xref: /linux/arch/s390/kvm/kvm-s390.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * hosting zSeries kernel virtual machines
3  *
4  * Copyright IBM Corp. 2008, 2009
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License (version 2 only)
8  * as published by the Free Software Foundation.
9  *
10  *    Author(s): Carsten Otte <cotte@de.ibm.com>
11  *               Christian Borntraeger <borntraeger@de.ibm.com>
12  *               Heiko Carstens <heiko.carstens@de.ibm.com>
13  *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14  *               Jason J. Herne <jjherne@us.ibm.com>
15  */
16 
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/lowcore.h>
33 #include <asm/stp.h>
34 #include <asm/pgtable.h>
35 #include <asm/gmap.h>
36 #include <asm/nmi.h>
37 #include <asm/switch_to.h>
38 #include <asm/isc.h>
39 #include <asm/sclp.h>
40 #include <asm/cpacf.h>
41 #include <asm/timex.h>
42 #include "kvm-s390.h"
43 #include "gaccess.h"
44 
45 #define KMSG_COMPONENT "kvm-s390"
46 #undef pr_fmt
47 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
48 
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51 #include "trace-s390.h"
52 
53 #define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 #define LOCAL_IRQS 32
55 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
56 			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57 
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59 
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61 	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62 	{ "exit_null", VCPU_STAT(exit_null) },
63 	{ "exit_validity", VCPU_STAT(exit_validity) },
64 	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
65 	{ "exit_external_request", VCPU_STAT(exit_external_request) },
66 	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 	{ "exit_instruction", VCPU_STAT(exit_instruction) },
68 	{ "exit_pei", VCPU_STAT(exit_pei) },
69 	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
70 	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71 	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77 	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
79 	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
80 	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81 	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
83 	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
84 	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
85 	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
86 	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
87 	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
88 	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
89 	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
91 	{ "instruction_spx", VCPU_STAT(instruction_spx) },
92 	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
93 	{ "instruction_stap", VCPU_STAT(instruction_stap) },
94 	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95 	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
97 	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
98 	{ "instruction_essa", VCPU_STAT(instruction_essa) },
99 	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
100 	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
101 	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
102 	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103 	{ "instruction_sie", VCPU_STAT(instruction_sie) },
104 	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105 	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106 	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107 	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
109 	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110 	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
112 	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113 	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
115 	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
116 	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
118 	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
119 	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120 	{ "diagnose_10", VCPU_STAT(diagnose_10) },
121 	{ "diagnose_44", VCPU_STAT(diagnose_44) },
122 	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 	{ "diagnose_258", VCPU_STAT(diagnose_258) },
124 	{ "diagnose_308", VCPU_STAT(diagnose_308) },
125 	{ "diagnose_500", VCPU_STAT(diagnose_500) },
126 	{ NULL }
127 };
128 
129 /* allow nested virtualization in KVM (if enabled by user space) */
130 static int nested;
131 module_param(nested, int, S_IRUGO);
132 MODULE_PARM_DESC(nested, "Nested virtualization support");
133 
134 /* upper facilities limit for kvm */
135 unsigned long kvm_s390_fac_list_mask[16] = {
136 	0xffe6000000000000UL,
137 	0x005e000000000000UL,
138 };
139 
140 unsigned long kvm_s390_fac_list_mask_size(void)
141 {
142 	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
143 	return ARRAY_SIZE(kvm_s390_fac_list_mask);
144 }
145 
146 /* available cpu features supported by kvm */
147 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
148 /* available subfunctions indicated via query / "test bit" */
149 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
150 
151 static struct gmap_notifier gmap_notifier;
152 static struct gmap_notifier vsie_gmap_notifier;
153 debug_info_t *kvm_s390_dbf;
154 
155 /* Section: not file related */
156 int kvm_arch_hardware_enable(void)
157 {
158 	/* every s390 is virtualization enabled ;-) */
159 	return 0;
160 }
161 
162 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
163 			      unsigned long end);
164 
165 /*
166  * This callback is executed during stop_machine(). All CPUs are therefore
167  * temporarily stopped. In order not to change guest behavior, we have to
168  * disable preemption whenever we touch the epoch of kvm and the VCPUs,
169  * so a CPU won't be stopped while calculating with the epoch.
