 3232 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3233 break; 3234 case KVM_S390_SET_INITIAL_PSW: { 3235 psw_t psw; 3236 3237 r = -EFAULT; 3238 if (copy_from_user(&psw, argp, sizeof(psw))) 3239 break; 3240 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 3241 break; 3242 } 3243 case KVM_S390_INITIAL_RESET: 3244 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 3245 break; 3246 case KVM_SET_ONE_REG: 3247 case KVM_GET_ONE_REG: { 3248 struct kvm_one_reg reg; 3249 r = -EFAULT; 3250 if (copy_from_user(®, argp, sizeof(reg))) 3251 break; 3252 if (ioctl == KVM_SET_ONE_REG) 3253 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 3254 else 3255 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 3256 break; 3257 } 3258 #ifdef CONFIG_KVM_S390_UCONTROL 3259 case KVM_S390_UCAS_MAP: { 3260 struct kvm_s390_ucas_mapping ucasmap; 3261 3262 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3263 r = -EFAULT; 3264 break; 3265 } 3266 3267 if (!kvm_is_ucontrol(vcpu->kvm)) { 3268 r = -EINVAL; 3269 break; 3270 } 3271 3272 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 3273 ucasmap.vcpu_addr, ucasmap.length); 3274 break; 3275 } 3276 case KVM_S390_UCAS_UNMAP: { 3277 struct kvm_s390_ucas_mapping ucasmap; 3278 3279 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3280 r = -EFAULT; 3281 break; 3282 } 3283 3284 if (!kvm_is_ucontrol(vcpu->kvm)) { 3285 r = -EINVAL; 3286 break; 3287 } 3288 3289 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 3290 ucasmap.length); 3291 break; 3292 } 3293 #endif 3294 case KVM_S390_VCPU_FAULT: { 3295 r = gmap_fault(vcpu->arch.gmap, arg, 0); 3296 break; 3297 } 3298 case KVM_ENABLE_CAP: 3299 { 3300 struct kvm_enable_cap cap; 3301 r = -EFAULT; 3302 if (copy_from_user(&cap, argp, sizeof(cap))) 3303 break; 3304 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3305 break; 3306 } 3307 case KVM_S390_MEM_OP: { 3308 struct kvm_s390_mem_op mem_op; 3309 3310 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3311 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 3312 else 3313 r = -EFAULT; 3314 break; 3315 } 3316 case KVM_S390_SET_IRQ_STATE: { 3317 struct kvm_s390_irq_state irq_state; 3318 3319 r = -EFAULT; 3320 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3321 break; 3322 if (irq_state.len > VCPU_IRQS_MAX_BUF || 3323 irq_state.len == 0 || 3324 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 3325 r = -EINVAL; 3326 break; 3327 } 3328 r = kvm_s390_set_irq_state(vcpu, 3329 (void __user *) irq_state.buf, 3330 irq_state.len); 3331 break; 3332 } 3333 case KVM_S390_GET_IRQ_STATE: { 3334 struct kvm_s390_irq_state irq_state; 3335 3336 r = -EFAULT; 3337 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3338 break; 3339 if (irq_state.len == 0) { 3340 r = -EINVAL; 3341 break; 3342 } 3343 r = kvm_s390_get_irq_state(vcpu, 3344 (__u8 __user *) irq_state.buf, 3345 irq_state.len); 3346 break; 3347 } 3348 default: 3349 r = -ENOTTY; 3350 } 3351 return r; 3352 } 3353 3354 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3355 { 3356 #ifdef CONFIG_KVM_S390_UCONTROL 3357 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 3358 && (kvm_is_ucontrol(vcpu->kvm))) { 3359 vmf->page = virt_to_page(vcpu->arch.sie_block); 3360 get_page(vmf->page); 3361 return 0; 3362 } 3363 #endif 3364 return VM_FAULT_SIGBUS; 3365 } 3366 3367 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 3368 unsigned long npages) 3369 { 3370 return 0; 3371 } 3372 3373 /* Section: memory related */ 3374 int kvm_arch_prepare_memory_region(struct kvm *kvm, 3375 struct kvm_memory_slot *memslot, 3376 const struct kvm_userspace_memory_region *mem, 3377 enum kvm_mr_change change) 3378 { 3379 /* A few sanity checks. We can have memory slots which have to be 3380 located/ended at a segment boundary (1MB). The memory in userland is 3381 ok to be fragmented into various different vmas. It is okay to mmap() 3382 and munmap() stuff in this slot after doing this call at any time */ 3383 3384 if (mem->userspace_addr & 0xffffful) 3385 return -EINVAL; 3386 3387 if (mem->memory_size & 0xffffful) 3388 return -EINVAL; 3389 3390 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 3391 return -EINVAL; 3392 3393 return 0; 3394 } 3395 3396 void kvm_arch_commit_memory_region(struct kvm *kvm, 3397 const struct kvm_userspace_memory_region *mem, 3398 const struct kvm_memory_slot *old, 3399 const struct kvm_memory_slot *new, 3400 enum kvm_mr_change change) 3401 { 3402 int rc; 3403 3404 /* If the basics of the memslot do not change, we do not want 3405 * to update the gmap. Every update causes several unnecessary 3406 * segment translation exceptions. This is usually handled just 3407 * fine by the normal fault handler + gmap, but it will also 3408 * cause faults on the prefix page of running guest CPUs. 3409 */ 3410 if (old->userspace_addr == mem->userspace_addr && 3411 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && 3412 old->npages * PAGE_SIZE == mem->memory_size) 3413 return; 3414 3415 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 3416 mem->guest_phys_addr, mem->memory_size); 3417 if (rc) 3418 pr_warn("failed to commit memory region\n"); 3419 return; 3420 } 3421 3422 static inline unsigned long nonhyp_mask(int i) 3423 { 3424 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 3425 3426 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 3427 } 3428 3429 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 3430 { 3431 vcpu->valid_wakeup = false; 3432 } 3433 3434 static int __init kvm_s390_init(void) 3435 { 3436 int i; 3437 3438 if (!sclp.has_sief2) { 3439 pr_info("SIE not available\n"); 3440 return -ENODEV; 3441 } 3442 3443 for (i = 0; i < 16; i++) 3444 kvm_s390_fac_list_mask[i] |= 3445 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); 3446 3447 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 3448 } 3449 3450 static void __exit kvm_s390_exit(void) 3451 { 3452 kvm_exit(); 3453 } 3454 3455 module_init(kvm_s390_init); 3456 module_exit(kvm_s390_exit); 3457 3458 /* 3459 * Enable autoloading of the kvm module. 3460 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 3461 * since x86 takes a different approach. 3462 */ 3463 #include <linux/miscdevice.h> 3464 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3465 MODULE_ALIAS("devname:kvm"); 3466