1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward), 70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 71 STATS_DESC_COUNTER(VM, gmap_shadow_create), 72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 77 }; 78 79 const struct kvm_stats_header kvm_vm_stats_header = { 80 .name_size = KVM_STATS_NAME_SIZE, 81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 82 .id_offset = sizeof(struct kvm_stats_header), 83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 85 sizeof(kvm_vm_stats_desc), 86 }; 87 88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 89 KVM_GENERIC_VCPU_STATS(), 90 STATS_DESC_COUNTER(VCPU, exit_userspace), 91 STATS_DESC_COUNTER(VCPU, exit_null), 92 STATS_DESC_COUNTER(VCPU, exit_external_request), 93 STATS_DESC_COUNTER(VCPU, exit_io_request), 94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 95 STATS_DESC_COUNTER(VCPU, exit_stop_request), 96 STATS_DESC_COUNTER(VCPU, exit_validity), 97 STATS_DESC_COUNTER(VCPU, exit_instruction), 98 STATS_DESC_COUNTER(VCPU, exit_pei), 99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 100 STATS_DESC_COUNTER(VCPU, instruction_lctl), 101 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 102 STATS_DESC_COUNTER(VCPU, instruction_stctl), 103 STATS_DESC_COUNTER(VCPU, instruction_stctg), 104 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 106 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 107 STATS_DESC_COUNTER(VCPU, deliver_ckc), 108 STATS_DESC_COUNTER(VCPU, deliver_cputm), 109 STATS_DESC_COUNTER(VCPU, deliver_external_call), 110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 111 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_virtio), 113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_program), 117 STATS_DESC_COUNTER(VCPU, deliver_io), 118 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 119 STATS_DESC_COUNTER(VCPU, exit_wait_state), 120 STATS_DESC_COUNTER(VCPU, inject_ckc), 121 STATS_DESC_COUNTER(VCPU, inject_cputm), 122 STATS_DESC_COUNTER(VCPU, inject_external_call), 123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 124 STATS_DESC_COUNTER(VCPU, inject_mchk), 125 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 126 STATS_DESC_COUNTER(VCPU, inject_program), 127 STATS_DESC_COUNTER(VCPU, inject_restart), 128 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 129 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 130 STATS_DESC_COUNTER(VCPU, instruction_epsw), 131 STATS_DESC_COUNTER(VCPU, instruction_gs), 132 STATS_DESC_COUNTER(VCPU, instruction_io_other), 133 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 134 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 135 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 136 STATS_DESC_COUNTER(VCPU, instruction_ptff), 137 STATS_DESC_COUNTER(VCPU, instruction_sck), 138 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 139 STATS_DESC_COUNTER(VCPU, instruction_stidp), 140 STATS_DESC_COUNTER(VCPU, instruction_spx), 141 STATS_DESC_COUNTER(VCPU, instruction_stpx), 142 STATS_DESC_COUNTER(VCPU, instruction_stap), 143 STATS_DESC_COUNTER(VCPU, instruction_iske), 144 STATS_DESC_COUNTER(VCPU, instruction_ri), 145 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 146 STATS_DESC_COUNTER(VCPU, instruction_sske), 147 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 148 STATS_DESC_COUNTER(VCPU, instruction_stsi), 149 STATS_DESC_COUNTER(VCPU, instruction_stfl), 150 STATS_DESC_COUNTER(VCPU, instruction_tb), 151 STATS_DESC_COUNTER(VCPU, instruction_tpi), 152 STATS_DESC_COUNTER(VCPU, instruction_tprot), 153 STATS_DESC_COUNTER(VCPU, instruction_tsch), 154 STATS_DESC_COUNTER(VCPU, instruction_sie), 155 STATS_DESC_COUNTER(VCPU, instruction_essa), 156 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 157 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 176 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 177 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 182 STATS_DESC_COUNTER(VCPU, pfault_sync) 183 }; 184 185 const struct kvm_stats_header kvm_vcpu_stats_header = { 186 .name_size = KVM_STATS_NAME_SIZE, 187 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 188 .id_offset = sizeof(struct kvm_stats_header), 189 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 190 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 191 sizeof(kvm_vcpu_stats_desc), 192 }; 193 194 /* allow nested virtualization in KVM (if enabled by user space) */ 195 static int nested; 196 module_param(nested, int, S_IRUGO); 197 MODULE_PARM_DESC(nested, "Nested virtualization support"); 198 199 /* allow 1m huge page guest backing, if !nested */ 200 static int hpage; 201 module_param(hpage, int, 0444); 202 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 203 204 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 205 static u8 halt_poll_max_steal = 10; 206 module_param(halt_poll_max_steal, byte, 0644); 207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 208 209 /* if set to true, the GISA will be initialized and used if available */ 210 static bool use_gisa = true; 211 module_param(use_gisa, bool, 0644); 212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 213 214 /* maximum diag9c forwarding per second */ 215 unsigned int diag9c_forwarding_hz; 216 module_param(diag9c_forwarding_hz, uint, 0644); 217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 218 219 /* 220 * allow asynchronous deinit for protected guests; enable by default since 221 * the feature is opt-in anyway 222 */ 223 static int async_destroy = 1; 224 module_param(async_destroy, int, 0444); 225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 226 227 /* 228 * For now we handle at most 16 double words as this is what the s390 base 229 * kernel handles and stores in the prefix page. If we ever need to go beyond 230 * this, this requires changes to code, but the external uapi can stay. 231 */ 232 #define SIZE_INTERNAL 16 233 234 /* 235 * Base feature mask that defines default mask for facilities. Consists of the 236 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 237 */ 238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 239 /* 240 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 241 * and defines the facilities that can be enabled via a cpu model. 242 */ 243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 244 245 static unsigned long kvm_s390_fac_size(void) 246 { 247 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 249 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 250 sizeof(stfle_fac_list)); 251 252 return SIZE_INTERNAL; 253 } 254 255 /* available cpu features supported by kvm */ 256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 257 /* available subfunctions indicated via query / "test bit" */ 258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 259 260 static struct gmap_notifier gmap_notifier; 261 static struct gmap_notifier vsie_gmap_notifier; 262 debug_info_t *kvm_s390_dbf; 263 debug_info_t *kvm_s390_dbf_uv; 264 265 /* Section: not file related */ 266 /* forward declarations */ 267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 268 unsigned long end); 269 static int sca_switch_to_extended(struct kvm *kvm); 270 271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 272 { 273 u8 delta_idx = 0; 274 275 /* 276 * The TOD jumps by delta, we have to compensate this by adding 277 * -delta to the epoch. 278 */ 279 delta = -delta; 280 281 /* sign-extension - we're adding to signed values below */ 282 if ((s64)delta < 0) 283 delta_idx = -1; 284 285 scb->epoch += delta; 286 if (scb->ecd & ECD_MEF) { 287 scb->epdx += delta_idx; 288 if (scb->epoch < delta) 289 scb->epdx += 1; 290 } 291 } 292 293 /* 294 * This callback is executed during stop_machine(). All CPUs are therefore 295 * temporarily stopped. In order not to change guest behavior, we have to 296 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 297 * so a CPU won't be stopped while calculating with the epoch. 298 */ 299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 300 void *v) 301 { 302 struct kvm *kvm; 303 struct kvm_vcpu *vcpu; 304 unsigned long i; 305 unsigned long long *delta = v; 306 307 list_for_each_entry(kvm, &vm_list, vm_list) { 308 kvm_for_each_vcpu(i, vcpu, kvm) { 309 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 310 if (i == 0) { 311 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 312 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 313 } 314 if (vcpu->arch.cputm_enabled) 315 vcpu->arch.cputm_start += *delta; 316 if (vcpu->arch.vsie_block) 317 kvm_clock_sync_scb(vcpu->arch.vsie_block, 318 *delta); 319 } 320 } 321 return NOTIFY_OK; 322 } 323 324 static struct notifier_block kvm_clock_notifier = { 325 .notifier_call = kvm_clock_sync, 326 }; 327 328 static void allow_cpu_feat(unsigned long nr) 329 { 330 set_bit_inv(nr, kvm_s390_available_cpu_feat); 331 } 332 333 static inline int plo_test_bit(unsigned char nr) 334 { 335 unsigned long function = (unsigned long)nr | 0x100; 336 int cc; 337 338 asm volatile( 339 " lgr 0,%[function]\n" 340 /* Parameter registers are ignored for "test bit" */ 341 " plo 0,0,0,0(0)\n" 342 " ipm %0\n" 343 " srl %0,28\n" 344 : "=d" (cc) 345 : [function] "d" (function) 346 : "cc", "0"); 347 return cc == 0; 348 } 349 350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 351 { 352 asm volatile( 353 " lghi 0,0\n" 354 " lgr 1,%[query]\n" 355 /* Parameter registers are ignored */ 356 " .insn rrf,%[opc] << 16,2,4,6,0\n" 357 : 358 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 359 : "cc", "memory", "0", "1"); 360 } 361 362 #define INSN_SORTL 0xb938 363 #define INSN_DFLTCC 0xb939 364 365 static void __init kvm_s390_cpu_feat_init(void) 366 { 367 int i; 368 369 for (i = 0; i < 256; ++i) { 370 if (plo_test_bit(i)) 371 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 372 } 373 374 if (test_facility(28)) /* TOD-clock steering */ 375 ptff(kvm_s390_available_subfunc.ptff, 376 sizeof(kvm_s390_available_subfunc.ptff), 377 PTFF_QAF); 378 379 if (test_facility(17)) { /* MSA */ 380 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 381 kvm_s390_available_subfunc.kmac); 382 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 383 kvm_s390_available_subfunc.kmc); 384 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 385 kvm_s390_available_subfunc.km); 386 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 387 kvm_s390_available_subfunc.kimd); 388 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 389 kvm_s390_available_subfunc.klmd); 390 } 391 if (test_facility(76)) /* MSA3 */ 392 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 393 kvm_s390_available_subfunc.pckmo); 394 if (test_facility(77)) { /* MSA4 */ 395 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 396 kvm_s390_available_subfunc.kmctr); 397 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 398 kvm_s390_available_subfunc.kmf); 399 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 400 kvm_s390_available_subfunc.kmo); 401 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 402 kvm_s390_available_subfunc.pcc); 403 } 404 if (test_facility(57)) /* MSA5 */ 405 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.ppno); 407 408 if (test_facility(146)) /* MSA8 */ 409 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.kma); 411 412 if (test_facility(155)) /* MSA9 */ 413 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 414 kvm_s390_available_subfunc.kdsa); 415 416 if (test_facility(150)) /* SORTL */ 417 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 418 419 if (test_facility(151)) /* DFLTCC */ 420 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 421 422 if (MACHINE_HAS_ESOP) 423 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 424 /* 425 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 426 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 427 */ 428 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 429 !test_facility(3) || !nested) 430 return; 431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 432 if (sclp.has_64bscao) 433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 434 if (sclp.has_siif) 435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 436 if (sclp.has_gpere) 437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 438 if (sclp.has_gsls) 439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 440 if (sclp.has_ib) 441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 442 if (sclp.has_cei) 443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 444 if (sclp.has_ibs) 445 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 446 if (sclp.has_kss) 447 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 448 /* 449 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 450 * all skey handling functions read/set the skey from the PGSTE 451 * instead of the real storage key. 452 * 453 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 454 * pages being detected as preserved although they are resident. 455 * 456 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 457 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 458 * 459 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 460 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 461 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 462 * 463 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 464 * cannot easily shadow the SCA because of the ipte lock. 465 */ 466 } 467 468 static int __init __kvm_s390_init(void) 469 { 470 int rc = -ENOMEM; 471 472 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 473 if (!kvm_s390_dbf) 474 return -ENOMEM; 475 476 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 477 if (!kvm_s390_dbf_uv) 478 goto err_kvm_uv; 479 480 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 481 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 482 goto err_debug_view; 483 484 kvm_s390_cpu_feat_init(); 485 486 /* Register floating interrupt controller interface. */ 487 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 488 if (rc) { 489 pr_err("A FLIC registration call failed with rc=%d\n", rc); 490 goto err_flic; 491 } 492 493 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 494 rc = kvm_s390_pci_init(); 495 if (rc) { 496 pr_err("Unable to allocate AIFT for PCI\n"); 497 goto err_pci; 498 } 499 } 500 501 rc = kvm_s390_gib_init(GAL_ISC); 502 if (rc) 503 goto err_gib; 504 505 gmap_notifier.notifier_call = kvm_gmap_notifier; 506 gmap_register_pte_notifier(&gmap_notifier); 507 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 508 gmap_register_pte_notifier(&vsie_gmap_notifier); 509 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 510 &kvm_clock_notifier); 511 512 return 0; 513 514 err_gib: 515 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 516 kvm_s390_pci_exit(); 517 err_pci: 518 err_flic: 519 err_debug_view: 520 debug_unregister(kvm_s390_dbf_uv); 521 err_kvm_uv: 522 debug_unregister(kvm_s390_dbf); 523 return rc; 524 } 525 526 static void __kvm_s390_exit(void) 527 { 528 gmap_unregister_pte_notifier(&gmap_notifier); 529 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 530 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 531 &kvm_clock_notifier); 532 533 kvm_s390_gib_destroy(); 534 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 535 kvm_s390_pci_exit(); 536 debug_unregister(kvm_s390_dbf); 537 debug_unregister(kvm_s390_dbf_uv); 538 } 539 540 /* Section: device related */ 541 long kvm_arch_dev_ioctl(struct file *filp, 542 unsigned int ioctl, unsigned long arg) 543 { 544 if (ioctl == KVM_S390_ENABLE_SIE) 545 return s390_enable_sie(); 546 return -EINVAL; 547 } 548 549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 550 { 551 int r; 552 553 switch (ext) { 554 case KVM_CAP_S390_PSW: 555 case KVM_CAP_S390_GMAP: 556 case KVM_CAP_SYNC_MMU: 557 #ifdef CONFIG_KVM_S390_UCONTROL 558 case KVM_CAP_S390_UCONTROL: 559 #endif 560 case KVM_CAP_ASYNC_PF: 561 case KVM_CAP_SYNC_REGS: 562 case KVM_CAP_ONE_REG: 563 case KVM_CAP_ENABLE_CAP: 564 case KVM_CAP_S390_CSS_SUPPORT: 565 case KVM_CAP_IOEVENTFD: 566 case KVM_CAP_S390_IRQCHIP: 567 case KVM_CAP_VM_ATTRIBUTES: 568 case KVM_CAP_MP_STATE: 569 case KVM_CAP_IMMEDIATE_EXIT: 570 case KVM_CAP_S390_INJECT_IRQ: 571 case KVM_CAP_S390_USER_SIGP: 572 case KVM_CAP_S390_USER_STSI: 573 case KVM_CAP_S390_SKEYS: 574 case KVM_CAP_S390_IRQ_STATE: 575 case KVM_CAP_S390_USER_INSTR0: 576 case KVM_CAP_S390_CMMA_MIGRATION: 577 case KVM_CAP_S390_AIS: 578 case KVM_CAP_S390_AIS_MIGRATION: 579 case KVM_CAP_S390_VCPU_RESETS: 580 case KVM_CAP_SET_GUEST_DEBUG: 581 case KVM_CAP_S390_DIAG318: 582 case KVM_CAP_IRQFD_RESAMPLE: 583 r = 1; 584 break; 585 case KVM_CAP_SET_GUEST_DEBUG2: 586 r = KVM_GUESTDBG_VALID_MASK; 587 break; 588 case KVM_CAP_S390_HPAGE_1M: 589 r = 0; 590 if (hpage && !kvm_is_ucontrol(kvm)) 591 r = 1; 592 break; 593 case KVM_CAP_S390_MEM_OP: 594 r = MEM_OP_MAX_SIZE; 595 break; 596 case KVM_CAP_S390_MEM_OP_EXTENSION: 597 /* 598 * Flag bits indicating which extensions are supported. 599 * If r > 0, the base extension must also be supported/indicated, 600 * in order to maintain backwards compatibility. 601 */ 602 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 603 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 604 break; 605 case KVM_CAP_NR_VCPUS: 606 case KVM_CAP_MAX_VCPUS: 607 case KVM_CAP_MAX_VCPU_ID: 608 r = KVM_S390_BSCA_CPU_SLOTS; 609 if (!kvm_s390_use_sca_entries()) 610 r = KVM_MAX_VCPUS; 611 else if (sclp.has_esca && sclp.has_64bscao) 612 r = KVM_S390_ESCA_CPU_SLOTS; 613 if (ext == KVM_CAP_NR_VCPUS) 614 r = min_t(unsigned int, num_online_cpus(), r); 615 break; 616 case KVM_CAP_S390_COW: 617 r = MACHINE_HAS_ESOP; 618 break; 619 case KVM_CAP_S390_VECTOR_REGISTERS: 620 r = test_facility(129); 621 break; 622 case KVM_CAP_S390_RI: 623 r = test_facility(64); 624 break; 625 case KVM_CAP_S390_GS: 626 r = test_facility(133); 627 break; 628 case KVM_CAP_S390_BPB: 629 r = test_facility(82); 630 break; 631 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 632 r = async_destroy && is_prot_virt_host(); 633 break; 634 case KVM_CAP_S390_PROTECTED: 635 r = is_prot_virt_host(); 636 break; 637 case KVM_CAP_S390_PROTECTED_DUMP: { 638 u64 pv_cmds_dump[] = { 639 BIT_UVC_CMD_DUMP_INIT, 640 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 641 BIT_UVC_CMD_DUMP_CPU, 642 BIT_UVC_CMD_DUMP_COMPLETE, 643 }; 644 int i; 645 646 r = is_prot_virt_host(); 647 648 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 649 if (!test_bit_inv(pv_cmds_dump[i], 650 (unsigned long *)&uv_info.inst_calls_list)) { 651 r = 0; 652 break; 653 } 654 } 655 break; 656 } 657 case KVM_CAP_S390_ZPCI_OP: 658 r = kvm_s390_pci_interp_allowed(); 659 break; 660 case KVM_CAP_S390_CPU_TOPOLOGY: 661 r = test_facility(11); 662 break; 663 default: 664 r = 0; 665 } 666 return r; 667 } 668 669 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 670 { 671 int i; 672 gfn_t cur_gfn, last_gfn; 673 unsigned long gaddr, vmaddr; 674 struct gmap *gmap = kvm->arch.gmap; 675 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 676 677 /* Loop over all guest segments */ 678 cur_gfn = memslot->base_gfn; 679 last_gfn = memslot->base_gfn + memslot->npages; 680 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 681 gaddr = gfn_to_gpa(cur_gfn); 682 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 683 if (kvm_is_error_hva(vmaddr)) 684 continue; 685 686 bitmap_zero(bitmap, _PAGE_ENTRIES); 687 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 688 for (i = 0; i < _PAGE_ENTRIES; i++) { 689 if (test_bit(i, bitmap)) 690 mark_page_dirty(kvm, cur_gfn + i); 691 } 692 693 if (fatal_signal_pending(current)) 694 return; 695 cond_resched(); 696 } 697 } 698 699 /* Section: vm related */ 700 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 701 702 /* 703 * Get (and clear) the dirty memory log for a memory slot. 704 */ 705 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 706 struct kvm_dirty_log *log) 707 { 708 int r; 709 unsigned long n; 710 struct kvm_memory_slot *memslot; 711 int is_dirty; 712 713 if (kvm_is_ucontrol(kvm)) 714 return -EINVAL; 715 716 mutex_lock(&kvm->slots_lock); 717 718 r = -EINVAL; 719 if (log->slot >= KVM_USER_MEM_SLOTS) 720 goto out; 721 722 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 723 if (r) 724 goto out; 725 726 /* Clear the dirty log */ 727 if (is_dirty) { 728 n = kvm_dirty_bitmap_bytes(memslot); 729 memset(memslot->dirty_bitmap, 0, n); 730 } 731 r = 0; 732 out: 733 mutex_unlock(&kvm->slots_lock); 734 return r; 735 } 736 737 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 738 { 739 unsigned long i; 740 struct kvm_vcpu *vcpu; 741 742 kvm_for_each_vcpu(i, vcpu, kvm) { 743 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 744 } 745 } 746 747 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 748 { 749 int r; 750 751 if (cap->flags) 752 return -EINVAL; 753 754 switch (cap->cap) { 755 case KVM_CAP_S390_IRQCHIP: 756 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 757 kvm->arch.use_irqchip = 1; 758 r = 0; 759 break; 760 case KVM_CAP_S390_USER_SIGP: 761 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 762 kvm->arch.user_sigp = 1; 763 r = 0; 764 break; 765 case KVM_CAP_S390_VECTOR_REGISTERS: 766 mutex_lock(&kvm->lock); 767 if (kvm->created_vcpus) { 768 r = -EBUSY; 769 } else if (cpu_has_vx()) { 770 set_kvm_facility(kvm->arch.model.fac_mask, 129); 771 set_kvm_facility(kvm->arch.model.fac_list, 129); 772 if (test_facility(134)) { 773 set_kvm_facility(kvm->arch.model.fac_mask, 134); 774 set_kvm_facility(kvm->arch.model.fac_list, 134); 775 } 776 if (test_facility(135)) { 777 set_kvm_facility(kvm->arch.model.fac_mask, 135); 778 set_kvm_facility(kvm->arch.model.fac_list, 135); 779 } 780 if (test_facility(148)) { 781 set_kvm_facility(kvm->arch.model.fac_mask, 148); 782 set_kvm_facility(kvm->arch.model.fac_list, 148); 783 } 784 if (test_facility(152)) { 785 set_kvm_facility(kvm->arch.model.fac_mask, 152); 786 set_kvm_facility(kvm->arch.model.fac_list, 152); 787 } 788 if (test_facility(192)) { 789 set_kvm_facility(kvm->arch.model.fac_mask, 192); 790 set_kvm_facility(kvm->arch.model.fac_list, 192); 791 } 792 r = 0; 793 } else 794 r = -EINVAL; 795 mutex_unlock(&kvm->lock); 796 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 797 r ? "(not available)" : "(success)"); 798 break; 799 case KVM_CAP_S390_RI: 800 r = -EINVAL; 801 mutex_lock(&kvm->lock); 802 if (kvm->created_vcpus) { 803 r = -EBUSY; 804 } else if (test_facility(64)) { 805 set_kvm_facility(kvm->arch.model.fac_mask, 64); 806 set_kvm_facility(kvm->arch.model.fac_list, 64); 807 r = 0; 808 } 809 mutex_unlock(&kvm->lock); 810 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 811 r ? "(not available)" : "(success)"); 812 break; 813 case KVM_CAP_S390_AIS: 814 mutex_lock(&kvm->lock); 815 if (kvm->created_vcpus) { 816 r = -EBUSY; 817 } else { 818 set_kvm_facility(kvm->arch.model.fac_mask, 72); 819 set_kvm_facility(kvm->arch.model.fac_list, 72); 820 r = 0; 821 } 822 mutex_unlock(&kvm->lock); 823 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 824 r ? "(not available)" : "(success)"); 825 break; 826 case KVM_CAP_S390_GS: 827 r = -EINVAL; 828 mutex_lock(&kvm->lock); 829 if (kvm->created_vcpus) { 830 r = -EBUSY; 831 } else if (test_facility(133)) { 832 set_kvm_facility(kvm->arch.model.fac_mask, 133); 833 set_kvm_facility(kvm->arch.model.fac_list, 133); 834 r = 0; 835 } 836 mutex_unlock(&kvm->lock); 837 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 838 r ? "(not available)" : "(success)"); 839 break; 840 case KVM_CAP_S390_HPAGE_1M: 841 mutex_lock(&kvm->lock); 842 if (kvm->created_vcpus) 843 r = -EBUSY; 844 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 845 r = -EINVAL; 846 else { 847 r = 0; 848 mmap_write_lock(kvm->mm); 849 kvm->mm->context.allow_gmap_hpage_1m = 1; 850 mmap_write_unlock(kvm->mm); 851 /* 852 * We might have to create fake 4k page 853 * tables. To avoid that the hardware works on 854 * stale PGSTEs, we emulate these instructions. 