1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/cpufeature.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 #include <linux/string.h> 34 #include <linux/pgtable.h> 35 #include <linux/mmu_notifier.h> 36 37 #include <asm/access-regs.h> 38 #include <asm/asm-offsets.h> 39 #include <asm/lowcore.h> 40 #include <asm/machine.h> 41 #include <asm/stp.h> 42 #include <asm/gmap.h> 43 #include <asm/gmap_helpers.h> 44 #include <asm/nmi.h> 45 #include <asm/isc.h> 46 #include <asm/sclp.h> 47 #include <asm/cpacf.h> 48 #include <asm/timex.h> 49 #include <asm/asm.h> 50 #include <asm/fpu.h> 51 #include <asm/ap.h> 52 #include <asm/uv.h> 53 #include "kvm-s390.h" 54 #include "gaccess.h" 55 #include "pci.h" 56 57 #define CREATE_TRACE_POINTS 58 #include "trace.h" 59 #include "trace-s390.h" 60 61 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 62 #define LOCAL_IRQS 32 63 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 64 (KVM_MAX_VCPUS + LOCAL_IRQS)) 65 66 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 67 KVM_GENERIC_VM_STATS(), 68 STATS_DESC_COUNTER(VM, inject_io), 69 STATS_DESC_COUNTER(VM, inject_float_mchk), 70 STATS_DESC_COUNTER(VM, inject_pfault_done), 71 STATS_DESC_COUNTER(VM, inject_service_signal), 72 STATS_DESC_COUNTER(VM, inject_virtio), 73 STATS_DESC_COUNTER(VM, aen_forward), 74 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 75 STATS_DESC_COUNTER(VM, gmap_shadow_create), 76 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 77 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 78 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 79 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 80 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 81 }; 82 83 const struct kvm_stats_header kvm_vm_stats_header = { 84 .name_size = KVM_STATS_NAME_SIZE, 85 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 86 .id_offset = sizeof(struct kvm_stats_header), 87 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 88 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 89 sizeof(kvm_vm_stats_desc), 90 }; 91 92 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 93 KVM_GENERIC_VCPU_STATS(), 94 STATS_DESC_COUNTER(VCPU, exit_userspace), 95 STATS_DESC_COUNTER(VCPU, exit_null), 96 STATS_DESC_COUNTER(VCPU, exit_external_request), 97 STATS_DESC_COUNTER(VCPU, exit_io_request), 98 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 99 STATS_DESC_COUNTER(VCPU, exit_stop_request), 100 STATS_DESC_COUNTER(VCPU, exit_validity), 101 STATS_DESC_COUNTER(VCPU, exit_instruction), 102 STATS_DESC_COUNTER(VCPU, exit_pei), 103 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 104 STATS_DESC_COUNTER(VCPU, instruction_lctl), 105 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 106 STATS_DESC_COUNTER(VCPU, instruction_stctl), 107 STATS_DESC_COUNTER(VCPU, instruction_stctg), 108 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 109 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 110 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 111 STATS_DESC_COUNTER(VCPU, deliver_ckc), 112 STATS_DESC_COUNTER(VCPU, deliver_cputm), 113 STATS_DESC_COUNTER(VCPU, deliver_external_call), 114 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_virtio), 117 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 118 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 119 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 120 STATS_DESC_COUNTER(VCPU, deliver_program), 121 STATS_DESC_COUNTER(VCPU, deliver_io), 122 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 123 STATS_DESC_COUNTER(VCPU, exit_wait_state), 124 STATS_DESC_COUNTER(VCPU, inject_ckc), 125 STATS_DESC_COUNTER(VCPU, inject_cputm), 126 STATS_DESC_COUNTER(VCPU, inject_external_call), 127 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 128 STATS_DESC_COUNTER(VCPU, inject_mchk), 129 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 130 STATS_DESC_COUNTER(VCPU, inject_program), 131 STATS_DESC_COUNTER(VCPU, inject_restart), 132 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 133 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 134 STATS_DESC_COUNTER(VCPU, instruction_epsw), 135 STATS_DESC_COUNTER(VCPU, instruction_gs), 136 STATS_DESC_COUNTER(VCPU, instruction_io_other), 137 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 138 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 139 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 140 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 141 STATS_DESC_COUNTER(VCPU, instruction_ptff), 142 STATS_DESC_COUNTER(VCPU, instruction_sck), 143 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 144 STATS_DESC_COUNTER(VCPU, instruction_stidp), 145 STATS_DESC_COUNTER(VCPU, instruction_spx), 146 STATS_DESC_COUNTER(VCPU, instruction_stpx), 147 STATS_DESC_COUNTER(VCPU, instruction_stap), 148 STATS_DESC_COUNTER(VCPU, instruction_iske), 149 STATS_DESC_COUNTER(VCPU, instruction_ri), 150 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 151 STATS_DESC_COUNTER(VCPU, instruction_sske), 152 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 153 STATS_DESC_COUNTER(VCPU, instruction_stsi), 154 STATS_DESC_COUNTER(VCPU, instruction_stfl), 155 STATS_DESC_COUNTER(VCPU, instruction_tb), 156 STATS_DESC_COUNTER(VCPU, instruction_tpi), 157 STATS_DESC_COUNTER(VCPU, instruction_tprot), 158 STATS_DESC_COUNTER(VCPU, instruction_tsch), 159 STATS_DESC_COUNTER(VCPU, instruction_sie), 160 STATS_DESC_COUNTER(VCPU, instruction_essa), 161 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 174 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 175 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 176 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 177 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 181 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 182 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 183 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 184 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 185 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 186 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 187 STATS_DESC_COUNTER(VCPU, pfault_sync) 188 }; 189 190 const struct kvm_stats_header kvm_vcpu_stats_header = { 191 .name_size = KVM_STATS_NAME_SIZE, 192 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 193 .id_offset = sizeof(struct kvm_stats_header), 194 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 195 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 196 sizeof(kvm_vcpu_stats_desc), 197 }; 198 199 /* allow nested virtualization in KVM (if enabled by user space) */ 200 static int nested; 201 module_param(nested, int, S_IRUGO); 202 MODULE_PARM_DESC(nested, "Nested virtualization support"); 203 204 /* allow 1m huge page guest backing, if !nested */ 205 static int hpage; 206 module_param(hpage, int, 0444); 207 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 208 209 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 210 static u8 halt_poll_max_steal = 10; 211 module_param(halt_poll_max_steal, byte, 0644); 212 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 213 214 /* if set to true, the GISA will be initialized and used if available */ 215 static bool use_gisa = true; 216 module_param(use_gisa, bool, 0644); 217 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 218 219 /* maximum diag9c forwarding per second */ 220 unsigned int diag9c_forwarding_hz; 221 module_param(diag9c_forwarding_hz, uint, 0644); 222 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 223 224 /* 225 * allow asynchronous deinit for protected guests; enable by default since 226 * the feature is opt-in anyway 227 */ 228 static int async_destroy = 1; 229 module_param(async_destroy, int, 0444); 230 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 231 232 /* 233 * For now we handle at most 16 double words as this is what the s390 base 234 * kernel handles and stores in the prefix page. If we ever need to go beyond 235 * this, this requires changes to code, but the external uapi can stay. 236 */ 237 #define SIZE_INTERNAL 16 238 239 /* 240 * Base feature mask that defines default mask for facilities. Consists of the 241 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 242 */ 243 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 244 /* 245 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 246 * and defines the facilities that can be enabled via a cpu model. 247 */ 248 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 249 250 static unsigned long kvm_s390_fac_size(void) 251 { 252 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 253 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 254 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 255 sizeof(stfle_fac_list)); 256 257 return SIZE_INTERNAL; 258 } 259 260 /* available cpu features supported by kvm */ 261 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 262 /* available subfunctions indicated via query / "test bit" */ 263 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 264 265 static struct gmap_notifier gmap_notifier; 266 static struct gmap_notifier vsie_gmap_notifier; 267 debug_info_t *kvm_s390_dbf; 268 debug_info_t *kvm_s390_dbf_uv; 269 270 /* Section: not file related */ 271 /* forward declarations */ 272 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 273 unsigned long end); 274 static int sca_switch_to_extended(struct kvm *kvm); 275 276 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 277 { 278 u8 delta_idx = 0; 279 280 /* 281 * The TOD jumps by delta, we have to compensate this by adding 282 * -delta to the epoch. 283 */ 284 delta = -delta; 285 286 /* sign-extension - we're adding to signed values below */ 287 if ((s64)delta < 0) 288 delta_idx = -1; 289 290 scb->epoch += delta; 291 if (scb->ecd & ECD_MEF) { 292 scb->epdx += delta_idx; 293 if (scb->epoch < delta) 294 scb->epdx += 1; 295 } 296 } 297 298 /* 299 * This callback is executed during stop_machine(). All CPUs are therefore 300 * temporarily stopped. In order not to change guest behavior, we have to 301 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 302 * so a CPU won't be stopped while calculating with the epoch. 303 */ 304 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 305 void *v) 306 { 307 struct kvm *kvm; 308 struct kvm_vcpu *vcpu; 309 unsigned long i; 310 unsigned long long *delta = v; 311 312 list_for_each_entry(kvm, &vm_list, vm_list) { 313 kvm_for_each_vcpu(i, vcpu, kvm) { 314 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 315 if (i == 0) { 316 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 317 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 318 } 319 if (vcpu->arch.cputm_enabled) 320 vcpu->arch.cputm_start += *delta; 321 if (vcpu->arch.vsie_block) 322 kvm_clock_sync_scb(vcpu->arch.vsie_block, 323 *delta); 324 } 325 } 326 return NOTIFY_OK; 327 } 328 329 static struct notifier_block kvm_clock_notifier = { 330 .notifier_call = kvm_clock_sync, 331 }; 332 333 static void allow_cpu_feat(unsigned long nr) 334 { 335 set_bit_inv(nr, kvm_s390_available_cpu_feat); 336 } 337 338 static inline int plo_test_bit(unsigned char nr) 339 { 340 unsigned long function = (unsigned long)nr | 0x100; 341 int cc; 342 343 asm volatile( 344 " lgr 0,%[function]\n" 345 /* Parameter registers are ignored for "test bit" */ 346 " plo 0,0,0,0(0)\n" 347 CC_IPM(cc) 348 : CC_OUT(cc, cc) 349 : [function] "d" (function) 350 : CC_CLOBBER_LIST("0")); 351 return CC_TRANSFORM(cc) == 0; 352 } 353 354 static __always_inline void pfcr_query(u8 (*query)[16]) 355 { 356 asm volatile( 357 " lghi 0,0\n" 358 " .insn rsy,0xeb0000000016,0,0,%[query]\n" 359 : [query] "=QS" (*query) 360 : 361 : "cc", "0"); 362 } 363 364 static __always_inline void __sortl_query(u8 (*query)[32]) 365 { 366 asm volatile( 367 " lghi 0,0\n" 368 " la 1,%[query]\n" 369 /* Parameter registers are ignored */ 370 " .insn rre,0xb9380000,2,4\n" 371 : [query] "=R" (*query) 372 : 373 : "cc", "0", "1"); 374 } 375 376 static __always_inline void __dfltcc_query(u8 (*query)[32]) 377 { 378 asm volatile( 379 " lghi 0,0\n" 380 " la 1,%[query]\n" 381 /* Parameter registers are ignored */ 382 " .insn rrf,0xb9390000,2,4,6,0\n" 383 : [query] "=R" (*query) 384 : 385 : "cc", "0", "1"); 386 } 387 388 static void __init kvm_s390_cpu_feat_init(void) 389 { 390 int i; 391 392 for (i = 0; i < 256; ++i) { 393 if (plo_test_bit(i)) 394 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 395 } 396 397 if (test_facility(28)) /* TOD-clock steering */ 398 ptff(kvm_s390_available_subfunc.ptff, 399 sizeof(kvm_s390_available_subfunc.ptff), 400 PTFF_QAF); 401 402 if (test_facility(17)) { /* MSA */ 403 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 404 kvm_s390_available_subfunc.kmac); 405 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.kmc); 407 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 408 kvm_s390_available_subfunc.km); 409 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.kimd); 411 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 412 kvm_s390_available_subfunc.klmd); 413 } 414 if (test_facility(76)) /* MSA3 */ 415 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 416 kvm_s390_available_subfunc.pckmo); 417 if (test_facility(77)) { /* MSA4 */ 418 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 419 kvm_s390_available_subfunc.kmctr); 420 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 421 kvm_s390_available_subfunc.kmf); 422 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 423 kvm_s390_available_subfunc.kmo); 424 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 425 kvm_s390_available_subfunc.pcc); 426 } 427 if (test_facility(57)) /* MSA5 */ 428 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 429 kvm_s390_available_subfunc.ppno); 430 431 if (test_facility(146)) /* MSA8 */ 432 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 433 kvm_s390_available_subfunc.kma); 434 435 if (test_facility(155)) /* MSA9 */ 436 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 437 kvm_s390_available_subfunc.kdsa); 438 439 if (test_facility(150)) /* SORTL */ 440 __sortl_query(&kvm_s390_available_subfunc.sortl); 441 442 if (test_facility(151)) /* DFLTCC */ 443 __dfltcc_query(&kvm_s390_available_subfunc.dfltcc); 444 445 if (test_facility(201)) /* PFCR */ 446 pfcr_query(&kvm_s390_available_subfunc.pfcr); 447 448 if (machine_has_esop()) 449 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 450 /* 451 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 452 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 453 */ 454 if (!sclp.has_sief2 || !machine_has_esop() || !sclp.has_64bscao || 455 !test_facility(3) || !nested) 456 return; 457 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 458 if (sclp.has_64bscao) 459 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 460 if (sclp.has_siif) 461 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 462 if (sclp.has_gpere) 463 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 464 if (sclp.has_gsls) 465 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 466 if (sclp.has_ib) 467 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 468 if (sclp.has_cei) 469 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 470 if (sclp.has_ibs) 471 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 472 if (sclp.has_kss) 473 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 474 /* 475 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 476 * all skey handling functions read/set the skey from the PGSTE 477 * instead of the real storage key. 478 * 479 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 480 * pages being detected as preserved although they are resident. 481 * 482 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 483 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 484 * 485 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 486 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 487 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 488 * 489 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 490 * cannot easily shadow the SCA because of the ipte lock. 491 */ 492 } 493 494 static int __init __kvm_s390_init(void) 495 { 496 int rc = -ENOMEM; 497 498 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 499 if (!kvm_s390_dbf) 500 return -ENOMEM; 501 502 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 503 if (!kvm_s390_dbf_uv) 504 goto err_kvm_uv; 505 506 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 507 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 508 goto err_debug_view; 509 510 kvm_s390_cpu_feat_init(); 511 512 /* Register floating interrupt controller interface. */ 513 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 514 if (rc) { 515 pr_err("A FLIC registration call failed with rc=%d\n", rc); 516 goto err_flic; 517 } 518 519 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 520 rc = kvm_s390_pci_init(); 521 if (rc) { 522 pr_err("Unable to allocate AIFT for PCI\n"); 523 goto err_pci; 524 } 525 } 526 527 rc = kvm_s390_gib_init(GAL_ISC); 528 if (rc) 529 goto err_gib; 530 531 gmap_notifier.notifier_call = kvm_gmap_notifier; 532 gmap_register_pte_notifier(&gmap_notifier); 533 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 534 gmap_register_pte_notifier(&vsie_gmap_notifier); 535 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 536 &kvm_clock_notifier); 537 538 return 0; 539 540 err_gib: 541 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 542 kvm_s390_pci_exit(); 543 err_pci: 544 err_flic: 545 err_debug_view: 546 debug_unregister(kvm_s390_dbf_uv); 547 err_kvm_uv: 548 debug_unregister(kvm_s390_dbf); 549 return rc; 550 } 551 552 static void __kvm_s390_exit(void) 553 { 554 gmap_unregister_pte_notifier(&gmap_notifier); 555 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 556 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 557 &kvm_clock_notifier); 558 559 kvm_s390_gib_destroy(); 560 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 561 kvm_s390_pci_exit(); 562 debug_unregister(kvm_s390_dbf); 563 debug_unregister(kvm_s390_dbf_uv); 564 } 565 566 /* Section: device related */ 567 long kvm_arch_dev_ioctl(struct file *filp, 568 unsigned int ioctl, unsigned long arg) 569 { 570 if (ioctl == KVM_S390_ENABLE_SIE) 571 return s390_enable_sie(); 572 return -EINVAL; 573 } 574 575 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 576 { 577 int r; 578 579 switch (ext) { 580 case KVM_CAP_S390_PSW: 581 case KVM_CAP_S390_GMAP: 582 case KVM_CAP_SYNC_MMU: 583 #ifdef CONFIG_KVM_S390_UCONTROL 584 case KVM_CAP_S390_UCONTROL: 585 #endif 586 case KVM_CAP_ASYNC_PF: 587 case KVM_CAP_SYNC_REGS: 588 case KVM_CAP_ONE_REG: 589 case KVM_CAP_ENABLE_CAP: 590 case KVM_CAP_S390_CSS_SUPPORT: 591 case KVM_CAP_IOEVENTFD: 592 case KVM_CAP_S390_IRQCHIP: 593 case KVM_CAP_VM_ATTRIBUTES: 594 case KVM_CAP_MP_STATE: 595 case KVM_CAP_IMMEDIATE_EXIT: 596 case KVM_CAP_S390_INJECT_IRQ: 597 case KVM_CAP_S390_USER_SIGP: 598 case KVM_CAP_S390_USER_STSI: 599 case KVM_CAP_S390_SKEYS: 600 case KVM_CAP_S390_IRQ_STATE: 601 case KVM_CAP_S390_USER_INSTR0: 602 case KVM_CAP_S390_CMMA_MIGRATION: 603 case KVM_CAP_S390_AIS: 604 case KVM_CAP_S390_AIS_MIGRATION: 605 case KVM_CAP_S390_VCPU_RESETS: 606 case KVM_CAP_SET_GUEST_DEBUG: 607 case KVM_CAP_S390_DIAG318: 608 case KVM_CAP_IRQFD_RESAMPLE: 609 r = 1; 610 break; 611 case KVM_CAP_SET_GUEST_DEBUG2: 612 r = KVM_GUESTDBG_VALID_MASK; 613 break; 614 case KVM_CAP_S390_HPAGE_1M: 615 r = 0; 616 if (hpage && !(kvm && kvm_is_ucontrol(kvm))) 617 r = 1; 618 break; 619 case KVM_CAP_S390_MEM_OP: 620 r = MEM_OP_MAX_SIZE; 621 break; 622 case KVM_CAP_S390_MEM_OP_EXTENSION: 623 /* 624 * Flag bits indicating which extensions are supported. 625 * If r > 0, the base extension must also be supported/indicated, 626 * in order to maintain backwards compatibility. 