170  */
171 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
172 			  void *v)
173 {
174 	struct kvm *kvm;
175 	struct kvm_vcpu *vcpu;
176 	int i;
177 	unsigned long long *delta = v;
178 
179 	list_for_each_entry(kvm, &vm_list, vm_list) {
180 		kvm->arch.epoch -= *delta;
181 		kvm_for_each_vcpu(i, vcpu, kvm) {
182 			vcpu->arch.sie_block->epoch -= *delta;
183 			if (vcpu->arch.cputm_enabled)
184 				vcpu->arch.cputm_start += *delta;
185 			if (vcpu->arch.vsie_block)
186 				vcpu->arch.vsie_block->epoch -= *delta;
187 		}
188 	}
189 	return NOTIFY_OK;
190 }
191 
192 static struct notifier_block kvm_clock_notifier = {
193 	.notifier_call = kvm_clock_sync,
194 };
195 
196 int kvm_arch_hardware_setup(void)
197 {
198 	gmap_notifier.notifier_call = kvm_gmap_notifier;
199 	gmap_register_pte_notifier(&gmap_notifier);
200 	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
201 	gmap_register_pte_notifier(&vsie_gmap_notifier);
202 	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
203 				       &kvm_clock_notifier);
204 	return 0;
205 }
206 
207 void kvm_arch_hardware_unsetup(void)
208 {
209 	gmap_unregister_pte_notifier(&gmap_notifier);
210 	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
211 	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
212 					 &kvm_clock_notifier);
213 }
214 
215 static void allow_cpu_feat(unsigned long nr)
216 {
217 	set_bit_inv(nr, kvm_s390_available_cpu_feat);
218 }
219 
220 static inline int plo_test_bit(unsigned char nr)
221 {
222 	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
223 	int cc = 3; /* subfunction not available */
224 
225 	asm volatile(
226 		/* Parameter registers are ignored for "test bit" */
227 		"	plo	0,0,0,0(0)\n"
228 		"	ipm	%0\n"
229 		"	srl	%0,28\n"
230 		: "=d" (cc)
231 		: "d" (r0)
232 		: "cc");
233 	return cc == 0;
234 }
235 
236 static void kvm_s390_cpu_feat_init(void)
237 {
238 	int i;
239 
240 	for (i = 0; i < 256; ++i) {
241 		if (plo_test_bit(i))
242 			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
243 	}
244 
245 	if (test_facility(28)) /* TOD-clock steering */
246 		ptff(kvm_s390_available_subfunc.ptff,
247 		     sizeof(kvm_s390_available_subfunc.ptff),
248 		     PTFF_QAF);
249 
250 	if (test_facility(17)) { /* MSA */
251 		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
252 		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
253 		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
254 		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
255 		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
256 	}
257 	if (test_facility(76)) /* MSA3 */
258 		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
259 	if (test_facility(77)) { /* MSA4 */
260 		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
261 		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
262 		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
263 		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
264 	}
265 	if (test_facility(57)) /* MSA5 */
266 		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);
267 
268 	if (MACHINE_HAS_ESOP)
269 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
270 	/*
271 	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
272 	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
273 	 */
274 	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
275 	    !test_facility(3) || !nested)
276 		return;
277 	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
278 	if (sclp.has_64bscao)
279 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
280 	if (sclp.has_siif)
281 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
282 	if (sclp.has_gpere)
283 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
284 	if (sclp.has_gsls)
285 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
286 	if (sclp.has_ib)
287 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
288 	if (sclp.has_cei)
289 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
290 	if (sclp.has_ibs)
291 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
292 	/*
293 	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
294 	 * all skey handling functions read/set the skey from the PGSTE
295 	 * instead of the real storage key.
296 	 *
297 	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
298 	 * pages being detected as preserved although they are resident.
299 	 *
300 	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
301 	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
302 	 *
303 	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
304 	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
305 	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
306 	 *
307 	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
308 	 * cannot easily shadow the SCA because of the ipte lock.