855 */ 856 kvm->arch.use_skf = 0; 857 kvm->arch.use_pfmfi = 0; 858 } 859 mutex_unlock(&kvm->lock); 860 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 861 r ? "(not available)" : "(success)"); 862 break; 863 case KVM_CAP_S390_USER_STSI: 864 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 865 kvm->arch.user_stsi = 1; 866 r = 0; 867 break; 868 case KVM_CAP_S390_USER_INSTR0: 869 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 870 kvm->arch.user_instr0 = 1; 871 icpt_operexc_on_all_vcpus(kvm); 872 r = 0; 873 break; 874 case KVM_CAP_S390_CPU_TOPOLOGY: 875 r = -EINVAL; 876 mutex_lock(&kvm->lock); 877 if (kvm->created_vcpus) { 878 r = -EBUSY; 879 } else if (test_facility(11)) { 880 set_kvm_facility(kvm->arch.model.fac_mask, 11); 881 set_kvm_facility(kvm->arch.model.fac_list, 11); 882 r = 0; 883 } 884 mutex_unlock(&kvm->lock); 885 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 886 r ? "(not available)" : "(success)"); 887 break; 888 default: 889 r = -EINVAL; 890 break; 891 } 892 return r; 893 } 894 895 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 896 { 897 int ret; 898 899 switch (attr->attr) { 900 case KVM_S390_VM_MEM_LIMIT_SIZE: 901 ret = 0; 902 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 903 kvm->arch.mem_limit); 904 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 905 ret = -EFAULT; 906 break; 907 default: 908 ret = -ENXIO; 909 break; 910 } 911 return ret; 912 } 913 914 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 915 { 916 int ret; 917 unsigned int idx; 918 switch (attr->attr) { 919 case KVM_S390_VM_MEM_ENABLE_CMMA: 920 ret = -ENXIO; 921 if (!sclp.has_cmma) 922 break; 923 924 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 925 mutex_lock(&kvm->lock); 926 if (kvm->created_vcpus) 927 ret = -EBUSY; 928 else if (kvm->mm->context.allow_gmap_hpage_1m) 929 ret = -EINVAL; 930 else { 931 kvm->arch.use_cmma = 1; 932 /* Not compatible with cmma. */ 933 kvm->arch.use_pfmfi = 0; 934 ret = 0; 935 } 936 mutex_unlock(&kvm->lock); 937 break; 938 case KVM_S390_VM_MEM_CLR_CMMA: 939 ret = -ENXIO; 940 if (!sclp.has_cmma) 941 break; 942 ret = -EINVAL; 943 if (!kvm->arch.use_cmma) 944 break; 945 946 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 947 mutex_lock(&kvm->lock); 948 idx = srcu_read_lock(&kvm->srcu); 949 s390_reset_cmma(kvm->arch.gmap->mm); 950 srcu_read_unlock(&kvm->srcu, idx); 951 mutex_unlock(&kvm->lock); 952 ret = 0; 953 break; 954 case KVM_S390_VM_MEM_LIMIT_SIZE: { 955 unsigned long new_limit; 956 957 if (kvm_is_ucontrol(kvm)) 958 return -EINVAL; 959 960 if (get_user(new_limit, (u64 __user *)attr->addr)) 961 return -EFAULT; 962 963 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 964 new_limit > kvm->arch.mem_limit) 965 return -E2BIG; 966 967 if (!new_limit) 968 return -EINVAL; 969 970 /* gmap_create takes last usable address */ 971 if (new_limit != KVM_S390_NO_MEM_LIMIT) 972 new_limit -= 1; 973 974 ret = -EBUSY; 975 mutex_lock(&kvm->lock); 976 if (!kvm->created_vcpus) { 977 /* gmap_create will round the limit up */ 978 struct gmap *new = gmap_create(current->mm, new_limit); 979 980 if (!new) { 981 ret = -ENOMEM; 982 } else { 983 gmap_remove(kvm->arch.gmap); 984 new->private = kvm; 985 kvm->arch.gmap = new; 986 ret = 0; 987 } 988 } 989 mutex_unlock(&kvm->lock); 990 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 991 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 992 (void *) kvm->arch.gmap->asce); 993 break; 994 } 995 default: 996 ret = -ENXIO; 997 break; 998 } 999 return ret; 1000 } 1001 1002 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1003 1004 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1005 { 1006 struct kvm_vcpu *vcpu; 1007 unsigned long i; 1008 1009 kvm_s390_vcpu_block_all(kvm); 1010 1011 kvm_for_each_vcpu(i, vcpu, kvm) { 1012 kvm_s390_vcpu_crypto_setup(vcpu); 1013 /* recreate the shadow crycb by leaving the VSIE handler */ 1014 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1015 } 1016 1017 kvm_s390_vcpu_unblock_all(kvm); 1018 } 1019 1020 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1021 { 1022 mutex_lock(&kvm->lock); 1023 switch (attr->attr) { 1024 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1025 if (!test_kvm_facility(kvm, 76)) { 1026 mutex_unlock(&kvm->lock); 1027 return -EINVAL; 1028 } 1029 get_random_bytes( 1030 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1031 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1032 kvm->arch.crypto.aes_kw = 1; 1033 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1034 break; 1035 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1036 if (!test_kvm_facility(kvm, 76)) { 1037 mutex_unlock(&kvm->lock); 1038 return -EINVAL; 1039 } 1040 get_random_bytes( 1041 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1042 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1043 kvm->arch.crypto.dea_kw = 1; 1044 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1045 break; 1046 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1047 if (!test_kvm_facility(kvm, 76)) { 1048 mutex_unlock(&kvm->lock); 1049 return -EINVAL; 1050 } 1051 kvm->arch.crypto.aes_kw = 0; 1052 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1053 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1054 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1055 break; 1056 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1057 if (!test_kvm_facility(kvm, 76)) { 1058 mutex_unlock(&kvm->lock); 1059 return -EINVAL; 1060 } 1061 kvm->arch.crypto.dea_kw = 0; 1062 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1063 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1064 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1065 break; 1066 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1067 if (!ap_instructions_available()) { 1068 mutex_unlock(&kvm->lock); 1069 return -EOPNOTSUPP; 1070 } 1071 kvm->arch.crypto.apie = 1; 1072 break; 1073 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1074 if (!ap_instructions_available()) { 1075 mutex_unlock(&kvm->lock); 1076 return -EOPNOTSUPP; 1077 } 1078 kvm->arch.crypto.apie = 0; 1079 break; 1080 default: 1081 mutex_unlock(&kvm->lock); 1082 return -ENXIO; 1083 } 1084 1085 kvm_s390_vcpu_crypto_reset_all(kvm); 1086 mutex_unlock(&kvm->lock); 1087 return 0; 1088 } 1089 1090 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1091 { 1092 /* Only set the ECB bits after guest requests zPCI interpretation */ 1093 if (!vcpu->kvm->arch.use_zpci_interp) 1094 return; 1095 1096 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1097 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1098 } 1099 1100 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1101 { 1102 struct kvm_vcpu *vcpu; 1103 unsigned long i; 1104 1105 lockdep_assert_held(&kvm->lock); 1106 1107 if (!kvm_s390_pci_interp_allowed()) 1108 return; 1109 1110 /* 1111 * If host is configured for PCI and the necessary facilities are 1112 * available, turn on interpretation for the life of this guest 1113 */ 1114 kvm->arch.use_zpci_interp = 1; 1115 1116 kvm_s390_vcpu_block_all(kvm); 1117 1118 kvm_for_each_vcpu(i, vcpu, kvm) { 1119 kvm_s390_vcpu_pci_setup(vcpu); 1120 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1121 } 1122 1123 kvm_s390_vcpu_unblock_all(kvm); 1124 } 1125 1126 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1127 { 1128 unsigned long cx; 1129 struct kvm_vcpu *vcpu; 1130 1131 kvm_for_each_vcpu(cx, vcpu, kvm) 1132 kvm_s390_sync_request(req, vcpu); 1133 } 1134 1135 /* 1136 * Must be called with kvm->srcu held to avoid races on memslots, and with 1137 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1138 */ 1139 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1140 { 1141 struct kvm_memory_slot *ms; 1142 struct kvm_memslots *slots; 1143 unsigned long ram_pages = 0; 1144 int bkt; 1145 1146 /* migration mode already enabled */ 1147 if (kvm->arch.migration_mode) 1148 return 0; 1149 slots = kvm_memslots(kvm); 1150 if (!slots || kvm_memslots_empty(slots)) 1151 return -EINVAL; 1152 1153 if (!kvm->arch.use_cmma) { 1154 kvm->arch.migration_mode = 1; 1155 return 0; 1156 } 1157 /* mark all the pages in active slots as dirty */ 1158 kvm_for_each_memslot(ms, bkt, slots) { 1159 if (!ms->dirty_bitmap) 1160 return -EINVAL; 1161 /* 1162 * The second half of the bitmap is only used on x86, 1163 * and would be wasted otherwise, so we put it to good 1164 * use here to keep track of the state of the storage 1165 * attributes. 1166 */ 1167 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1168 ram_pages += ms->npages; 1169 } 1170 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1171 kvm->arch.migration_mode = 1; 1172 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1173 return 0; 1174 } 1175 1176 /* 1177 * Must be called with kvm->slots_lock to avoid races with ourselves and 1178 * kvm_s390_vm_start_migration. 1179 */ 1180 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1181 { 1182 /* migration mode already disabled */ 1183 if (!kvm->arch.migration_mode) 1184 return 0; 1185 kvm->arch.migration_mode = 0; 1186 if (kvm->arch.use_cmma) 1187 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1188 return 0; 1189 } 1190 1191 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1192 struct kvm_device_attr *attr) 1193 { 1194 int res = -ENXIO; 1195 1196 mutex_lock(&kvm->slots_lock); 1197 switch (attr->attr) { 1198 case KVM_S390_VM_MIGRATION_START: 1199 res = kvm_s390_vm_start_migration(kvm); 1200 break; 1201 case KVM_S390_VM_MIGRATION_STOP: 1202 res = kvm_s390_vm_stop_migration(kvm); 1203 break; 1204 default: 1205 break; 1206 } 1207 mutex_unlock(&kvm->slots_lock); 1208 1209 return res; 1210 } 1211 1212 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1213 struct kvm_device_attr *attr) 1214 { 1215 u64 mig = kvm->arch.migration_mode; 1216 1217 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1218 return -ENXIO; 1219 1220 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1221 return -EFAULT; 1222 return 0; 1223 } 1224 1225 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1226 1227 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1228 { 1229 struct kvm_s390_vm_tod_clock gtod; 1230 1231 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1232 return -EFAULT; 1233 1234 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1235 return -EINVAL; 1236 __kvm_s390_set_tod_clock(kvm, >od); 1237 1238 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1239 gtod.epoch_idx, gtod.tod); 1240 1241 return 0; 1242 } 1243 1244 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1245 { 1246 u8 gtod_high; 1247 1248 if (copy_from_user(>od_high, (void __user *)attr->addr, 1249 sizeof(gtod_high))) 1250 return -EFAULT; 1251 1252 if (gtod_high != 0) 1253 return -EINVAL; 1254 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1255 1256 return 0; 1257 } 1258 1259 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1260 { 1261 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1262 1263 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1264 sizeof(gtod.tod))) 1265 return -EFAULT; 1266 1267 __kvm_s390_set_tod_clock(kvm, >od); 1268 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1269 return 0; 1270 } 1271 1272 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1273 { 1274 int ret; 1275 1276 if (attr->flags) 1277 return -EINVAL; 1278 1279 mutex_lock(&kvm->lock); 1280 /* 1281 * For protected guests, the TOD is managed by the ultravisor, so trying 1282 * to change it will never bring the expected results. 1283 */ 1284 if (kvm_s390_pv_is_protected(kvm)) { 1285 ret = -EOPNOTSUPP; 1286 goto out_unlock; 1287 } 1288 1289 switch (attr->attr) { 1290 case KVM_S390_VM_TOD_EXT: 1291 ret = kvm_s390_set_tod_ext(kvm, attr); 1292 break; 1293 case KVM_S390_VM_TOD_HIGH: 1294 ret = kvm_s390_set_tod_high(kvm, attr); 1295 break; 1296 case KVM_S390_VM_TOD_LOW: 1297 ret = kvm_s390_set_tod_low(kvm, attr); 1298 break; 1299 default: 1300 ret = -ENXIO; 1301 break; 1302 } 1303 1304 out_unlock: 1305 mutex_unlock(&kvm->lock); 1306 return ret; 1307 } 1308 1309 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1310 struct kvm_s390_vm_tod_clock *gtod) 1311 { 1312 union tod_clock clk; 1313 1314 preempt_disable(); 1315 1316 store_tod_clock_ext(&clk); 1317 1318 gtod->tod = clk.tod + kvm->arch.epoch; 1319 gtod->epoch_idx = 0; 1320 if (test_kvm_facility(kvm, 139)) { 1321 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1322 if (gtod->tod < clk.tod) 1323 gtod->epoch_idx += 1; 1324 } 1325 1326 preempt_enable(); 1327 } 1328 1329 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1330 { 1331 struct kvm_s390_vm_tod_clock gtod; 1332 1333 memset(>od, 0, sizeof(gtod)); 1334 kvm_s390_get_tod_clock(kvm, >od); 1335 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1336 return -EFAULT; 1337 1338 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1339 gtod.epoch_idx, gtod.tod); 1340 return 0; 1341 } 1342 1343 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1344 { 1345 u8 gtod_high = 0; 1346 1347 if (copy_to_user((void __user *)attr->addr, >od_high, 1348 sizeof(gtod_high))) 1349 return -EFAULT; 1350 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1351 1352 return 0; 1353 } 1354 1355 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1356 { 1357 u64 gtod; 1358 1359 gtod = kvm_s390_get_tod_clock_fast(kvm); 1360 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1361 return -EFAULT; 1362 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1363 1364 return 0; 1365 } 1366 1367 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1368 { 1369 int ret; 1370 1371 if (attr->flags) 1372 return -EINVAL; 1373 1374 switch (attr->attr) { 1375 case KVM_S390_VM_TOD_EXT: 1376 ret = kvm_s390_get_tod_ext(kvm, attr); 1377 break; 1378 case KVM_S390_VM_TOD_HIGH: 1379 ret = kvm_s390_get_tod_high(kvm, attr); 1380 break; 1381 case KVM_S390_VM_TOD_LOW: 1382 ret = kvm_s390_get_tod_low(kvm, attr); 1383 break; 1384 default: 1385 ret = -ENXIO; 1386 break; 1387 } 1388 return ret; 1389 } 1390 1391 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1392 { 1393 struct kvm_s390_vm_cpu_processor *proc; 1394 u16 lowest_ibc, unblocked_ibc; 1395 int ret = 0; 1396 1397 mutex_lock(&kvm->lock); 1398 if (kvm->created_vcpus) { 1399 ret = -EBUSY; 1400 goto out; 1401 } 1402 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1403 if (!proc) { 1404 ret = -ENOMEM; 1405 goto out; 1406 } 1407 if (!copy_from_user(proc, (void __user *)attr->addr, 1408 sizeof(*proc))) { 1409 kvm->arch.model.cpuid = proc->cpuid; 1410 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1411 unblocked_ibc = sclp.ibc & 0xfff; 1412 if (lowest_ibc && proc->ibc) { 1413 if (proc->ibc > unblocked_ibc) 1414 kvm->arch.model.ibc = unblocked_ibc; 1415 else if (proc->ibc < lowest_ibc) 1416 kvm->arch.model.ibc = lowest_ibc; 1417 else 1418 kvm->arch.model.ibc = proc->ibc; 1419 } 1420 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1421 S390_ARCH_FAC_LIST_SIZE_BYTE); 1422 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1423 kvm->arch.model.ibc, 1424 kvm->arch.model.cpuid); 1425 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1426 kvm->arch.model.fac_list[0], 1427 kvm->arch.model.fac_list[1], 1428 kvm->arch.model.fac_list[2]); 1429 } else 1430 ret = -EFAULT; 1431 kfree(proc); 1432 out: 1433 mutex_unlock(&kvm->lock); 1434 return ret; 1435 } 1436 1437 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1438 struct kvm_device_attr *attr) 1439 { 1440 struct kvm_s390_vm_cpu_feat data; 1441 1442 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1443 return -EFAULT; 1444 if (!bitmap_subset((unsigned long *) data.feat, 1445 kvm_s390_available_cpu_feat, 1446 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1447 return -EINVAL; 1448 1449 mutex_lock(&kvm->lock); 1450 if (kvm->created_vcpus) { 1451 mutex_unlock(&kvm->lock); 1452 return -EBUSY; 1453 } 1454 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1455 mutex_unlock(&kvm->lock); 1456 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1457 data.feat[0], 1458 data.feat[1], 1459 data.feat[2]); 1460 return 0; 1461 } 1462 1463 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1464 struct kvm_device_attr *attr) 1465 { 1466 mutex_lock(&kvm->lock); 1467 if (kvm->created_vcpus) { 1468 mutex_unlock(&kvm->lock); 1469 return -EBUSY; 1470 } 1471 1472 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1473 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1474 mutex_unlock(&kvm->lock); 1475 return -EFAULT; 1476 } 1477 mutex_unlock(&kvm->lock); 1478 1479 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1480 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1484 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1485 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1487 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1488 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1490 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1491 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1493 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1494 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1496 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1497 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1499 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1500 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1502 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1503 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1505 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1506 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1508 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1509 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1511 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1512 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1514 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1515 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1517 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1518 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1520 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1521 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1523 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1524 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1526 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1527 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1531 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1532 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1536 1537 return 0; 1538 } 1539 1540 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1541 ( \ 1542 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1543 .ap = 1, \ 1544 .ap_intr = 1, \ 1545 }) \ 1546 .feat \ 1547 ) 1548 1549 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1550 { 1551 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1552 unsigned long data, filter; 1553 1554 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1555 if (get_user(data, &ptr->feat)) 