627 */ 628 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 629 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 630 break; 631 case KVM_CAP_NR_VCPUS: 632 case KVM_CAP_MAX_VCPUS: 633 case KVM_CAP_MAX_VCPU_ID: 634 r = KVM_S390_BSCA_CPU_SLOTS; 635 if (!kvm_s390_use_sca_entries()) 636 r = KVM_MAX_VCPUS; 637 else if (sclp.has_esca && sclp.has_64bscao) 638 r = KVM_S390_ESCA_CPU_SLOTS; 639 if (ext == KVM_CAP_NR_VCPUS) 640 r = min_t(unsigned int, num_online_cpus(), r); 641 break; 642 case KVM_CAP_S390_COW: 643 r = machine_has_esop(); 644 break; 645 case KVM_CAP_S390_VECTOR_REGISTERS: 646 r = test_facility(129); 647 break; 648 case KVM_CAP_S390_RI: 649 r = test_facility(64); 650 break; 651 case KVM_CAP_S390_GS: 652 r = test_facility(133); 653 break; 654 case KVM_CAP_S390_BPB: 655 r = test_facility(82); 656 break; 657 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 658 r = async_destroy && is_prot_virt_host(); 659 break; 660 case KVM_CAP_S390_PROTECTED: 661 r = is_prot_virt_host(); 662 break; 663 case KVM_CAP_S390_PROTECTED_DUMP: { 664 u64 pv_cmds_dump[] = { 665 BIT_UVC_CMD_DUMP_INIT, 666 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 667 BIT_UVC_CMD_DUMP_CPU, 668 BIT_UVC_CMD_DUMP_COMPLETE, 669 }; 670 int i; 671 672 r = is_prot_virt_host(); 673 674 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 675 if (!test_bit_inv(pv_cmds_dump[i], 676 (unsigned long *)&uv_info.inst_calls_list)) { 677 r = 0; 678 break; 679 } 680 } 681 break; 682 } 683 case KVM_CAP_S390_ZPCI_OP: 684 r = kvm_s390_pci_interp_allowed(); 685 break; 686 case KVM_CAP_S390_CPU_TOPOLOGY: 687 r = test_facility(11); 688 break; 689 default: 690 r = 0; 691 } 692 return r; 693 } 694 695 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 696 { 697 int i; 698 gfn_t cur_gfn, last_gfn; 699 unsigned long gaddr, vmaddr; 700 struct gmap *gmap = kvm->arch.gmap; 701 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 702 703 /* Loop over all guest segments */ 704 cur_gfn = memslot->base_gfn; 705 last_gfn = memslot->base_gfn + memslot->npages; 706 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 707 gaddr = gfn_to_gpa(cur_gfn); 708 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 709 if (kvm_is_error_hva(vmaddr)) 710 continue; 711 712 bitmap_zero(bitmap, _PAGE_ENTRIES); 713 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 714 for (i = 0; i < _PAGE_ENTRIES; i++) { 715 if (test_bit(i, bitmap)) 716 mark_page_dirty(kvm, cur_gfn + i); 717 } 718 719 if (fatal_signal_pending(current)) 720 return; 721 cond_resched(); 722 } 723 } 724 725 /* Section: vm related */ 726 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 727 728 /* 729 * Get (and clear) the dirty memory log for a memory slot. 730 */ 731 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 732 struct kvm_dirty_log *log) 733 { 734 int r; 735 unsigned long n; 736 struct kvm_memory_slot *memslot; 737 int is_dirty; 738 739 if (kvm_is_ucontrol(kvm)) 740 return -EINVAL; 741 742 mutex_lock(&kvm->slots_lock); 743 744 r = -EINVAL; 745 if (log->slot >= KVM_USER_MEM_SLOTS) 746 goto out; 747 748 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 749 if (r) 750 goto out; 751 752 /* Clear the dirty log */ 753 if (is_dirty) { 754 n = kvm_dirty_bitmap_bytes(memslot); 755 memset(memslot->dirty_bitmap, 0, n); 756 } 757 r = 0; 758 out: 759 mutex_unlock(&kvm->slots_lock); 760 return r; 761 } 762 763 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 764 { 765 unsigned long i; 766 struct kvm_vcpu *vcpu; 767 768 kvm_for_each_vcpu(i, vcpu, kvm) { 769 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 770 } 771 } 772 773 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 774 { 775 int r; 776 777 if (cap->flags) 778 return -EINVAL; 779 780 switch (cap->cap) { 781 case KVM_CAP_S390_IRQCHIP: 782 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 783 kvm->arch.use_irqchip = 1; 784 r = 0; 785 break; 786 case KVM_CAP_S390_USER_SIGP: 787 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 788 kvm->arch.user_sigp = 1; 789 r = 0; 790 break; 791 case KVM_CAP_S390_VECTOR_REGISTERS: 792 mutex_lock(&kvm->lock); 793 if (kvm->created_vcpus) { 794 r = -EBUSY; 795 } else if (cpu_has_vx()) { 796 set_kvm_facility(kvm->arch.model.fac_mask, 129); 797 set_kvm_facility(kvm->arch.model.fac_list, 129); 798 if (test_facility(134)) { 799 set_kvm_facility(kvm->arch.model.fac_mask, 134); 800 set_kvm_facility(kvm->arch.model.fac_list, 134); 801 } 802 if (test_facility(135)) { 803 set_kvm_facility(kvm->arch.model.fac_mask, 135); 804 set_kvm_facility(kvm->arch.model.fac_list, 135); 805 } 806 if (test_facility(148)) { 807 set_kvm_facility(kvm->arch.model.fac_mask, 148); 808 set_kvm_facility(kvm->arch.model.fac_list, 148); 809 } 810 if (test_facility(152)) { 811 set_kvm_facility(kvm->arch.model.fac_mask, 152); 812 set_kvm_facility(kvm->arch.model.fac_list, 152); 813 } 814 if (test_facility(192)) { 815 set_kvm_facility(kvm->arch.model.fac_mask, 192); 816 set_kvm_facility(kvm->arch.model.fac_list, 192); 817 } 818 if (test_facility(198)) { 819 set_kvm_facility(kvm->arch.model.fac_mask, 198); 820 set_kvm_facility(kvm->arch.model.fac_list, 198); 821 } 822 if (test_facility(199)) { 823 set_kvm_facility(kvm->arch.model.fac_mask, 199); 824 set_kvm_facility(kvm->arch.model.fac_list, 199); 825 } 826 r = 0; 827 } else 828 r = -EINVAL; 829 mutex_unlock(&kvm->lock); 830 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 831 r ? "(not available)" : "(success)"); 832 break; 833 case KVM_CAP_S390_RI: 834 r = -EINVAL; 835 mutex_lock(&kvm->lock); 836 if (kvm->created_vcpus) { 837 r = -EBUSY; 838 } else if (test_facility(64)) { 839 set_kvm_facility(kvm->arch.model.fac_mask, 64); 840 set_kvm_facility(kvm->arch.model.fac_list, 64); 841 r = 0; 842 } 843 mutex_unlock(&kvm->lock); 844 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 845 r ? "(not available)" : "(success)"); 846 break; 847 case KVM_CAP_S390_AIS: 848 mutex_lock(&kvm->lock); 849 if (kvm->created_vcpus) { 850 r = -EBUSY; 851 } else { 852 set_kvm_facility(kvm->arch.model.fac_mask, 72); 853 set_kvm_facility(kvm->arch.model.fac_list, 72); 854 r = 0; 855 } 856 mutex_unlock(&kvm->lock); 857 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 858 r ? "(not available)" : "(success)"); 859 break; 860 case KVM_CAP_S390_GS: 861 r = -EINVAL; 862 mutex_lock(&kvm->lock); 863 if (kvm->created_vcpus) { 864 r = -EBUSY; 865 } else if (test_facility(133)) { 866 set_kvm_facility(kvm->arch.model.fac_mask, 133); 867 set_kvm_facility(kvm->arch.model.fac_list, 133); 868 r = 0; 869 } 870 mutex_unlock(&kvm->lock); 871 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 872 r ? "(not available)" : "(success)"); 873 break; 874 case KVM_CAP_S390_HPAGE_1M: 875 mutex_lock(&kvm->lock); 876 if (kvm->created_vcpus) 877 r = -EBUSY; 878 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 879 r = -EINVAL; 880 else { 881 r = 0; 882 mmap_write_lock(kvm->mm); 883 kvm->mm->context.allow_gmap_hpage_1m = 1; 884 mmap_write_unlock(kvm->mm); 885 /* 886 * We might have to create fake 4k page 887 * tables. To avoid that the hardware works on 888 * stale PGSTEs, we emulate these instructions. 889 */ 890 kvm->arch.use_skf = 0; 891 kvm->arch.use_pfmfi = 0; 892 } 893 mutex_unlock(&kvm->lock); 894 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 895 r ? "(not available)" : "(success)"); 896 break; 897 case KVM_CAP_S390_USER_STSI: 898 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 899 kvm->arch.user_stsi = 1; 900 r = 0; 901 break; 902 case KVM_CAP_S390_USER_INSTR0: 903 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 904 kvm->arch.user_instr0 = 1; 905 icpt_operexc_on_all_vcpus(kvm); 906 r = 0; 907 break; 908 case KVM_CAP_S390_CPU_TOPOLOGY: 909 r = -EINVAL; 910 mutex_lock(&kvm->lock); 911 if (kvm->created_vcpus) { 912 r = -EBUSY; 913 } else if (test_facility(11)) { 914 set_kvm_facility(kvm->arch.model.fac_mask, 11); 915 set_kvm_facility(kvm->arch.model.fac_list, 11); 916 r = 0; 917 } 918 mutex_unlock(&kvm->lock); 919 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 920 r ? "(not available)" : "(success)"); 921 break; 922 default: 923 r = -EINVAL; 924 break; 925 } 926 return r; 927 } 928 929 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 930 { 931 int ret; 932 933 switch (attr->attr) { 934 case KVM_S390_VM_MEM_LIMIT_SIZE: 935 ret = 0; 936 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 937 kvm->arch.mem_limit); 938 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 939 ret = -EFAULT; 940 break; 941 default: 942 ret = -ENXIO; 943 break; 944 } 945 return ret; 946 } 947 948 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 949 { 950 int ret; 951 unsigned int idx; 952 switch (attr->attr) { 953 case KVM_S390_VM_MEM_ENABLE_CMMA: 954 ret = -ENXIO; 955 if (!sclp.has_cmma) 956 break; 957 958 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 959 mutex_lock(&kvm->lock); 960 if (kvm->created_vcpus) 961 ret = -EBUSY; 962 else if (kvm->mm->context.allow_gmap_hpage_1m) 963 ret = -EINVAL; 964 else { 965 kvm->arch.use_cmma = 1; 966 /* Not compatible with cmma. */ 967 kvm->arch.use_pfmfi = 0; 968 ret = 0; 969 } 970 mutex_unlock(&kvm->lock); 971 break; 972 case KVM_S390_VM_MEM_CLR_CMMA: 973 ret = -ENXIO; 974 if (!sclp.has_cmma) 975 break; 976 ret = -EINVAL; 977 if (!kvm->arch.use_cmma) 978 break; 979 980 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 981 mutex_lock(&kvm->lock); 982 idx = srcu_read_lock(&kvm->srcu); 983 s390_reset_cmma(kvm->arch.gmap->mm); 984 srcu_read_unlock(&kvm->srcu, idx); 985 mutex_unlock(&kvm->lock); 986 ret = 0; 987 break; 988 case KVM_S390_VM_MEM_LIMIT_SIZE: { 989 unsigned long new_limit; 990 991 if (kvm_is_ucontrol(kvm)) 992 return -EINVAL; 993 994 if (get_user(new_limit, (u64 __user *)attr->addr)) 995 return -EFAULT; 996 997 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 998 new_limit > kvm->arch.mem_limit) 999 return -E2BIG; 1000 1001 if (!new_limit) 1002 return -EINVAL; 1003 1004 /* gmap_create takes last usable address */ 1005 if (new_limit != KVM_S390_NO_MEM_LIMIT) 1006 new_limit -= 1; 1007 1008 ret = -EBUSY; 1009 mutex_lock(&kvm->lock); 1010 if (!kvm->created_vcpus) { 1011 /* gmap_create will round the limit up */ 1012 struct gmap *new = gmap_create(current->mm, new_limit); 1013 1014 if (!new) { 1015 ret = -ENOMEM; 1016 } else { 1017 gmap_remove(kvm->arch.gmap); 1018 new->private = kvm; 1019 kvm->arch.gmap = new; 1020 ret = 0; 1021 } 1022 } 1023 mutex_unlock(&kvm->lock); 1024 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 1025 VM_EVENT(kvm, 3, "New guest asce: 0x%p", 1026 (void *) kvm->arch.gmap->asce); 1027 break; 1028 } 1029 default: 1030 ret = -ENXIO; 1031 break; 1032 } 1033 return ret; 1034 } 1035 1036 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1037 1038 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1039 { 1040 struct kvm_vcpu *vcpu; 1041 unsigned long i; 1042 1043 kvm_s390_vcpu_block_all(kvm); 1044 1045 kvm_for_each_vcpu(i, vcpu, kvm) { 1046 kvm_s390_vcpu_crypto_setup(vcpu); 1047 /* recreate the shadow crycb by leaving the VSIE handler */ 1048 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1049 } 1050 1051 kvm_s390_vcpu_unblock_all(kvm); 1052 } 1053 1054 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1055 { 1056 mutex_lock(&kvm->lock); 1057 switch (attr->attr) { 1058 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1059 if (!test_kvm_facility(kvm, 76)) { 1060 mutex_unlock(&kvm->lock); 1061 return -EINVAL; 1062 } 1063 get_random_bytes( 1064 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1065 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1066 kvm->arch.crypto.aes_kw = 1; 1067 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1068 break; 1069 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1070 if (!test_kvm_facility(kvm, 76)) { 1071 mutex_unlock(&kvm->lock); 1072 return -EINVAL; 1073 } 1074 get_random_bytes( 1075 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1076 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1077 kvm->arch.crypto.dea_kw = 1; 1078 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1079 break; 1080 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1081 if (!test_kvm_facility(kvm, 76)) { 1082 mutex_unlock(&kvm->lock); 1083 return -EINVAL; 1084 } 1085 kvm->arch.crypto.aes_kw = 0; 1086 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1087 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1088 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1089 break; 1090 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1091 if (!test_kvm_facility(kvm, 76)) { 1092 mutex_unlock(&kvm->lock); 1093 return -EINVAL; 1094 } 1095 kvm->arch.crypto.dea_kw = 0; 1096 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1097 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1098 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1099 break; 1100 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1101 if (!ap_instructions_available()) { 1102 mutex_unlock(&kvm->lock); 1103 return -EOPNOTSUPP; 1104 } 1105 kvm->arch.crypto.apie = 1; 1106 break; 1107 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1108 if (!ap_instructions_available()) { 1109 mutex_unlock(&kvm->lock); 1110 return -EOPNOTSUPP; 1111 } 1112 kvm->arch.crypto.apie = 0; 1113 break; 1114 default: 1115 mutex_unlock(&kvm->lock); 1116 return -ENXIO; 1117 } 1118 1119 kvm_s390_vcpu_crypto_reset_all(kvm); 1120 mutex_unlock(&kvm->lock); 1121 return 0; 1122 } 1123 1124 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1125 { 1126 /* Only set the ECB bits after guest requests zPCI interpretation */ 1127 if (!vcpu->kvm->arch.use_zpci_interp) 1128 return; 1129 1130 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1131 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1132 } 1133 1134 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1135 { 1136 struct kvm_vcpu *vcpu; 1137 unsigned long i; 1138 1139 lockdep_assert_held(&kvm->lock); 1140 1141 if (!kvm_s390_pci_interp_allowed()) 1142 return; 1143 1144 /* 1145 * If host is configured for PCI and the necessary facilities are 1146 * available, turn on interpretation for the life of this guest 1147 */ 1148 kvm->arch.use_zpci_interp = 1; 1149 1150 kvm_s390_vcpu_block_all(kvm); 1151 1152 kvm_for_each_vcpu(i, vcpu, kvm) { 1153 kvm_s390_vcpu_pci_setup(vcpu); 1154 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1155 } 1156 1157 kvm_s390_vcpu_unblock_all(kvm); 1158 } 1159 1160 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1161 { 1162 unsigned long cx; 1163 struct kvm_vcpu *vcpu; 1164 1165 kvm_for_each_vcpu(cx, vcpu, kvm) 1166 kvm_s390_sync_request(req, vcpu); 1167 } 1168 1169 /* 1170 * Must be called with kvm->srcu held to avoid races on memslots, and with 1171 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1172 */ 1173 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1174 { 1175 struct kvm_memory_slot *ms; 1176 struct kvm_memslots *slots; 1177 unsigned long ram_pages = 0; 1178 int bkt; 1179 1180 /* migration mode already enabled */ 1181 if (kvm->arch.migration_mode) 1182 return 0; 1183 slots = kvm_memslots(kvm); 1184 if (!slots || kvm_memslots_empty(slots)) 1185 return -EINVAL; 1186 1187 if (!kvm->arch.use_cmma) { 1188 kvm->arch.migration_mode = 1; 1189 return 0; 1190 } 1191 /* mark all the pages in active slots as dirty */ 1192 kvm_for_each_memslot(ms, bkt, slots) { 1193 if (!ms->dirty_bitmap) 1194 return -EINVAL; 1195 /* 1196 * The second half of the bitmap is only used on x86, 1197 * and would be wasted otherwise, so we put it to good 1198 * use here to keep track of the state of the storage 1199 * attributes. 1200 */ 1201 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1202 ram_pages += ms->npages; 1203 } 1204 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1205 kvm->arch.migration_mode = 1; 1206 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1207 return 0; 1208 } 1209 1210 /* 1211 * Must be called with kvm->slots_lock to avoid races with ourselves and 1212 * kvm_s390_vm_start_migration. 1213 */ 1214 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1215 { 1216 /* migration mode already disabled */ 1217 if (!kvm->arch.migration_mode) 1218 return 0; 1219 kvm->arch.migration_mode = 0; 1220 if (kvm->arch.use_cmma) 1221 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1222 return 0; 1223 } 1224 1225 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1226 struct kvm_device_attr *attr) 1227 { 1228 int res = -ENXIO; 1229 1230 mutex_lock(&kvm->slots_lock); 1231 switch (attr->attr) { 1232 case KVM_S390_VM_MIGRATION_START: 1233 res = kvm_s390_vm_start_migration(kvm); 1234 break; 1235 case KVM_S390_VM_MIGRATION_STOP: 1236 res = kvm_s390_vm_stop_migration(kvm); 1237 break; 1238 default: 1239 break; 1240 } 1241 mutex_unlock(&kvm->slots_lock); 1242 1243 return res; 1244 } 1245 1246 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1247 struct kvm_device_attr *attr) 1248 { 1249 u64 mig = kvm->arch.migration_mode; 1250 1251 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1252 return -ENXIO; 1253 1254 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1255 return -EFAULT; 1256 return 0; 1257 } 1258 1259 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1260 1261 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1262 { 1263 struct kvm_s390_vm_tod_clock gtod; 1264 1265 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1266 return -EFAULT; 1267 1268 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1269 return -EINVAL; 1270 __kvm_s390_set_tod_clock(kvm, >od); 1271 1272 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1273 gtod.epoch_idx, gtod.tod); 1274 1275 return 0; 1276 } 1277 1278 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1279 { 1280 u8 gtod_high; 1281 1282 if (copy_from_user(>od_high, (void __user *)attr->addr, 1283 sizeof(gtod_high))) 1284 return -EFAULT; 1285 1286 if (gtod_high != 0) 1287 return -EINVAL; 1288 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1289 1290 return 0; 1291 } 1292 1293 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1294 { 1295 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1296 1297 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1298 sizeof(gtod.tod))) 1299 return -EFAULT; 1300 1301 __kvm_s390_set_tod_clock(kvm, >od); 1302 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1303 return 0; 1304 } 1305 1306 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1307 { 1308 int ret; 1309 1310 if (attr->flags) 1311 return -EINVAL; 1312 1313 mutex_lock(&kvm->lock); 1314 /* 1315 * For protected guests, the TOD is managed by the ultravisor, so trying 1316 * to change it will never bring the expected results. 1317 */ 1318 if (kvm_s390_pv_is_protected(kvm)) { 1319 ret = -EOPNOTSUPP; 1320 goto out_unlock; 1321 } 1322 1323 switch (attr->attr) { 1324 case KVM_S390_VM_TOD_EXT: 1325 ret = kvm_s390_set_tod_ext(kvm, attr); 1326 break; 1327 case KVM_S390_VM_TOD_HIGH: 1328 ret = kvm_s390_set_tod_high(kvm, attr); 1329 break; 1330 case KVM_S390_VM_TOD_LOW: 1331 ret = kvm_s390_set_tod_low(kvm, attr); 1332 break; 1333 default: 1334 ret = -ENXIO; 1335 break; 1336 } 1337 1338 out_unlock: 1339 mutex_unlock(&kvm->lock); 1340 return ret; 1341 } 1342 1343 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1344 struct kvm_s390_vm_tod_clock *gtod) 1345 { 1346 union tod_clock clk; 1347 1348 preempt_disable(); 1349 1350 store_tod_clock_ext(&clk); 1351 1352 gtod->tod = clk.tod + kvm->arch.epoch; 1353 gtod->epoch_idx = 0; 1354 if (test_kvm_facility(kvm, 139)) { 1355 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1356 if (gtod->tod < clk.tod) 1357 gtod->epoch_idx += 1; 1358 } 1359 1360 preempt_enable(); 1361 } 1362 1363 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1364 { 1365 struct kvm_s390_vm_tod_clock gtod; 1366 1367 memset(>od, 0, sizeof(gtod)); 1368 kvm_s390_get_tod_clock(kvm, >od); 1369 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1370 return -EFAULT; 1371 1372 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1373 gtod.epoch_idx, gtod.tod); 1374 return 0; 1375 } 1376 1377 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1378 { 1379 u8 gtod_high = 0; 1380 1381 if (copy_to_user((void __user *)attr->addr, >od_high, 1382 sizeof(gtod_high))) 1383 return -EFAULT; 1384 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1385 1386 return 0; 1387 } 1388 1389 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1390 { 1391 u64 gtod; 1392 1393 gtod = kvm_s390_get_tod_clock_fast(kvm); 1394 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1395 return -EFAULT; 1396 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1397 1398 return 0; 1399 } 1400 1401 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1402 { 1403 int ret; 1404 1405 if (attr->flags) 1406 return -EINVAL; 1407 1408 switch (attr->attr) { 1409 case KVM_S390_VM_TOD_EXT: 1410 ret = kvm_s390_get_tod_ext(kvm, attr); 1411 break; 1412 case KVM_S390_VM_TOD_HIGH: 1413 ret = kvm_s390_get_tod_high(kvm, attr); 1414 break; 1415 case KVM_S390_VM_TOD_LOW: 1416 ret = kvm_s390_get_tod_low(kvm, attr); 1417 break; 1418 default: 1419 ret = -ENXIO; 1420 break; 1421 } 1422 return ret; 1423 } 1424 1425 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1426 { 1427 struct kvm_s390_vm_cpu_processor *proc; 1428 u16 lowest_ibc, unblocked_ibc; 1429 int ret = 0; 1430 1431 mutex_lock(&kvm->lock); 1432 if (kvm->created_vcpus) { 1433 ret = -EBUSY; 1434 goto out; 1435 } 1436 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1437 if (!proc) { 1438 ret = -ENOMEM; 1439 goto out; 1440 } 1441 if (!copy_from_user(proc, (void __user *)attr->addr, 1442 sizeof(*proc))) { 1443 kvm->arch.model.cpuid = proc->cpuid; 1444 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1445 unblocked_ibc = sclp.ibc & 0xfff; 1446 if (lowest_ibc && proc->ibc) { 1447 if (proc->ibc > unblocked_ibc) 1448 kvm->arch.model.ibc = unblocked_ibc; 1449 else if (proc->ibc < lowest_ibc) 1450 kvm->arch.model.ibc = lowest_ibc; 1451 else 1452 kvm->arch.model.ibc = proc->ibc; 1453 } 1454 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1455 S390_ARCH_FAC_LIST_SIZE_BYTE); 1456 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1457 kvm->arch.model.ibc, 1458 kvm->arch.model.cpuid); 1459 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1460 kvm->arch.model.fac_list[0], 1461 kvm->arch.model.fac_list[1], 1462 kvm->arch.model.fac_list[2]); 1463 } else 1464 ret = -EFAULT; 1465 kfree(proc); 1466 out: 1467 mutex_unlock(&kvm->lock); 1468 return ret; 1469 } 1470 1471 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1472 struct kvm_device_attr *attr) 1473 { 1474 struct kvm_s390_vm_cpu_feat data; 1475 1476 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1477 return -EFAULT; 1478 if (!bitmap_subset((unsigned long *) data.feat, 1479 kvm_s390_available_cpu_feat, 1480 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1481 return -EINVAL; 1482 1483 mutex_lock(&kvm->lock); 1484 if (kvm->created_vcpus) { 1485 mutex_unlock(&kvm->lock); 1486 return -EBUSY; 1487 } 1488 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1489 mutex_unlock(&kvm->lock); 1490 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1491 data.feat[0], 1492 data.feat[1], 1493 data.feat[2]); 1494 return 0; 1495 } 1496 1497 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1498 struct kvm_device_attr *attr) 1499 { 1500 mutex_lock(&kvm->lock); 1501 if (kvm->created_vcpus) { 1502 mutex_unlock(&kvm->lock); 1503 return -EBUSY; 1504 } 1505 1506 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1507 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1508 mutex_unlock(&kvm->lock); 1509 return -EFAULT; 1510 } 1511 mutex_unlock(&kvm->lock); 1512 1513 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1514 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1515 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1516 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1518 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1530 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1531 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1532 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1533 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1534 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1536 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1537 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1538 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1539 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1540 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1541 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1542 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1543 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1545 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1546 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1548 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1549 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1550 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1551 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1552 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1553 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1554 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1555 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1556 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1557 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1558 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1559 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1560 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1561 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1562 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1563 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1565 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1566 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1567 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1568 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1570 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1571 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1572 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1573 1574 return 0; 1575 } 1576 1577 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1578 ( \ 1579 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1580 .ap = 1, \ 