1556 return -EFAULT; 1557 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1558 return -EINVAL; 1559 1560 mutex_lock(&kvm->lock); 1561 if (kvm->created_vcpus) { 1562 mutex_unlock(&kvm->lock); 1563 return -EBUSY; 1564 } 1565 kvm->arch.model.uv_feat_guest.feat = data; 1566 mutex_unlock(&kvm->lock); 1567 1568 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1569 1570 return 0; 1571 } 1572 1573 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1574 { 1575 int ret = -ENXIO; 1576 1577 switch (attr->attr) { 1578 case KVM_S390_VM_CPU_PROCESSOR: 1579 ret = kvm_s390_set_processor(kvm, attr); 1580 break; 1581 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1582 ret = kvm_s390_set_processor_feat(kvm, attr); 1583 break; 1584 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1585 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1586 break; 1587 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1588 ret = kvm_s390_set_uv_feat(kvm, attr); 1589 break; 1590 } 1591 return ret; 1592 } 1593 1594 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1595 { 1596 struct kvm_s390_vm_cpu_processor *proc; 1597 int ret = 0; 1598 1599 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1600 if (!proc) { 1601 ret = -ENOMEM; 1602 goto out; 1603 } 1604 proc->cpuid = kvm->arch.model.cpuid; 1605 proc->ibc = kvm->arch.model.ibc; 1606 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1607 S390_ARCH_FAC_LIST_SIZE_BYTE); 1608 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1609 kvm->arch.model.ibc, 1610 kvm->arch.model.cpuid); 1611 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1612 kvm->arch.model.fac_list[0], 1613 kvm->arch.model.fac_list[1], 1614 kvm->arch.model.fac_list[2]); 1615 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1616 ret = -EFAULT; 1617 kfree(proc); 1618 out: 1619 return ret; 1620 } 1621 1622 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1623 { 1624 struct kvm_s390_vm_cpu_machine *mach; 1625 int ret = 0; 1626 1627 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1628 if (!mach) { 1629 ret = -ENOMEM; 1630 goto out; 1631 } 1632 get_cpu_id((struct cpuid *) &mach->cpuid); 1633 mach->ibc = sclp.ibc; 1634 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1635 S390_ARCH_FAC_LIST_SIZE_BYTE); 1636 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1637 sizeof(stfle_fac_list)); 1638 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1639 kvm->arch.model.ibc, 1640 kvm->arch.model.cpuid); 1641 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1642 mach->fac_mask[0], 1643 mach->fac_mask[1], 1644 mach->fac_mask[2]); 1645 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1646 mach->fac_list[0], 1647 mach->fac_list[1], 1648 mach->fac_list[2]); 1649 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1650 ret = -EFAULT; 1651 kfree(mach); 1652 out: 1653 return ret; 1654 } 1655 1656 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1657 struct kvm_device_attr *attr) 1658 { 1659 struct kvm_s390_vm_cpu_feat data; 1660 1661 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1662 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1663 return -EFAULT; 1664 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1665 data.feat[0], 1666 data.feat[1], 1667 data.feat[2]); 1668 return 0; 1669 } 1670 1671 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1672 struct kvm_device_attr *attr) 1673 { 1674 struct kvm_s390_vm_cpu_feat data; 1675 1676 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1677 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1678 return -EFAULT; 1679 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1680 data.feat[0], 1681 data.feat[1], 1682 data.feat[2]); 1683 return 0; 1684 } 1685 1686 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1687 struct kvm_device_attr *attr) 1688 { 1689 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1690 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1691 return -EFAULT; 1692 1693 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1694 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1698 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1699 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1701 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1702 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1704 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1705 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1707 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1708 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1710 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1711 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1713 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1714 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1716 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1717 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1719 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1720 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1722 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1723 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1725 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1726 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1728 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1729 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1731 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1732 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1734 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1735 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1737 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1738 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1740 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1741 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1745 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1746 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1750 1751 return 0; 1752 } 1753 1754 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1755 struct kvm_device_attr *attr) 1756 { 1757 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1758 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1759 return -EFAULT; 1760 1761 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1762 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1766 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1767 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1769 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1770 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1772 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1773 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1775 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1776 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1778 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1779 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1781 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1782 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1784 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1785 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1787 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1788 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1790 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1791 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1793 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1794 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1796 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1797 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1799 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1800 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1802 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1803 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1805 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1806 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1808 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1809 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1813 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1814 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1818 1819 return 0; 1820 } 1821 1822 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1823 { 1824 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1825 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1826 1827 if (put_user(feat, &dst->feat)) 1828 return -EFAULT; 1829 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1830 1831 return 0; 1832 } 1833 1834 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1835 { 1836 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1837 unsigned long feat; 1838 1839 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1840 1841 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1842 if (put_user(feat, &dst->feat)) 1843 return -EFAULT; 1844 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1845 1846 return 0; 1847 } 1848 1849 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1850 { 1851 int ret = -ENXIO; 1852 1853 switch (attr->attr) { 1854 case KVM_S390_VM_CPU_PROCESSOR: 1855 ret = kvm_s390_get_processor(kvm, attr); 1856 break; 1857 case KVM_S390_VM_CPU_MACHINE: 1858 ret = kvm_s390_get_machine(kvm, attr); 1859 break; 1860 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1861 ret = kvm_s390_get_processor_feat(kvm, attr); 1862 break; 1863 case KVM_S390_VM_CPU_MACHINE_FEAT: 1864 ret = kvm_s390_get_machine_feat(kvm, attr); 1865 break; 1866 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1867 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1868 break; 1869 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1870 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1871 break; 1872 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1873 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1874 break; 1875 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1876 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1877 break; 1878 } 1879 return ret; 1880 } 1881 1882 /** 1883 * kvm_s390_update_topology_change_report - update CPU topology change report 1884 * @kvm: guest KVM description 1885 * @val: set or clear the MTCR bit 1886 * 1887 * Updates the Multiprocessor Topology-Change-Report bit to signal 1888 * the guest with a topology change. 1889 * This is only relevant if the topology facility is present. 1890 * 1891 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1892 */ 1893 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1894 { 1895 union sca_utility new, old; 1896 struct bsca_block *sca; 1897 1898 read_lock(&kvm->arch.sca_lock); 1899 sca = kvm->arch.sca; 1900 do { 1901 old = READ_ONCE(sca->utility); 1902 new = old; 1903 new.mtcr = val; 1904 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1905 read_unlock(&kvm->arch.sca_lock); 1906 } 1907 1908 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1909 struct kvm_device_attr *attr) 1910 { 1911 if (!test_kvm_facility(kvm, 11)) 1912 return -ENXIO; 1913 1914 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1915 return 0; 1916 } 1917 1918 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1919 struct kvm_device_attr *attr) 1920 { 1921 u8 topo; 1922 1923 if (!test_kvm_facility(kvm, 11)) 1924 return -ENXIO; 1925 1926 read_lock(&kvm->arch.sca_lock); 1927 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1928 read_unlock(&kvm->arch.sca_lock); 1929 1930 return put_user(topo, (u8 __user *)attr->addr); 1931 } 1932 1933 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1934 { 1935 int ret; 1936 1937 switch (attr->group) { 1938 case KVM_S390_VM_MEM_CTRL: 1939 ret = kvm_s390_set_mem_control(kvm, attr); 1940 break; 1941 case KVM_S390_VM_TOD: 1942 ret = kvm_s390_set_tod(kvm, attr); 1943 break; 1944 case KVM_S390_VM_CPU_MODEL: 1945 ret = kvm_s390_set_cpu_model(kvm, attr); 1946 break; 1947 case KVM_S390_VM_CRYPTO: 1948 ret = kvm_s390_vm_set_crypto(kvm, attr); 1949 break; 1950 case KVM_S390_VM_MIGRATION: 1951 ret = kvm_s390_vm_set_migration(kvm, attr); 1952 break; 1953 case KVM_S390_VM_CPU_TOPOLOGY: 1954 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1955 break; 1956 default: 1957 ret = -ENXIO; 1958 break; 1959 } 1960 1961 return ret; 1962 } 1963 1964 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1965 { 1966 int ret; 1967 1968 switch (attr->group) { 1969 case KVM_S390_VM_MEM_CTRL: 1970 ret = kvm_s390_get_mem_control(kvm, attr); 1971 break; 1972 case KVM_S390_VM_TOD: 1973 ret = kvm_s390_get_tod(kvm, attr); 1974 break; 1975 case KVM_S390_VM_CPU_MODEL: 1976 ret = kvm_s390_get_cpu_model(kvm, attr); 1977 break; 1978 case KVM_S390_VM_MIGRATION: 1979 ret = kvm_s390_vm_get_migration(kvm, attr); 1980 break; 1981 case KVM_S390_VM_CPU_TOPOLOGY: 1982 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1983 break; 1984 default: 1985 ret = -ENXIO; 1986 break; 1987 } 1988 1989 return ret; 1990 } 1991 1992 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1993 { 1994 int ret; 1995 1996 switch (attr->group) { 1997 case KVM_S390_VM_MEM_CTRL: 1998 switch (attr->attr) { 1999 case KVM_S390_VM_MEM_ENABLE_CMMA: 2000 case KVM_S390_VM_MEM_CLR_CMMA: 2001 ret = sclp.has_cmma ? 0 : -ENXIO; 2002 break; 2003 case KVM_S390_VM_MEM_LIMIT_SIZE: 2004 ret = 0; 2005 break; 2006 default: 2007 ret = -ENXIO; 2008 break; 2009 } 2010 break; 2011 case KVM_S390_VM_TOD: 2012 switch (attr->attr) { 2013 case KVM_S390_VM_TOD_LOW: 2014 case KVM_S390_VM_TOD_HIGH: 2015 ret = 0; 2016 break; 2017 default: 2018 ret = -ENXIO; 2019 break; 2020 } 2021 break; 2022 case KVM_S390_VM_CPU_MODEL: 2023 switch (attr->attr) { 2024 case KVM_S390_VM_CPU_PROCESSOR: 2025 case KVM_S390_VM_CPU_MACHINE: 2026 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2027 case KVM_S390_VM_CPU_MACHINE_FEAT: 2028 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2029 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2030 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2031 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2032 ret = 0; 2033 break; 2034 default: 2035 ret = -ENXIO; 2036 break; 2037 } 2038 break; 2039 case KVM_S390_VM_CRYPTO: 2040 switch (attr->attr) { 2041 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2042 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2043 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2044 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2045 ret = 0; 2046 break; 2047 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2048 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2049 ret = ap_instructions_available() ? 0 : -ENXIO; 2050 break; 2051 default: 2052 ret = -ENXIO; 2053 break; 2054 } 2055 break; 2056 case KVM_S390_VM_MIGRATION: 2057 ret = 0; 2058 break; 2059 case KVM_S390_VM_CPU_TOPOLOGY: 2060 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2061 break; 2062 default: 2063 ret = -ENXIO; 2064 break; 2065 } 2066 2067 return ret; 2068 } 2069 2070 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2071 { 2072 uint8_t *keys; 2073 uint64_t hva; 2074 int srcu_idx, i, r = 0; 2075 2076 if (args->flags != 0) 2077 return -EINVAL; 2078 2079 /* Is this guest using storage keys? */ 2080 if (!mm_uses_skeys(current->mm)) 2081 return KVM_S390_GET_SKEYS_NONE; 2082 2083 /* Enforce sane limit on memory allocation */ 2084 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2085 return -EINVAL; 2086 2087 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2088 if (!keys) 2089 return -ENOMEM; 2090 2091 mmap_read_lock(current->mm); 2092 srcu_idx = srcu_read_lock(&kvm->srcu); 2093 for (i = 0; i < args->count; i++) { 2094 hva = gfn_to_hva(kvm, args->start_gfn + i); 2095 if (kvm_is_error_hva(hva)) { 2096 r = -EFAULT; 2097 break; 2098 } 2099 2100 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2101 if (r) 2102 break; 2103 } 2104 srcu_read_unlock(&kvm->srcu, srcu_idx); 2105 mmap_read_unlock(current->mm); 2106 2107 if (!r) { 2108 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2109 sizeof(uint8_t) * args->count); 2110 if (r) 2111 r = -EFAULT; 2112 } 2113 2114 kvfree(keys); 2115 return r; 2116 } 2117 2118 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2119 { 2120 uint8_t *keys; 2121 uint64_t hva; 2122 int srcu_idx, i, r = 0; 2123 bool unlocked; 2124 2125 if (args->flags != 0) 2126 return -EINVAL; 2127 2128 /* Enforce sane limit on memory allocation */ 2129 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2130 return -EINVAL; 2131 2132 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2133 if (!keys) 2134 return -ENOMEM; 2135 2136 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2137 sizeof(uint8_t) * args->count); 2138 if (r) { 2139 r = -EFAULT; 2140 goto out; 2141 } 2142 2143 /* Enable storage key handling for the guest */ 2144 r = s390_enable_skey(); 2145 if (r) 2146 goto out; 2147 2148 i = 0; 2149 mmap_read_lock(current->mm); 2150 srcu_idx = srcu_read_lock(&kvm->srcu); 2151 while (i < args->count) { 2152 unlocked = false; 2153 hva = gfn_to_hva(kvm, args->start_gfn + i); 2154 if (kvm_is_error_hva(hva)) { 2155 r = -EFAULT; 2156 break; 2157 } 2158 2159 /* Lowest order bit is reserved */ 2160 if (keys[i] & 0x01) { 2161 r = -EINVAL; 2162 break; 2163 } 2164 2165 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2166 if (r) { 2167 r = fixup_user_fault(current->mm, hva, 2168 FAULT_FLAG_WRITE, &unlocked); 2169 if (r) 2170 break; 2171 } 2172 if (!r) 2173 i++; 2174 } 2175 srcu_read_unlock(&kvm->srcu, srcu_idx); 2176 mmap_read_unlock(current->mm); 2177 out: 2178 kvfree(keys); 2179 return r; 2180 } 2181 2182 /* 2183 * Base address and length must be sent at the start of each block, therefore 2184 * it's cheaper to send some clean data, as long as it's less than the size of 2185 * two longs. 2186 */ 2187 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2188 /* for consistency */ 2189 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2190 2191 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2192 u8 *res, unsigned long bufsize) 2193 { 2194 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2195 2196 args->count = 0; 2197 while (args->count < bufsize) { 2198 hva = gfn_to_hva(kvm, cur_gfn); 2199 /* 2200 * We return an error if the first value was invalid, but we 2201 * return successfully if at least one value was copied. 2202 */ 2203 if (kvm_is_error_hva(hva)) 2204 return args->count ? 0 : -EFAULT; 2205 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2206 pgstev = 0; 2207 res[args->count++] = (pgstev >> 24) & 0x43; 2208 cur_gfn++; 2209 } 2210 2211 return 0; 2212 } 2213 2214 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2215 gfn_t gfn) 2216 { 2217 return ____gfn_to_memslot(slots, gfn, true); 2218 } 2219 2220 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2221 unsigned long cur_gfn) 2222 { 2223 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2224 unsigned long ofs = cur_gfn - ms->base_gfn; 2225 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2226 2227 if (ms->base_gfn + ms->npages <= cur_gfn) { 2228 mnode = rb_next(mnode); 2229 /* If we are above the highest slot, wrap around */ 2230 if (!mnode) 2231 mnode = rb_first(&slots->gfn_tree); 2232 2233 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2234 ofs = 0; 2235 } 2236 2237 if (cur_gfn < ms->base_gfn) 2238 ofs = 0; 2239 2240 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2241 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2242 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2243 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2244 } 2245 return ms->base_gfn + ofs; 2246 } 2247 2248 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2249 u8 *res, unsigned long bufsize) 2250 { 2251 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2252 struct kvm_memslots *slots = kvm_memslots(kvm); 2253 struct kvm_memory_slot *ms; 2254 2255 if (unlikely(kvm_memslots_empty(slots))) 2256 return 0; 2257 2258 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2259 ms = gfn_to_memslot(kvm, cur_gfn); 2260 args->count = 0; 2261 args->start_gfn = cur_gfn; 2262 if (!ms) 2263 return 0; 2264 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2265 mem_end = kvm_s390_get_gfn_end(slots); 2266 2267 while (args->count < bufsize) { 2268 hva = gfn_to_hva(kvm, cur_gfn); 2269 if (kvm_is_error_hva(hva)) 2270 return 0; 2271 /* Decrement only if we actually flipped the bit to 0 */ 2272 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2273 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2274 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2275 pgstev = 0; 2276 /* Save the value */ 2277 res[args->count++] = (pgstev >> 24) & 0x43; 2278 /* If the next bit is too far away, stop. */ 2279 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2280 return 0; 2281 /* If we reached the previous "next", find the next one */ 2282 if (cur_gfn == next_gfn) 2283 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2284 /* Reached the end of memory or of the buffer, stop */ 2285 if ((next_gfn >= mem_end) || 2286 (next_gfn - args->start_gfn >= bufsize)) 2287 return 0; 2288 cur_gfn++; 2289 /* Reached the end of the current memslot, take the next one. */ 2290 if (cur_gfn - ms->base_gfn >= ms->npages) { 2291 ms = gfn_to_memslot(kvm, cur_gfn); 2292 if (!ms) 2293 return 0; 2294 } 2295 } 2296 return 0; 2297 } 2298 2299 /* 2300 * This function searches for the next page with dirty CMMA attributes, and 2301 * saves the attributes in the buffer up to either the end of the buffer or 2302 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2303 * no trailing clean bytes are saved. 2304 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2305 * output buffer will indicate 0 as length. 2306 */ 2307 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2308 struct kvm_s390_cmma_log *args) 2309 { 2310 unsigned long bufsize; 2311 int srcu_idx, peek, ret; 2312 u8 *values; 2313 2314 if (!kvm->arch.use_cmma) 2315 return -ENXIO; 2316 /* Invalid/unsupported flags were specified */ 2317 if (args->flags & ~KVM_S390_CMMA_PEEK) 2318 return -EINVAL; 2319 /* Migration mode query, and we are not doing a migration */ 2320 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2321 if (!peek && !kvm->arch.migration_mode) 2322 return -EINVAL; 2323 /* CMMA is disabled or was not used, or the buffer has length zero */ 2324 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2325 if (!bufsize || !kvm->mm->context.uses_cmm) { 2326 memset(args, 0, sizeof(*args)); 2327 return 0; 2328 } 2329 /* We are not peeking, and there are no dirty pages */ 2330 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2331 memset(args, 0, sizeof(*args)); 2332 return 0; 2333 } 2334 2335 values = vmalloc(bufsize); 2336 if (!values) 2337 return -ENOMEM; 2338 2339 mmap_read_lock(kvm->mm); 2340 srcu_idx = srcu_read_lock(&kvm->srcu); 2341 if (peek) 2342 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2343 else 2344 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2345 srcu_read_unlock(&kvm->srcu, srcu_idx); 2346 mmap_read_unlock(kvm->mm); 2347 2348 if (kvm->arch.migration_mode) 2349 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2350 else 2351 args->remaining = 0; 2352 2353 if (copy_to_user((void __user *)args->values, values, args->count)) 2354 ret = -EFAULT; 2355 2356 vfree(values); 2357 return ret; 2358 } 2359 2360 /* 2361 * This function sets the CMMA attributes for the given pages. If the input 2362 * buffer has zero length, no action is taken, otherwise the attributes are 2363 * set and the mm->context.uses_cmm flag is set. 2364 */ 2365 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2366 const struct kvm_s390_cmma_log *args) 2367 { 2368 unsigned long hva, mask, pgstev, i; 2369 uint8_t *bits; 2370 int srcu_idx, r = 0; 2371 2372 mask = args->mask; 2373 2374 if (!kvm->arch.use_cmma) 2375 return -ENXIO; 2376 /* invalid/unsupported flags */ 2377 if (args->flags != 0) 2378 return -EINVAL; 2379 /* Enforce sane limit on memory allocation */ 2380 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2381 return -EINVAL; 2382 /* Nothing to do */ 2383 if (args->count == 0) 2384 return 0; 2385 2386 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2387 if (!bits) 2388 return -ENOMEM; 2389 2390 r = copy_from_user(bits, (void __user *)args->values, args->count); 2391 if (r) { 2392 r = -EFAULT; 2393 goto out; 2394 } 2395 2396 mmap_read_lock(kvm->mm); 2397 srcu_idx = srcu_read_lock(&kvm->srcu); 2398 for (i = 0; i < args->count; i++) { 2399 hva = gfn_to_hva(kvm, args->start_gfn + i); 2400 if (kvm_is_error_hva(hva)) { 2401 r = -EFAULT; 2402 break; 2403 } 2404 2405 pgstev = bits[i]; 2406 pgstev = pgstev << 24; 2407 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2408 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2409 } 2410 srcu_read_unlock(&kvm->srcu, srcu_idx); 2411 mmap_read_unlock(kvm->mm); 2412 2413 if (!kvm->mm->context.uses_cmm) { 2414 mmap_write_lock(kvm->mm); 2415 kvm->mm->context.uses_cmm = 1; 2416 mmap_write_unlock(kvm->mm); 2417 } 2418 out: 2419 vfree(bits); 2420 return r; 2421 } 2422 2423 /** 2424 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2425 * non protected. 2426 * @kvm: the VM whose protected vCPUs are to be converted 2427 * @rc: return value for the RC field of the UVC (in case of error) 2428 * @rrc: return value for the RRC field of the UVC (in case of error) 2429 * 2430 * Does not stop in case of error, tries to convert as many 2431 * CPUs as possible. In case of error, the RC and RRC of the last error are 2432 * returned. 2433 * 2434 * Return: 0 in case of success, otherwise -EIO 2435 */ 2436 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2437 { 2438 struct kvm_vcpu *vcpu; 2439 unsigned long i; 2440 u16 _rc, _rrc; 2441 int ret = 0; 2442 2443 /* 2444 * We ignore failures and try to destroy as many CPUs as possible. 2445 * At the same time we must not free the assigned resources when 2446 * this fails, as the ultravisor has still access to that memory. 2447 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2448 * behind. 2449 * We want to return the first failure rc and rrc, though. 2450 */ 2451 kvm_for_each_vcpu(i, vcpu, kvm) { 2452 mutex_lock(&vcpu->mutex); 2453 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2454 *rc = _rc; 2455 *rrc = _rrc; 2456 ret = -EIO; 2457 } 2458 mutex_unlock(&vcpu->mutex); 2459 } 2460 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2461 if (use_gisa) 2462 kvm_s390_gisa_enable(kvm); 2463 return ret; 2464 } 2465 2466 /** 2467 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2468 * to protected. 2469 * @kvm: the VM whose protected vCPUs are to be converted 2470 * @rc: return value for the RC field of the UVC (in case of error) 2471 * @rrc: return value for the RRC field of the UVC (in case of error) 2472 * 2473 * Tries to undo the conversion in case of error. 2474 * 2475 * Return: 0 in case of success, otherwise -EIO 2476 */ 2477 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2478 { 2479 unsigned long i; 2480 int r = 0; 2481 u16 dummy; 2482 2483 struct kvm_vcpu *vcpu; 2484 2485 /* Disable the GISA if the ultravisor does not support AIV. */ 2486 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2487 kvm_s390_gisa_disable(kvm); 2488 2489 kvm_for_each_vcpu(i, vcpu, kvm) { 2490 mutex_lock(&vcpu->mutex); 2491 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2492 mutex_unlock(&vcpu->mutex); 2493 if (r) 2494 break; 2495 } 2496 if (r) 2497 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2498 return r; 2499 } 2500 2501 /* 2502 * Here we provide user space with a direct interface to query UV 2503 * related data like UV maxima and available features as well as 2504 * feature specific data. 2505 * 2506 * To facilitate future extension of the data structures we'll try to 2507 * write data up to the maximum requested length. 2508 */ 2509 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2510 { 2511 ssize_t len_min; 2512 2513 switch (info->header.id) { 2514 case KVM_PV_INFO_VM: { 2515 len_min = sizeof(info->header) + sizeof(info->vm); 2516 2517 if (info->header.len_max < len_min) 2518 return -EINVAL; 2519 2520 memcpy(info->vm.inst_calls_list, 2521 uv_info.inst_calls_list, 2522 sizeof(uv_info.inst_calls_list)); 2523 2524 /* It's max cpuid not max cpus, so it's off by one */ 2525 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2526 info->vm.max_guests = uv_info.max_num_sec_conf; 2527 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2528 info->vm.feature_indication = uv_info.uv_feature_indications; 2529 2530 return len_min; 2531 } 2532 case KVM_PV_INFO_DUMP: { 2533 len_min = sizeof(info->header) + sizeof(info->dump); 2534 2535 if (info->header.len_max < len_min) 2536 return -EINVAL; 2537 2538 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2539 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2540 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2541 return len_min; 2542 } 2543 default: 2544 return -EINVAL; 2545 } 2546 } 2547 2548 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2549 struct kvm_s390_pv_dmp dmp) 2550 { 2551 int r = -EINVAL; 2552 void __user *result_buff = (void __user *)dmp.buff_addr; 2553 2554 switch (dmp.subcmd) { 2555 case KVM_PV_DUMP_INIT: { 2556 if (kvm->arch.pv.dumping) 2557 break; 2558 2559 /* 2560 * Block SIE entry as concurrent dump UVCs could lead 2561 * to validities. 2562 */ 2563 kvm_s390_vcpu_block_all(kvm); 2564 2565 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2566 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2567 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2568 cmd->rc, cmd->rrc); 2569 if (!r) { 2570 kvm->arch.pv.dumping = true; 2571 } else { 2572 kvm_s390_vcpu_unblock_all(kvm); 2573 r = -EINVAL; 2574 } 2575 break; 2576 } 2577 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2578 if (!kvm->arch.pv.dumping) 2579 break; 2580 2581 /* 2582 * gaddr is an output parameter since we might stop 2583 * early. As dmp will be copied back in our caller, we 2584 * don't need to do it ourselves. 2585 */ 2586 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2587 &cmd->rc, &cmd->rrc); 2588 break; 2589 } 2590 case KVM_PV_DUMP_COMPLETE: { 2591 if (!kvm->arch.pv.dumping) 2592 break; 2593 2594 r = -EINVAL; 2595 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2596 break; 2597 2598 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2599 &cmd->rc, &cmd->rrc); 2600 break; 2601 } 2602 default: 2603 r = -ENOTTY; 2604 break; 2605 } 2606 2607 return r; 2608 } 2609 2610 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2611 { 2612 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2613 void __user *argp = (void __user *)cmd->data; 2614 int r = 0; 2615 u16 dummy; 2616 2617 if (need_lock) 2618 mutex_lock(&kvm->lock); 2619 2620 switch (cmd->cmd) { 2621 case KVM_PV_ENABLE: { 2622 r = -EINVAL; 2623 if (kvm_s390_pv_is_protected(kvm)) 2624 break; 2625 2626 /* 2627 * FMT 4 SIE needs esca. As we never switch back to bsca from 2628 * esca, we need no cleanup in the error cases below 2629 */ 2630 r = sca_switch_to_extended(kvm); 2631 if (r) 2632 break; 2633 2634 mmap_write_lock(current->mm); 2635 r = gmap_mark_unmergeable(); 2636 mmap_write_unlock(current->mm); 2637 if (r) 2638 break; 2639 2640 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2641 if (r) 2642 break; 2643 2644 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2645 if (r) 2646 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2647 2648 /* we need to block service interrupts from now on */ 2649 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2650 break; 2651 } 2652 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2653 r = -EINVAL; 2654 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2655 break; 2656 2657 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2658 /* 2659 * If a CPU could not be destroyed, destroy VM will also fail. 2660 * There is no point in trying to destroy it. Instead return 2661 * the rc and rrc from the first CPU that failed destroying. 2662 */ 2663 if (r) 2664 break; 2665 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2666 2667 /* no need to block service interrupts any more */ 2668 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2669 break; 2670 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2671 r = -EINVAL; 2672 if (!async_destroy) 2673 break; 2674 /* kvm->lock must not be held; this is asserted inside the function. */ 2675 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2676 break; 2677 case KVM_PV_DISABLE: { 2678 r = -EINVAL; 2679 if (!kvm_s390_pv_is_protected(kvm)) 2680 break; 2681 2682 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2683 /* 2684 * If a CPU could not be destroyed, destroy VM will also fail. 2685 * There is no point in trying to destroy it. Instead return 2686 * the rc and rrc from the first CPU that failed destroying. 2687 */ 2688 if (r) 2689 break; 2690 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2691 2692 /* no need to block service interrupts any more */ 2693 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2694 break; 2695 } 2696 case KVM_PV_SET_SEC_PARMS: { 2697 struct kvm_s390_pv_sec_parm parms = {}; 2698 void *hdr; 2699 2700 r = -EINVAL; 2701 if (!kvm_s390_pv_is_protected(kvm)) 2702 break; 2703 2704 r = -EFAULT; 2705 if (copy_from_user(&parms, argp, sizeof(parms))) 2706 break; 2707 2708 /* Currently restricted to 8KB */ 2709 r = -EINVAL; 2710 if (parms.length > PAGE_SIZE * 2) 2711 break; 2712 2713 r = -ENOMEM; 2714 hdr = vmalloc(parms.length); 2715 if (!hdr) 2716 break; 2717 2718 r = -EFAULT; 2719 if (!copy_from_user(hdr, (void __user *)parms.origin, 2720 parms.length)) 2721 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2722 &cmd->rc, &cmd->rrc); 2723 2724 vfree(hdr); 2725 break; 2726 } 2727 case KVM_PV_UNPACK: { 2728 struct kvm_s390_pv_unp unp = {}; 2729 2730 r = -EINVAL; 2731 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2732 break; 2733 2734 r = -EFAULT; 2735 if (copy_from_user(&unp, argp, sizeof(unp))) 2736 break; 2737 2738 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2739 &cmd->rc, &cmd->rrc); 2740 break; 2741 } 2742 case KVM_PV_VERIFY: { 2743 r = -EINVAL; 2744 if (!kvm_s390_pv_is_protected(kvm)) 2745 break; 2746 2747 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2748 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2749 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2750 cmd->rrc); 2751 break; 2752 } 2753 case KVM_PV_PREP_RESET: { 2754 r = -EINVAL; 2755 if (!kvm_s390_pv_is_protected(kvm)) 2756 break; 2757 2758 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2759 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2760 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2761 cmd->rc, cmd->rrc); 2762 break; 2763 } 2764 case KVM_PV_UNSHARE_ALL: { 2765 r = -EINVAL; 2766 if (!kvm_s390_pv_is_protected(kvm)) 2767 break; 2768 2769 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2770 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2771 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2772 cmd->rc, cmd->rrc); 2773 break; 2774 } 2775 case KVM_PV_INFO: { 2776 struct kvm_s390_pv_info info = {}; 2777 ssize_t data_len; 2778 2779 /* 2780 * No need to check the VM protection here. 2781 * 2782 * Maybe user space wants to query some of the data 2783 * when the VM is still unprotected. If we see the 2784 * need to fence a new data command we can still 2785 * return an error in the info handler. 2786 */ 2787 2788 r = -EFAULT; 2789 if (copy_from_user(&info, argp, sizeof(info.header))) 2790 break; 2791 2792 r = -EINVAL; 2793 if (info.header.len_max < sizeof(info.header)) 2794 break; 2795 2796 data_len = kvm_s390_handle_pv_info(&info); 2797 if (data_len < 0) { 2798 r = data_len; 2799 break; 2800 } 2801 /* 2802 * If a data command struct is extended (multiple 2803 * times) this can be used to determine how much of it 2804 * is valid. 2805 */ 2806 info.header.len_written = data_len; 2807 2808 r = -EFAULT; 2809 if (copy_to_user(argp, &info, data_len)) 2810 break; 2811 2812 r = 0; 2813 break; 2814 } 2815 case KVM_PV_DUMP: { 2816 struct kvm_s390_pv_dmp dmp; 2817 2818 r = -EINVAL; 2819 if (!kvm_s390_pv_is_protected(kvm)) 2820 break; 2821 2822 r = -EFAULT; 2823 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2824 break; 2825 2826 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2827 if (r) 2828 break; 2829 2830 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2831 r = -EFAULT; 2832 break; 2833 } 2834 2835 break; 2836 } 2837 default: 2838 r = -ENOTTY; 2839 } 2840 if (need_lock) 2841 mutex_unlock(&kvm->lock); 2842 2843 return r; 2844 } 2845 2846 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2847 { 2848 if (mop->flags & ~supported_flags || !mop->size) 2849 return -EINVAL; 2850 if (mop->size > MEM_OP_MAX_SIZE) 2851 return -E2BIG; 2852 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2853 if (mop->key > 0xf) 2854 return -EINVAL; 2855 } else { 2856 mop->key = 0; 2857 } 2858 return 0; 2859 } 2860 2861 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2862 { 2863 void __user *uaddr = (void __user *)mop->buf; 2864 enum gacc_mode acc_mode; 2865 void *tmpbuf = NULL; 2866 int r, srcu_idx; 2867 2868 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2869 KVM_S390_MEMOP_F_CHECK_ONLY); 2870 if (r) 2871 return r; 2872 2873 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2874 tmpbuf = vmalloc(mop->size); 2875 if (!tmpbuf) 2876 return -ENOMEM; 2877 } 2878 2879 srcu_idx = srcu_read_lock(&kvm->srcu); 2880 2881 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2882 r = PGM_ADDRESSING; 2883 goto out_unlock; 2884 } 2885 2886 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2887 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2888 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2889 goto out_unlock; 2890 } 2891 if (acc_mode == GACC_FETCH) { 2892 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2893 mop->size, GACC_FETCH, mop->key); 2894 if (r) 2895 goto out_unlock; 2896 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2897 r = -EFAULT; 2898 } else { 2899 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2900 r = -EFAULT; 2901 goto out_unlock; 2902 } 2903 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2904 mop->size, GACC_STORE, mop->key); 2905 } 2906 2907 out_unlock: 2908 srcu_read_unlock(&kvm->srcu, srcu_idx); 2909 2910 vfree(tmpbuf); 2911 return r; 2912 } 2913 2914 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2915 { 2916 void __user *uaddr = (void __user *)mop->buf; 2917 void __user *old_addr = (void __user *)mop->old_addr; 2918 union { 2919 __uint128_t quad; 2920 char raw[sizeof(__uint128_t)]; 2921 } old = { .quad = 0}, new = { .quad = 0 }; 2922 unsigned int off_in_quad = sizeof(new) - mop->size; 2923 int r, srcu_idx; 2924 bool success; 2925 2926 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2927 if (r) 2928 return r; 2929 /* 2930 * This validates off_in_quad. Checking that size is a power 2931 * of two is not necessary, as cmpxchg_guest_abs_with_key 2932 * takes care of that 2933 */ 2934 if (mop->size > sizeof(new)) 2935 return -EINVAL; 2936 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2937 return -EFAULT; 2938 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2939 return -EFAULT; 2940 2941 srcu_idx = srcu_read_lock(&kvm->srcu); 2942 2943 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2944 r = PGM_ADDRESSING; 2945 goto out_unlock; 2946 } 2947 2948 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2949 new.quad, mop->key, &success); 2950 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2951 r = -EFAULT; 2952 2953 out_unlock: 2954 srcu_read_unlock(&kvm->srcu, srcu_idx); 2955 return r; 2956 } 2957 2958 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2959 { 2960 /* 2961 * This is technically a heuristic only, if the kvm->lock is not 2962 * taken, it is not guaranteed that the vm is/remains non-protected. 2963 * This is ok from a kernel perspective, wrongdoing is detected 2964 * on the access, -EFAULT is returned and the vm may crash the 2965 * next time it accesses the memory in question. 2966 * There is no sane usecase to do switching and a memop on two 2967 * different CPUs at the same time. 2968 */ 2969 if (kvm_s390_pv_get_handle(kvm)) 2970 return -EINVAL; 2971 2972 switch (mop->op) { 2973 case KVM_S390_MEMOP_ABSOLUTE_READ: 2974 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2975 return kvm_s390_vm_mem_op_abs(kvm, mop); 2976 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2977 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2978 default: 2979 return -EINVAL; 2980 } 2981 } 2982 2983 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2984 { 2985 struct kvm *kvm = filp->private_data; 2986 void __user *argp = (void __user *)arg; 2987 struct kvm_device_attr attr; 2988 int r; 2989 2990 switch (ioctl) { 2991 case KVM_S390_INTERRUPT: { 2992 struct kvm_s390_interrupt s390int; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2996 break; 2997 r = kvm_s390_inject_vm(kvm, &s390int); 2998 break; 2999 } 3000 case KVM_CREATE_IRQCHIP: { 3001 struct kvm_irq_routing_entry routing; 3002 3003 r = -EINVAL; 3004 if (kvm->arch.use_irqchip) { 3005 /* Set up dummy routing. */ 3006 memset(&routing, 0, sizeof(routing)); 3007 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 3008 } 3009 break; 3010 } 3011 case KVM_SET_DEVICE_ATTR: { 3012 r = -EFAULT; 3013 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3014 break; 3015 r = kvm_s390_vm_set_attr(kvm, &attr); 3016 break; 3017 } 3018 case KVM_GET_DEVICE_ATTR: { 3019 r = -EFAULT; 3020 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3021 break; 3022 r = kvm_s390_vm_get_attr(kvm, &attr); 3023 break; 3024 } 3025 case KVM_HAS_DEVICE_ATTR: { 3026 r = -EFAULT; 3027 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3028 break; 3029 r = kvm_s390_vm_has_attr(kvm, &attr); 3030 break; 3031 } 3032 case KVM_S390_GET_SKEYS: { 3033 struct kvm_s390_skeys args; 3034 3035 r = -EFAULT; 3036 if (copy_from_user(&args, argp, 3037 sizeof(struct kvm_s390_skeys))) 3038 break; 3039 r = kvm_s390_get_skeys(kvm, &args); 3040 break; 3041 } 3042 case KVM_S390_SET_SKEYS: { 3043 struct kvm_s390_skeys args; 3044 3045 r = -EFAULT; 3046 if (copy_from_user(&args, argp, 3047 sizeof(struct kvm_s390_skeys))) 3048 break; 3049 r = kvm_s390_set_skeys(kvm, &args); 3050 break; 3051 } 3052 case KVM_S390_GET_CMMA_BITS: { 3053 struct kvm_s390_cmma_log args; 3054 3055 r = -EFAULT; 3056 if (copy_from_user(&args, argp, sizeof(args))) 3057 break; 3058 mutex_lock(&kvm->slots_lock); 3059 r = kvm_s390_get_cmma_bits(kvm, &args); 3060 mutex_unlock(&kvm->slots_lock); 3061 if (!r) { 3062 r = copy_to_user(argp, &args, sizeof(args)); 3063 if (r) 3064 r = -EFAULT; 3065 } 3066 break; 3067 } 3068 case KVM_S390_SET_CMMA_BITS: { 3069 struct kvm_s390_cmma_log args; 3070 3071 r = -EFAULT; 3072 if (copy_from_user(&args, argp, sizeof(args))) 3073 break; 3074 mutex_lock(&kvm->slots_lock); 3075 r = kvm_s390_set_cmma_bits(kvm, &args); 3076 mutex_unlock(&kvm->slots_lock); 3077 break; 3078 } 3079 case KVM_S390_PV_COMMAND: { 3080 struct kvm_pv_cmd args; 3081 3082 /* protvirt means user cpu state */ 3083 kvm_s390_set_user_cpu_state_ctrl(kvm); 3084 r = 0; 3085 if (!is_prot_virt_host()) { 3086 r = -EINVAL; 3087 break; 3088 } 3089 if (copy_from_user(&args, argp, sizeof(args))) { 3090 r = -EFAULT; 3091 break; 3092 } 3093 if (args.flags) { 3094 r = -EINVAL; 3095 break; 3096 } 3097 /* must be called without kvm->lock */ 3098 r = kvm_s390_handle_pv(kvm, &args); 3099 if (copy_to_user(argp, &args, sizeof(args))) { 3100 r = -EFAULT; 3101 break; 3102 } 3103 break; 3104 } 3105 case KVM_S390_MEM_OP: { 3106 struct kvm_s390_mem_op mem_op; 3107 3108 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3109 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3110 else 3111 r = -EFAULT; 3112 break; 3113 } 3114 case KVM_S390_ZPCI_OP: { 3115 struct kvm_s390_zpci_op args; 3116 3117 r = -EINVAL; 3118 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3119 break; 3120 if (copy_from_user(&args, argp, sizeof(args))) { 3121 r = -EFAULT; 3122 break; 3123 } 3124 r = kvm_s390_pci_zpci_op(kvm, &args); 3125 break; 3126 } 3127 default: 3128 r = -ENOTTY; 3129 } 3130 3131 return r; 3132 } 3133 3134 static int kvm_s390_apxa_installed(void) 3135 { 3136 struct ap_config_info info; 3137 3138 if (ap_instructions_available()) { 3139 if (ap_qci(&info) == 0) 3140 return info.apxa; 3141 } 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * The format of the crypto control block (CRYCB) is specified in the 3 low 3148 * order bits of the CRYCB designation (CRYCBD) field as follows: 3149 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3150 * AP extended addressing (APXA) facility are installed. 