1581 .ap_intr = 1, \ 1582 }) \ 1583 .feat \ 1584 ) 1585 1586 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1587 { 1588 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1589 unsigned long data, filter; 1590 1591 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1592 if (get_user(data, &ptr->feat)) 1593 return -EFAULT; 1594 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1595 return -EINVAL; 1596 1597 mutex_lock(&kvm->lock); 1598 if (kvm->created_vcpus) { 1599 mutex_unlock(&kvm->lock); 1600 return -EBUSY; 1601 } 1602 kvm->arch.model.uv_feat_guest.feat = data; 1603 mutex_unlock(&kvm->lock); 1604 1605 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1606 1607 return 0; 1608 } 1609 1610 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1611 { 1612 int ret = -ENXIO; 1613 1614 switch (attr->attr) { 1615 case KVM_S390_VM_CPU_PROCESSOR: 1616 ret = kvm_s390_set_processor(kvm, attr); 1617 break; 1618 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1619 ret = kvm_s390_set_processor_feat(kvm, attr); 1620 break; 1621 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1622 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1623 break; 1624 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1625 ret = kvm_s390_set_uv_feat(kvm, attr); 1626 break; 1627 } 1628 return ret; 1629 } 1630 1631 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1632 { 1633 struct kvm_s390_vm_cpu_processor *proc; 1634 int ret = 0; 1635 1636 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1637 if (!proc) { 1638 ret = -ENOMEM; 1639 goto out; 1640 } 1641 proc->cpuid = kvm->arch.model.cpuid; 1642 proc->ibc = kvm->arch.model.ibc; 1643 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1644 S390_ARCH_FAC_LIST_SIZE_BYTE); 1645 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1646 kvm->arch.model.ibc, 1647 kvm->arch.model.cpuid); 1648 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1649 kvm->arch.model.fac_list[0], 1650 kvm->arch.model.fac_list[1], 1651 kvm->arch.model.fac_list[2]); 1652 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1653 ret = -EFAULT; 1654 kfree(proc); 1655 out: 1656 return ret; 1657 } 1658 1659 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1660 { 1661 struct kvm_s390_vm_cpu_machine *mach; 1662 int ret = 0; 1663 1664 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1665 if (!mach) { 1666 ret = -ENOMEM; 1667 goto out; 1668 } 1669 get_cpu_id((struct cpuid *) &mach->cpuid); 1670 mach->ibc = sclp.ibc; 1671 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1672 S390_ARCH_FAC_LIST_SIZE_BYTE); 1673 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1674 sizeof(stfle_fac_list)); 1675 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1676 kvm->arch.model.ibc, 1677 kvm->arch.model.cpuid); 1678 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1679 mach->fac_mask[0], 1680 mach->fac_mask[1], 1681 mach->fac_mask[2]); 1682 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1683 mach->fac_list[0], 1684 mach->fac_list[1], 1685 mach->fac_list[2]); 1686 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1687 ret = -EFAULT; 1688 kfree(mach); 1689 out: 1690 return ret; 1691 } 1692 1693 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1694 struct kvm_device_attr *attr) 1695 { 1696 struct kvm_s390_vm_cpu_feat data; 1697 1698 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1699 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1700 return -EFAULT; 1701 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1702 data.feat[0], 1703 data.feat[1], 1704 data.feat[2]); 1705 return 0; 1706 } 1707 1708 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1709 struct kvm_device_attr *attr) 1710 { 1711 struct kvm_s390_vm_cpu_feat data; 1712 1713 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1714 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1715 return -EFAULT; 1716 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1717 data.feat[0], 1718 data.feat[1], 1719 data.feat[2]); 1720 return 0; 1721 } 1722 1723 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1724 struct kvm_device_attr *attr) 1725 { 1726 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1727 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1728 return -EFAULT; 1729 1730 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1731 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1732 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1733 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1735 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1744 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1745 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1746 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1747 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1748 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1750 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1751 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1752 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1753 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1754 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1755 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1756 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1757 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1758 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1759 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1760 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1761 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1762 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1764 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1765 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1766 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1767 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1768 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1769 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1770 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1771 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1772 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1773 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1774 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1775 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1776 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1777 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1778 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1779 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1780 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1781 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1782 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1783 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1784 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1785 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1786 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1787 VM_EVENT(kvm, 3, "GET: guest PFCR subfunc 0x%16.16lx.%16.16lx", 1788 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1789 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1790 1791 return 0; 1792 } 1793 1794 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1795 struct kvm_device_attr *attr) 1796 { 1797 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1798 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1799 return -EFAULT; 1800 1801 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1802 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1803 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1804 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1805 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1806 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1809 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1812 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1813 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1814 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1815 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1816 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1817 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1818 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1819 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1820 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1821 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1822 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1823 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1824 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1825 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1826 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1827 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1828 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1829 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1830 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1831 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1832 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1833 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1834 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1835 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1836 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1837 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1838 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1839 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1840 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1841 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1842 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1843 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1844 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1845 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1846 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1847 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1848 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1849 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1850 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1851 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1852 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1853 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1854 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1855 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1856 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1857 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1858 VM_EVENT(kvm, 3, "GET: host PFCR subfunc 0x%16.16lx.%16.16lx", 1859 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[0], 1860 ((unsigned long *) &kvm_s390_available_subfunc.pfcr)[1]); 1861 1862 return 0; 1863 } 1864 1865 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1866 { 1867 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1868 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1869 1870 if (put_user(feat, &dst->feat)) 1871 return -EFAULT; 1872 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1873 1874 return 0; 1875 } 1876 1877 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1878 { 1879 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1880 unsigned long feat; 1881 1882 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1883 1884 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1885 if (put_user(feat, &dst->feat)) 1886 return -EFAULT; 1887 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1888 1889 return 0; 1890 } 1891 1892 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1893 { 1894 int ret = -ENXIO; 1895 1896 switch (attr->attr) { 1897 case KVM_S390_VM_CPU_PROCESSOR: 1898 ret = kvm_s390_get_processor(kvm, attr); 1899 break; 1900 case KVM_S390_VM_CPU_MACHINE: 1901 ret = kvm_s390_get_machine(kvm, attr); 1902 break; 1903 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1904 ret = kvm_s390_get_processor_feat(kvm, attr); 1905 break; 1906 case KVM_S390_VM_CPU_MACHINE_FEAT: 1907 ret = kvm_s390_get_machine_feat(kvm, attr); 1908 break; 1909 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1910 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1911 break; 1912 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1913 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1914 break; 1915 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1916 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1917 break; 1918 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1919 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1920 break; 1921 } 1922 return ret; 1923 } 1924 1925 /** 1926 * kvm_s390_update_topology_change_report - update CPU topology change report 1927 * @kvm: guest KVM description 1928 * @val: set or clear the MTCR bit 1929 * 1930 * Updates the Multiprocessor Topology-Change-Report bit to signal 1931 * the guest with a topology change. 1932 * This is only relevant if the topology facility is present. 1933 * 1934 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1935 */ 1936 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1937 { 1938 union sca_utility new, old; 1939 struct bsca_block *sca; 1940 1941 read_lock(&kvm->arch.sca_lock); 1942 sca = kvm->arch.sca; 1943 old = READ_ONCE(sca->utility); 1944 do { 1945 new = old; 1946 new.mtcr = val; 1947 } while (!try_cmpxchg(&sca->utility.val, &old.val, new.val)); 1948 read_unlock(&kvm->arch.sca_lock); 1949 } 1950 1951 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1952 struct kvm_device_attr *attr) 1953 { 1954 if (!test_kvm_facility(kvm, 11)) 1955 return -ENXIO; 1956 1957 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1958 return 0; 1959 } 1960 1961 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1962 struct kvm_device_attr *attr) 1963 { 1964 u8 topo; 1965 1966 if (!test_kvm_facility(kvm, 11)) 1967 return -ENXIO; 1968 1969 read_lock(&kvm->arch.sca_lock); 1970 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1971 read_unlock(&kvm->arch.sca_lock); 1972 1973 return put_user(topo, (u8 __user *)attr->addr); 1974 } 1975 1976 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1977 { 1978 int ret; 1979 1980 switch (attr->group) { 1981 case KVM_S390_VM_MEM_CTRL: 1982 ret = kvm_s390_set_mem_control(kvm, attr); 1983 break; 1984 case KVM_S390_VM_TOD: 1985 ret = kvm_s390_set_tod(kvm, attr); 1986 break; 1987 case KVM_S390_VM_CPU_MODEL: 1988 ret = kvm_s390_set_cpu_model(kvm, attr); 1989 break; 1990 case KVM_S390_VM_CRYPTO: 1991 ret = kvm_s390_vm_set_crypto(kvm, attr); 1992 break; 1993 case KVM_S390_VM_MIGRATION: 1994 ret = kvm_s390_vm_set_migration(kvm, attr); 1995 break; 1996 case KVM_S390_VM_CPU_TOPOLOGY: 1997 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1998 break; 1999 default: 2000 ret = -ENXIO; 2001 break; 2002 } 2003 2004 return ret; 2005 } 2006 2007 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2008 { 2009 int ret; 2010 2011 switch (attr->group) { 2012 case KVM_S390_VM_MEM_CTRL: 2013 ret = kvm_s390_get_mem_control(kvm, attr); 2014 break; 2015 case KVM_S390_VM_TOD: 2016 ret = kvm_s390_get_tod(kvm, attr); 2017 break; 2018 case KVM_S390_VM_CPU_MODEL: 2019 ret = kvm_s390_get_cpu_model(kvm, attr); 2020 break; 2021 case KVM_S390_VM_MIGRATION: 2022 ret = kvm_s390_vm_get_migration(kvm, attr); 2023 break; 2024 case KVM_S390_VM_CPU_TOPOLOGY: 2025 ret = kvm_s390_get_topo_change_indication(kvm, attr); 2026 break; 2027 default: 2028 ret = -ENXIO; 2029 break; 2030 } 2031 2032 return ret; 2033 } 2034 2035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 2036 { 2037 int ret; 2038 2039 switch (attr->group) { 2040 case KVM_S390_VM_MEM_CTRL: 2041 switch (attr->attr) { 2042 case KVM_S390_VM_MEM_ENABLE_CMMA: 2043 case KVM_S390_VM_MEM_CLR_CMMA: 2044 ret = sclp.has_cmma ? 0 : -ENXIO; 2045 break; 2046 case KVM_S390_VM_MEM_LIMIT_SIZE: 2047 ret = 0; 2048 break; 2049 default: 2050 ret = -ENXIO; 2051 break; 2052 } 2053 break; 2054 case KVM_S390_VM_TOD: 2055 switch (attr->attr) { 2056 case KVM_S390_VM_TOD_LOW: 2057 case KVM_S390_VM_TOD_HIGH: 2058 ret = 0; 2059 break; 2060 default: 2061 ret = -ENXIO; 2062 break; 2063 } 2064 break; 2065 case KVM_S390_VM_CPU_MODEL: 2066 switch (attr->attr) { 2067 case KVM_S390_VM_CPU_PROCESSOR: 2068 case KVM_S390_VM_CPU_MACHINE: 2069 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2070 case KVM_S390_VM_CPU_MACHINE_FEAT: 2071 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2072 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2073 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2074 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2075 ret = 0; 2076 break; 2077 default: 2078 ret = -ENXIO; 2079 break; 2080 } 2081 break; 2082 case KVM_S390_VM_CRYPTO: 2083 switch (attr->attr) { 2084 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2085 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2086 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2087 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2088 ret = 0; 2089 break; 2090 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2091 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2092 ret = ap_instructions_available() ? 0 : -ENXIO; 2093 break; 2094 default: 2095 ret = -ENXIO; 2096 break; 2097 } 2098 break; 2099 case KVM_S390_VM_MIGRATION: 2100 ret = 0; 2101 break; 2102 case KVM_S390_VM_CPU_TOPOLOGY: 2103 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2104 break; 2105 default: 2106 ret = -ENXIO; 2107 break; 2108 } 2109 2110 return ret; 2111 } 2112 2113 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2114 { 2115 uint8_t *keys; 2116 uint64_t hva; 2117 int srcu_idx, i, r = 0; 2118 2119 if (args->flags != 0) 2120 return -EINVAL; 2121 2122 /* Is this guest using storage keys? */ 2123 if (!mm_uses_skeys(current->mm)) 2124 return KVM_S390_GET_SKEYS_NONE; 2125 2126 /* Enforce sane limit on memory allocation */ 2127 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2128 return -EINVAL; 2129 2130 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2131 if (!keys) 2132 return -ENOMEM; 2133 2134 mmap_read_lock(current->mm); 2135 srcu_idx = srcu_read_lock(&kvm->srcu); 2136 for (i = 0; i < args->count; i++) { 2137 hva = gfn_to_hva(kvm, args->start_gfn + i); 2138 if (kvm_is_error_hva(hva)) { 2139 r = -EFAULT; 2140 break; 2141 } 2142 2143 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2144 if (r) 2145 break; 2146 } 2147 srcu_read_unlock(&kvm->srcu, srcu_idx); 2148 mmap_read_unlock(current->mm); 2149 2150 if (!r) { 2151 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2152 sizeof(uint8_t) * args->count); 2153 if (r) 2154 r = -EFAULT; 2155 } 2156 2157 kvfree(keys); 2158 return r; 2159 } 2160 2161 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2162 { 2163 uint8_t *keys; 2164 uint64_t hva; 2165 int srcu_idx, i, r = 0; 2166 bool unlocked; 2167 2168 if (args->flags != 0) 2169 return -EINVAL; 2170 2171 /* Enforce sane limit on memory allocation */ 2172 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2173 return -EINVAL; 2174 2175 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2176 if (!keys) 2177 return -ENOMEM; 2178 2179 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2180 sizeof(uint8_t) * args->count); 2181 if (r) { 2182 r = -EFAULT; 2183 goto out; 2184 } 2185 2186 /* Enable storage key handling for the guest */ 2187 r = s390_enable_skey(); 2188 if (r) 2189 goto out; 2190 2191 i = 0; 2192 mmap_read_lock(current->mm); 2193 srcu_idx = srcu_read_lock(&kvm->srcu); 2194 while (i < args->count) { 2195 unlocked = false; 2196 hva = gfn_to_hva(kvm, args->start_gfn + i); 2197 if (kvm_is_error_hva(hva)) { 2198 r = -EFAULT; 2199 break; 2200 } 2201 2202 /* Lowest order bit is reserved */ 2203 if (keys[i] & 0x01) { 2204 r = -EINVAL; 2205 break; 2206 } 2207 2208 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2209 if (r) { 2210 r = fixup_user_fault(current->mm, hva, 2211 FAULT_FLAG_WRITE, &unlocked); 2212 if (r) 2213 break; 2214 } 2215 if (!r) 2216 i++; 2217 } 2218 srcu_read_unlock(&kvm->srcu, srcu_idx); 2219 mmap_read_unlock(current->mm); 2220 out: 2221 kvfree(keys); 2222 return r; 2223 } 2224 2225 /* 2226 * Base address and length must be sent at the start of each block, therefore 2227 * it's cheaper to send some clean data, as long as it's less than the size of 2228 * two longs. 2229 */ 2230 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2231 /* for consistency */ 2232 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2233 2234 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2235 u8 *res, unsigned long bufsize) 2236 { 2237 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2238 2239 args->count = 0; 2240 while (args->count < bufsize) { 2241 hva = gfn_to_hva(kvm, cur_gfn); 2242 /* 2243 * We return an error if the first value was invalid, but we 2244 * return successfully if at least one value was copied. 2245 */ 2246 if (kvm_is_error_hva(hva)) 2247 return args->count ? 0 : -EFAULT; 2248 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2249 pgstev = 0; 2250 res[args->count++] = (pgstev >> 24) & 0x43; 2251 cur_gfn++; 2252 } 2253 2254 return 0; 2255 } 2256 2257 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2258 gfn_t gfn) 2259 { 2260 return ____gfn_to_memslot(slots, gfn, true); 2261 } 2262 2263 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2264 unsigned long cur_gfn) 2265 { 2266 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2267 unsigned long ofs = cur_gfn - ms->base_gfn; 2268 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2269 2270 if (ms->base_gfn + ms->npages <= cur_gfn) { 2271 mnode = rb_next(mnode); 2272 /* If we are above the highest slot, wrap around */ 2273 if (!mnode) 2274 mnode = rb_first(&slots->gfn_tree); 2275 2276 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2277 ofs = 0; 2278 } 2279 2280 if (cur_gfn < ms->base_gfn) 2281 ofs = 0; 2282 2283 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2284 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2285 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2286 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2287 } 2288 return ms->base_gfn + ofs; 2289 } 2290 2291 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2292 u8 *res, unsigned long bufsize) 2293 { 2294 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2295 struct kvm_memslots *slots = kvm_memslots(kvm); 2296 struct kvm_memory_slot *ms; 2297 2298 if (unlikely(kvm_memslots_empty(slots))) 2299 return 0; 2300 2301 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2302 ms = gfn_to_memslot(kvm, cur_gfn); 2303 args->count = 0; 2304 args->start_gfn = cur_gfn; 2305 if (!ms) 2306 return 0; 2307 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2308 mem_end = kvm_s390_get_gfn_end(slots); 2309 2310 while (args->count < bufsize) { 2311 hva = gfn_to_hva(kvm, cur_gfn); 2312 if (kvm_is_error_hva(hva)) 2313 return 0; 2314 /* Decrement only if we actually flipped the bit to 0 */ 2315 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2316 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2317 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2318 pgstev = 0; 2319 /* Save the value */ 2320 res[args->count++] = (pgstev >> 24) & 0x43; 2321 /* If the next bit is too far away, stop. */ 2322 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2323 return 0; 2324 /* If we reached the previous "next", find the next one */ 2325 if (cur_gfn == next_gfn) 2326 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2327 /* Reached the end of memory or of the buffer, stop */ 2328 if ((next_gfn >= mem_end) || 2329 (next_gfn - args->start_gfn >= bufsize)) 2330 return 0; 2331 cur_gfn++; 2332 /* Reached the end of the current memslot, take the next one. */ 2333 if (cur_gfn - ms->base_gfn >= ms->npages) { 2334 ms = gfn_to_memslot(kvm, cur_gfn); 2335 if (!ms) 2336 return 0; 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 /* 2343 * This function searches for the next page with dirty CMMA attributes, and 2344 * saves the attributes in the buffer up to either the end of the buffer or 2345 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2346 * no trailing clean bytes are saved. 