3151 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3152 * Format 2: Both the APXA and MSAX3 facilities are installed 3153 */ 3154 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3155 { 3156 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 3157 3158 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3159 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3160 3161 /* Check whether MSAX3 is installed */ 3162 if (!test_kvm_facility(kvm, 76)) 3163 return; 3164 3165 if (kvm_s390_apxa_installed()) 3166 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3167 else 3168 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3169 } 3170 3171 /* 3172 * kvm_arch_crypto_set_masks 3173 * 3174 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3175 * to be set. 3176 * @apm: the mask identifying the accessible AP adapters 3177 * @aqm: the mask identifying the accessible AP domains 3178 * @adm: the mask identifying the accessible AP control domains 3179 * 3180 * Set the masks that identify the adapters, domains and control domains to 3181 * which the KVM guest is granted access. 3182 * 3183 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3184 * function. 3185 */ 3186 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3187 unsigned long *aqm, unsigned long *adm) 3188 { 3189 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3190 3191 kvm_s390_vcpu_block_all(kvm); 3192 3193 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3194 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3195 memcpy(crycb->apcb1.apm, apm, 32); 3196 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3197 apm[0], apm[1], apm[2], apm[3]); 3198 memcpy(crycb->apcb1.aqm, aqm, 32); 3199 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3200 aqm[0], aqm[1], aqm[2], aqm[3]); 3201 memcpy(crycb->apcb1.adm, adm, 32); 3202 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3203 adm[0], adm[1], adm[2], adm[3]); 3204 break; 3205 case CRYCB_FORMAT1: 3206 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3207 memcpy(crycb->apcb0.apm, apm, 8); 3208 memcpy(crycb->apcb0.aqm, aqm, 2); 3209 memcpy(crycb->apcb0.adm, adm, 2); 3210 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3211 apm[0], *((unsigned short *)aqm), 3212 *((unsigned short *)adm)); 3213 break; 3214 default: /* Can not happen */ 3215 break; 3216 } 3217 3218 /* recreate the shadow crycb for each vcpu */ 3219 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3220 kvm_s390_vcpu_unblock_all(kvm); 3221 } 3222 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3223 3224 /* 3225 * kvm_arch_crypto_clear_masks 3226 * 3227 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3228 * to be cleared. 3229 * 3230 * Clear the masks that identify the adapters, domains and control domains to 3231 * which the KVM guest is granted access. 3232 * 3233 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3234 * function. 3235 */ 3236 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3237 { 3238 kvm_s390_vcpu_block_all(kvm); 3239 3240 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3241 sizeof(kvm->arch.crypto.crycb->apcb0)); 3242 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3243 sizeof(kvm->arch.crypto.crycb->apcb1)); 3244 3245 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3246 /* recreate the shadow crycb for each vcpu */ 3247 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3248 kvm_s390_vcpu_unblock_all(kvm); 3249 } 3250 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3251 3252 static u64 kvm_s390_get_initial_cpuid(void) 3253 { 3254 struct cpuid cpuid; 3255 3256 get_cpu_id(&cpuid); 3257 cpuid.version = 0xff; 3258 return *((u64 *) &cpuid); 3259 } 3260 3261 static void kvm_s390_crypto_init(struct kvm *kvm) 3262 { 3263 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3264 kvm_s390_set_crycb_format(kvm); 3265 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3266 3267 if (!test_kvm_facility(kvm, 76)) 3268 return; 3269 3270 /* Enable AES/DEA protected key functions by default */ 3271 kvm->arch.crypto.aes_kw = 1; 3272 kvm->arch.crypto.dea_kw = 1; 3273 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3274 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3275 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3276 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3277 } 3278 3279 static void sca_dispose(struct kvm *kvm) 3280 { 3281 if (kvm->arch.use_esca) 3282 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3283 else 3284 free_page((unsigned long)(kvm->arch.sca)); 3285 kvm->arch.sca = NULL; 3286 } 3287 3288 void kvm_arch_free_vm(struct kvm *kvm) 3289 { 3290 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3291 kvm_s390_pci_clear_list(kvm); 3292 3293 __kvm_arch_free_vm(kvm); 3294 } 3295 3296 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3297 { 3298 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3299 int i, rc; 3300 char debug_name[16]; 3301 static unsigned long sca_offset; 3302 3303 rc = -EINVAL; 3304 #ifdef CONFIG_KVM_S390_UCONTROL 3305 if (type & ~KVM_VM_S390_UCONTROL) 3306 goto out_err; 3307 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3308 goto out_err; 3309 #else 3310 if (type) 3311 goto out_err; 3312 #endif 3313 3314 rc = s390_enable_sie(); 3315 if (rc) 3316 goto out_err; 3317 3318 rc = -ENOMEM; 3319 3320 if (!sclp.has_64bscao) 3321 alloc_flags |= GFP_DMA; 3322 rwlock_init(&kvm->arch.sca_lock); 3323 /* start with basic SCA */ 3324 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3325 if (!kvm->arch.sca) 3326 goto out_err; 3327 mutex_lock(&kvm_lock); 3328 sca_offset += 16; 3329 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3330 sca_offset = 0; 3331 kvm->arch.sca = (struct bsca_block *) 3332 ((char *) kvm->arch.sca + sca_offset); 3333 mutex_unlock(&kvm_lock); 3334 3335 sprintf(debug_name, "kvm-%u", current->pid); 3336 3337 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3338 if (!kvm->arch.dbf) 3339 goto out_err; 3340 3341 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3342 kvm->arch.sie_page2 = 3343 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3344 if (!kvm->arch.sie_page2) 3345 goto out_err; 3346 3347 kvm->arch.sie_page2->kvm = kvm; 3348 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3349 3350 for (i = 0; i < kvm_s390_fac_size(); i++) { 3351 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3352 (kvm_s390_fac_base[i] | 3353 kvm_s390_fac_ext[i]); 3354 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3355 kvm_s390_fac_base[i]; 3356 } 3357 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3358 3359 /* we are always in czam mode - even on pre z14 machines */ 3360 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3361 set_kvm_facility(kvm->arch.model.fac_list, 138); 3362 /* we emulate STHYI in kvm */ 3363 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3364 set_kvm_facility(kvm->arch.model.fac_list, 74); 3365 if (MACHINE_HAS_TLB_GUEST) { 3366 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3367 set_kvm_facility(kvm->arch.model.fac_list, 147); 3368 } 3369 3370 if (css_general_characteristics.aiv && test_facility(65)) 3371 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3372 3373 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3374 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3375 3376 kvm->arch.model.uv_feat_guest.feat = 0; 3377 3378 kvm_s390_crypto_init(kvm); 3379 3380 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3381 mutex_lock(&kvm->lock); 3382 kvm_s390_pci_init_list(kvm); 3383 kvm_s390_vcpu_pci_enable_interp(kvm); 3384 mutex_unlock(&kvm->lock); 3385 } 3386 3387 mutex_init(&kvm->arch.float_int.ais_lock); 3388 spin_lock_init(&kvm->arch.float_int.lock); 3389 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3390 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3391 init_waitqueue_head(&kvm->arch.ipte_wq); 3392 mutex_init(&kvm->arch.ipte_mutex); 3393 3394 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3395 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3396 3397 if (type & KVM_VM_S390_UCONTROL) { 3398 kvm->arch.gmap = NULL; 3399 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3400 } else { 3401 if (sclp.hamax == U64_MAX) 3402 kvm->arch.mem_limit = TASK_SIZE_MAX; 3403 else 3404 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3405 sclp.hamax + 1); 3406 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3407 if (!kvm->arch.gmap) 3408 goto out_err; 3409 kvm->arch.gmap->private = kvm; 3410 kvm->arch.gmap->pfault_enabled = 0; 3411 } 3412 3413 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3414 kvm->arch.use_skf = sclp.has_skey; 3415 spin_lock_init(&kvm->arch.start_stop_lock); 3416 kvm_s390_vsie_init(kvm); 3417 if (use_gisa) 3418 kvm_s390_gisa_init(kvm); 3419 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3420 kvm->arch.pv.set_aside = NULL; 3421 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3422 3423 return 0; 3424 out_err: 3425 free_page((unsigned long)kvm->arch.sie_page2); 3426 debug_unregister(kvm->arch.dbf); 3427 sca_dispose(kvm); 3428 KVM_EVENT(3, "creation of vm failed: %d", rc); 3429 return rc; 3430 } 3431 3432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3433 { 3434 u16 rc, rrc; 3435 3436 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3437 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3438 kvm_s390_clear_local_irqs(vcpu); 3439 kvm_clear_async_pf_completion_queue(vcpu); 3440 if (!kvm_is_ucontrol(vcpu->kvm)) 3441 sca_del_vcpu(vcpu); 3442 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3443 3444 if (kvm_is_ucontrol(vcpu->kvm)) 3445 gmap_remove(vcpu->arch.gmap); 3446 3447 if (vcpu->kvm->arch.use_cmma) 3448 kvm_s390_vcpu_unsetup_cmma(vcpu); 3449 /* We can not hold the vcpu mutex here, we are already dying */ 3450 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3451 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3452 free_page((unsigned long)(vcpu->arch.sie_block)); 3453 } 3454 3455 void kvm_arch_destroy_vm(struct kvm *kvm) 3456 { 3457 u16 rc, rrc; 3458 3459 kvm_destroy_vcpus(kvm); 3460 sca_dispose(kvm); 3461 kvm_s390_gisa_destroy(kvm); 3462 /* 3463 * We are already at the end of life and kvm->lock is not taken. 3464 * This is ok as the file descriptor is closed by now and nobody 3465 * can mess with the pv state. 3466 */ 3467 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3468 /* 3469 * Remove the mmu notifier only when the whole KVM VM is torn down, 3470 * and only if one was registered to begin with. If the VM is 3471 * currently not protected, but has been previously been protected, 3472 * then it's possible that the notifier is still registered. 3473 */ 3474 if (kvm->arch.pv.mmu_notifier.ops) 3475 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3476 3477 debug_unregister(kvm->arch.dbf); 3478 free_page((unsigned long)kvm->arch.sie_page2); 3479 if (!kvm_is_ucontrol(kvm)) 3480 gmap_remove(kvm->arch.gmap); 3481 kvm_s390_destroy_adapters(kvm); 3482 kvm_s390_clear_float_irqs(kvm); 3483 kvm_s390_vsie_destroy(kvm); 3484 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3485 } 3486 3487 /* Section: vcpu related */ 3488 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3489 { 3490 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3491 if (!vcpu->arch.gmap) 3492 return -ENOMEM; 3493 vcpu->arch.gmap->private = vcpu->kvm; 3494 3495 return 0; 3496 } 3497 3498 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3499 { 3500 if (!kvm_s390_use_sca_entries()) 3501 return; 3502 read_lock(&vcpu->kvm->arch.sca_lock); 3503 if (vcpu->kvm->arch.use_esca) { 3504 struct esca_block *sca = vcpu->kvm->arch.sca; 3505 3506 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3507 sca->cpu[vcpu->vcpu_id].sda = 0; 3508 } else { 3509 struct bsca_block *sca = vcpu->kvm->arch.sca; 3510 3511 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3512 sca->cpu[vcpu->vcpu_id].sda = 0; 3513 } 3514 read_unlock(&vcpu->kvm->arch.sca_lock); 3515 } 3516 3517 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3518 { 3519 if (!kvm_s390_use_sca_entries()) { 3520 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3521 3522 /* we still need the basic sca for the ipte control */ 3523 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3524 vcpu->arch.sie_block->scaol = sca_phys; 3525 return; 3526 } 3527 read_lock(&vcpu->kvm->arch.sca_lock); 3528 if (vcpu->kvm->arch.use_esca) { 3529 struct esca_block *sca = vcpu->kvm->arch.sca; 3530 phys_addr_t sca_phys = virt_to_phys(sca); 3531 3532 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3533 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3534 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3535 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3536 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3537 } else { 3538 struct bsca_block *sca = vcpu->kvm->arch.sca; 3539 phys_addr_t sca_phys = virt_to_phys(sca); 3540 3541 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3542 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3543 vcpu->arch.sie_block->scaol = sca_phys; 3544 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3545 } 3546 read_unlock(&vcpu->kvm->arch.sca_lock); 3547 } 3548 3549 /* Basic SCA to Extended SCA data copy routines */ 3550 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3551 { 3552 d->sda = s->sda; 3553 d->sigp_ctrl.c = s->sigp_ctrl.c; 3554 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3555 } 3556 3557 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3558 { 3559 int i; 3560 3561 d->ipte_control = s->ipte_control; 3562 d->mcn[0] = s->mcn; 3563 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3564 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3565 } 3566 3567 static int sca_switch_to_extended(struct kvm *kvm) 3568 { 3569 struct bsca_block *old_sca = kvm->arch.sca; 3570 struct esca_block *new_sca; 3571 struct kvm_vcpu *vcpu; 3572 unsigned long vcpu_idx; 3573 u32 scaol, scaoh; 3574 phys_addr_t new_sca_phys; 3575 3576 if (kvm->arch.use_esca) 3577 return 0; 3578 3579 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3580 if (!new_sca) 3581 return -ENOMEM; 3582 3583 new_sca_phys = virt_to_phys(new_sca); 3584 scaoh = new_sca_phys >> 32; 3585 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3586 3587 kvm_s390_vcpu_block_all(kvm); 3588 write_lock(&kvm->arch.sca_lock); 3589 3590 sca_copy_b_to_e(new_sca, old_sca); 3591 3592 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3593 vcpu->arch.sie_block->scaoh = scaoh; 3594 vcpu->arch.sie_block->scaol = scaol; 3595 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3596 } 3597 kvm->arch.sca = new_sca; 3598 kvm->arch.use_esca = 1; 3599 3600 write_unlock(&kvm->arch.sca_lock); 3601 kvm_s390_vcpu_unblock_all(kvm); 3602 3603 free_page((unsigned long)old_sca); 3604 3605 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3606 old_sca, kvm->arch.sca); 3607 return 0; 3608 } 3609 3610 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3611 { 3612 int rc; 3613 3614 if (!kvm_s390_use_sca_entries()) { 3615 if (id < KVM_MAX_VCPUS) 3616 return true; 3617 return false; 3618 } 3619 if (id < KVM_S390_BSCA_CPU_SLOTS) 3620 return true; 3621 if (!sclp.has_esca || !sclp.has_64bscao) 3622 return false; 3623 3624 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3625 3626 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3627 } 3628 3629 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3630 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3631 { 3632 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3633 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3634 vcpu->arch.cputm_start = get_tod_clock_fast(); 3635 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3636 } 3637 3638 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3639 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3640 { 3641 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3642 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3643 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3644 vcpu->arch.cputm_start = 0; 3645 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3646 } 3647 3648 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3649 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3650 { 3651 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3652 vcpu->arch.cputm_enabled = true; 3653 __start_cpu_timer_accounting(vcpu); 3654 } 3655 3656 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3657 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3658 { 3659 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3660 __stop_cpu_timer_accounting(vcpu); 3661 vcpu->arch.cputm_enabled = false; 3662 } 3663 3664 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3665 { 3666 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3667 __enable_cpu_timer_accounting(vcpu); 3668 preempt_enable(); 3669 } 3670 3671 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3672 { 3673 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3674 __disable_cpu_timer_accounting(vcpu); 3675 preempt_enable(); 3676 } 3677 3678 /* set the cpu timer - may only be called from the VCPU thread itself */ 3679 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3680 { 3681 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3682 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3683 if (vcpu->arch.cputm_enabled) 3684 vcpu->arch.cputm_start = get_tod_clock_fast(); 3685 vcpu->arch.sie_block->cputm = cputm; 3686 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3687 preempt_enable(); 3688 } 3689 3690 /* update and get the cpu timer - can also be called from other VCPU threads */ 3691 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3692 { 3693 unsigned int seq; 3694 __u64 value; 3695 3696 if (unlikely(!vcpu->arch.cputm_enabled)) 3697 return vcpu->arch.sie_block->cputm; 3698 3699 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3700 do { 3701 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3702 /* 3703 * If the writer would ever execute a read in the critical 3704 * section, e.g. in irq context, we have a deadlock. 3705 */ 3706 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3707 value = vcpu->arch.sie_block->cputm; 3708 /* if cputm_start is 0, accounting is being started/stopped */ 3709 if (likely(vcpu->arch.cputm_start)) 3710 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3711 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3712 preempt_enable(); 3713 return value; 3714 } 3715 3716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3717 { 3718 3719 gmap_enable(vcpu->arch.enabled_gmap); 3720 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3721 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3722 __start_cpu_timer_accounting(vcpu); 3723 vcpu->cpu = cpu; 3724 } 3725 3726 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3727 { 3728 vcpu->cpu = -1; 3729 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3730 __stop_cpu_timer_accounting(vcpu); 3731 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3732 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3733 gmap_disable(vcpu->arch.enabled_gmap); 3734 3735 } 3736 3737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3738 { 3739 mutex_lock(&vcpu->kvm->lock); 3740 preempt_disable(); 3741 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3742 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3743 preempt_enable(); 3744 mutex_unlock(&vcpu->kvm->lock); 3745 if (!kvm_is_ucontrol(vcpu->kvm)) { 3746 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3747 sca_add_vcpu(vcpu); 3748 } 3749 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3750 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3751 /* make vcpu_load load the right gmap on the first trigger */ 3752 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3753 } 3754 3755 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3756 { 3757 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3758 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3759 return true; 3760 return false; 3761 } 3762 3763 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3764 { 3765 /* At least one ECC subfunction must be present */ 3766 return kvm_has_pckmo_subfunc(kvm, 32) || 3767 kvm_has_pckmo_subfunc(kvm, 33) || 3768 kvm_has_pckmo_subfunc(kvm, 34) || 3769 kvm_has_pckmo_subfunc(kvm, 40) || 3770 kvm_has_pckmo_subfunc(kvm, 41); 3771 3772 } 3773 3774 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3775 { 3776 /* 3777 * If the AP instructions are not being interpreted and the MSAX3 3778 * facility is not configured for the guest, there is nothing to set up. 3779 */ 3780 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3781 return; 3782 3783 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3784 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3785 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3786 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3787 3788 if (vcpu->kvm->arch.crypto.apie) 3789 vcpu->arch.sie_block->eca |= ECA_APIE; 3790 3791 /* Set up protected key support */ 3792 if (vcpu->kvm->arch.crypto.aes_kw) { 3793 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3794 /* ecc is also wrapped with AES key */ 3795 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3796 vcpu->arch.sie_block->ecd |= ECD_ECC; 3797 } 3798 3799 if (vcpu->kvm->arch.crypto.dea_kw) 3800 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3801 } 3802 3803 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3804 { 3805 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3806 vcpu->arch.sie_block->cbrlo = 0; 3807 } 3808 3809 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3810 { 3811 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3812 3813 if (!cbrlo_page) 3814 return -ENOMEM; 3815 3816 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3817 return 0; 3818 } 3819 3820 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3821 { 3822 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3823 3824 vcpu->arch.sie_block->ibc = model->ibc; 3825 if (test_kvm_facility(vcpu->kvm, 7)) 3826 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3827 } 3828 3829 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3830 { 3831 int rc = 0; 3832 u16 uvrc, uvrrc; 3833 3834 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3835 CPUSTAT_SM | 3836 CPUSTAT_STOPPED); 3837 3838 if (test_kvm_facility(vcpu->kvm, 78)) 3839 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3840 else if (test_kvm_facility(vcpu->kvm, 8)) 3841 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3842 3843 kvm_s390_vcpu_setup_model(vcpu); 3844 3845 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3846 if (MACHINE_HAS_ESOP) 3847 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3848 if (test_kvm_facility(vcpu->kvm, 9)) 3849 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3850 if (test_kvm_facility(vcpu->kvm, 11)) 3851 vcpu->arch.sie_block->ecb |= ECB_PTF; 3852 if (test_kvm_facility(vcpu->kvm, 73)) 3853 vcpu->arch.sie_block->ecb |= ECB_TE; 3854 if (!kvm_is_ucontrol(vcpu->kvm)) 3855 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3856 3857 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3858 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3859 if (test_kvm_facility(vcpu->kvm, 130)) 3860 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3861 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3862 if (sclp.has_cei) 3863 vcpu->arch.sie_block->eca |= ECA_CEI; 3864 if (sclp.has_ib) 3865 vcpu->arch.sie_block->eca |= ECA_IB; 3866 if (sclp.has_siif) 3867 vcpu->arch.sie_block->eca |= ECA_SII; 3868 if (sclp.has_sigpif) 3869 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3870 if (test_kvm_facility(vcpu->kvm, 129)) { 3871 vcpu->arch.sie_block->eca |= ECA_VX; 3872 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3873 } 3874 if (test_kvm_facility(vcpu->kvm, 139)) 3875 vcpu->arch.sie_block->ecd |= ECD_MEF; 3876 if (test_kvm_facility(vcpu->kvm, 156)) 3877 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3878 if (vcpu->arch.sie_block->gd) { 3879 vcpu->arch.sie_block->eca |= ECA_AIV; 3880 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3881 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3882 } 3883 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3884 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3885 3886 if (sclp.has_kss) 3887 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3888 else 3889 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3890 3891 if (vcpu->kvm->arch.use_cmma) { 3892 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3893 if (rc) 3894 return rc; 3895 } 3896 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3897 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3898 3899 vcpu->arch.sie_block->hpid = HPID_KVM; 3900 3901 kvm_s390_vcpu_crypto_setup(vcpu); 3902 3903 kvm_s390_vcpu_pci_setup(vcpu); 3904 3905 mutex_lock(&vcpu->kvm->lock); 3906 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3907 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3908 if (rc) 3909 kvm_s390_vcpu_unsetup_cmma(vcpu); 3910 } 3911 mutex_unlock(&vcpu->kvm->lock); 3912 3913 return rc; 3914 } 3915 3916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3917 { 3918 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3919 return -EINVAL; 3920 return 0; 3921 } 3922 3923 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3924 { 3925 struct sie_page *sie_page; 3926 int rc; 3927 3928 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3929 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3930 if (!sie_page) 3931 return -ENOMEM; 3932 3933 vcpu->arch.sie_block = &sie_page->sie_block; 3934 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3935 3936 /* the real guest size will always be smaller than msl */ 3937 vcpu->arch.sie_block->mso = 0; 3938 vcpu->arch.sie_block->msl = sclp.hamax; 3939 3940 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3941 spin_lock_init(&vcpu->arch.local_int.lock); 3942 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3943 seqcount_init(&vcpu->arch.cputm_seqcount); 3944 3945 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3946 kvm_clear_async_pf_completion_queue(vcpu); 3947 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3948 KVM_SYNC_GPRS | 3949 KVM_SYNC_ACRS | 3950 KVM_SYNC_CRS | 3951 KVM_SYNC_ARCH0 | 3952 KVM_SYNC_PFAULT | 3953 KVM_SYNC_DIAG318; 3954 kvm_s390_set_prefix(vcpu, 0); 3955 if (test_kvm_facility(vcpu->kvm, 64)) 3956 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3957 if (test_kvm_facility(vcpu->kvm, 82)) 3958 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3959 if (test_kvm_facility(vcpu->kvm, 133)) 3960 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3961 if (test_kvm_facility(vcpu->kvm, 156)) 3962 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3963 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3964 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 3965 */ 3966 if (cpu_has_vx()) 3967 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3968 else 3969 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3970 3971 if (kvm_is_ucontrol(vcpu->kvm)) { 3972 rc = __kvm_ucontrol_vcpu_init(vcpu); 3973 if (rc) 3974 goto out_free_sie_block; 3975 } 3976 3977 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3978 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3979 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3980 3981 rc = kvm_s390_vcpu_setup(vcpu); 3982 if (rc) 3983 goto out_ucontrol_uninit; 3984 3985 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3986 return 0; 3987 3988 out_ucontrol_uninit: 3989 if (kvm_is_ucontrol(vcpu->kvm)) 3990 gmap_remove(vcpu->arch.gmap); 3991 out_free_sie_block: 3992 free_page((unsigned long)(vcpu->arch.sie_block)); 3993 return rc; 3994 } 3995 3996 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3997 { 3998 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 3999 return kvm_s390_vcpu_has_irq(vcpu, 0); 4000 } 4001 4002 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4003 { 4004 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4005 } 4006 4007 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4008 { 4009 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4010 exit_sie(vcpu); 4011 } 4012 4013 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4014 { 4015 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4016 } 4017 4018 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4019 { 4020 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4021 exit_sie(vcpu); 4022 } 4023 4024 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4025 { 4026 return atomic_read(&vcpu->arch.sie_block->prog20) & 4027 (PROG_BLOCK_SIE | PROG_REQUEST); 4028 } 4029 4030 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4031 { 4032 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4033 } 4034 4035 /* 4036 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4037 * If the CPU is not running (e.g. waiting as idle) the function will 4038 * return immediately. */ 4039 void exit_sie(struct kvm_vcpu *vcpu) 4040 { 4041 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4042 kvm_s390_vsie_kick(vcpu); 4043 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4044 cpu_relax(); 4045 } 4046 4047 /* Kick a guest cpu out of SIE to process a request synchronously */ 4048 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4049 { 4050 __kvm_make_request(req, vcpu); 4051 kvm_s390_vcpu_request(vcpu); 4052 } 4053 4054 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4055 unsigned long end) 4056 { 4057 struct kvm *kvm = gmap->private; 4058 struct kvm_vcpu *vcpu; 4059 unsigned long prefix; 4060 unsigned long i; 4061 4062 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4063 4064 if (gmap_is_shadow(gmap)) 4065 return; 4066 if (start >= 1UL << 31) 4067 /* We are only interested in prefix pages */ 4068 return; 4069 kvm_for_each_vcpu(i, vcpu, kvm) { 4070 /* match against both prefix pages */ 4071 prefix = kvm_s390_get_prefix(vcpu); 4072 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4073 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4074 start, end); 4075 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4076 } 4077 } 4078 } 4079 4080 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4081 { 4082 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4083 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 4084 READ_ONCE(halt_poll_max_steal)) { 4085 vcpu->stat.halt_no_poll_steal++; 4086 return true; 4087 } 4088 return false; 4089 } 4090 4091 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4092 { 4093 /* kvm common code refers to this, but never calls it */ 4094 BUG(); 4095 return 0; 4096 } 4097 4098 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4099 struct kvm_one_reg *reg) 4100 { 4101 int r = -EINVAL; 4102 4103 switch (reg->id) { 4104 case KVM_REG_S390_TODPR: 4105 r = put_user(vcpu->arch.sie_block->todpr, 4106 (u32 __user *)reg->addr); 4107 break; 4108 case KVM_REG_S390_EPOCHDIFF: 4109 r = put_user(vcpu->arch.sie_block->epoch, 4110 (u64 __user *)reg->addr); 4111 break; 4112 case KVM_REG_S390_CPU_TIMER: 4113 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4114 (u64 __user *)reg->addr); 4115 break; 4116 case KVM_REG_S390_CLOCK_COMP: 4117 r = put_user(vcpu->arch.sie_block->ckc, 4118 (u64 __user *)reg->addr); 4119 break; 4120 case KVM_REG_S390_PFTOKEN: 4121 r = put_user(vcpu->arch.pfault_token, 4122 (u64 __user *)reg->addr); 4123 break; 4124 case KVM_REG_S390_PFCOMPARE: 4125 r = put_user(vcpu->arch.pfault_compare, 4126 (u64 __user *)reg->addr); 4127 break; 4128 case KVM_REG_S390_PFSELECT: 4129 r = put_user(vcpu->arch.pfault_select, 4130 (u64 __user *)reg->addr); 4131 break; 4132 case KVM_REG_S390_PP: 4133 r = put_user(vcpu->arch.sie_block->pp, 4134 (u64 __user *)reg->addr); 4135 break; 4136 case KVM_REG_S390_GBEA: 4137 r = put_user(vcpu->arch.sie_block->gbea, 4138 (u64 __user *)reg->addr); 4139 break; 4140 default: 4141 break; 4142 } 4143 4144 return r; 4145 } 4146 4147 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4148 struct kvm_one_reg *reg) 4149 { 4150 int r = -EINVAL; 4151 __u64 val; 4152 4153 switch (reg->id) { 4154 case KVM_REG_S390_TODPR: 4155 r = get_user(vcpu->arch.sie_block->todpr, 4156 (u32 __user *)reg->addr); 4157 break; 4158 case KVM_REG_S390_EPOCHDIFF: 4159 r = get_user(vcpu->arch.sie_block->epoch, 4160 (u64 __user *)reg->addr); 4161 break; 4162 case KVM_REG_S390_CPU_TIMER: 4163 r = get_user(val, (u64 __user *)reg->addr); 4164 if (!r) 4165 kvm_s390_set_cpu_timer(vcpu, val); 4166 break; 4167 case KVM_REG_S390_CLOCK_COMP: 4168 r = get_user(vcpu->arch.sie_block->ckc, 4169 (u64 __user *)reg->addr); 4170 break; 4171 case KVM_REG_S390_PFTOKEN: 4172 r = get_user(vcpu->arch.pfault_token, 4173 (u64 __user *)reg->addr); 4174 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4175 kvm_clear_async_pf_completion_queue(vcpu); 4176 break; 4177 case KVM_REG_S390_PFCOMPARE: 4178 r = get_user(vcpu->arch.pfault_compare, 4179 (u64 __user *)reg->addr); 4180 break; 4181 case KVM_REG_S390_PFSELECT: 4182 r = get_user(vcpu->arch.pfault_select, 4183 (u64 __user *)reg->addr); 4184 break; 4185 case KVM_REG_S390_PP: 4186 r = get_user(vcpu->arch.sie_block->pp, 4187 (u64 __user *)reg->addr); 4188 break; 4189 case KVM_REG_S390_GBEA: 4190 r = get_user(vcpu->arch.sie_block->gbea, 4191 (u64 __user *)reg->addr); 4192 break; 4193 default: 4194 break; 4195 } 4196 4197 return r; 4198 } 4199 4200 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4201 { 4202 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4203 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4204 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4205 4206 kvm_clear_async_pf_completion_queue(vcpu); 4207 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4208 kvm_s390_vcpu_stop(vcpu); 4209 kvm_s390_clear_local_irqs(vcpu); 4210 } 4211 4212 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4213 { 4214 /* Initial reset is a superset of the normal reset */ 4215 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4216 4217 /* 4218 * This equals initial cpu reset in pop, but we don't switch to ESA. 4219 * We do not only reset the internal data, but also ... 4220 */ 4221 vcpu->arch.sie_block->gpsw.mask = 0; 4222 vcpu->arch.sie_block->gpsw.addr = 0; 4223 kvm_s390_set_prefix(vcpu, 0); 4224 kvm_s390_set_cpu_timer(vcpu, 0); 4225 vcpu->arch.sie_block->ckc = 0; 4226 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4227 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4228 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4229 4230 /* ... the data in sync regs */ 4231 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4232 vcpu->run->s.regs.ckc = 0; 4233 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4234 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4235 vcpu->run->psw_addr = 0; 4236 vcpu->run->psw_mask = 0; 4237 vcpu->run->s.regs.todpr = 0; 4238 vcpu->run->s.regs.cputm = 0; 4239 vcpu->run->s.regs.ckc = 0; 4240 vcpu->run->s.regs.pp = 0; 4241 vcpu->run->s.regs.gbea = 1; 4242 vcpu->run->s.regs.fpc = 0; 4243 /* 4244 * Do not reset these registers in the protected case, as some of 4245 * them are overlaid and they are not accessible in this case 4246 * anyway. 4247 */ 4248 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4249 vcpu->arch.sie_block->gbea = 1; 4250 vcpu->arch.sie_block->pp = 0; 4251 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4252 vcpu->arch.sie_block->todpr = 0; 4253 } 4254 } 4255 4256 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4257 { 4258 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4259 4260 /* Clear reset is a superset of the initial reset */ 4261 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4262 4263 memset(®s->gprs, 0, sizeof(regs->gprs)); 4264 memset(®s->vrs, 0, sizeof(regs->vrs)); 4265 memset(®s->acrs, 0, sizeof(regs->acrs)); 4266 memset(®s->gscb, 0, sizeof(regs->gscb)); 4267 4268 regs->etoken = 0; 4269 regs->etoken_extension = 0; 4270 } 4271 4272 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4273 { 4274 vcpu_load(vcpu); 4275 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4276 vcpu_put(vcpu); 4277 return 0; 4278 } 4279 4280 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4281 { 4282 vcpu_load(vcpu); 4283 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4284 vcpu_put(vcpu); 4285 return 0; 4286 } 4287 4288 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4289 struct kvm_sregs *sregs) 4290 { 4291 vcpu_load(vcpu); 4292 4293 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4294 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4295 4296 vcpu_put(vcpu); 4297 return 0; 4298 } 4299 4300 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4301 struct kvm_sregs *sregs) 4302 { 4303 vcpu_load(vcpu); 4304 4305 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4306 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4307 4308 vcpu_put(vcpu); 4309 return 0; 4310 } 4311 4312 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4313 { 4314 int ret = 0; 4315 4316 vcpu_load(vcpu); 4317 4318 vcpu->run->s.regs.fpc = fpu->fpc; 4319 if (cpu_has_vx()) 4320 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4321 (freg_t *) fpu->fprs); 4322 else 4323 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4324 4325 vcpu_put(vcpu); 4326 return ret; 4327 } 4328 4329 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4330 { 4331 vcpu_load(vcpu); 4332 4333 if (cpu_has_vx()) 4334 convert_vx_to_fp((freg_t *) fpu->fprs, 4335 (__vector128 *) vcpu->run->s.regs.vrs); 4336 else 4337 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4338 fpu->fpc = vcpu->run->s.regs.fpc; 4339 4340 vcpu_put(vcpu); 4341 return 0; 4342 } 4343 4344 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4345 { 4346 int rc = 0; 4347 4348 if (!is_vcpu_stopped(vcpu)) 4349 rc = -EBUSY; 4350 else { 4351 vcpu->run->psw_mask = psw.mask; 4352 vcpu->run->psw_addr = psw.addr; 4353 } 4354 return rc; 4355 } 4356 4357 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4358 struct kvm_translation *tr) 4359 { 4360 return -EINVAL; /* not implemented yet */ 4361 } 4362 4363 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4364 KVM_GUESTDBG_USE_HW_BP | \ 4365 KVM_GUESTDBG_ENABLE) 4366 4367 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4368 struct kvm_guest_debug *dbg) 4369 { 4370 int rc = 0; 4371 4372 vcpu_load(vcpu); 4373 4374 vcpu->guest_debug = 0; 4375 kvm_s390_clear_bp_data(vcpu); 4376 4377 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4378 rc = -EINVAL; 4379 goto out; 4380 } 4381 if (!sclp.has_gpere) { 4382 rc = -EINVAL; 4383 goto out; 4384 } 4385 4386 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4387 vcpu->guest_debug = dbg->control; 4388 /* enforce guest PER */ 4389 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4390 4391 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4392 rc = kvm_s390_import_bp_data(vcpu, dbg); 4393 } else { 4394 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4395 vcpu->arch.guestdbg.last_bp = 0; 4396 } 4397 4398 if (rc) { 4399 vcpu->guest_debug = 0; 4400 kvm_s390_clear_bp_data(vcpu); 4401 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4402 } 4403 4404 out: 4405 vcpu_put(vcpu); 4406 return rc; 4407 } 4408 4409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4410 struct kvm_mp_state *mp_state) 4411 { 4412 int ret; 4413 4414 vcpu_load(vcpu); 4415 4416 /* CHECK_STOP and LOAD are not supported yet */ 4417 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4418 KVM_MP_STATE_OPERATING; 4419 4420 vcpu_put(vcpu); 4421 return ret; 4422 } 4423 4424 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4425 struct kvm_mp_state *mp_state) 4426 { 4427 int rc = 0; 4428 4429 vcpu_load(vcpu); 4430 4431 /* user space knows about this interface - let it control the state */ 4432 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4433 4434 switch (mp_state->mp_state) { 4435 case KVM_MP_STATE_STOPPED: 4436 rc = kvm_s390_vcpu_stop(vcpu); 4437 break; 4438 case KVM_MP_STATE_OPERATING: 4439 rc = kvm_s390_vcpu_start(vcpu); 4440 break; 4441 case KVM_MP_STATE_LOAD: 4442 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4443 rc = -ENXIO; 4444 break; 4445 } 4446 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4447 break; 4448 case KVM_MP_STATE_CHECK_STOP: 4449 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4450 default: 4451 rc = -ENXIO; 4452 } 4453 4454 vcpu_put(vcpu); 4455 return rc; 4456 } 4457 4458 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4459 { 4460 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4461 } 4462 4463 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4464 { 4465 retry: 4466 kvm_s390_vcpu_request_handled(vcpu); 4467 if (!kvm_request_pending(vcpu)) 4468 return 0; 4469 /* 4470 * If the guest prefix changed, re-arm the ipte notifier for the 4471 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4472 * This ensures that the ipte instruction for this request has 4473 * already finished. We might race against a second unmapper that 4474 * wants to set the blocking bit. Lets just retry the request loop. 4475 */ 4476 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4477 int rc; 4478 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4479 kvm_s390_get_prefix(vcpu), 4480 PAGE_SIZE * 2, PROT_WRITE); 4481 if (rc) { 4482 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4483 return rc; 4484 } 4485 goto retry; 4486 } 4487 4488 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4489 vcpu->arch.sie_block->ihcpu = 0xffff; 4490 goto retry; 4491 } 4492 4493 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4494 if (!ibs_enabled(vcpu)) { 4495 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4496 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4497 } 4498 goto retry; 4499 } 4500 4501 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4502 if (ibs_enabled(vcpu)) { 4503 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4504 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4505 } 4506 goto retry; 4507 } 4508 4509 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4510 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4511 goto retry; 4512 } 4513 4514 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4515 /* 4516 * Disable CMM virtualization; we will emulate the ESSA 4517 * instruction manually, in order to provide additional 4518 * functionalities needed for live migration. 