2347 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2348 * output buffer will indicate 0 as length. 2349 */ 2350 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2351 struct kvm_s390_cmma_log *args) 2352 { 2353 unsigned long bufsize; 2354 int srcu_idx, peek, ret; 2355 u8 *values; 2356 2357 if (!kvm->arch.use_cmma) 2358 return -ENXIO; 2359 /* Invalid/unsupported flags were specified */ 2360 if (args->flags & ~KVM_S390_CMMA_PEEK) 2361 return -EINVAL; 2362 /* Migration mode query, and we are not doing a migration */ 2363 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2364 if (!peek && !kvm->arch.migration_mode) 2365 return -EINVAL; 2366 /* CMMA is disabled or was not used, or the buffer has length zero */ 2367 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2368 if (!bufsize || !kvm->mm->context.uses_cmm) { 2369 memset(args, 0, sizeof(*args)); 2370 return 0; 2371 } 2372 /* We are not peeking, and there are no dirty pages */ 2373 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2374 memset(args, 0, sizeof(*args)); 2375 return 0; 2376 } 2377 2378 values = vmalloc(bufsize); 2379 if (!values) 2380 return -ENOMEM; 2381 2382 mmap_read_lock(kvm->mm); 2383 srcu_idx = srcu_read_lock(&kvm->srcu); 2384 if (peek) 2385 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2386 else 2387 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2388 srcu_read_unlock(&kvm->srcu, srcu_idx); 2389 mmap_read_unlock(kvm->mm); 2390 2391 if (kvm->arch.migration_mode) 2392 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2393 else 2394 args->remaining = 0; 2395 2396 if (copy_to_user((void __user *)args->values, values, args->count)) 2397 ret = -EFAULT; 2398 2399 vfree(values); 2400 return ret; 2401 } 2402 2403 /* 2404 * This function sets the CMMA attributes for the given pages. If the input 2405 * buffer has zero length, no action is taken, otherwise the attributes are 2406 * set and the mm->context.uses_cmm flag is set. 2407 */ 2408 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2409 const struct kvm_s390_cmma_log *args) 2410 { 2411 unsigned long hva, mask, pgstev, i; 2412 uint8_t *bits; 2413 int srcu_idx, r = 0; 2414 2415 mask = args->mask; 2416 2417 if (!kvm->arch.use_cmma) 2418 return -ENXIO; 2419 /* invalid/unsupported flags */ 2420 if (args->flags != 0) 2421 return -EINVAL; 2422 /* Enforce sane limit on memory allocation */ 2423 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2424 return -EINVAL; 2425 /* Nothing to do */ 2426 if (args->count == 0) 2427 return 0; 2428 2429 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2430 if (!bits) 2431 return -ENOMEM; 2432 2433 r = copy_from_user(bits, (void __user *)args->values, args->count); 2434 if (r) { 2435 r = -EFAULT; 2436 goto out; 2437 } 2438 2439 mmap_read_lock(kvm->mm); 2440 srcu_idx = srcu_read_lock(&kvm->srcu); 2441 for (i = 0; i < args->count; i++) { 2442 hva = gfn_to_hva(kvm, args->start_gfn + i); 2443 if (kvm_is_error_hva(hva)) { 2444 r = -EFAULT; 2445 break; 2446 } 2447 2448 pgstev = bits[i]; 2449 pgstev = pgstev << 24; 2450 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2451 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2452 } 2453 srcu_read_unlock(&kvm->srcu, srcu_idx); 2454 mmap_read_unlock(kvm->mm); 2455 2456 if (!kvm->mm->context.uses_cmm) { 2457 mmap_write_lock(kvm->mm); 2458 kvm->mm->context.uses_cmm = 1; 2459 mmap_write_unlock(kvm->mm); 2460 } 2461 out: 2462 vfree(bits); 2463 return r; 2464 } 2465 2466 /** 2467 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2468 * non protected. 2469 * @kvm: the VM whose protected vCPUs are to be converted 2470 * @rc: return value for the RC field of the UVC (in case of error) 2471 * @rrc: return value for the RRC field of the UVC (in case of error) 2472 * 2473 * Does not stop in case of error, tries to convert as many 2474 * CPUs as possible. In case of error, the RC and RRC of the last error are 2475 * returned. 2476 * 2477 * Return: 0 in case of success, otherwise -EIO 2478 */ 2479 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2480 { 2481 struct kvm_vcpu *vcpu; 2482 unsigned long i; 2483 u16 _rc, _rrc; 2484 int ret = 0; 2485 2486 /* 2487 * We ignore failures and try to destroy as many CPUs as possible. 2488 * At the same time we must not free the assigned resources when 2489 * this fails, as the ultravisor has still access to that memory. 2490 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2491 * behind. 2492 * We want to return the first failure rc and rrc, though. 2493 */ 2494 kvm_for_each_vcpu(i, vcpu, kvm) { 2495 mutex_lock(&vcpu->mutex); 2496 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2497 *rc = _rc; 2498 *rrc = _rrc; 2499 ret = -EIO; 2500 } 2501 mutex_unlock(&vcpu->mutex); 2502 } 2503 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2504 if (use_gisa) 2505 kvm_s390_gisa_enable(kvm); 2506 return ret; 2507 } 2508 2509 /** 2510 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2511 * to protected. 2512 * @kvm: the VM whose protected vCPUs are to be converted 2513 * @rc: return value for the RC field of the UVC (in case of error) 2514 * @rrc: return value for the RRC field of the UVC (in case of error) 2515 * 2516 * Tries to undo the conversion in case of error. 2517 * 2518 * Return: 0 in case of success, otherwise -EIO 2519 */ 2520 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2521 { 2522 unsigned long i; 2523 int r = 0; 2524 u16 dummy; 2525 2526 struct kvm_vcpu *vcpu; 2527 2528 /* Disable the GISA if the ultravisor does not support AIV. */ 2529 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2530 kvm_s390_gisa_disable(kvm); 2531 2532 kvm_for_each_vcpu(i, vcpu, kvm) { 2533 mutex_lock(&vcpu->mutex); 2534 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2535 mutex_unlock(&vcpu->mutex); 2536 if (r) 2537 break; 2538 } 2539 if (r) 2540 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2541 return r; 2542 } 2543 2544 /* 2545 * Here we provide user space with a direct interface to query UV 2546 * related data like UV maxima and available features as well as 2547 * feature specific data. 2548 * 2549 * To facilitate future extension of the data structures we'll try to 2550 * write data up to the maximum requested length. 2551 */ 2552 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2553 { 2554 ssize_t len_min; 2555 2556 switch (info->header.id) { 2557 case KVM_PV_INFO_VM: { 2558 len_min = sizeof(info->header) + sizeof(info->vm); 2559 2560 if (info->header.len_max < len_min) 2561 return -EINVAL; 2562 2563 memcpy(info->vm.inst_calls_list, 2564 uv_info.inst_calls_list, 2565 sizeof(uv_info.inst_calls_list)); 2566 2567 /* It's max cpuid not max cpus, so it's off by one */ 2568 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2569 info->vm.max_guests = uv_info.max_num_sec_conf; 2570 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2571 info->vm.feature_indication = uv_info.uv_feature_indications; 2572 2573 return len_min; 2574 } 2575 case KVM_PV_INFO_DUMP: { 2576 len_min = sizeof(info->header) + sizeof(info->dump); 2577 2578 if (info->header.len_max < len_min) 2579 return -EINVAL; 2580 2581 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2582 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2583 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2584 return len_min; 2585 } 2586 default: 2587 return -EINVAL; 2588 } 2589 } 2590 2591 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2592 struct kvm_s390_pv_dmp dmp) 2593 { 2594 int r = -EINVAL; 2595 void __user *result_buff = (void __user *)dmp.buff_addr; 2596 2597 switch (dmp.subcmd) { 2598 case KVM_PV_DUMP_INIT: { 2599 if (kvm->arch.pv.dumping) 2600 break; 2601 2602 /* 2603 * Block SIE entry as concurrent dump UVCs could lead 2604 * to validities. 2605 */ 2606 kvm_s390_vcpu_block_all(kvm); 2607 2608 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2609 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2610 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2611 cmd->rc, cmd->rrc); 2612 if (!r) { 2613 kvm->arch.pv.dumping = true; 2614 } else { 2615 kvm_s390_vcpu_unblock_all(kvm); 2616 r = -EINVAL; 2617 } 2618 break; 2619 } 2620 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2621 if (!kvm->arch.pv.dumping) 2622 break; 2623 2624 /* 2625 * gaddr is an output parameter since we might stop 2626 * early. As dmp will be copied back in our caller, we 2627 * don't need to do it ourselves. 2628 */ 2629 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2630 &cmd->rc, &cmd->rrc); 2631 break; 2632 } 2633 case KVM_PV_DUMP_COMPLETE: { 2634 if (!kvm->arch.pv.dumping) 2635 break; 2636 2637 r = -EINVAL; 2638 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2639 break; 2640 2641 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2642 &cmd->rc, &cmd->rrc); 2643 break; 2644 } 2645 default: 2646 r = -ENOTTY; 2647 break; 2648 } 2649 2650 return r; 2651 } 2652 2653 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2654 { 2655 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2656 void __user *argp = (void __user *)cmd->data; 2657 int r = 0; 2658 u16 dummy; 2659 2660 if (need_lock) 2661 mutex_lock(&kvm->lock); 2662 2663 switch (cmd->cmd) { 2664 case KVM_PV_ENABLE: { 2665 r = -EINVAL; 2666 if (kvm_s390_pv_is_protected(kvm)) 2667 break; 2668 2669 /* 2670 * FMT 4 SIE needs esca. As we never switch back to bsca from 2671 * esca, we need no cleanup in the error cases below 2672 */ 2673 r = sca_switch_to_extended(kvm); 2674 if (r) 2675 break; 2676 2677 mmap_write_lock(kvm->mm); 2678 r = gmap_helper_disable_cow_sharing(); 2679 mmap_write_unlock(kvm->mm); 2680 if (r) 2681 break; 2682 2683 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2684 if (r) 2685 break; 2686 2687 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2688 if (r) 2689 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2690 2691 /* we need to block service interrupts from now on */ 2692 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2693 break; 2694 } 2695 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2696 r = -EINVAL; 2697 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2698 break; 2699 2700 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2701 /* 2702 * If a CPU could not be destroyed, destroy VM will also fail. 2703 * There is no point in trying to destroy it. Instead return 2704 * the rc and rrc from the first CPU that failed destroying. 2705 */ 2706 if (r) 2707 break; 2708 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2709 2710 /* no need to block service interrupts any more */ 2711 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2712 break; 2713 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2714 r = -EINVAL; 2715 if (!async_destroy) 2716 break; 2717 /* kvm->lock must not be held; this is asserted inside the function. */ 2718 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2719 break; 2720 case KVM_PV_DISABLE: { 2721 r = -EINVAL; 2722 if (!kvm_s390_pv_is_protected(kvm)) 2723 break; 2724 2725 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2726 /* 2727 * If a CPU could not be destroyed, destroy VM will also fail. 2728 * There is no point in trying to destroy it. Instead return 2729 * the rc and rrc from the first CPU that failed destroying. 2730 */ 2731 if (r) 2732 break; 2733 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2734 2735 /* no need to block service interrupts any more */ 2736 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2737 break; 2738 } 2739 case KVM_PV_SET_SEC_PARMS: { 2740 struct kvm_s390_pv_sec_parm parms = {}; 2741 void *hdr; 2742 2743 r = -EINVAL; 2744 if (!kvm_s390_pv_is_protected(kvm)) 2745 break; 2746 2747 r = -EFAULT; 2748 if (copy_from_user(&parms, argp, sizeof(parms))) 2749 break; 2750 2751 /* Currently restricted to 8KB */ 2752 r = -EINVAL; 2753 if (parms.length > PAGE_SIZE * 2) 2754 break; 2755 2756 r = -ENOMEM; 2757 hdr = vmalloc(parms.length); 2758 if (!hdr) 2759 break; 2760 2761 r = -EFAULT; 2762 if (!copy_from_user(hdr, (void __user *)parms.origin, 2763 parms.length)) 2764 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2765 &cmd->rc, &cmd->rrc); 2766 2767 vfree(hdr); 2768 break; 2769 } 2770 case KVM_PV_UNPACK: { 2771 struct kvm_s390_pv_unp unp = {}; 2772 2773 r = -EINVAL; 2774 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2775 break; 2776 2777 r = -EFAULT; 2778 if (copy_from_user(&unp, argp, sizeof(unp))) 2779 break; 2780 2781 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2782 &cmd->rc, &cmd->rrc); 2783 break; 2784 } 2785 case KVM_PV_VERIFY: { 2786 r = -EINVAL; 2787 if (!kvm_s390_pv_is_protected(kvm)) 2788 break; 2789 2790 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2791 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2792 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2793 cmd->rrc); 2794 break; 2795 } 2796 case KVM_PV_PREP_RESET: { 2797 r = -EINVAL; 2798 if (!kvm_s390_pv_is_protected(kvm)) 2799 break; 2800 2801 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2802 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2803 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2804 cmd->rc, cmd->rrc); 2805 break; 2806 } 2807 case KVM_PV_UNSHARE_ALL: { 2808 r = -EINVAL; 2809 if (!kvm_s390_pv_is_protected(kvm)) 2810 break; 2811 2812 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2813 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2814 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2815 cmd->rc, cmd->rrc); 2816 break; 2817 } 2818 case KVM_PV_INFO: { 2819 struct kvm_s390_pv_info info = {}; 2820 ssize_t data_len; 2821 2822 /* 2823 * No need to check the VM protection here. 2824 * 2825 * Maybe user space wants to query some of the data 2826 * when the VM is still unprotected. If we see the 2827 * need to fence a new data command we can still 2828 * return an error in the info handler. 2829 */ 2830 2831 r = -EFAULT; 2832 if (copy_from_user(&info, argp, sizeof(info.header))) 2833 break; 2834 2835 r = -EINVAL; 2836 if (info.header.len_max < sizeof(info.header)) 2837 break; 2838 2839 data_len = kvm_s390_handle_pv_info(&info); 2840 if (data_len < 0) { 2841 r = data_len; 2842 break; 2843 } 2844 /* 2845 * If a data command struct is extended (multiple 2846 * times) this can be used to determine how much of it 2847 * is valid. 2848 */ 2849 info.header.len_written = data_len; 2850 2851 r = -EFAULT; 2852 if (copy_to_user(argp, &info, data_len)) 2853 break; 2854 2855 r = 0; 2856 break; 2857 } 2858 case KVM_PV_DUMP: { 2859 struct kvm_s390_pv_dmp dmp; 2860 2861 r = -EINVAL; 2862 if (!kvm_s390_pv_is_protected(kvm)) 2863 break; 2864 2865 r = -EFAULT; 2866 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2867 break; 2868 2869 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2870 if (r) 2871 break; 2872 2873 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2874 r = -EFAULT; 2875 break; 2876 } 2877 2878 break; 2879 } 2880 default: 2881 r = -ENOTTY; 2882 } 2883 if (need_lock) 2884 mutex_unlock(&kvm->lock); 2885 2886 return r; 2887 } 2888 2889 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2890 { 2891 if (mop->flags & ~supported_flags || !mop->size) 2892 return -EINVAL; 2893 if (mop->size > MEM_OP_MAX_SIZE) 2894 return -E2BIG; 2895 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2896 if (mop->key > 0xf) 2897 return -EINVAL; 2898 } else { 2899 mop->key = 0; 2900 } 2901 return 0; 2902 } 2903 2904 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2905 { 2906 void __user *uaddr = (void __user *)mop->buf; 2907 enum gacc_mode acc_mode; 2908 void *tmpbuf = NULL; 2909 int r, srcu_idx; 2910 2911 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2912 KVM_S390_MEMOP_F_CHECK_ONLY); 2913 if (r) 2914 return r; 2915 2916 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2917 tmpbuf = vmalloc(mop->size); 2918 if (!tmpbuf) 2919 return -ENOMEM; 2920 } 2921 2922 srcu_idx = srcu_read_lock(&kvm->srcu); 2923 2924 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2925 r = PGM_ADDRESSING; 2926 goto out_unlock; 2927 } 2928 2929 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2930 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2931 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2932 goto out_unlock; 2933 } 2934 if (acc_mode == GACC_FETCH) { 2935 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2936 mop->size, GACC_FETCH, mop->key); 2937 if (r) 2938 goto out_unlock; 2939 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2940 r = -EFAULT; 2941 } else { 2942 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2943 r = -EFAULT; 2944 goto out_unlock; 2945 } 2946 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2947 mop->size, GACC_STORE, mop->key); 2948 } 2949 2950 out_unlock: 2951 srcu_read_unlock(&kvm->srcu, srcu_idx); 2952 2953 vfree(tmpbuf); 2954 return r; 2955 } 2956 2957 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2958 { 2959 void __user *uaddr = (void __user *)mop->buf; 2960 void __user *old_addr = (void __user *)mop->old_addr; 2961 union { 2962 __uint128_t quad; 2963 char raw[sizeof(__uint128_t)]; 2964 } old = { .quad = 0}, new = { .quad = 0 }; 2965 unsigned int off_in_quad = sizeof(new) - mop->size; 2966 int r, srcu_idx; 2967 bool success; 2968 2969 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2970 if (r) 2971 return r; 2972 /* 2973 * This validates off_in_quad. Checking that size is a power 2974 * of two is not necessary, as cmpxchg_guest_abs_with_key 2975 * takes care of that 2976 */ 2977 if (mop->size > sizeof(new)) 2978 return -EINVAL; 2979 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2980 return -EFAULT; 2981 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2982 return -EFAULT; 2983 2984 srcu_idx = srcu_read_lock(&kvm->srcu); 2985 2986 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) { 2987 r = PGM_ADDRESSING; 2988 goto out_unlock; 2989 } 2990 2991 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2992 new.quad, mop->key, &success); 2993 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2994 r = -EFAULT; 2995 2996 out_unlock: 2997 srcu_read_unlock(&kvm->srcu, srcu_idx); 2998 return r; 2999 } 3000 3001 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 3002 { 3003 /* 3004 * This is technically a heuristic only, if the kvm->lock is not 3005 * taken, it is not guaranteed that the vm is/remains non-protected. 3006 * This is ok from a kernel perspective, wrongdoing is detected 3007 * on the access, -EFAULT is returned and the vm may crash the 3008 * next time it accesses the memory in question. 3009 * There is no sane usecase to do switching and a memop on two 3010 * different CPUs at the same time. 3011 */ 3012 if (kvm_s390_pv_get_handle(kvm)) 3013 return -EINVAL; 3014 3015 switch (mop->op) { 3016 case KVM_S390_MEMOP_ABSOLUTE_READ: 3017 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 3018 return kvm_s390_vm_mem_op_abs(kvm, mop); 3019 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 3020 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 3021 default: 3022 return -EINVAL; 3023 } 3024 } 3025 3026 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 3027 { 3028 struct kvm *kvm = filp->private_data; 3029 void __user *argp = (void __user *)arg; 3030 struct kvm_device_attr attr; 3031 int r; 3032 3033 switch (ioctl) { 3034 case KVM_S390_INTERRUPT: { 3035 struct kvm_s390_interrupt s390int; 3036 3037 r = -EFAULT; 3038 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3039 break; 3040 r = kvm_s390_inject_vm(kvm, &s390int); 3041 break; 3042 } 3043 case KVM_CREATE_IRQCHIP: { 3044 r = -EINVAL; 3045 if (kvm->arch.use_irqchip) 3046 r = 0; 3047 break; 3048 } 3049 case KVM_SET_DEVICE_ATTR: { 3050 r = -EFAULT; 3051 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3052 break; 3053 r = kvm_s390_vm_set_attr(kvm, &attr); 3054 break; 3055 } 3056 case KVM_GET_DEVICE_ATTR: { 3057 r = -EFAULT; 3058 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3059 break; 3060 r = kvm_s390_vm_get_attr(kvm, &attr); 3061 break; 3062 } 3063 case KVM_HAS_DEVICE_ATTR: { 3064 r = -EFAULT; 3065 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3066 break; 3067 r = kvm_s390_vm_has_attr(kvm, &attr); 3068 break; 3069 } 3070 case KVM_S390_GET_SKEYS: { 3071 struct kvm_s390_skeys args; 3072 3073 r = -EFAULT; 3074 if (copy_from_user(&args, argp, 3075 sizeof(struct kvm_s390_skeys))) 3076 break; 3077 r = kvm_s390_get_skeys(kvm, &args); 3078 break; 3079 } 3080 case KVM_S390_SET_SKEYS: { 3081 struct kvm_s390_skeys args; 3082 3083 r = -EFAULT; 3084 if (copy_from_user(&args, argp, 3085 sizeof(struct kvm_s390_skeys))) 3086 break; 3087 r = kvm_s390_set_skeys(kvm, &args); 3088 break; 3089 } 3090 case KVM_S390_GET_CMMA_BITS: { 3091 struct kvm_s390_cmma_log args; 3092 3093 r = -EFAULT; 3094 if (copy_from_user(&args, argp, sizeof(args))) 3095 break; 3096 mutex_lock(&kvm->slots_lock); 3097 r = kvm_s390_get_cmma_bits(kvm, &args); 3098 mutex_unlock(&kvm->slots_lock); 3099 if (!r) { 3100 r = copy_to_user(argp, &args, sizeof(args)); 3101 if (r) 3102 r = -EFAULT; 3103 } 3104 break; 3105 } 3106 case KVM_S390_SET_CMMA_BITS: { 3107 struct kvm_s390_cmma_log args; 3108 3109 r = -EFAULT; 3110 if (copy_from_user(&args, argp, sizeof(args))) 3111 break; 3112 mutex_lock(&kvm->slots_lock); 3113 r = kvm_s390_set_cmma_bits(kvm, &args); 3114 mutex_unlock(&kvm->slots_lock); 3115 break; 3116 } 3117 case KVM_S390_PV_COMMAND: { 3118 struct kvm_pv_cmd args; 3119 3120 /* protvirt means user cpu state */ 3121 kvm_s390_set_user_cpu_state_ctrl(kvm); 3122 r = 0; 3123 if (!is_prot_virt_host()) { 3124 r = -EINVAL; 3125 break; 3126 } 3127 if (copy_from_user(&args, argp, sizeof(args))) { 3128 r = -EFAULT; 3129 break; 3130 } 3131 if (args.flags) { 3132 r = -EINVAL; 3133 break; 3134 } 3135 /* must be called without kvm->lock */ 3136 r = kvm_s390_handle_pv(kvm, &args); 3137 if (copy_to_user(argp, &args, sizeof(args))) { 3138 r = -EFAULT; 3139 break; 3140 } 3141 break; 3142 } 3143 case KVM_S390_MEM_OP: { 3144 struct kvm_s390_mem_op mem_op; 3145 3146 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3147 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3148 else 3149 r = -EFAULT; 3150 break; 3151 } 3152 case KVM_S390_ZPCI_OP: { 3153 struct kvm_s390_zpci_op args; 3154 3155 r = -EINVAL; 3156 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3157 break; 3158 if (copy_from_user(&args, argp, sizeof(args))) { 3159 r = -EFAULT; 3160 break; 3161 } 3162 r = kvm_s390_pci_zpci_op(kvm, &args); 3163 break; 3164 } 3165 default: 3166 r = -ENOTTY; 3167 } 3168 3169 return r; 3170 } 3171 3172 static int kvm_s390_apxa_installed(void) 3173 { 3174 struct ap_config_info info; 3175 3176 if (ap_instructions_available()) { 3177 if (ap_qci(&info) == 0) 3178 return info.apxa; 3179 } 3180 3181 return 0; 3182 } 3183 3184 /* 3185 * The format of the crypto control block (CRYCB) is specified in the 3 low 3186 * order bits of the CRYCB designation (CRYCBD) field as follows: 3187 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3188 * AP extended addressing (APXA) facility are installed. 3189 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3190 * Format 2: Both the APXA and MSAX3 facilities are installed 3191 */ 3192 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3193 { 3194 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb); 3195 3196 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3197 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3198 3199 /* Check whether MSAX3 is installed */ 3200 if (!test_kvm_facility(kvm, 76)) 3201 return; 3202 3203 if (kvm_s390_apxa_installed()) 3204 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3205 else 3206 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3207 } 3208 3209 /* 3210 * kvm_arch_crypto_set_masks 3211 * 3212 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3213 * to be set. 3214 * @apm: the mask identifying the accessible AP adapters 3215 * @aqm: the mask identifying the accessible AP domains 3216 * @adm: the mask identifying the accessible AP control domains 3217 * 3218 * Set the masks that identify the adapters, domains and control domains to 3219 * which the KVM guest is granted access. 3220 * 3221 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3222 * function. 3223 */ 3224 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3225 unsigned long *aqm, unsigned long *adm) 3226 { 3227 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3228 3229 kvm_s390_vcpu_block_all(kvm); 3230 3231 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3232 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3233 memcpy(crycb->apcb1.apm, apm, 32); 3234 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3235 apm[0], apm[1], apm[2], apm[3]); 3236 memcpy(crycb->apcb1.aqm, aqm, 32); 3237 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3238 aqm[0], aqm[1], aqm[2], aqm[3]); 3239 memcpy(crycb->apcb1.adm, adm, 32); 3240 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3241 adm[0], adm[1], adm[2], adm[3]); 3242 break; 3243 case CRYCB_FORMAT1: 3244 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3245 memcpy(crycb->apcb0.apm, apm, 8); 3246 memcpy(crycb->apcb0.aqm, aqm, 2); 3247 memcpy(crycb->apcb0.adm, adm, 2); 3248 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3249 apm[0], *((unsigned short *)aqm), 3250 *((unsigned short *)adm)); 3251 break; 3252 default: /* Can not happen */ 3253 break; 3254 } 3255 3256 /* recreate the shadow crycb for each vcpu */ 3257 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3258 kvm_s390_vcpu_unblock_all(kvm); 3259 } 3260 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3261 3262 /* 3263 * kvm_arch_crypto_clear_masks 3264 * 3265 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3266 * to be cleared. 3267 * 3268 * Clear the masks that identify the adapters, domains and control domains to 3269 * which the KVM guest is granted access. 3270 * 3271 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3272 * function. 3273 */ 3274 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3275 { 3276 kvm_s390_vcpu_block_all(kvm); 3277 3278 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3279 sizeof(kvm->arch.crypto.crycb->apcb0)); 3280 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3281 sizeof(kvm->arch.crypto.crycb->apcb1)); 3282 3283 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3284 /* recreate the shadow crycb for each vcpu */ 3285 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3286 kvm_s390_vcpu_unblock_all(kvm); 3287 } 3288 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3289 3290 static u64 kvm_s390_get_initial_cpuid(void) 3291 { 3292 struct cpuid cpuid; 3293 3294 get_cpu_id(&cpuid); 3295 cpuid.version = 0xff; 3296 return *((u64 *) &cpuid); 3297 } 3298 3299 static void kvm_s390_crypto_init(struct kvm *kvm) 3300 { 3301 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3302 kvm_s390_set_crycb_format(kvm); 3303 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3304 3305 if (!test_kvm_facility(kvm, 76)) 3306 return; 3307 3308 /* Enable AES/DEA protected key functions by default */ 3309 kvm->arch.crypto.aes_kw = 1; 3310 kvm->arch.crypto.dea_kw = 1; 3311 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3312 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3313 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3314 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3315 } 3316 3317 static void sca_dispose(struct kvm *kvm) 3318 { 3319 if (kvm->arch.use_esca) 3320 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3321 else 3322 free_page((unsigned long)(kvm->arch.sca)); 3323 kvm->arch.sca = NULL; 3324 } 3325 3326 void kvm_arch_free_vm(struct kvm *kvm) 3327 { 3328 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3329 kvm_s390_pci_clear_list(kvm); 3330 3331 __kvm_arch_free_vm(kvm); 3332 } 3333 3334 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3335 { 3336 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3337 int i, rc; 3338 char debug_name[16]; 3339 static unsigned long sca_offset; 3340 3341 rc = -EINVAL; 3342 #ifdef CONFIG_KVM_S390_UCONTROL 3343 if (type & ~KVM_VM_S390_UCONTROL) 3344 goto out_err; 3345 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3346 goto out_err; 3347 #else 3348 if (type) 3349 goto out_err; 3350 #endif 3351 3352 rc = s390_enable_sie(); 3353 if (rc) 3354 goto out_err; 3355 3356 rc = -ENOMEM; 3357 3358 if (!sclp.has_64bscao) 3359 alloc_flags |= GFP_DMA; 3360 rwlock_init(&kvm->arch.sca_lock); 3361 /* start with basic SCA */ 3362 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3363 if (!kvm->arch.sca) 3364 goto out_err; 3365 mutex_lock(&kvm_lock); 3366 sca_offset += 16; 3367 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3368 sca_offset = 0; 3369 kvm->arch.sca = (struct bsca_block *) 3370 ((char *) kvm->arch.sca + sca_offset); 3371 mutex_unlock(&kvm_lock); 3372 3373 sprintf(debug_name, "kvm-%u", current->pid); 3374 3375 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3376 if (!kvm->arch.dbf) 3377 goto out_err; 3378 3379 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3380 kvm->arch.sie_page2 = 3381 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3382 if (!kvm->arch.sie_page2) 3383 goto out_err; 3384 3385 kvm->arch.sie_page2->kvm = kvm; 3386 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3387 3388 for (i = 0; i < kvm_s390_fac_size(); i++) { 3389 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3390 (kvm_s390_fac_base[i] | 3391 kvm_s390_fac_ext[i]); 3392 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3393 kvm_s390_fac_base[i]; 3394 } 3395 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3396 3397 /* we are always in czam mode - even on pre z14 machines */ 3398 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3399 set_kvm_facility(kvm->arch.model.fac_list, 138); 3400 /* we emulate STHYI in kvm */ 3401 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3402 set_kvm_facility(kvm->arch.model.fac_list, 74); 3403 if (machine_has_tlb_guest()) { 3404 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3405 set_kvm_facility(kvm->arch.model.fac_list, 147); 3406 } 3407 3408 if (css_general_characteristics.aiv && test_facility(65)) 3409 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3410 3411 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3412 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3413 3414 kvm->arch.model.uv_feat_guest.feat = 0; 3415 3416 kvm_s390_crypto_init(kvm); 3417 3418 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3419 mutex_lock(&kvm->lock); 3420 kvm_s390_pci_init_list(kvm); 3421 kvm_s390_vcpu_pci_enable_interp(kvm); 3422 mutex_unlock(&kvm->lock); 3423 } 3424 3425 mutex_init(&kvm->arch.float_int.ais_lock); 3426 spin_lock_init(&kvm->arch.float_int.lock); 3427 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3428 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3429 init_waitqueue_head(&kvm->arch.ipte_wq); 3430 mutex_init(&kvm->arch.ipte_mutex); 3431 3432 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3433 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3434 3435 if (type & KVM_VM_S390_UCONTROL) { 3436 struct kvm_userspace_memory_region2 fake_memslot = { 3437 .slot = KVM_S390_UCONTROL_MEMSLOT, 3438 .guest_phys_addr = 0, 3439 .userspace_addr = 0, 3440 .memory_size = ALIGN_DOWN(TASK_SIZE, _SEGMENT_SIZE), 3441 .flags = 0, 3442 }; 3443 3444 kvm->arch.gmap = NULL; 3445 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3446 /* one flat fake memslot covering the whole address-space */ 3447 mutex_lock(&kvm->slots_lock); 3448 KVM_BUG_ON(kvm_set_internal_memslot(kvm, &fake_memslot), kvm); 3449 mutex_unlock(&kvm->slots_lock); 3450 } else { 3451 if (sclp.hamax == U64_MAX) 3452 kvm->arch.mem_limit = TASK_SIZE_MAX; 3453 else 3454 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3455 sclp.hamax + 1); 3456 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3457 if (!kvm->arch.gmap) 3458 goto out_err; 3459 kvm->arch.gmap->private = kvm; 3460 kvm->arch.gmap->pfault_enabled = 0; 3461 } 3462 3463 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3464 kvm->arch.use_skf = sclp.has_skey; 3465 spin_lock_init(&kvm->arch.start_stop_lock); 3466 kvm_s390_vsie_init(kvm); 3467 if (use_gisa) 3468 kvm_s390_gisa_init(kvm); 3469 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3470 kvm->arch.pv.set_aside = NULL; 3471 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid); 3472 3473 return 0; 3474 out_err: 3475 free_page((unsigned long)kvm->arch.sie_page2); 3476 debug_unregister(kvm->arch.dbf); 3477 sca_dispose(kvm); 3478 KVM_EVENT(3, "creation of vm failed: %d", rc); 3479 return rc; 3480 } 3481 3482 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3483 { 3484 u16 rc, rrc; 3485 3486 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3487 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3488 kvm_s390_clear_local_irqs(vcpu); 3489 kvm_clear_async_pf_completion_queue(vcpu); 3490 if (!kvm_is_ucontrol(vcpu->kvm)) 3491 sca_del_vcpu(vcpu); 3492 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3493 3494 if (kvm_is_ucontrol(vcpu->kvm)) 3495 gmap_remove(vcpu->arch.gmap); 3496 3497 if (vcpu->kvm->arch.use_cmma) 3498 kvm_s390_vcpu_unsetup_cmma(vcpu); 3499 /* We can not hold the vcpu mutex here, we are already dying */ 3500 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3501 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3502 free_page((unsigned long)(vcpu->arch.sie_block)); 3503 } 3504 3505 void kvm_arch_destroy_vm(struct kvm *kvm) 3506 { 3507 u16 rc, rrc; 3508 3509 kvm_destroy_vcpus(kvm); 3510 sca_dispose(kvm); 3511 kvm_s390_gisa_destroy(kvm); 3512 /* 3513 * We are already at the end of life and kvm->lock is not taken. 3514 * This is ok as the file descriptor is closed by now and nobody 3515 * can mess with the pv state. 3516 */ 3517 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3518 /* 3519 * Remove the mmu notifier only when the whole KVM VM is torn down, 3520 * and only if one was registered to begin with. If the VM is 3521 * currently not protected, but has been previously been protected, 3522 * then it's possible that the notifier is still registered. 3523 */ 3524 if (kvm->arch.pv.mmu_notifier.ops) 3525 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3526 3527 debug_unregister(kvm->arch.dbf); 3528 free_page((unsigned long)kvm->arch.sie_page2); 3529 if (!kvm_is_ucontrol(kvm)) 3530 gmap_remove(kvm->arch.gmap); 3531 kvm_s390_destroy_adapters(kvm); 3532 kvm_s390_clear_float_irqs(kvm); 3533 kvm_s390_vsie_destroy(kvm); 3534 KVM_EVENT(3, "vm 0x%p destroyed", kvm); 3535 } 3536 3537 /* Section: vcpu related */ 3538 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3539 { 3540 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3541 if (!vcpu->arch.gmap) 3542 return -ENOMEM; 3543 vcpu->arch.gmap->private = vcpu->kvm; 3544 3545 return 0; 3546 } 3547 3548 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3549 { 3550 if (!kvm_s390_use_sca_entries()) 3551 return; 3552 read_lock(&vcpu->kvm->arch.sca_lock); 3553 if (vcpu->kvm->arch.use_esca) { 3554 struct esca_block *sca = vcpu->kvm->arch.sca; 3555 3556 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3557 sca->cpu[vcpu->vcpu_id].sda = 0; 3558 } else { 3559 struct bsca_block *sca = vcpu->kvm->arch.sca; 3560 3561 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3562 sca->cpu[vcpu->vcpu_id].sda = 0; 3563 } 3564 read_unlock(&vcpu->kvm->arch.sca_lock); 3565 } 3566 3567 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3568 { 3569 if (!kvm_s390_use_sca_entries()) { 3570 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3571 3572 /* we still need the basic sca for the ipte control */ 3573 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3574 vcpu->arch.sie_block->scaol = sca_phys; 3575 return; 3576 } 3577 read_lock(&vcpu->kvm->arch.sca_lock); 3578 if (vcpu->kvm->arch.use_esca) { 3579 struct esca_block *sca = vcpu->kvm->arch.sca; 3580 phys_addr_t sca_phys = virt_to_phys(sca); 3581 3582 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3583 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3584 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3585 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3586 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3587 } else { 3588 struct bsca_block *sca = vcpu->kvm->arch.sca; 3589 phys_addr_t sca_phys = virt_to_phys(sca); 3590 3591 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3592 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3593 vcpu->arch.sie_block->scaol = sca_phys; 3594 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3595 } 3596 read_unlock(&vcpu->kvm->arch.sca_lock); 3597 } 3598 3599 /* Basic SCA to Extended SCA data copy routines */ 3600 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3601 { 3602 d->sda = s->sda; 3603 d->sigp_ctrl.c = s->sigp_ctrl.c; 3604 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3605 } 3606 3607 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3608 { 3609 int i; 3610 3611 d->ipte_control = s->ipte_control; 3612 d->mcn[0] = s->mcn; 3613 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3614 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3615 } 3616 3617 static int sca_switch_to_extended(struct kvm *kvm) 3618 { 3619 struct bsca_block *old_sca = kvm->arch.sca; 3620 struct esca_block *new_sca; 3621 struct kvm_vcpu *vcpu; 3622 unsigned long vcpu_idx; 3623 u32 scaol, scaoh; 3624 phys_addr_t new_sca_phys; 3625 3626 if (kvm->arch.use_esca) 3627 return 0; 3628 3629 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3630 if (!new_sca) 3631 return -ENOMEM; 3632 3633 new_sca_phys = virt_to_phys(new_sca); 3634 scaoh = new_sca_phys >> 32; 3635 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3636 3637 kvm_s390_vcpu_block_all(kvm); 3638 write_lock(&kvm->arch.sca_lock); 3639 3640 sca_copy_b_to_e(new_sca, old_sca); 3641 3642 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3643 vcpu->arch.sie_block->scaoh = scaoh; 3644 vcpu->arch.sie_block->scaol = scaol; 3645 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3646 } 3647 kvm->arch.sca = new_sca; 3648 kvm->arch.use_esca = 1; 3649 3650 write_unlock(&kvm->arch.sca_lock); 3651 kvm_s390_vcpu_unblock_all(kvm); 3652 3653 free_page((unsigned long)old_sca); 3654 3655 VM_EVENT(kvm, 2, "Switched to ESCA (0x%p -> 0x%p)", 3656 old_sca, kvm->arch.sca); 3657 return 0; 3658 } 3659 3660 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3661 { 3662 int rc; 3663 3664 if (!kvm_s390_use_sca_entries()) { 3665 if (id < KVM_MAX_VCPUS) 3666 return true; 3667 return false; 3668 } 3669 if (id < KVM_S390_BSCA_CPU_SLOTS) 3670 return true; 3671 if (!sclp.has_esca || !sclp.has_64bscao) 3672 return false; 3673 3674 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3675 3676 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3677 } 3678 3679 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3680 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3681 { 3682 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3683 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3684 vcpu->arch.cputm_start = get_tod_clock_fast(); 3685 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3686 } 3687 3688 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3689 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3690 { 3691 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3692 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3693 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3694 vcpu->arch.cputm_start = 0; 3695 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3696 } 3697 3698 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3699 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3700 { 3701 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3702 vcpu->arch.cputm_enabled = true; 3703 __start_cpu_timer_accounting(vcpu); 3704 } 3705 3706 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3707 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3708 { 3709 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3710 __stop_cpu_timer_accounting(vcpu); 3711 vcpu->arch.cputm_enabled = false; 3712 } 3713 3714 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3715 { 3716 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3717 __enable_cpu_timer_accounting(vcpu); 3718 preempt_enable(); 3719 } 3720 3721 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3722 { 3723 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3724 __disable_cpu_timer_accounting(vcpu); 3725 preempt_enable(); 3726 } 3727 3728 /* set the cpu timer - may only be called from the VCPU thread itself */ 3729 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3730 { 3731 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3732 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3733 if (vcpu->arch.cputm_enabled) 3734 vcpu->arch.cputm_start = get_tod_clock_fast(); 3735 vcpu->arch.sie_block->cputm = cputm; 3736 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3737 preempt_enable(); 3738 } 3739 3740 /* update and get the cpu timer - can also be called from other VCPU threads */ 3741 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3742 { 3743 unsigned int seq; 3744 __u64 value; 3745 3746 if (unlikely(!vcpu->arch.cputm_enabled)) 3747 return vcpu->arch.sie_block->cputm; 3748 3749 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3750 do { 3751 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3752 /* 3753 * If the writer would ever execute a read in the critical 3754 * section, e.g. in irq context, we have a deadlock. 3755 */ 3756 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3757 value = vcpu->arch.sie_block->cputm; 3758 /* if cputm_start is 0, accounting is being started/stopped */ 3759 if (likely(vcpu->arch.cputm_start)) 3760 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3761 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3762 preempt_enable(); 3763 return value; 3764 } 3765 3766 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3767 { 3768 3769 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3770 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3771 __start_cpu_timer_accounting(vcpu); 3772 vcpu->cpu = cpu; 3773 } 3774 3775 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3776 { 3777 vcpu->cpu = -1; 3778 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3779 __stop_cpu_timer_accounting(vcpu); 3780 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3781 3782 } 3783 3784 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3785 { 3786 mutex_lock(&vcpu->kvm->lock); 3787 preempt_disable(); 3788 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3789 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3790 preempt_enable(); 3791 mutex_unlock(&vcpu->kvm->lock); 3792 if (!kvm_is_ucontrol(vcpu->kvm)) { 3793 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3794 sca_add_vcpu(vcpu); 3795 } 3796 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3797 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3798 } 3799 3800 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3801 { 3802 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3803 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3804 return true; 3805 return false; 3806 } 3807 3808 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3809 { 3810 /* At least one ECC subfunction must be present */ 3811 return kvm_has_pckmo_subfunc(kvm, 32) || 3812 kvm_has_pckmo_subfunc(kvm, 33) || 3813 kvm_has_pckmo_subfunc(kvm, 34) || 3814 kvm_has_pckmo_subfunc(kvm, 40) || 3815 kvm_has_pckmo_subfunc(kvm, 41); 3816 3817 } 3818 3819 static bool kvm_has_pckmo_hmac(struct kvm *kvm) 3820 { 3821 /* At least one HMAC subfunction must be present */ 3822 return kvm_has_pckmo_subfunc(kvm, 118) || 3823 kvm_has_pckmo_subfunc(kvm, 122); 3824 } 3825 3826 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3827 { 3828 /* 3829 * If the AP instructions are not being interpreted and the MSAX3 3830 * facility is not configured for the guest, there is nothing to set up. 3831 */ 3832 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3833 return; 3834 3835 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3836 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3837 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3838 vcpu->arch.sie_block->ecd &= ~(ECD_ECC | ECD_HMAC); 3839 3840 if (vcpu->kvm->arch.crypto.apie) 3841 vcpu->arch.sie_block->eca |= ECA_APIE; 3842 3843 /* Set up protected key support */ 3844 if (vcpu->kvm->arch.crypto.aes_kw) { 3845 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3846 /* ecc/hmac is also wrapped with AES key */ 3847 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3848 vcpu->arch.sie_block->ecd |= ECD_ECC; 3849 if (kvm_has_pckmo_hmac(vcpu->kvm)) 3850 vcpu->arch.sie_block->ecd |= ECD_HMAC; 3851 } 3852 3853 if (vcpu->kvm->arch.crypto.dea_kw) 3854 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3855 } 3856 3857 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3858 { 3859 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3860 vcpu->arch.sie_block->cbrlo = 0; 3861 } 3862 3863 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3864 { 3865 