4519 */ 4520 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4521 goto retry; 4522 } 4523 4524 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4525 /* 4526 * Re-enable CMM virtualization if CMMA is available and 4527 * CMM has been used. 4528 */ 4529 if ((vcpu->kvm->arch.use_cmma) && 4530 (vcpu->kvm->mm->context.uses_cmm)) 4531 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4532 goto retry; 4533 } 4534 4535 /* we left the vsie handler, nothing to do, just clear the request */ 4536 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4537 4538 return 0; 4539 } 4540 4541 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4542 { 4543 struct kvm_vcpu *vcpu; 4544 union tod_clock clk; 4545 unsigned long i; 4546 4547 preempt_disable(); 4548 4549 store_tod_clock_ext(&clk); 4550 4551 kvm->arch.epoch = gtod->tod - clk.tod; 4552 kvm->arch.epdx = 0; 4553 if (test_kvm_facility(kvm, 139)) { 4554 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4555 if (kvm->arch.epoch > gtod->tod) 4556 kvm->arch.epdx -= 1; 4557 } 4558 4559 kvm_s390_vcpu_block_all(kvm); 4560 kvm_for_each_vcpu(i, vcpu, kvm) { 4561 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4562 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4563 } 4564 4565 kvm_s390_vcpu_unblock_all(kvm); 4566 preempt_enable(); 4567 } 4568 4569 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4570 { 4571 if (!mutex_trylock(&kvm->lock)) 4572 return 0; 4573 __kvm_s390_set_tod_clock(kvm, gtod); 4574 mutex_unlock(&kvm->lock); 4575 return 1; 4576 } 4577 4578 /** 4579 * kvm_arch_fault_in_page - fault-in guest page if necessary 4580 * @vcpu: The corresponding virtual cpu 4581 * @gpa: Guest physical address 4582 * @writable: Whether the page should be writable or not 4583 * 4584 * Make sure that a guest page has been faulted-in on the host. 4585 * 4586 * Return: Zero on success, negative error code otherwise. 4587 */ 4588 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4589 { 4590 return gmap_fault(vcpu->arch.gmap, gpa, 4591 writable ? FAULT_FLAG_WRITE : 0); 4592 } 4593 4594 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4595 unsigned long token) 4596 { 4597 struct kvm_s390_interrupt inti; 4598 struct kvm_s390_irq irq; 4599 4600 if (start_token) { 4601 irq.u.ext.ext_params2 = token; 4602 irq.type = KVM_S390_INT_PFAULT_INIT; 4603 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4604 } else { 4605 inti.type = KVM_S390_INT_PFAULT_DONE; 4606 inti.parm64 = token; 4607 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4608 } 4609 } 4610 4611 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4612 struct kvm_async_pf *work) 4613 { 4614 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4615 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4616 4617 return true; 4618 } 4619 4620 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4621 struct kvm_async_pf *work) 4622 { 4623 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4624 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4625 } 4626 4627 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4628 struct kvm_async_pf *work) 4629 { 4630 /* s390 will always inject the page directly */ 4631 } 4632 4633 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4634 { 4635 /* 4636 * s390 will always inject the page directly, 4637 * but we still want check_async_completion to cleanup 4638 */ 4639 return true; 4640 } 4641 4642 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4643 { 4644 hva_t hva; 4645 struct kvm_arch_async_pf arch; 4646 4647 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4648 return false; 4649 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4650 vcpu->arch.pfault_compare) 4651 return false; 4652 if (psw_extint_disabled(vcpu)) 4653 return false; 4654 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4655 return false; 4656 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4657 return false; 4658 if (!vcpu->arch.gmap->pfault_enabled) 4659 return false; 4660 4661 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4662 hva += current->thread.gmap_addr & ~PAGE_MASK; 4663 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4664 return false; 4665 4666 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4667 } 4668 4669 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4670 { 4671 int rc, cpuflags; 4672 4673 /* 4674 * On s390 notifications for arriving pages will be delivered directly 4675 * to the guest but the house keeping for completed pfaults is 4676 * handled outside the worker. 4677 */ 4678 kvm_check_async_pf_completion(vcpu); 4679 4680 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4681 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4682 4683 if (need_resched()) 4684 schedule(); 4685 4686 if (!kvm_is_ucontrol(vcpu->kvm)) { 4687 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4688 if (rc || guestdbg_exit_pending(vcpu)) 4689 return rc; 4690 } 4691 4692 rc = kvm_s390_handle_requests(vcpu); 4693 if (rc) 4694 return rc; 4695 4696 if (guestdbg_enabled(vcpu)) { 4697 kvm_s390_backup_guest_per_regs(vcpu); 4698 kvm_s390_patch_guest_per_regs(vcpu); 4699 } 4700 4701 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4702 4703 vcpu->arch.sie_block->icptcode = 0; 4704 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4705 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4706 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4707 4708 return 0; 4709 } 4710 4711 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4712 { 4713 struct kvm_s390_pgm_info pgm_info = { 4714 .code = PGM_ADDRESSING, 4715 }; 4716 u8 opcode, ilen; 4717 int rc; 4718 4719 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4720 trace_kvm_s390_sie_fault(vcpu); 4721 4722 /* 4723 * We want to inject an addressing exception, which is defined as a 4724 * suppressing or terminating exception. However, since we came here 4725 * by a DAT access exception, the PSW still points to the faulting 4726 * instruction since DAT exceptions are nullifying. So we've got 4727 * to look up the current opcode to get the length of the instruction 4728 * to be able to forward the PSW. 4729 */ 4730 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4731 ilen = insn_length(opcode); 4732 if (rc < 0) { 4733 return rc; 4734 } else if (rc) { 4735 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4736 * Forward by arbitrary ilc, injection will take care of 4737 * nullification if necessary. 4738 */ 4739 pgm_info = vcpu->arch.pgm; 4740 ilen = 4; 4741 } 4742 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4743 kvm_s390_forward_psw(vcpu, ilen); 4744 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4745 } 4746 4747 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4748 { 4749 struct mcck_volatile_info *mcck_info; 4750 struct sie_page *sie_page; 4751 4752 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4753 vcpu->arch.sie_block->icptcode); 4754 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4755 4756 if (guestdbg_enabled(vcpu)) 4757 kvm_s390_restore_guest_per_regs(vcpu); 4758 4759 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4760 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4761 4762 if (exit_reason == -EINTR) { 4763 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4764 sie_page = container_of(vcpu->arch.sie_block, 4765 struct sie_page, sie_block); 4766 mcck_info = &sie_page->mcck_info; 4767 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4768 return 0; 4769 } 4770 4771 if (vcpu->arch.sie_block->icptcode > 0) { 4772 int rc = kvm_handle_sie_intercept(vcpu); 4773 4774 if (rc != -EOPNOTSUPP) 4775 return rc; 4776 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4777 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4778 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4779 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4780 return -EREMOTE; 4781 } else if (exit_reason != -EFAULT) { 4782 vcpu->stat.exit_null++; 4783 return 0; 4784 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4785 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4786 vcpu->run->s390_ucontrol.trans_exc_code = 4787 current->thread.gmap_addr; 4788 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4789 return -EREMOTE; 4790 } else if (current->thread.gmap_pfault) { 4791 trace_kvm_s390_major_guest_pfault(vcpu); 4792 current->thread.gmap_pfault = 0; 4793 if (kvm_arch_setup_async_pf(vcpu)) 4794 return 0; 4795 vcpu->stat.pfault_sync++; 4796 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4797 } 4798 return vcpu_post_run_fault_in_sie(vcpu); 4799 } 4800 4801 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4802 static int __vcpu_run(struct kvm_vcpu *vcpu) 4803 { 4804 int rc, exit_reason; 4805 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4806 4807 /* 4808 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4809 * ning the guest), so that memslots (and other stuff) are protected 4810 */ 4811 kvm_vcpu_srcu_read_lock(vcpu); 4812 4813 do { 4814 rc = vcpu_pre_run(vcpu); 4815 if (rc || guestdbg_exit_pending(vcpu)) 4816 break; 4817 4818 kvm_vcpu_srcu_read_unlock(vcpu); 4819 /* 4820 * As PF_VCPU will be used in fault handler, between 4821 * guest_enter and guest_exit should be no uaccess. 4822 */ 4823 local_irq_disable(); 4824 guest_enter_irqoff(); 4825 __disable_cpu_timer_accounting(vcpu); 4826 local_irq_enable(); 4827 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4828 memcpy(sie_page->pv_grregs, 4829 vcpu->run->s.regs.gprs, 4830 sizeof(sie_page->pv_grregs)); 4831 } 4832 if (test_cpu_flag(CIF_FPU)) 4833 load_fpu_regs(); 4834 exit_reason = sie64a(vcpu->arch.sie_block, 4835 vcpu->run->s.regs.gprs); 4836 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4837 memcpy(vcpu->run->s.regs.gprs, 4838 sie_page->pv_grregs, 4839 sizeof(sie_page->pv_grregs)); 4840 /* 4841 * We're not allowed to inject interrupts on intercepts 4842 * that leave the guest state in an "in-between" state 4843 * where the next SIE entry will do a continuation. 4844 * Fence interrupts in our "internal" PSW. 4845 */ 4846 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4847 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4848 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4849 } 4850 } 4851 local_irq_disable(); 4852 __enable_cpu_timer_accounting(vcpu); 4853 guest_exit_irqoff(); 4854 local_irq_enable(); 4855 kvm_vcpu_srcu_read_lock(vcpu); 4856 4857 rc = vcpu_post_run(vcpu, exit_reason); 4858 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4859 4860 kvm_vcpu_srcu_read_unlock(vcpu); 4861 return rc; 4862 } 4863 4864 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4865 { 4866 struct kvm_run *kvm_run = vcpu->run; 4867 struct runtime_instr_cb *riccb; 4868 struct gs_cb *gscb; 4869 4870 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4871 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4872 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4873 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4874 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4875 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4876 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4877 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4878 } 4879 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4880 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4881 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4882 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4883 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4884 kvm_clear_async_pf_completion_queue(vcpu); 4885 } 4886 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4887 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4888 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4889 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4890 } 4891 /* 4892 * If userspace sets the riccb (e.g. after migration) to a valid state, 4893 * we should enable RI here instead of doing the lazy enablement. 4894 */ 4895 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4896 test_kvm_facility(vcpu->kvm, 64) && 4897 riccb->v && 4898 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4899 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4900 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4901 } 4902 /* 4903 * If userspace sets the gscb (e.g. after migration) to non-zero, 4904 * we should enable GS here instead of doing the lazy enablement. 4905 */ 4906 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4907 test_kvm_facility(vcpu->kvm, 133) && 4908 gscb->gssm && 4909 !vcpu->arch.gs_enabled) { 4910 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4911 vcpu->arch.sie_block->ecb |= ECB_GS; 4912 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4913 vcpu->arch.gs_enabled = 1; 4914 } 4915 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4916 test_kvm_facility(vcpu->kvm, 82)) { 4917 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4918 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4919 } 4920 if (MACHINE_HAS_GS) { 4921 preempt_disable(); 4922 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 4923 if (current->thread.gs_cb) { 4924 vcpu->arch.host_gscb = current->thread.gs_cb; 4925 save_gs_cb(vcpu->arch.host_gscb); 4926 } 4927 if (vcpu->arch.gs_enabled) { 4928 current->thread.gs_cb = (struct gs_cb *) 4929 &vcpu->run->s.regs.gscb; 4930 restore_gs_cb(current->thread.gs_cb); 4931 } 4932 preempt_enable(); 4933 } 4934 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4935 } 4936 4937 static void sync_regs(struct kvm_vcpu *vcpu) 4938 { 4939 struct kvm_run *kvm_run = vcpu->run; 4940 4941 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4942 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4943 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4944 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4945 /* some control register changes require a tlb flush */ 4946 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4947 } 4948 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4949 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4950 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4951 } 4952 save_access_regs(vcpu->arch.host_acrs); 4953 restore_access_regs(vcpu->run->s.regs.acrs); 4954 /* save host (userspace) fprs/vrs */ 4955 save_fpu_regs(); 4956 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4957 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4958 if (cpu_has_vx()) 4959 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4960 else 4961 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4962 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4963 4964 /* Sync fmt2 only data */ 4965 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4966 sync_regs_fmt2(vcpu); 4967 } else { 4968 /* 4969 * In several places we have to modify our internal view to 4970 * not do things that are disallowed by the ultravisor. For 4971 * example we must not inject interrupts after specific exits 4972 * (e.g. 112 prefix page not secure). We do this by turning 4973 * off the machine check, external and I/O interrupt bits 4974 * of our PSW copy. To avoid getting validity intercepts, we 4975 * do only accept the condition code from userspace. 4976 */ 4977 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4978 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4979 PSW_MASK_CC; 4980 } 4981 4982 kvm_run->kvm_dirty_regs = 0; 4983 } 4984 4985 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4986 { 4987 struct kvm_run *kvm_run = vcpu->run; 4988 4989 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4990 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4991 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4992 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4993 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4994 if (MACHINE_HAS_GS) { 4995 preempt_disable(); 4996 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 4997 if (vcpu->arch.gs_enabled) 4998 save_gs_cb(current->thread.gs_cb); 4999 current->thread.gs_cb = vcpu->arch.host_gscb; 5000 restore_gs_cb(vcpu->arch.host_gscb); 5001 if (!vcpu->arch.host_gscb) 5002 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 5003 vcpu->arch.host_gscb = NULL; 5004 preempt_enable(); 5005 } 5006 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5007 } 5008 5009 static void store_regs(struct kvm_vcpu *vcpu) 5010 { 5011 struct kvm_run *kvm_run = vcpu->run; 5012 5013 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5014 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5015 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5016 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5017 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5018 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5019 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5020 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5021 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5022 save_access_regs(vcpu->run->s.regs.acrs); 5023 restore_access_regs(vcpu->arch.host_acrs); 5024 /* Save guest register state */ 5025 save_fpu_regs(); 5026 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5027 /* Restore will be done lazily at return */ 5028 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 5029 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 5030 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5031 store_regs_fmt2(vcpu); 5032 } 5033 5034 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5035 { 5036 struct kvm_run *kvm_run = vcpu->run; 5037 int rc; 5038 5039 /* 5040 * Running a VM while dumping always has the potential to 5041 * produce inconsistent dump data. But for PV vcpus a SIE 5042 * entry while dumping could also lead to a fatal validity 5043 * intercept which we absolutely want to avoid. 