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3866 3867 if (!cbrlo_page) 3868 return -ENOMEM; 3869 3870 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3871 return 0; 3872 } 3873 3874 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3875 { 3876 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3877 3878 vcpu->arch.sie_block->ibc = model->ibc; 3879 if (test_kvm_facility(vcpu->kvm, 7)) 3880 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3881 } 3882 3883 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3884 { 3885 int rc = 0; 3886 u16 uvrc, uvrrc; 3887 3888 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3889 CPUSTAT_SM | 3890 CPUSTAT_STOPPED); 3891 3892 if (test_kvm_facility(vcpu->kvm, 78)) 3893 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3894 else if (test_kvm_facility(vcpu->kvm, 8)) 3895 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3896 3897 kvm_s390_vcpu_setup_model(vcpu); 3898 3899 /* pgste_set_pte has special handling for !machine_has_esop() */ 3900 if (machine_has_esop()) 3901 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3902 if (test_kvm_facility(vcpu->kvm, 9)) 3903 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3904 if (test_kvm_facility(vcpu->kvm, 11)) 3905 vcpu->arch.sie_block->ecb |= ECB_PTF; 3906 if (test_kvm_facility(vcpu->kvm, 73)) 3907 vcpu->arch.sie_block->ecb |= ECB_TE; 3908 if (!kvm_is_ucontrol(vcpu->kvm)) 3909 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3910 3911 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3912 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3913 if (test_kvm_facility(vcpu->kvm, 130)) 3914 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3915 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3916 if (sclp.has_cei) 3917 vcpu->arch.sie_block->eca |= ECA_CEI; 3918 if (sclp.has_ib) 3919 vcpu->arch.sie_block->eca |= ECA_IB; 3920 if (sclp.has_siif) 3921 vcpu->arch.sie_block->eca |= ECA_SII; 3922 if (sclp.has_sigpif) 3923 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3924 if (test_kvm_facility(vcpu->kvm, 129)) { 3925 vcpu->arch.sie_block->eca |= ECA_VX; 3926 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3927 } 3928 if (test_kvm_facility(vcpu->kvm, 139)) 3929 vcpu->arch.sie_block->ecd |= ECD_MEF; 3930 if (test_kvm_facility(vcpu->kvm, 156)) 3931 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3932 if (vcpu->arch.sie_block->gd) { 3933 vcpu->arch.sie_block->eca |= ECA_AIV; 3934 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3935 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3936 } 3937 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3938 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3939 3940 if (sclp.has_kss) 3941 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3942 else 3943 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3944 3945 if (vcpu->kvm->arch.use_cmma) { 3946 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3947 if (rc) 3948 return rc; 3949 } 3950 hrtimer_setup(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup, CLOCK_MONOTONIC, 3951 HRTIMER_MODE_REL); 3952 3953 vcpu->arch.sie_block->hpid = HPID_KVM; 3954 3955 kvm_s390_vcpu_crypto_setup(vcpu); 3956 3957 kvm_s390_vcpu_pci_setup(vcpu); 3958 3959 mutex_lock(&vcpu->kvm->lock); 3960 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3961 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3962 if (rc) 3963 kvm_s390_vcpu_unsetup_cmma(vcpu); 3964 } 3965 mutex_unlock(&vcpu->kvm->lock); 3966 3967 return rc; 3968 } 3969 3970 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3971 { 3972 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3973 return -EINVAL; 3974 return 0; 3975 } 3976 3977 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3978 { 3979 struct sie_page *sie_page; 3980 int rc; 3981 3982 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3983 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3984 if (!sie_page) 3985 return -ENOMEM; 3986 3987 vcpu->arch.sie_block = &sie_page->sie_block; 3988 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3989 3990 /* the real guest size will always be smaller than msl */ 3991 vcpu->arch.sie_block->mso = 0; 3992 vcpu->arch.sie_block->msl = sclp.hamax; 3993 3994 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3995 spin_lock_init(&vcpu->arch.local_int.lock); 3996 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3997 seqcount_init(&vcpu->arch.cputm_seqcount); 3998 3999 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4000 kvm_clear_async_pf_completion_queue(vcpu); 4001 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 4002 KVM_SYNC_GPRS | 4003 KVM_SYNC_ACRS | 4004 KVM_SYNC_CRS | 4005 KVM_SYNC_ARCH0 | 4006 KVM_SYNC_PFAULT | 4007 KVM_SYNC_DIAG318; 4008 vcpu->arch.acrs_loaded = false; 4009 kvm_s390_set_prefix(vcpu, 0); 4010 if (test_kvm_facility(vcpu->kvm, 64)) 4011 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 4012 if (test_kvm_facility(vcpu->kvm, 82)) 4013 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 4014 if (test_kvm_facility(vcpu->kvm, 133)) 4015 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 4016 if (test_kvm_facility(vcpu->kvm, 156)) 4017 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 4018 /* fprs can be synchronized via vrs, even if the guest has no vx. With 4019 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format. 4020 */ 4021 if (cpu_has_vx()) 4022 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 4023 else 4024 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 4025 4026 if (kvm_is_ucontrol(vcpu->kvm)) { 4027 rc = __kvm_ucontrol_vcpu_init(vcpu); 4028 if (rc) 4029 goto out_free_sie_block; 4030 } 4031 4032 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%p, sie block at 0x%p", 4033 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4034 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 4035 4036 rc = kvm_s390_vcpu_setup(vcpu); 4037 if (rc) 4038 goto out_ucontrol_uninit; 4039 4040 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 4041 return 0; 4042 4043 out_ucontrol_uninit: 4044 if (kvm_is_ucontrol(vcpu->kvm)) 4045 gmap_remove(vcpu->arch.gmap); 4046 out_free_sie_block: 4047 free_page((unsigned long)(vcpu->arch.sie_block)); 4048 return rc; 4049 } 4050 4051 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 4052 { 4053 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4054 return kvm_s390_vcpu_has_irq(vcpu, 0); 4055 } 4056 4057 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4058 { 4059 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4060 } 4061 4062 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4063 { 4064 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4065 exit_sie(vcpu); 4066 } 4067 4068 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4069 { 4070 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4071 } 4072 4073 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4074 { 4075 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4076 exit_sie(vcpu); 4077 } 4078 4079 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4080 { 4081 return atomic_read(&vcpu->arch.sie_block->prog20) & 4082 (PROG_BLOCK_SIE | PROG_REQUEST); 4083 } 4084 4085 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4086 { 4087 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4088 } 4089 4090 /* 4091 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4092 * If the CPU is not running (e.g. waiting as idle) the function will 4093 * return immediately. */ 4094 void exit_sie(struct kvm_vcpu *vcpu) 4095 { 4096 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4097 kvm_s390_vsie_kick(vcpu); 4098 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4099 cpu_relax(); 4100 } 4101 4102 /* Kick a guest cpu out of SIE to process a request synchronously */ 4103 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4104 { 4105 __kvm_make_request(req, vcpu); 4106 kvm_s390_vcpu_request(vcpu); 4107 } 4108 4109 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4110 unsigned long end) 4111 { 4112 struct kvm *kvm = gmap->private; 4113 struct kvm_vcpu *vcpu; 4114 unsigned long prefix; 4115 unsigned long i; 4116 4117 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap)); 4118 4119 if (gmap_is_shadow(gmap)) 4120 return; 4121 if (start >= 1UL << 31) 4122 /* We are only interested in prefix pages */ 4123 return; 4124 kvm_for_each_vcpu(i, vcpu, kvm) { 4125 /* match against both prefix pages */ 4126 prefix = kvm_s390_get_prefix(vcpu); 4127 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4128 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4129 start, end); 4130 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4131 } 4132 } 4133 } 4134 4135 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4136 { 4137 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4138 if (get_lowcore()->avg_steal_timer * 100 / (TICK_USEC << 12) >= 4139 READ_ONCE(halt_poll_max_steal)) { 4140 vcpu->stat.halt_no_poll_steal++; 4141 return true; 4142 } 4143 return false; 4144 } 4145 4146 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4147 { 4148 /* kvm common code refers to this, but never calls it */ 4149 BUG(); 4150 return 0; 4151 } 4152 4153 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4154 struct kvm_one_reg *reg) 4155 { 4156 int r = -EINVAL; 4157 4158 switch (reg->id) { 4159 case KVM_REG_S390_TODPR: 4160 r = put_user(vcpu->arch.sie_block->todpr, 4161 (u32 __user *)reg->addr); 4162 break; 4163 case KVM_REG_S390_EPOCHDIFF: 4164 r = put_user(vcpu->arch.sie_block->epoch, 4165 (u64 __user *)reg->addr); 4166 break; 4167 case KVM_REG_S390_CPU_TIMER: 4168 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4169 (u64 __user *)reg->addr); 4170 break; 4171 case KVM_REG_S390_CLOCK_COMP: 4172 r = put_user(vcpu->arch.sie_block->ckc, 4173 (u64 __user *)reg->addr); 4174 break; 4175 case KVM_REG_S390_PFTOKEN: 4176 r = put_user(vcpu->arch.pfault_token, 4177 (u64 __user *)reg->addr); 4178 break; 4179 case KVM_REG_S390_PFCOMPARE: 4180 r = put_user(vcpu->arch.pfault_compare, 4181 (u64 __user *)reg->addr); 4182 break; 4183 case KVM_REG_S390_PFSELECT: 4184 r = put_user(vcpu->arch.pfault_select, 4185 (u64 __user *)reg->addr); 4186 break; 4187 case KVM_REG_S390_PP: 4188 r = put_user(vcpu->arch.sie_block->pp, 4189 (u64 __user *)reg->addr); 4190 break; 4191 case KVM_REG_S390_GBEA: 4192 r = put_user(vcpu->arch.sie_block->gbea, 4193 (u64 __user *)reg->addr); 4194 break; 4195 default: 4196 break; 4197 } 4198 4199 return r; 4200 } 4201 4202 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4203 struct kvm_one_reg *reg) 4204 { 4205 int r = -EINVAL; 4206 __u64 val; 4207 4208 switch (reg->id) { 4209 case KVM_REG_S390_TODPR: 4210 r = get_user(vcpu->arch.sie_block->todpr, 4211 (u32 __user *)reg->addr); 4212 break; 4213 case KVM_REG_S390_EPOCHDIFF: 4214 r = get_user(vcpu->arch.sie_block->epoch, 4215 (u64 __user *)reg->addr); 4216 break; 4217 case KVM_REG_S390_CPU_TIMER: 4218 r = get_user(val, (u64 __user *)reg->addr); 4219 if (!r) 4220 kvm_s390_set_cpu_timer(vcpu, val); 4221 break; 4222 case KVM_REG_S390_CLOCK_COMP: 4223 r = get_user(vcpu->arch.sie_block->ckc, 4224 (u64 __user *)reg->addr); 4225 break; 4226 case KVM_REG_S390_PFTOKEN: 4227 r = get_user(vcpu->arch.pfault_token, 4228 (u64 __user *)reg->addr); 4229 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4230 kvm_clear_async_pf_completion_queue(vcpu); 4231 break; 4232 case KVM_REG_S390_PFCOMPARE: 4233 r = get_user(vcpu->arch.pfault_compare, 4234 (u64 __user *)reg->addr); 4235 break; 4236 case KVM_REG_S390_PFSELECT: 4237 r = get_user(vcpu->arch.pfault_select, 4238 (u64 __user *)reg->addr); 4239 break; 4240 case KVM_REG_S390_PP: 4241 r = get_user(vcpu->arch.sie_block->pp, 4242 (u64 __user *)reg->addr); 4243 break; 4244 case KVM_REG_S390_GBEA: 4245 r = get_user(vcpu->arch.sie_block->gbea, 4246 (u64 __user *)reg->addr); 4247 break; 4248 default: 4249 break; 4250 } 4251 4252 return r; 4253 } 4254 4255 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4256 { 4257 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4258 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4259 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4260 4261 kvm_clear_async_pf_completion_queue(vcpu); 4262 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4263 kvm_s390_vcpu_stop(vcpu); 4264 kvm_s390_clear_local_irqs(vcpu); 4265 } 4266 4267 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4268 { 4269 /* Initial reset is a superset of the normal reset */ 4270 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4271 4272 /* 4273 * This equals initial cpu reset in pop, but we don't switch to ESA. 4274 * We do not only reset the internal data, but also ... 4275 */ 4276 vcpu->arch.sie_block->gpsw.mask = 0; 4277 vcpu->arch.sie_block->gpsw.addr = 0; 4278 kvm_s390_set_prefix(vcpu, 0); 4279 kvm_s390_set_cpu_timer(vcpu, 0); 4280 vcpu->arch.sie_block->ckc = 0; 4281 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4282 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4283 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4284 4285 /* ... the data in sync regs */ 4286 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4287 vcpu->run->s.regs.ckc = 0; 4288 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4289 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4290 vcpu->run->psw_addr = 0; 4291 vcpu->run->psw_mask = 0; 4292 vcpu->run->s.regs.todpr = 0; 4293 vcpu->run->s.regs.cputm = 0; 4294 vcpu->run->s.regs.ckc = 0; 4295 vcpu->run->s.regs.pp = 0; 4296 vcpu->run->s.regs.gbea = 1; 4297 vcpu->run->s.regs.fpc = 0; 4298 /* 4299 * Do not reset these registers in the protected case, as some of 4300 * them are overlaid and they are not accessible in this case 4301 * anyway. 4302 */ 4303 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4304 vcpu->arch.sie_block->gbea = 1; 4305 vcpu->arch.sie_block->pp = 0; 4306 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4307 vcpu->arch.sie_block->todpr = 0; 4308 } 4309 } 4310 4311 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4312 { 4313 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4314 4315 /* Clear reset is a superset of the initial reset */ 4316 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4317 4318 memset(®s->gprs, 0, sizeof(regs->gprs)); 4319 memset(®s->vrs, 0, sizeof(regs->vrs)); 4320 memset(®s->acrs, 0, sizeof(regs->acrs)); 4321 memset(®s->gscb, 0, sizeof(regs->gscb)); 4322 4323 regs->etoken = 0; 4324 regs->etoken_extension = 0; 4325 } 4326 4327 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4328 { 4329 vcpu_load(vcpu); 4330 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4331 vcpu_put(vcpu); 4332 return 0; 4333 } 4334 4335 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4336 { 4337 vcpu_load(vcpu); 4338 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4339 vcpu_put(vcpu); 4340 return 0; 4341 } 4342 4343 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4344 struct kvm_sregs *sregs) 4345 { 4346 vcpu_load(vcpu); 4347 4348 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4349 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4350 4351 vcpu_put(vcpu); 4352 return 0; 4353 } 4354 4355 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4356 struct kvm_sregs *sregs) 4357 { 4358 vcpu_load(vcpu); 4359 4360 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4361 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4362 4363 vcpu_put(vcpu); 4364 return 0; 4365 } 4366 4367 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4368 { 4369 int ret = 0; 4370 4371 vcpu_load(vcpu); 4372 4373 vcpu->run->s.regs.fpc = fpu->fpc; 4374 if (cpu_has_vx()) 4375 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4376 (freg_t *) fpu->fprs); 4377 else 4378 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4379 4380 vcpu_put(vcpu); 4381 return ret; 4382 } 4383 4384 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4385 { 4386 vcpu_load(vcpu); 4387 4388 if (cpu_has_vx()) 4389 convert_vx_to_fp((freg_t *) fpu->fprs, 4390 (__vector128 *) vcpu->run->s.regs.vrs); 4391 else 4392 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4393 fpu->fpc = vcpu->run->s.regs.fpc; 4394 4395 vcpu_put(vcpu); 4396 return 0; 4397 } 4398 4399 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4400 { 4401 int rc = 0; 4402 4403 if (!is_vcpu_stopped(vcpu)) 4404 rc = -EBUSY; 4405 else { 4406 vcpu->run->psw_mask = psw.mask; 4407 vcpu->run->psw_addr = psw.addr; 4408 } 4409 return rc; 4410 } 4411 4412 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4413 struct kvm_translation *tr) 4414 { 4415 return -EINVAL; /* not implemented yet */ 4416 } 4417 4418 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4419 KVM_GUESTDBG_USE_HW_BP | \ 4420 KVM_GUESTDBG_ENABLE) 4421 4422 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4423 struct kvm_guest_debug *dbg) 4424 { 4425 int rc = 0; 4426 4427 vcpu_load(vcpu); 4428 4429 vcpu->guest_debug = 0; 4430 kvm_s390_clear_bp_data(vcpu); 4431 4432 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4433 rc = -EINVAL; 4434 goto out; 4435 } 4436 if (!sclp.has_gpere) { 4437 rc = -EINVAL; 4438 goto out; 4439 } 4440 4441 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4442 vcpu->guest_debug = dbg->control; 4443 /* enforce guest PER */ 4444 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4445 4446 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4447 rc = kvm_s390_import_bp_data(vcpu, dbg); 4448 } else { 4449 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4450 vcpu->arch.guestdbg.last_bp = 0; 4451 } 4452 4453 if (rc) { 4454 vcpu->guest_debug = 0; 4455 kvm_s390_clear_bp_data(vcpu); 4456 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4457 } 4458 4459 out: 4460 vcpu_put(vcpu); 4461 return rc; 4462 } 4463 4464 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4465 struct kvm_mp_state *mp_state) 4466 { 4467 int ret; 4468 4469 vcpu_load(vcpu); 4470 4471 /* CHECK_STOP and LOAD are not supported yet */ 4472 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4473 KVM_MP_STATE_OPERATING; 4474 4475 vcpu_put(vcpu); 4476 return ret; 4477 } 4478 4479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4480 struct kvm_mp_state *mp_state) 4481 { 4482 int rc = 0; 4483 4484 vcpu_load(vcpu); 4485 4486 /* user space knows about this interface - let it control the state */ 4487 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4488 4489 switch (mp_state->mp_state) { 4490 case KVM_MP_STATE_STOPPED: 4491 rc = kvm_s390_vcpu_stop(vcpu); 4492 break; 4493 case KVM_MP_STATE_OPERATING: 4494 rc = kvm_s390_vcpu_start(vcpu); 4495 break; 4496 case KVM_MP_STATE_LOAD: 4497 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4498 rc = -ENXIO; 4499 break; 4500 } 4501 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4502 break; 4503 case KVM_MP_STATE_CHECK_STOP: 4504 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4505 default: 4506 rc = -ENXIO; 4507 } 4508 4509 vcpu_put(vcpu); 4510 return rc; 4511 } 4512 4513 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4514 { 4515 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4516 } 4517 4518 static int __kvm_s390_fixup_fault_sync(struct gmap *gmap, gpa_t gaddr, unsigned int flags) 4519 { 4520 struct kvm *kvm = gmap->private; 4521 gfn_t gfn = gpa_to_gfn(gaddr); 4522 bool unlocked; 4523 hva_t vmaddr; 4524 gpa_t tmp; 4525 int rc; 4526 4527 if (kvm_is_ucontrol(kvm)) { 4528 tmp = __gmap_translate(gmap, gaddr); 4529 gfn = gpa_to_gfn(tmp); 4530 } 4531 4532 vmaddr = gfn_to_hva(kvm, gfn); 4533 rc = fixup_user_fault(gmap->mm, vmaddr, FAULT_FLAG_WRITE, &unlocked); 4534 if (!rc) 4535 rc = __gmap_link(gmap, gaddr, vmaddr); 4536 return rc; 4537 } 4538 4539 /** 4540 * __kvm_s390_mprotect_many() - Apply specified protection to guest pages 4541 * @gmap: the gmap of the guest 4542 * @gpa: the starting guest address 4543 * @npages: how many pages to protect 4544 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 4545 * @bits: pgste notification bits to set 4546 * 4547 * Returns: 0 in case of success, < 0 in case of error - see gmap_protect_one() 4548 * 4549 * Context: kvm->srcu and gmap->mm need to be held in read mode 4550 */ 4551 int __kvm_s390_mprotect_many(struct gmap *gmap, gpa_t gpa, u8 npages, unsigned int prot, 4552 unsigned long bits) 4553 { 4554 unsigned int fault_flag = (prot & PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 4555 gpa_t end = gpa + npages * PAGE_SIZE; 4556 int rc; 4557 4558 for (; gpa < end; gpa = ALIGN(gpa + 1, rc)) { 4559 rc = gmap_protect_one(gmap, gpa, prot, bits); 4560 if (rc == -EAGAIN) { 4561 __kvm_s390_fixup_fault_sync(gmap, gpa, fault_flag); 4562 rc = gmap_protect_one(gmap, gpa, prot, bits); 4563 } 4564 if (rc < 0) 4565 return rc; 4566 } 4567 4568 return 0; 4569 } 4570 4571 static int kvm_s390_mprotect_notify_prefix(struct kvm_vcpu *vcpu) 4572 { 4573 gpa_t gaddr = kvm_s390_get_prefix(vcpu); 4574 int idx, rc; 4575 4576 idx = srcu_read_lock(&vcpu->kvm->srcu); 4577 mmap_read_lock(vcpu->arch.gmap->mm); 4578 4579 rc = __kvm_s390_mprotect_many(vcpu->arch.gmap, gaddr, 2, PROT_WRITE, GMAP_NOTIFY_MPROT); 4580 4581 mmap_read_unlock(vcpu->arch.gmap->mm); 4582 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4583 4584 return rc; 4585 } 4586 4587 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4588 { 4589 retry: 4590 kvm_s390_vcpu_request_handled(vcpu); 4591 if (!kvm_request_pending(vcpu)) 4592 return 0; 4593 /* 4594 * If the guest prefix changed, re-arm the ipte notifier for the 4595 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4596 * This ensures that the ipte instruction for this request has 4597 * already finished. We might race against a second unmapper that 4598 * wants to set the blocking bit. Lets just retry the request loop. 4599 */ 4600 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4601 int rc; 4602 4603 rc = kvm_s390_mprotect_notify_prefix(vcpu); 4604 if (rc) { 4605 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4606 return rc; 4607 } 4608 goto retry; 4609 } 4610 4611 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4612 vcpu->arch.sie_block->ihcpu = 0xffff; 4613 goto retry; 4614 } 4615 4616 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4617 if (!ibs_enabled(vcpu)) { 4618 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4619 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4620 } 4621 goto retry; 4622 } 4623 4624 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4625 if (ibs_enabled(vcpu)) { 4626 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4627 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4628 } 4629 goto retry; 4630 } 4631 4632 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4633 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4634 goto retry; 4635 } 4636 4637 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4638 /* 4639 * Disable CMM virtualization; we will emulate the ESSA 4640 * instruction manually, in order to provide additional 4641 * functionalities needed for live migration. 4642 */ 4643 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4644 goto retry; 4645 } 4646 4647 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4648 /* 4649 * Re-enable CMM virtualization if CMMA is available and 4650 * CMM has been used. 4651 */ 4652 if ((vcpu->kvm->arch.use_cmma) && 4653 (vcpu->kvm->mm->context.uses_cmm)) 4654 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4655 goto retry; 4656 } 4657 4658 /* we left the vsie handler, nothing to do, just clear the request */ 4659 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4660 4661 return 0; 4662 } 4663 4664 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4665 { 4666 struct kvm_vcpu *vcpu; 4667 union tod_clock clk; 4668 unsigned long i; 4669 4670 preempt_disable(); 4671 4672 store_tod_clock_ext(&clk); 4673 4674 kvm->arch.epoch = gtod->tod - clk.tod; 4675 kvm->arch.epdx = 0; 4676 if (test_kvm_facility(kvm, 139)) { 4677 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4678 if (kvm->arch.epoch > gtod->tod) 4679 kvm->arch.epdx -= 1; 4680 } 4681 4682 kvm_s390_vcpu_block_all(kvm); 4683 kvm_for_each_vcpu(i, vcpu, kvm) { 4684 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4685 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4686 } 4687 4688 kvm_s390_vcpu_unblock_all(kvm); 4689 preempt_enable(); 4690 } 4691 4692 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4693 { 4694 if (!mutex_trylock(&kvm->lock)) 4695 return 0; 4696 __kvm_s390_set_tod_clock(kvm, gtod); 4697 mutex_unlock(&kvm->lock); 4698 return 1; 4699 } 4700 4701 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4702 unsigned long token) 4703 { 4704 struct kvm_s390_interrupt inti; 4705 struct kvm_s390_irq irq; 4706 4707 if (start_token) { 4708 irq.u.ext.ext_params2 = token; 4709 irq.type = KVM_S390_INT_PFAULT_INIT; 4710 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4711 } else { 4712 inti.type = KVM_S390_INT_PFAULT_DONE; 4713 inti.parm64 = token; 4714 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4715 } 4716 } 4717 4718 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4719 struct kvm_async_pf *work) 4720 { 4721 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4722 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4723 4724 return true; 4725 } 4726 4727 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4728 struct kvm_async_pf *work) 4729 { 4730 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4731 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4732 } 4733 4734 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4735 struct kvm_async_pf *work) 4736 { 4737 /* s390 will always inject the page directly */ 4738 } 4739 4740 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4741 { 4742 /* 4743 * s390 will always inject the page directly, 4744 * but we still want check_async_completion to cleanup 4745 */ 4746 return true; 4747 } 4748 4749 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4750 { 4751 hva_t hva; 4752 struct kvm_arch_async_pf arch; 4753 4754 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4755 return false; 4756 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4757 vcpu->arch.pfault_compare) 4758 return false; 4759 if (psw_extint_disabled(vcpu)) 4760 return false; 4761 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4762 return false; 4763 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4764 return false; 4765 if (!vcpu->arch.gmap->pfault_enabled) 4766 return false; 4767 4768 hva = gfn_to_hva(vcpu->kvm, current->thread.gmap_teid.addr); 4769 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4770 return false; 4771 4772 return kvm_setup_async_pf(vcpu, current->thread.gmap_teid.addr * PAGE_SIZE, hva, &arch); 4773 } 4774 4775 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4776 { 4777 int rc, cpuflags; 4778 4779 /* 4780 * On s390 notifications for arriving pages will be delivered directly 4781 * to the guest but the house keeping for completed pfaults is 4782 * handled outside the worker. 4783 */ 4784 kvm_check_async_pf_completion(vcpu); 4785 4786 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4787 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4788 4789 if (need_resched()) 4790 schedule(); 4791 4792 if (!kvm_is_ucontrol(vcpu->kvm)) { 4793 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4794 if (rc || guestdbg_exit_pending(vcpu)) 4795 return rc; 4796 } 4797 4798 rc = kvm_s390_handle_requests(vcpu); 4799 if (rc) 4800 return rc; 4801 4802 if (guestdbg_enabled(vcpu)) { 4803 kvm_s390_backup_guest_per_regs(vcpu); 4804 kvm_s390_patch_guest_per_regs(vcpu); 4805 } 4806 4807 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4808 4809 vcpu->arch.sie_block->icptcode = 0; 4810 current->thread.gmap_int_code = 0; 4811 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4812 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4813 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4814 4815 return 0; 4816 } 4817 4818 static int vcpu_post_run_addressing_exception(struct kvm_vcpu *vcpu) 4819 { 4820 struct kvm_s390_pgm_info pgm_info = { 4821 .code = PGM_ADDRESSING, 4822 }; 4823 u8 opcode, ilen; 4824 int rc; 4825 4826 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4827 trace_kvm_s390_sie_fault(vcpu); 4828 4829 /* 4830 * We want to inject an addressing exception, which is defined as a 4831 * suppressing or terminating exception. However, since we came here 4832 * by a DAT access exception, the PSW still points to the faulting 4833 * instruction since DAT exceptions are nullifying. So we've got 4834 * to look up the current opcode to get the length of the instruction 4835 * to be able to forward the PSW. 4836 */ 4837 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4838 ilen = insn_length(opcode); 4839 if (rc < 0) { 4840 return rc; 4841 } else if (rc) { 4842 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4843 * Forward by arbitrary ilc, injection will take care of 4844 * nullification if necessary. 4845 */ 4846 pgm_info = vcpu->arch.pgm; 4847 ilen = 4; 4848 } 4849 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4850 kvm_s390_forward_psw(vcpu, ilen); 4851 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4852 } 4853 4854 static void kvm_s390_assert_primary_as(struct kvm_vcpu *vcpu) 4855 { 4856 KVM_BUG(current->thread.gmap_teid.as != PSW_BITS_AS_PRIMARY, vcpu->kvm, 4857 "Unexpected program interrupt 0x%x, TEID 0x%016lx", 4858 current->thread.gmap_int_code, current->thread.gmap_teid.val); 4859 } 4860 4861 /* 4862 * __kvm_s390_handle_dat_fault() - handle a dat fault for the gmap of a vcpu 4863 * @vcpu: the vCPU whose gmap is to be fixed up 4864 * @gfn: the guest frame number used for memslots (including fake memslots) 4865 * @gaddr: the gmap address, does not have to match @gfn for ucontrol gmaps 4866 * @flags: FOLL_* flags 4867 * 4868 * Return: 0 on success, < 0 in case of error. 4869 * Context: The mm lock must not be held before calling. May sleep. 4870 */ 4871 int __kvm_s390_handle_dat_fault(struct kvm_vcpu *vcpu, gfn_t gfn, gpa_t gaddr, unsigned int flags) 4872 { 4873 struct kvm_memory_slot *slot; 4874 unsigned int fault_flags; 4875 bool writable, unlocked; 4876 unsigned long vmaddr; 4877 struct page *page; 4878 kvm_pfn_t pfn; 4879 int rc; 4880 4881 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 4882 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 4883 return vcpu_post_run_addressing_exception(vcpu); 4884 4885 fault_flags = flags & FOLL_WRITE ? FAULT_FLAG_WRITE : 0; 4886 if (vcpu->arch.gmap->pfault_enabled) 4887 flags |= FOLL_NOWAIT; 4888 vmaddr = __gfn_to_hva_memslot(slot, gfn); 4889 4890 try_again: 4891 pfn = __kvm_faultin_pfn(slot, gfn, flags, &writable, &page); 4892 4893 /* Access outside memory, inject addressing exception */ 4894 if (is_noslot_pfn(pfn)) 4895 return vcpu_post_run_addressing_exception(vcpu); 4896 /* Signal pending: try again */ 4897 if (pfn == KVM_PFN_ERR_SIGPENDING) 4898 return -EAGAIN; 4899 4900 /* Needs I/O, try to setup async pfault (only possible with FOLL_NOWAIT) */ 4901 if (pfn == KVM_PFN_ERR_NEEDS_IO) { 4902 trace_kvm_s390_major_guest_pfault(vcpu); 4903 if (kvm_arch_setup_async_pf(vcpu)) 4904 return 0; 4905 vcpu->stat.pfault_sync++; 4906 /* Could not setup async pfault, try again synchronously */ 4907 flags &= ~FOLL_NOWAIT; 4908 goto try_again; 4909 } 4910 /* Any other error */ 4911 if (is_error_pfn(pfn)) 4912 return -EFAULT; 4913 4914 /* Success */ 4915 mmap_read_lock(vcpu->arch.gmap->mm); 4916 /* Mark the userspace PTEs as young and/or dirty, to avoid page fault loops */ 4917 rc = fixup_user_fault(vcpu->arch.gmap->mm, vmaddr, fault_flags, &unlocked); 4918 if (!rc) 4919 rc = __gmap_link(vcpu->arch.gmap, gaddr, vmaddr); 4920 scoped_guard(spinlock, &vcpu->kvm->mmu_lock) { 4921 kvm_release_faultin_page(vcpu->kvm, page, false, writable); 4922 } 4923 mmap_read_unlock(vcpu->arch.gmap->mm); 4924 return rc; 4925 } 4926 4927 static int vcpu_dat_fault_handler(struct kvm_vcpu *vcpu, unsigned long gaddr, unsigned int flags) 4928 { 4929 unsigned long gaddr_tmp; 4930 gfn_t gfn; 4931 4932 gfn = gpa_to_gfn(gaddr); 4933 if (kvm_is_ucontrol(vcpu->kvm)) { 4934 /* 4935 * This translates the per-vCPU guest address into a 4936 * fake guest address, which can then be used with the 4937 * fake memslots that are identity mapping userspace. 4938 * This allows ucontrol VMs to use the normal fault 4939 * resolution path, like normal VMs. 4940 */ 4941 mmap_read_lock(vcpu->arch.gmap->mm); 4942 gaddr_tmp = __gmap_translate(vcpu->arch.gmap, gaddr); 4943 mmap_read_unlock(vcpu->arch.gmap->mm); 4944 if (gaddr_tmp == -EFAULT) { 4945 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4946 vcpu->run->s390_ucontrol.trans_exc_code = gaddr; 4947 vcpu->run->s390_ucontrol.pgm_code = PGM_SEGMENT_TRANSLATION; 4948 return -EREMOTE; 4949 } 4950 gfn = gpa_to_gfn(gaddr_tmp); 4951 } 4952 return __kvm_s390_handle_dat_fault(vcpu, gfn, gaddr, flags); 4953 } 4954 4955 static int vcpu_post_run_handle_fault(struct kvm_vcpu *vcpu) 4956 { 4957 unsigned int flags = 0; 4958 unsigned long gaddr; 4959 int rc; 4960 4961 gaddr = current->thread.gmap_teid.addr * PAGE_SIZE; 4962 if (kvm_s390_cur_gmap_fault_is_write()) 4963 flags = FAULT_FLAG_WRITE; 4964 4965 switch (current->thread.gmap_int_code & PGM_INT_CODE_MASK) { 4966 case 0: 4967 vcpu->stat.exit_null++; 4968 break; 4969 case PGM_SECURE_STORAGE_ACCESS: 4970 case PGM_SECURE_STORAGE_VIOLATION: 4971 kvm_s390_assert_primary_as(vcpu); 4972 /* 4973 * This can happen after a reboot with asynchronous teardown; 4974 * the new guest (normal or protected) will run on top of the 4975 * previous protected guest. The old pages need to be destroyed 4976 * so the new guest can use them. 4977 */ 4978 if (kvm_s390_pv_destroy_page(vcpu->kvm, gaddr)) { 4979 /* 4980 * Either KVM messed up the secure guest mapping or the 4981 * same page is mapped into multiple secure guests. 4982 * 4983 * This exception is only triggered when a guest 2 is 4984 * running and can therefore never occur in kernel 4985 * context. 4986 */ 4987 pr_warn_ratelimited("Secure storage violation (%x) in task: %s, pid %d\n", 4988 current->thread.gmap_int_code, current->comm, 4989 current->pid); 4990 send_sig(SIGSEGV, current, 0); 4991 } 4992 break; 4993 case PGM_NON_SECURE_STORAGE_ACCESS: 4994 kvm_s390_assert_primary_as(vcpu); 4995 /* 4996 * This is normal operation; a page belonging to a protected 4997 * guest has not been imported yet. Try to import the page into 4998 * the protected guest. 4999 */ 5000 rc = kvm_s390_pv_convert_to_secure(vcpu->kvm, gaddr); 5001 if (rc == -EINVAL) 5002 send_sig(SIGSEGV, current, 0); 5003 if (rc != -ENXIO) 5004 break; 5005 flags = FAULT_FLAG_WRITE; 5006 fallthrough; 5007 case PGM_PROTECTION: 5008 case PGM_SEGMENT_TRANSLATION: 5009 case PGM_PAGE_TRANSLATION: 5010 case PGM_ASCE_TYPE: 5011 case PGM_REGION_FIRST_TRANS: 5012 case PGM_REGION_SECOND_TRANS: 5013 case PGM_REGION_THIRD_TRANS: 5014 kvm_s390_assert_primary_as(vcpu); 5015 return vcpu_dat_fault_handler(vcpu, gaddr, flags); 5016 default: 5017 KVM_BUG(1, vcpu->kvm, "Unexpected program interrupt 0x%x, TEID 0x%016lx", 5018 current->thread.gmap_int_code, current->thread.gmap_teid.val); 5019 send_sig(SIGSEGV, current, 0); 5020 break; 5021 } 5022 return 0; 5023 } 5024 5025 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 5026 { 5027 struct mcck_volatile_info *mcck_info; 5028 struct sie_page *sie_page; 5029 int rc; 5030 5031 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 5032 vcpu->arch.sie_block->icptcode); 5033 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 5034 5035 if (guestdbg_enabled(vcpu)) 5036 kvm_s390_restore_guest_per_regs(vcpu); 5037 5038 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 5039 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 5040 5041 if (exit_reason == -EINTR) { 5042 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 5043 sie_page = container_of(vcpu->arch.sie_block, 5044 struct sie_page, sie_block); 5045 mcck_info = &sie_page->mcck_info; 5046 kvm_s390_reinject_machine_check(vcpu, mcck_info); 5047 return 0; 5048 } 5049 5050 if (vcpu->arch.sie_block->icptcode > 0) { 5051 rc = kvm_handle_sie_intercept(vcpu); 5052 5053 if (rc != -EOPNOTSUPP) 5054 return rc; 5055 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 5056 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 5057 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 5058 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 5059 return -EREMOTE; 5060 } 5061 5062 return vcpu_post_run_handle_fault(vcpu); 5063 } 5064 5065 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 5066 static int __vcpu_run(struct kvm_vcpu *vcpu) 5067 { 5068 int rc, exit_reason; 5069 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 5070 5071 /* 5072 * We try to hold kvm->srcu during most of vcpu_run (except when run- 5073 * ning the guest), so that memslots (and other stuff) are protected 5074 */ 5075 kvm_vcpu_srcu_read_lock(vcpu); 5076 5077 do { 5078 rc = vcpu_pre_run(vcpu); 5079 if (rc || guestdbg_exit_pending(vcpu)) 5080 break; 5081 5082 kvm_vcpu_srcu_read_unlock(vcpu); 5083 /* 5084 * As PF_VCPU will be used in fault handler, between 5085 * guest_enter and guest_exit should be no uaccess. 5086 */ 5087 local_irq_disable(); 5088 guest_enter_irqoff(); 5089 __disable_cpu_timer_accounting(vcpu); 5090 local_irq_enable(); 5091 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5092 memcpy(sie_page->pv_grregs, 5093 vcpu->run->s.regs.gprs, 5094 sizeof(sie_page->pv_grregs)); 5095 } 5096 exit_reason = sie64a(vcpu->arch.sie_block, 5097 vcpu->run->s.regs.gprs, 5098 vcpu->arch.gmap->asce); 5099 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5100 memcpy(vcpu->run->s.regs.gprs, 5101 sie_page->pv_grregs, 5102 sizeof(sie_page->pv_grregs)); 5103 /* 5104 * We're not allowed to inject interrupts on intercepts 5105 * that leave the guest state in an "in-between" state 5106 * where the next SIE entry will do a continuation. 5107 * Fence interrupts in our "internal" PSW. 5108 */ 5109 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 5110 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 5111 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5112 } 5113 } 5114 local_irq_disable(); 5115 __enable_cpu_timer_accounting(vcpu); 5116 guest_exit_irqoff(); 5117 local_irq_enable(); 5118 kvm_vcpu_srcu_read_lock(vcpu); 5119 5120 rc = vcpu_post_run(vcpu, exit_reason); 5121 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 5122 5123 kvm_vcpu_srcu_read_unlock(vcpu); 5124 return rc; 5125 } 5126 5127 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 5128 { 5129 struct kvm_run *kvm_run = vcpu->run; 5130 struct runtime_instr_cb *riccb; 5131 struct gs_cb *gscb; 5132 5133 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 5134 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 5135 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 5136 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 5137 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5138 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 5139 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 5140 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 5141 } 5142 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 5143 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 5144 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 5145 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 5146 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 5147 kvm_clear_async_pf_completion_queue(vcpu); 5148 } 5149 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 5150 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 5151 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 5152 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 5153 } 5154 /* 5155 * If userspace sets the riccb (e.g. after migration) to a valid state, 5156 * we should enable RI here instead of doing the lazy enablement. 5157 */ 5158 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 5159 test_kvm_facility(vcpu->kvm, 64) && 5160 riccb->v && 5161 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 5162 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 5163 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 5164 } 5165 /* 5166 * If userspace sets the gscb (e.g. after migration) to non-zero, 5167 * we should enable GS here instead of doing the lazy enablement. 5168 */ 5169 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 5170 test_kvm_facility(vcpu->kvm, 133) && 5171 gscb->gssm && 5172 !vcpu->arch.gs_enabled) { 5173 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 5174 vcpu->arch.sie_block->ecb |= ECB_GS; 5175 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 5176 vcpu->arch.gs_enabled = 1; 5177 } 5178 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 5179 test_kvm_facility(vcpu->kvm, 82)) { 5180 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 5181 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 5182 } 5183 if (cpu_has_gs()) { 5184 preempt_disable(); 5185 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5186 if (current->thread.gs_cb) { 5187 vcpu->arch.host_gscb = current->thread.gs_cb; 5188 save_gs_cb(vcpu->arch.host_gscb); 5189 } 5190 if (vcpu->arch.gs_enabled) { 5191 current->thread.gs_cb = (struct gs_cb *) 5192 &vcpu->run->s.regs.gscb; 5193 restore_gs_cb(current->thread.gs_cb); 5194 } 5195 preempt_enable(); 5196 } 5197 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 5198 } 5199 5200 static void sync_regs(struct kvm_vcpu *vcpu) 5201 { 5202 struct kvm_run *kvm_run = vcpu->run; 5203 5204 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 5205 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 5206 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 5207 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 5208 /* some control register changes require a tlb flush */ 5209 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5210 } 5211 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 5212 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 5213 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 5214 } 5215 save_access_regs(vcpu->arch.host_acrs); 5216 restore_access_regs(vcpu->run->s.regs.acrs); 5217 vcpu->arch.acrs_loaded = true; 5218 kvm_s390_fpu_load(vcpu->run); 5219 /* Sync fmt2 only data */ 5220 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 5221 sync_regs_fmt2(vcpu); 5222 } else { 5223 /* 5224 * In several places we have to modify our internal view to 5225 * not do things that are disallowed by the ultravisor. For 5226 * example we must not inject interrupts after specific exits 5227 * (e.g. 112 prefix page not secure). We do this by turning 5228 * off the machine check, external and I/O interrupt bits 5229 * of our PSW copy. To avoid getting validity intercepts, we 5230 * do only accept the condition code from userspace. 5231 */ 5232 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 5233 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 5234 PSW_MASK_CC; 5235 } 5236 5237 kvm_run->kvm_dirty_regs = 0; 5238 } 5239 5240 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 5241 { 5242 struct kvm_run *kvm_run = vcpu->run; 5243 5244 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 5245 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 5246 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 5247 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 5248 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 5249 if (cpu_has_gs()) { 5250 preempt_disable(); 5251 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT); 5252 if (vcpu->arch.gs_enabled) 5253 save_gs_cb(current->thread.gs_cb); 5254 current->thread.gs_cb = vcpu->arch.host_gscb; 5255 restore_gs_cb(vcpu->arch.host_gscb); 5256 if (!vcpu->arch.host_gscb) 5257 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT); 5258 vcpu->arch.host_gscb = NULL; 5259 preempt_enable(); 5260 } 5261 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5262 } 5263 5264 static void store_regs(struct kvm_vcpu *vcpu) 5265 { 5266 struct kvm_run *kvm_run = vcpu->run; 5267 5268 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5269 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5270 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5271 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5272 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5273 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5274 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5275 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5276 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5277 save_access_regs(vcpu->run->s.regs.acrs); 5278 restore_access_regs(vcpu->arch.host_acrs); 5279 vcpu->arch.acrs_loaded = false; 5280 kvm_s390_fpu_store(vcpu->run); 5281 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5282 store_regs_fmt2(vcpu); 5283 } 5284 5285 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5286 { 5287 struct kvm_run *kvm_run = vcpu->run; 5288 DECLARE_KERNEL_FPU_ONSTACK32(fpu); 5289 int rc; 5290 5291 /* 5292 * Running a VM while dumping always has the potential to 5293 * produce inconsistent dump data. But for PV vcpus a SIE 5294 * entry while dumping could also lead to a fatal validity 5295 * intercept which we absolutely want to avoid. 