5044 */ 5045 if (vcpu->kvm->arch.pv.dumping) 5046 return -EINVAL; 5047 5048 if (kvm_run->immediate_exit) 5049 return -EINTR; 5050 5051 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5052 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5053 return -EINVAL; 5054 5055 vcpu_load(vcpu); 5056 5057 if (guestdbg_exit_pending(vcpu)) { 5058 kvm_s390_prepare_debug_exit(vcpu); 5059 rc = 0; 5060 goto out; 5061 } 5062 5063 kvm_sigset_activate(vcpu); 5064 5065 /* 5066 * no need to check the return value of vcpu_start as it can only have 5067 * an error for protvirt, but protvirt means user cpu state 5068 */ 5069 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5070 kvm_s390_vcpu_start(vcpu); 5071 } else if (is_vcpu_stopped(vcpu)) { 5072 pr_err_ratelimited("can't run stopped vcpu %d\n", 5073 vcpu->vcpu_id); 5074 rc = -EINVAL; 5075 goto out; 5076 } 5077 5078 sync_regs(vcpu); 5079 enable_cpu_timer_accounting(vcpu); 5080 5081 might_fault(); 5082 rc = __vcpu_run(vcpu); 5083 5084 if (signal_pending(current) && !rc) { 5085 kvm_run->exit_reason = KVM_EXIT_INTR; 5086 rc = -EINTR; 5087 } 5088 5089 if (guestdbg_exit_pending(vcpu) && !rc) { 5090 kvm_s390_prepare_debug_exit(vcpu); 5091 rc = 0; 5092 } 5093 5094 if (rc == -EREMOTE) { 5095 /* userspace support is needed, kvm_run has been prepared */ 5096 rc = 0; 5097 } 5098 5099 disable_cpu_timer_accounting(vcpu); 5100 store_regs(vcpu); 5101 5102 kvm_sigset_deactivate(vcpu); 5103 5104 vcpu->stat.exit_userspace++; 5105 out: 5106 vcpu_put(vcpu); 5107 return rc; 5108 } 5109 5110 /* 5111 * store status at address 5112 * we use have two special cases: 5113 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5114 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5115 */ 5116 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5117 { 5118 unsigned char archmode = 1; 5119 freg_t fprs[NUM_FPRS]; 5120 unsigned int px; 5121 u64 clkcomp, cputm; 5122 int rc; 5123 5124 px = kvm_s390_get_prefix(vcpu); 5125 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5126 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5127 return -EFAULT; 5128 gpa = 0; 5129 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5130 if (write_guest_real(vcpu, 163, &archmode, 1)) 5131 return -EFAULT; 5132 gpa = px; 5133 } else 5134 gpa -= __LC_FPREGS_SAVE_AREA; 5135 5136 /* manually convert vector registers if necessary */ 5137 if (cpu_has_vx()) { 5138 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5139 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5140 fprs, 128); 5141 } else { 5142 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5143 vcpu->run->s.regs.fprs, 128); 5144 } 5145 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5146 vcpu->run->s.regs.gprs, 128); 5147 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5148 &vcpu->arch.sie_block->gpsw, 16); 5149 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5150 &px, 4); 5151 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5152 &vcpu->run->s.regs.fpc, 4); 5153 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5154 &vcpu->arch.sie_block->todpr, 4); 5155 cputm = kvm_s390_get_cpu_timer(vcpu); 5156 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5157 &cputm, 8); 5158 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5159 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5160 &clkcomp, 8); 5161 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5162 &vcpu->run->s.regs.acrs, 64); 5163 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5164 &vcpu->arch.sie_block->gcr, 128); 5165 return rc ? -EFAULT : 0; 5166 } 5167 5168 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5169 { 5170 /* 5171 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5172 * switch in the run ioctl. Let's update our copies before we save 5173 * it into the save area 5174 */ 5175 save_fpu_regs(); 5176 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5177 save_access_regs(vcpu->run->s.regs.acrs); 5178 5179 return kvm_s390_store_status_unloaded(vcpu, addr); 5180 } 5181 5182 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5183 { 5184 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5185 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5186 } 5187 5188 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5189 { 5190 unsigned long i; 5191 struct kvm_vcpu *vcpu; 5192 5193 kvm_for_each_vcpu(i, vcpu, kvm) { 5194 __disable_ibs_on_vcpu(vcpu); 5195 } 5196 } 5197 5198 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5199 { 5200 if (!sclp.has_ibs) 5201 return; 5202 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5203 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5204 } 5205 5206 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5207 { 5208 int i, online_vcpus, r = 0, started_vcpus = 0; 5209 5210 if (!is_vcpu_stopped(vcpu)) 5211 return 0; 5212 5213 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5214 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5215 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5216 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5217 5218 /* Let's tell the UV that we want to change into the operating state */ 5219 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5220 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5221 if (r) { 5222 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5223 return r; 5224 } 5225 } 5226 5227 for (i = 0; i < online_vcpus; i++) { 5228 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5229 started_vcpus++; 5230 } 5231 5232 if (started_vcpus == 0) { 5233 /* we're the only active VCPU -> speed it up */ 5234 __enable_ibs_on_vcpu(vcpu); 5235 } else if (started_vcpus == 1) { 5236 /* 5237 * As we are starting a second VCPU, we have to disable 5238 * the IBS facility on all VCPUs to remove potentially 5239 * outstanding ENABLE requests. 5240 */ 5241 __disable_ibs_on_all_vcpus(vcpu->kvm); 5242 } 5243 5244 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5245 /* 5246 * The real PSW might have changed due to a RESTART interpreted by the 5247 * ultravisor. We block all interrupts and let the next sie exit 5248 * refresh our view. 5249 */ 5250 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5251 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5252 /* 5253 * Another VCPU might have used IBS while we were offline. 5254 * Let's play safe and flush the VCPU at startup. 5255 */ 5256 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5257 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5258 return 0; 5259 } 5260 5261 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5262 { 5263 int i, online_vcpus, r = 0, started_vcpus = 0; 5264 struct kvm_vcpu *started_vcpu = NULL; 5265 5266 if (is_vcpu_stopped(vcpu)) 5267 return 0; 5268 5269 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5270 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5271 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5272 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5273 5274 /* Let's tell the UV that we want to change into the stopped state */ 5275 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5276 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5277 if (r) { 5278 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5279 return r; 5280 } 5281 } 5282 5283 /* 5284 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5285 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5286 * have been fully processed. This will ensure that the VCPU 5287 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5288 */ 5289 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5290 kvm_s390_clear_stop_irq(vcpu); 5291 5292 __disable_ibs_on_vcpu(vcpu); 5293 5294 for (i = 0; i < online_vcpus; i++) { 5295 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5296 5297 if (!is_vcpu_stopped(tmp)) { 5298 started_vcpus++; 5299 started_vcpu = tmp; 5300 } 5301 } 5302 5303 if (started_vcpus == 1) { 5304 /* 5305 * As we only have one VCPU left, we want to enable the 5306 * IBS facility for that VCPU to speed it up. 5307 */ 5308 __enable_ibs_on_vcpu(started_vcpu); 5309 } 5310 5311 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5312 return 0; 5313 } 5314 5315 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5316 struct kvm_enable_cap *cap) 5317 { 5318 int r; 5319 5320 if (cap->flags) 5321 return -EINVAL; 5322 5323 switch (cap->cap) { 5324 case KVM_CAP_S390_CSS_SUPPORT: 5325 if (!vcpu->kvm->arch.css_support) { 5326 vcpu->kvm->arch.css_support = 1; 5327 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5328 trace_kvm_s390_enable_css(vcpu->kvm); 5329 } 5330 r = 0; 5331 break; 5332 default: 5333 r = -EINVAL; 5334 break; 5335 } 5336 return r; 5337 } 5338 5339 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5340 struct kvm_s390_mem_op *mop) 5341 { 5342 void __user *uaddr = (void __user *)mop->buf; 5343 void *sida_addr; 5344 int r = 0; 5345 5346 if (mop->flags || !mop->size) 5347 return -EINVAL; 5348 if (mop->size + mop->sida_offset < mop->size) 5349 return -EINVAL; 5350 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5351 return -E2BIG; 5352 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5353 return -EINVAL; 5354 5355 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5356 5357 switch (mop->op) { 5358 case KVM_S390_MEMOP_SIDA_READ: 5359 if (copy_to_user(uaddr, sida_addr, mop->size)) 5360 r = -EFAULT; 5361 5362 break; 5363 case KVM_S390_MEMOP_SIDA_WRITE: 5364 if (copy_from_user(sida_addr, uaddr, mop->size)) 5365 r = -EFAULT; 5366 break; 5367 } 5368 return r; 5369 } 5370 5371 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5372 struct kvm_s390_mem_op *mop) 5373 { 5374 void __user *uaddr = (void __user *)mop->buf; 5375 enum gacc_mode acc_mode; 5376 void *tmpbuf = NULL; 5377 int r; 5378 5379 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5380 KVM_S390_MEMOP_F_CHECK_ONLY | 5381 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5382 if (r) 5383 return r; 5384 if (mop->ar >= NUM_ACRS) 5385 return -EINVAL; 5386 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5387 return -EINVAL; 5388 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5389 tmpbuf = vmalloc(mop->size); 5390 if (!tmpbuf) 5391 return -ENOMEM; 5392 } 5393 5394 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5395 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5396 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5397 acc_mode, mop->key); 5398 goto out_inject; 5399 } 5400 if (acc_mode == GACC_FETCH) { 5401 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5402 mop->size, mop->key); 5403 if (r) 5404 goto out_inject; 5405 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5406 r = -EFAULT; 5407 goto out_free; 5408 } 5409 } else { 5410 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5411 r = -EFAULT; 5412 goto out_free; 5413 } 5414 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5415 mop->size, mop->key); 5416 } 5417 5418 out_inject: 5419 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5420 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5421 5422 out_free: 5423 vfree(tmpbuf); 5424 return r; 5425 } 5426 5427 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5428 struct kvm_s390_mem_op *mop) 5429 { 5430 int r, srcu_idx; 5431 5432 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5433 5434 switch (mop->op) { 5435 case KVM_S390_MEMOP_LOGICAL_READ: 5436 case KVM_S390_MEMOP_LOGICAL_WRITE: 5437 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5438 break; 5439 case KVM_S390_MEMOP_SIDA_READ: 5440 case KVM_S390_MEMOP_SIDA_WRITE: 5441 /* we are locked against sida going away by the vcpu->mutex */ 5442 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5443 break; 5444 default: 5445 r = -EINVAL; 5446 } 5447 5448 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5449 return r; 5450 } 5451 5452 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5453 unsigned int ioctl, unsigned long arg) 5454 { 5455 struct kvm_vcpu *vcpu = filp->private_data; 5456 void __user *argp = (void __user *)arg; 5457 int rc; 5458 5459 switch (ioctl) { 5460 case KVM_S390_IRQ: { 5461 struct kvm_s390_irq s390irq; 5462 5463 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5464 return -EFAULT; 5465 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5466 break; 5467 } 5468 case KVM_S390_INTERRUPT: { 5469 struct kvm_s390_interrupt s390int; 5470 struct kvm_s390_irq s390irq = {}; 5471 5472 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5473 return -EFAULT; 5474 if (s390int_to_s390irq(&s390int, &s390irq)) 5475 return -EINVAL; 5476 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5477 break; 5478 } 5479 default: 5480 rc = -ENOIOCTLCMD; 5481 break; 5482 } 5483 5484 /* 5485 * To simplify single stepping of userspace-emulated instructions, 5486 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5487 * should_handle_per_ifetch()). However, if userspace emulation injects 5488 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5489 * after (and not before) the interrupt delivery. 5490 */ 5491 if (!rc) 5492 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5493 5494 return rc; 5495 } 5496 5497 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5498 struct kvm_pv_cmd *cmd) 5499 { 5500 struct kvm_s390_pv_dmp dmp; 5501 void *data; 5502 int ret; 5503 5504 /* Dump initialization is a prerequisite */ 5505 if (!vcpu->kvm->arch.pv.dumping) 5506 return -EINVAL; 5507 5508 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5509 return -EFAULT; 5510 5511 /* We only handle this subcmd right now */ 5512 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5513 return -EINVAL; 5514 5515 /* CPU dump length is the same as create cpu storage donation. */ 5516 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5517 return -EINVAL; 5518 5519 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5520 if (!data) 5521 return -ENOMEM; 5522 5523 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5524 5525 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5526 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5527 5528 if (ret) 5529 ret = -EINVAL; 5530 5531 /* On success copy over the dump data */ 5532 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5533 ret = -EFAULT; 5534 5535 kvfree(data); 5536 return ret; 5537 } 5538 5539 long kvm_arch_vcpu_ioctl(struct file *filp, 5540 unsigned int ioctl, unsigned long arg) 5541 { 5542 struct kvm_vcpu *vcpu = filp->private_data; 5543 void __user *argp = (void __user *)arg; 5544 int idx; 5545 long r; 5546 u16 rc, rrc; 5547 5548 vcpu_load(vcpu); 5549 5550 switch (ioctl) { 5551 case KVM_S390_STORE_STATUS: 5552 idx = srcu_read_lock(&vcpu->kvm->srcu); 5553 r = kvm_s390_store_status_unloaded(vcpu, arg); 5554 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5555 break; 5556 case KVM_S390_SET_INITIAL_PSW: { 5557 psw_t psw; 5558 5559 r = -EFAULT; 5560 if (copy_from_user(&psw, argp, sizeof(psw))) 5561 break; 5562 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5563 break; 5564 } 5565 case KVM_S390_CLEAR_RESET: 5566 r = 0; 5567 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5568 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5569 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5570 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5571 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5572 rc, rrc); 5573 } 5574 break; 5575 case KVM_S390_INITIAL_RESET: 5576 r = 0; 5577 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5578 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5579 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5580 UVC_CMD_CPU_RESET_INITIAL, 5581 &rc, &rrc); 5582 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5583 rc, rrc); 5584 } 5585 break; 5586 case KVM_S390_NORMAL_RESET: 5587 r = 0; 5588 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5589 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5590 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5591 UVC_CMD_CPU_RESET, &rc, &rrc); 5592 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5593 rc, rrc); 5594 } 5595 break; 5596 case KVM_SET_ONE_REG: 5597 case KVM_GET_ONE_REG: { 5598 struct kvm_one_reg reg; 5599 r = -EINVAL; 5600 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5601 break; 5602 r = -EFAULT; 5603 if (copy_from_user(®, argp, sizeof(reg))) 5604 break; 5605 if (ioctl == KVM_SET_ONE_REG) 5606 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5607 else 5608 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5609 break; 5610 } 5611 #ifdef CONFIG_KVM_S390_UCONTROL 5612 case KVM_S390_UCAS_MAP: { 5613 struct kvm_s390_ucas_mapping ucasmap; 5614 5615 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5616 r = -EFAULT; 5617 break; 5618 } 5619 5620 if (!kvm_is_ucontrol(vcpu->kvm)) { 5621 r = -EINVAL; 5622 break; 5623 } 5624 5625 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5626 ucasmap.vcpu_addr, ucasmap.length); 5627 break; 5628 } 5629 case KVM_S390_UCAS_UNMAP: { 5630 struct kvm_s390_ucas_mapping ucasmap; 5631 5632 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5633 r = -EFAULT; 5634 break; 5635 } 5636 5637 if (!kvm_is_ucontrol(vcpu->kvm)) { 5638 r = -EINVAL; 5639 break; 5640 } 5641 5642 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5643 ucasmap.length); 5644 break; 5645 } 5646 #endif 5647 case KVM_S390_VCPU_FAULT: { 5648 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5649 break; 5650 } 5651 case KVM_ENABLE_CAP: 5652 { 5653 struct kvm_enable_cap cap; 5654 r = -EFAULT; 5655 if (copy_from_user(&cap, argp, sizeof(cap))) 5656 break; 5657 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5658 break; 5659 } 5660 case KVM_S390_MEM_OP: { 5661 struct kvm_s390_mem_op mem_op; 5662 5663 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5664 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5665 else 5666 r = -EFAULT; 5667 break; 5668 } 5669 case KVM_S390_SET_IRQ_STATE: { 5670 struct kvm_s390_irq_state irq_state; 5671 5672 r = -EFAULT; 5673 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5674 break; 5675 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5676 irq_state.len == 0 || 5677 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5678 r = -EINVAL; 5679 break; 5680 } 5681 /* do not use irq_state.flags, it will break old QEMUs */ 5682 r = kvm_s390_set_irq_state(vcpu, 5683 (void __user *) irq_state.buf, 5684 irq_state.len); 5685 break; 5686 } 5687 case KVM_S390_GET_IRQ_STATE: { 5688 struct kvm_s390_irq_state irq_state; 5689 5690 r = -EFAULT; 5691 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5692 break; 5693 if (irq_state.len == 0) { 5694 r = -EINVAL; 5695 break; 5696 } 5697 /* do not use irq_state.flags, it will break old QEMUs */ 5698 r = kvm_s390_get_irq_state(vcpu, 5699 (__u8 __user *) irq_state.buf, 5700 irq_state.len); 5701 break; 5702 } 5703 case KVM_S390_PV_CPU_COMMAND: { 5704 struct kvm_pv_cmd cmd; 5705 5706 r = -EINVAL; 5707 if (!is_prot_virt_host()) 5708 break; 5709 5710 r = -EFAULT; 5711 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5712 break; 5713 5714 r = -EINVAL; 5715 if (cmd.flags) 5716 break; 5717 5718 /* We only handle this cmd right now */ 5719 if (cmd.cmd != KVM_PV_DUMP) 5720 break; 5721 5722 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5723 5724 /* Always copy over UV rc / rrc data */ 5725 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5726 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5727 r = -EFAULT; 5728 break; 5729 } 5730 default: 5731 r = -ENOTTY; 5732 } 5733 5734 vcpu_put(vcpu); 5735 return r; 5736 } 5737 5738 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5739 { 5740 #ifdef CONFIG_KVM_S390_UCONTROL 5741 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5742 && (kvm_is_ucontrol(vcpu->kvm))) { 5743 vmf->page = virt_to_page(vcpu->arch.sie_block); 5744 get_page(vmf->page); 5745 return 0; 5746 } 5747 #endif 5748 return VM_FAULT_SIGBUS; 5749 } 5750 5751 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5752 { 5753 return true; 5754 } 5755 5756 /* Section: memory related */ 5757 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5758 const struct kvm_memory_slot *old, 5759 struct kvm_memory_slot *new, 5760 enum kvm_mr_change change) 5761 { 5762 gpa_t size; 5763 5764 /* When we are protected, we should not change the memory slots */ 5765 if (kvm_s390_pv_get_handle(kvm)) 5766 return -EINVAL; 5767 5768 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5769 /* 5770 * A few sanity checks. We can have memory slots which have to be 5771 * located/ended at a segment boundary (1MB). The memory in userland is 5772 * ok to be fragmented into various different vmas. It is okay to mmap() 5773 * and munmap() stuff in this slot after doing this call at any time 5774 */ 5775 5776 if (new->userspace_addr & 0xffffful) 5777 return -EINVAL; 5778 5779 size = new->npages * PAGE_SIZE; 5780 if (size & 0xffffful) 5781 return -EINVAL; 5782 5783 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5784 return -EINVAL; 5785 } 5786 5787 if (!kvm->arch.migration_mode) 5788 return 0; 5789 5790 /* 5791 * Turn off migration mode when: 5792 * - userspace creates a new memslot with dirty logging off, 5793 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5794 * dirty logging is turned off. 5795 * Migration mode expects dirty page logging being enabled to store 5796 * its dirty bitmap. 5797 */ 5798 if (change != KVM_MR_DELETE && 5799 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5800 WARN(kvm_s390_vm_stop_migration(kvm), 5801 "Failed to stop migration mode"); 5802 5803 return 0; 5804 } 5805 5806 void kvm_arch_commit_memory_region(struct kvm *kvm, 5807 struct kvm_memory_slot *old, 5808 const struct kvm_memory_slot *new, 5809 enum kvm_mr_change change) 5810 { 5811 int rc = 0; 5812 5813 switch (change) { 5814 case KVM_MR_DELETE: 5815 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5816 old->npages * PAGE_SIZE); 5817 break; 5818 case KVM_MR_MOVE: 5819 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5820 old->npages * PAGE_SIZE); 5821 if (rc) 5822 break; 5823 fallthrough; 5824 case KVM_MR_CREATE: 5825 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5826 new->base_gfn * PAGE_SIZE, 5827 new->npages * PAGE_SIZE); 5828 break; 5829 case KVM_MR_FLAGS_ONLY: 5830 break; 5831 default: 5832 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5833 } 5834 if (rc) 5835 pr_warn("failed to commit memory region\n"); 5836 return; 5837 } 5838 5839 static inline unsigned long nonhyp_mask(int i) 5840 { 5841 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5842 5843 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5844 } 5845 5846 static int __init kvm_s390_init(void) 5847 { 5848 int i, r; 5849 5850 if (!sclp.has_sief2) { 5851 pr_info("SIE is not available\n"); 5852 return -ENODEV; 5853 } 5854 5855 if (nested && hpage) { 5856 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5857 return -EINVAL; 5858 } 5859 5860 for (i = 0; i < 16; i++) 5861 kvm_s390_fac_base[i] |= 5862 stfle_fac_list[i] & nonhyp_mask(i); 5863 5864 r = __kvm_s390_init(); 5865 if (r) 5866 return r; 5867 5868 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5869 if (r) { 5870 __kvm_s390_exit(); 5871 return r; 5872 } 5873 return 0; 5874 } 5875 5876 static void __exit kvm_s390_exit(void) 5877 { 5878 kvm_exit(); 5879 5880 __kvm_s390_exit(); 5881 } 5882 5883 module_init(kvm_s390_init); 5884 module_exit(kvm_s390_exit); 5885 5886 /* 5887 * Enable autoloading of the kvm module. 5888 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5889 * since x86 takes a different approach. 5890 */ 5891 #include <linux/miscdevice.h> 5892 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5893 MODULE_ALIAS("devname:kvm"); 5894