5296 */ 5297 if (vcpu->kvm->arch.pv.dumping) 5298 return -EINVAL; 5299 5300 if (!vcpu->wants_to_run) 5301 return -EINTR; 5302 5303 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5304 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5305 return -EINVAL; 5306 5307 vcpu_load(vcpu); 5308 5309 if (guestdbg_exit_pending(vcpu)) { 5310 kvm_s390_prepare_debug_exit(vcpu); 5311 rc = 0; 5312 goto out; 5313 } 5314 5315 kvm_sigset_activate(vcpu); 5316 5317 /* 5318 * no need to check the return value of vcpu_start as it can only have 5319 * an error for protvirt, but protvirt means user cpu state 5320 */ 5321 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5322 kvm_s390_vcpu_start(vcpu); 5323 } else if (is_vcpu_stopped(vcpu)) { 5324 pr_err_ratelimited("can't run stopped vcpu %d\n", 5325 vcpu->vcpu_id); 5326 rc = -EINVAL; 5327 goto out; 5328 } 5329 5330 kernel_fpu_begin(&fpu, KERNEL_FPC | KERNEL_VXR); 5331 sync_regs(vcpu); 5332 enable_cpu_timer_accounting(vcpu); 5333 5334 might_fault(); 5335 rc = __vcpu_run(vcpu); 5336 5337 if (signal_pending(current) && !rc) { 5338 kvm_run->exit_reason = KVM_EXIT_INTR; 5339 rc = -EINTR; 5340 } 5341 5342 if (guestdbg_exit_pending(vcpu) && !rc) { 5343 kvm_s390_prepare_debug_exit(vcpu); 5344 rc = 0; 5345 } 5346 5347 if (rc == -EREMOTE) { 5348 /* userspace support is needed, kvm_run has been prepared */ 5349 rc = 0; 5350 } 5351 5352 disable_cpu_timer_accounting(vcpu); 5353 store_regs(vcpu); 5354 kernel_fpu_end(&fpu, KERNEL_FPC | KERNEL_VXR); 5355 5356 kvm_sigset_deactivate(vcpu); 5357 5358 vcpu->stat.exit_userspace++; 5359 out: 5360 vcpu_put(vcpu); 5361 return rc; 5362 } 5363 5364 /* 5365 * store status at address 5366 * we use have two special cases: 5367 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5368 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5369 */ 5370 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5371 { 5372 unsigned char archmode = 1; 5373 freg_t fprs[NUM_FPRS]; 5374 unsigned int px; 5375 u64 clkcomp, cputm; 5376 int rc; 5377 5378 px = kvm_s390_get_prefix(vcpu); 5379 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5380 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5381 return -EFAULT; 5382 gpa = 0; 5383 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5384 if (write_guest_real(vcpu, 163, &archmode, 1)) 5385 return -EFAULT; 5386 gpa = px; 5387 } else 5388 gpa -= __LC_FPREGS_SAVE_AREA; 5389 5390 /* manually convert vector registers if necessary */ 5391 if (cpu_has_vx()) { 5392 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5393 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5394 fprs, 128); 5395 } else { 5396 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5397 vcpu->run->s.regs.fprs, 128); 5398 } 5399 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5400 vcpu->run->s.regs.gprs, 128); 5401 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5402 &vcpu->arch.sie_block->gpsw, 16); 5403 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5404 &px, 4); 5405 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5406 &vcpu->run->s.regs.fpc, 4); 5407 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5408 &vcpu->arch.sie_block->todpr, 4); 5409 cputm = kvm_s390_get_cpu_timer(vcpu); 5410 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5411 &cputm, 8); 5412 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5413 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5414 &clkcomp, 8); 5415 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5416 &vcpu->run->s.regs.acrs, 64); 5417 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5418 &vcpu->arch.sie_block->gcr, 128); 5419 return rc ? -EFAULT : 0; 5420 } 5421 5422 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5423 { 5424 /* 5425 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5426 * switch in the run ioctl. Let's update our copies before we save 5427 * it into the save area 5428 */ 5429 kvm_s390_fpu_store(vcpu->run); 5430 save_access_regs(vcpu->run->s.regs.acrs); 5431 5432 return kvm_s390_store_status_unloaded(vcpu, addr); 5433 } 5434 5435 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5436 { 5437 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5438 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5439 } 5440 5441 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5442 { 5443 unsigned long i; 5444 struct kvm_vcpu *vcpu; 5445 5446 kvm_for_each_vcpu(i, vcpu, kvm) { 5447 __disable_ibs_on_vcpu(vcpu); 5448 } 5449 } 5450 5451 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5452 { 5453 if (!sclp.has_ibs) 5454 return; 5455 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5456 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5457 } 5458 5459 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5460 { 5461 int i, online_vcpus, r = 0, started_vcpus = 0; 5462 5463 if (!is_vcpu_stopped(vcpu)) 5464 return 0; 5465 5466 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5467 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5468 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5469 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5470 5471 /* Let's tell the UV that we want to change into the operating state */ 5472 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5473 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5474 if (r) { 5475 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5476 return r; 5477 } 5478 } 5479 5480 for (i = 0; i < online_vcpus; i++) { 5481 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5482 started_vcpus++; 5483 } 5484 5485 if (started_vcpus == 0) { 5486 /* we're the only active VCPU -> speed it up */ 5487 __enable_ibs_on_vcpu(vcpu); 5488 } else if (started_vcpus == 1) { 5489 /* 5490 * As we are starting a second VCPU, we have to disable 5491 * the IBS facility on all VCPUs to remove potentially 5492 * outstanding ENABLE requests. 5493 */ 5494 __disable_ibs_on_all_vcpus(vcpu->kvm); 5495 } 5496 5497 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5498 /* 5499 * The real PSW might have changed due to a RESTART interpreted by the 5500 * ultravisor. We block all interrupts and let the next sie exit 5501 * refresh our view. 5502 */ 5503 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5504 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5505 /* 5506 * Another VCPU might have used IBS while we were offline. 5507 * Let's play safe and flush the VCPU at startup. 5508 */ 5509 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5510 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5511 return 0; 5512 } 5513 5514 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5515 { 5516 int i, online_vcpus, r = 0, started_vcpus = 0; 5517 struct kvm_vcpu *started_vcpu = NULL; 5518 5519 if (is_vcpu_stopped(vcpu)) 5520 return 0; 5521 5522 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5523 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5524 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5525 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5526 5527 /* Let's tell the UV that we want to change into the stopped state */ 5528 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5529 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5530 if (r) { 5531 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5532 return r; 5533 } 5534 } 5535 5536 /* 5537 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5538 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5539 * have been fully processed. This will ensure that the VCPU 5540 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5541 */ 5542 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5543 kvm_s390_clear_stop_irq(vcpu); 5544 5545 __disable_ibs_on_vcpu(vcpu); 5546 5547 for (i = 0; i < online_vcpus; i++) { 5548 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5549 5550 if (!is_vcpu_stopped(tmp)) { 5551 started_vcpus++; 5552 started_vcpu = tmp; 5553 } 5554 } 5555 5556 if (started_vcpus == 1) { 5557 /* 5558 * As we only have one VCPU left, we want to enable the 5559 * IBS facility for that VCPU to speed it up. 5560 */ 5561 __enable_ibs_on_vcpu(started_vcpu); 5562 } 5563 5564 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5565 return 0; 5566 } 5567 5568 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5569 struct kvm_enable_cap *cap) 5570 { 5571 int r; 5572 5573 if (cap->flags) 5574 return -EINVAL; 5575 5576 switch (cap->cap) { 5577 case KVM_CAP_S390_CSS_SUPPORT: 5578 if (!vcpu->kvm->arch.css_support) { 5579 vcpu->kvm->arch.css_support = 1; 5580 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5581 trace_kvm_s390_enable_css(vcpu->kvm); 5582 } 5583 r = 0; 5584 break; 5585 default: 5586 r = -EINVAL; 5587 break; 5588 } 5589 return r; 5590 } 5591 5592 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5593 struct kvm_s390_mem_op *mop) 5594 { 5595 void __user *uaddr = (void __user *)mop->buf; 5596 void *sida_addr; 5597 int r = 0; 5598 5599 if (mop->flags || !mop->size) 5600 return -EINVAL; 5601 if (mop->size + mop->sida_offset < mop->size) 5602 return -EINVAL; 5603 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5604 return -E2BIG; 5605 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5606 return -EINVAL; 5607 5608 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5609 5610 switch (mop->op) { 5611 case KVM_S390_MEMOP_SIDA_READ: 5612 if (copy_to_user(uaddr, sida_addr, mop->size)) 5613 r = -EFAULT; 5614 5615 break; 5616 case KVM_S390_MEMOP_SIDA_WRITE: 5617 if (copy_from_user(sida_addr, uaddr, mop->size)) 5618 r = -EFAULT; 5619 break; 5620 } 5621 return r; 5622 } 5623 5624 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5625 struct kvm_s390_mem_op *mop) 5626 { 5627 void __user *uaddr = (void __user *)mop->buf; 5628 enum gacc_mode acc_mode; 5629 void *tmpbuf = NULL; 5630 int r; 5631 5632 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5633 KVM_S390_MEMOP_F_CHECK_ONLY | 5634 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5635 if (r) 5636 return r; 5637 if (mop->ar >= NUM_ACRS) 5638 return -EINVAL; 5639 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5640 return -EINVAL; 5641 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5642 tmpbuf = vmalloc(mop->size); 5643 if (!tmpbuf) 5644 return -ENOMEM; 5645 } 5646 5647 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5648 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5649 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5650 acc_mode, mop->key); 5651 goto out_inject; 5652 } 5653 if (acc_mode == GACC_FETCH) { 5654 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5655 mop->size, mop->key); 5656 if (r) 5657 goto out_inject; 5658 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5659 r = -EFAULT; 5660 goto out_free; 5661 } 5662 } else { 5663 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5664 r = -EFAULT; 5665 goto out_free; 5666 } 5667 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5668 mop->size, mop->key); 5669 } 5670 5671 out_inject: 5672 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5673 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5674 5675 out_free: 5676 vfree(tmpbuf); 5677 return r; 5678 } 5679 5680 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5681 struct kvm_s390_mem_op *mop) 5682 { 5683 int r, srcu_idx; 5684 5685 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5686 5687 switch (mop->op) { 5688 case KVM_S390_MEMOP_LOGICAL_READ: 5689 case KVM_S390_MEMOP_LOGICAL_WRITE: 5690 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5691 break; 5692 case KVM_S390_MEMOP_SIDA_READ: 5693 case KVM_S390_MEMOP_SIDA_WRITE: 5694 /* we are locked against sida going away by the vcpu->mutex */ 5695 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5696 break; 5697 default: 5698 r = -EINVAL; 5699 } 5700 5701 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5702 return r; 5703 } 5704 5705 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5706 unsigned int ioctl, unsigned long arg) 5707 { 5708 struct kvm_vcpu *vcpu = filp->private_data; 5709 void __user *argp = (void __user *)arg; 5710 int rc; 5711 5712 switch (ioctl) { 5713 case KVM_S390_IRQ: { 5714 struct kvm_s390_irq s390irq; 5715 5716 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5717 return -EFAULT; 5718 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5719 break; 5720 } 5721 case KVM_S390_INTERRUPT: { 5722 struct kvm_s390_interrupt s390int; 5723 struct kvm_s390_irq s390irq = {}; 5724 5725 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5726 return -EFAULT; 5727 if (s390int_to_s390irq(&s390int, &s390irq)) 5728 return -EINVAL; 5729 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5730 break; 5731 } 5732 default: 5733 rc = -ENOIOCTLCMD; 5734 break; 5735 } 5736 5737 /* 5738 * To simplify single stepping of userspace-emulated instructions, 5739 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5740 * should_handle_per_ifetch()). However, if userspace emulation injects 5741 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5742 * after (and not before) the interrupt delivery. 5743 */ 5744 if (!rc) 5745 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5746 5747 return rc; 5748 } 5749 5750 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5751 struct kvm_pv_cmd *cmd) 5752 { 5753 struct kvm_s390_pv_dmp dmp; 5754 void *data; 5755 int ret; 5756 5757 /* Dump initialization is a prerequisite */ 5758 if (!vcpu->kvm->arch.pv.dumping) 5759 return -EINVAL; 5760 5761 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5762 return -EFAULT; 5763 5764 /* We only handle this subcmd right now */ 5765 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5766 return -EINVAL; 5767 5768 /* CPU dump length is the same as create cpu storage donation. */ 5769 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5770 return -EINVAL; 5771 5772 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5773 if (!data) 5774 return -ENOMEM; 5775 5776 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5777 5778 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5779 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5780 5781 if (ret) 5782 ret = -EINVAL; 5783 5784 /* On success copy over the dump data */ 5785 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5786 ret = -EFAULT; 5787 5788 kvfree(data); 5789 return ret; 5790 } 5791 5792 long kvm_arch_vcpu_ioctl(struct file *filp, 5793 unsigned int ioctl, unsigned long arg) 5794 { 5795 struct kvm_vcpu *vcpu = filp->private_data; 5796 void __user *argp = (void __user *)arg; 5797 int idx; 5798 long r; 5799 u16 rc, rrc; 5800 5801 vcpu_load(vcpu); 5802 5803 switch (ioctl) { 5804 case KVM_S390_STORE_STATUS: 5805 idx = srcu_read_lock(&vcpu->kvm->srcu); 5806 r = kvm_s390_store_status_unloaded(vcpu, arg); 5807 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5808 break; 5809 case KVM_S390_SET_INITIAL_PSW: { 5810 psw_t psw; 5811 5812 r = -EFAULT; 5813 if (copy_from_user(&psw, argp, sizeof(psw))) 5814 break; 5815 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5816 break; 5817 } 5818 case KVM_S390_CLEAR_RESET: 5819 r = 0; 5820 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5821 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5822 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5823 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5824 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5825 rc, rrc); 5826 } 5827 break; 5828 case KVM_S390_INITIAL_RESET: 5829 r = 0; 5830 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5831 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5832 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5833 UVC_CMD_CPU_RESET_INITIAL, 5834 &rc, &rrc); 5835 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5836 rc, rrc); 5837 } 5838 break; 5839 case KVM_S390_NORMAL_RESET: 5840 r = 0; 5841 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5842 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5843 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5844 UVC_CMD_CPU_RESET, &rc, &rrc); 5845 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5846 rc, rrc); 5847 } 5848 break; 5849 case KVM_SET_ONE_REG: 5850 case KVM_GET_ONE_REG: { 5851 struct kvm_one_reg reg; 5852 r = -EINVAL; 5853 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5854 break; 5855 r = -EFAULT; 5856 if (copy_from_user(®, argp, sizeof(reg))) 5857 break; 5858 if (ioctl == KVM_SET_ONE_REG) 5859 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5860 else 5861 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5862 break; 5863 } 5864 #ifdef CONFIG_KVM_S390_UCONTROL 5865 case KVM_S390_UCAS_MAP: { 5866 struct kvm_s390_ucas_mapping ucasmap; 5867 5868 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5869 r = -EFAULT; 5870 break; 5871 } 5872 5873 if (!kvm_is_ucontrol(vcpu->kvm)) { 5874 r = -EINVAL; 5875 break; 5876 } 5877 5878 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5879 ucasmap.vcpu_addr, ucasmap.length); 5880 break; 5881 } 5882 case KVM_S390_UCAS_UNMAP: { 5883 struct kvm_s390_ucas_mapping ucasmap; 5884 5885 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5886 r = -EFAULT; 5887 break; 5888 } 5889 5890 if (!kvm_is_ucontrol(vcpu->kvm)) { 5891 r = -EINVAL; 5892 break; 5893 } 5894 5895 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5896 ucasmap.length); 5897 break; 5898 } 5899 #endif 5900 case KVM_S390_VCPU_FAULT: { 5901 idx = srcu_read_lock(&vcpu->kvm->srcu); 5902 r = vcpu_dat_fault_handler(vcpu, arg, 0); 5903 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5904 break; 5905 } 5906 case KVM_ENABLE_CAP: 5907 { 5908 struct kvm_enable_cap cap; 5909 r = -EFAULT; 5910 if (copy_from_user(&cap, argp, sizeof(cap))) 5911 break; 5912 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5913 break; 5914 } 5915 case KVM_S390_MEM_OP: { 5916 struct kvm_s390_mem_op mem_op; 5917 5918 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5919 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5920 else 5921 r = -EFAULT; 5922 break; 5923 } 5924 case KVM_S390_SET_IRQ_STATE: { 5925 struct kvm_s390_irq_state irq_state; 5926 5927 r = -EFAULT; 5928 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5929 break; 5930 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5931 irq_state.len == 0 || 5932 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5933 r = -EINVAL; 5934 break; 5935 } 5936 /* do not use irq_state.flags, it will break old QEMUs */ 5937 r = kvm_s390_set_irq_state(vcpu, 5938 (void __user *) irq_state.buf, 5939 irq_state.len); 5940 break; 5941 } 5942 case KVM_S390_GET_IRQ_STATE: { 5943 struct kvm_s390_irq_state irq_state; 5944 5945 r = -EFAULT; 5946 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5947 break; 5948 if (irq_state.len == 0) { 5949 r = -EINVAL; 5950 break; 5951 } 5952 /* do not use irq_state.flags, it will break old QEMUs */ 5953 r = kvm_s390_get_irq_state(vcpu, 5954 (__u8 __user *) irq_state.buf, 5955 irq_state.len); 5956 break; 5957 } 5958 case KVM_S390_PV_CPU_COMMAND: { 5959 struct kvm_pv_cmd cmd; 5960 5961 r = -EINVAL; 5962 if (!is_prot_virt_host()) 5963 break; 5964 5965 r = -EFAULT; 5966 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5967 break; 5968 5969 r = -EINVAL; 5970 if (cmd.flags) 5971 break; 5972 5973 /* We only handle this cmd right now */ 5974 if (cmd.cmd != KVM_PV_DUMP) 5975 break; 5976 5977 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5978 5979 /* Always copy over UV rc / rrc data */ 5980 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5981 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5982 r = -EFAULT; 5983 break; 5984 } 5985 default: 5986 r = -ENOTTY; 5987 } 5988 5989 vcpu_put(vcpu); 5990 return r; 5991 } 5992 5993 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5994 { 5995 #ifdef CONFIG_KVM_S390_UCONTROL 5996 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5997 && (kvm_is_ucontrol(vcpu->kvm))) { 5998 vmf->page = virt_to_page(vcpu->arch.sie_block); 5999 get_page(vmf->page); 6000 return 0; 6001 } 6002 #endif 6003 return VM_FAULT_SIGBUS; 6004 } 6005 6006 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 6007 { 6008 return true; 6009 } 6010 6011 /* Section: memory related */ 6012 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6013 const struct kvm_memory_slot *old, 6014 struct kvm_memory_slot *new, 6015 enum kvm_mr_change change) 6016 { 6017 gpa_t size; 6018 6019 if (kvm_is_ucontrol(kvm) && new->id < KVM_USER_MEM_SLOTS) 6020 return -EINVAL; 6021 6022 /* When we are protected, we should not change the memory slots */ 6023 if (kvm_s390_pv_get_handle(kvm)) 6024 return -EINVAL; 6025 6026 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 6027 /* 6028 * A few sanity checks. We can have memory slots which have to be 6029 * located/ended at a segment boundary (1MB). The memory in userland is 6030 * ok to be fragmented into various different vmas. It is okay to mmap() 6031 * and munmap() stuff in this slot after doing this call at any time 6032 */ 6033 6034 if (new->userspace_addr & 0xffffful) 6035 return -EINVAL; 6036 6037 size = new->npages * PAGE_SIZE; 6038 if (size & 0xffffful) 6039 return -EINVAL; 6040 6041 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 6042 return -EINVAL; 6043 } 6044 6045 if (!kvm->arch.migration_mode) 6046 return 0; 6047 6048 /* 6049 * Turn off migration mode when: 6050 * - userspace creates a new memslot with dirty logging off, 6051 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 6052 * dirty logging is turned off. 6053 * Migration mode expects dirty page logging being enabled to store 6054 * its dirty bitmap. 6055 */ 6056 if (change != KVM_MR_DELETE && 6057 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 6058 WARN(kvm_s390_vm_stop_migration(kvm), 6059 "Failed to stop migration mode"); 6060 6061 return 0; 6062 } 6063 6064 void kvm_arch_commit_memory_region(struct kvm *kvm, 6065 struct kvm_memory_slot *old, 6066 const struct kvm_memory_slot *new, 6067 enum kvm_mr_change change) 6068 { 6069 int rc = 0; 6070 6071 if (kvm_is_ucontrol(kvm)) 6072 return; 6073 6074 switch (change) { 6075 case KVM_MR_DELETE: 6076 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6077 old->npages * PAGE_SIZE); 6078 break; 6079 case KVM_MR_MOVE: 6080 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 6081 old->npages * PAGE_SIZE); 6082 if (rc) 6083 break; 6084 fallthrough; 6085 case KVM_MR_CREATE: 6086 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 6087 new->base_gfn * PAGE_SIZE, 6088 new->npages * PAGE_SIZE); 6089 break; 6090 case KVM_MR_FLAGS_ONLY: 6091 break; 6092 default: 6093 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 6094 } 6095 if (rc) 6096 pr_warn("failed to commit memory region\n"); 6097 return; 6098 } 6099 6100 static inline unsigned long nonhyp_mask(int i) 6101 { 6102 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 6103 6104 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 6105 } 6106 6107 static int __init kvm_s390_init(void) 6108 { 6109 int i, r; 6110 6111 if (!sclp.has_sief2) { 6112 pr_info("SIE is not available\n"); 6113 return -ENODEV; 6114 } 6115 6116 if (nested && hpage) { 6117 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 6118 return -EINVAL; 6119 } 6120 6121 for (i = 0; i < 16; i++) 6122 kvm_s390_fac_base[i] |= 6123 stfle_fac_list[i] & nonhyp_mask(i); 6124 6125 r = __kvm_s390_init(); 6126 if (r) 6127 return r; 6128 6129 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 6130 if (r) { 6131 __kvm_s390_exit(); 6132 return r; 6133 } 6134 return 0; 6135 } 6136 6137 static void __exit kvm_s390_exit(void) 6138 { 6139 kvm_exit(); 6140 6141 __kvm_s390_exit(); 6142 } 6143 6144 module_init(kvm_s390_init); 6145 module_exit(kvm_s390_exit); 6146 6147 /* 6148 * Enable autoloading of the kvm module. 6149 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 6150 * since x86 takes a different approach. 6151 */ 6152 #include <linux/miscdevice.h> 6153 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6154 MODULE_ALIAS("devname:kvm"); 6155