309 	 */
310 }
311 
312 int kvm_arch_init(void *opaque)
313 {
314 	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
315 	if (!kvm_s390_dbf)
316 		return -ENOMEM;
317 
318 	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
319 		debug_unregister(kvm_s390_dbf);
320 		return -ENOMEM;
321 	}
322 
323 	kvm_s390_cpu_feat_init();
324 
325 	/* Register floating interrupt controller interface. */
326 	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
327 }
328 
329 void kvm_arch_exit(void)
330 {
331 	debug_unregister(kvm_s390_dbf);
332 }
333 
334 /* Section: device related */
335 long kvm_arch_dev_ioctl(struct file *filp,
336 			unsigned int ioctl, unsigned long arg)
337 {
338 	if (ioctl == KVM_S390_ENABLE_SIE)
339 		return s390_enable_sie();
340 	return -EINVAL;
341 }
342 
343 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
344 {
345 	int r;
346 
347 	switch (ext) {
348 	case KVM_CAP_S390_PSW:
349 	case KVM_CAP_S390_GMAP:
350 	case KVM_CAP_SYNC_MMU:
351 #ifdef CONFIG_KVM_S390_UCONTROL
352 	case KVM_CAP_S390_UCONTROL:
353 #endif
354 	case KVM_CAP_ASYNC_PF:
355 	case KVM_CAP_SYNC_REGS:
356 	case KVM_CAP_ONE_REG:
357 	case KVM_CAP_ENABLE_CAP:
358 	case KVM_CAP_S390_CSS_SUPPORT:
359 	case KVM_CAP_IOEVENTFD:
360 	case KVM_CAP_DEVICE_CTRL:
361 	case KVM_CAP_ENABLE_CAP_VM:
362 	case KVM_CAP_S390_IRQCHIP:
363 	case KVM_CAP_VM_ATTRIBUTES:
364 	case KVM_CAP_MP_STATE:
365 	case KVM_CAP_S390_INJECT_IRQ:
366 	case KVM_CAP_S390_USER_SIGP:
367 	case KVM_CAP_S390_USER_STSI:
368 	case KVM_CAP_S390_SKEYS:
369 	case KVM_CAP_S390_IRQ_STATE:
370 	case KVM_CAP_S390_USER_INSTR0:
371 		r = 1;
372 		break;
373 	case KVM_CAP_S390_MEM_OP:
374 		r = MEM_OP_MAX_SIZE;
375 		break;
376 	case KVM_CAP_NR_VCPUS:
377 	case KVM_CAP_MAX_VCPUS:
378 		r = KVM_S390_BSCA_CPU_SLOTS;
379 		if (sclp.has_esca && sclp.has_64bscao)
380 			r = KVM_S390_ESCA_CPU_SLOTS;
381 		break;
382 	case KVM_CAP_NR_MEMSLOTS:
383 		r = KVM_USER_MEM_SLOTS;
384 		break;
385 	case KVM_CAP_S390_COW:
386 		r = MACHINE_HAS_ESOP;
387 		break;
388 	case KVM_CAP_S390_VECTOR_REGISTERS:
389 		r = MACHINE_HAS_VX;
390 		break;
391 	case KVM_CAP_S390_RI:
392 		r = test_facility(64);
393 		break;
394 	default:
395 		r = 0;
396 	}
397 	return r;
398 }
399 
400 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
401 					struct kvm_memory_slot *memslot)
402 {
403 	gfn_t cur_gfn, last_gfn;
404 	unsigned long address;
405 	struct gmap *gmap = kvm->arch.gmap;
406 
407 	/* Loop over all guest pages */
408 	last_gfn = memslot->base_gfn + memslot->npages;
409 	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
410 		address = gfn_to_hva_memslot(memslot, cur_gfn);
411 
412 		if (test_and_clear_guest_dirty(gmap->mm, address))
413 			mark_page_dirty(kvm, cur_gfn);
414 		if (fatal_signal_pending(current))
415 			return;
416 		cond_resched();
417 	}
418 }
419 
420 /* Section: vm related */
421 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
422 
423 /*
424  * Get (and clear) the dirty memory log for a memory slot.
425  */
426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
427 			       struct kvm_dirty_log *log)
428 {
429 	int r;
430 	unsigned long n;
431 	struct kvm_memslots *slots;
432 	struct kvm_memory_slot *memslot;
433 	int is_dirty = 0;
434 
435 	mutex_lock(&kvm->slots_lock);
436 
437 	r = -EINVAL;
438 	if (log->slot >= KVM_USER_MEM_SLOTS)
439 		goto out;
440 
441 	slots = kvm_memslots(kvm);
442 	memslot = id_to_memslot(slots, log->slot);
443 	r = -ENOENT;
444 	if (!memslot->dirty_bitmap)
445 		goto out;
446 
447 	kvm_s390_sync_dirty_log(kvm, memslot);
448 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
449 	if (r)
450 		goto out;
451 
452 	/* Clear the dirty log */
453 	if (is_dirty) {
454 		n = kvm_dirty_bitmap_bytes(memslot);
455 		memset(memslot->dirty_bitmap, 0, n);
456 	}
457 	r = 0;
458 out:
459 	mutex_unlock(&kvm->slots_lock);
460 	return r;
461 }
462 
463 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
464 {
465 	unsigned int i;
466 	struct kvm_vcpu *vcpu;
467 
468 	kvm_for_each_vcpu(i, vcpu, kvm) {
469 		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
470 	}
471 }
472 
473 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
474 {
475 	int r;
476 
477 	if (cap->flags)
478 		return -EINVAL;
479 
480 	switch (cap->cap) {
481 	case KVM_CAP_S390_IRQCHIP:
482 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
483 		kvm->arch.use_irqchip = 1;
484 		r = 0;
485 		break;
486 	case KVM_CAP_S390_USER_SIGP:
487 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
488 		kvm->arch.user_sigp = 1;
489 		r = 0;
490 		break;
491 	case KVM_CAP_S390_VECTOR_REGISTERS:
492 		mutex_lock(&kvm->lock);
493 		if (kvm->created_vcpus) {
494 			r = -EBUSY;
495 		} else if (MACHINE_HAS_VX) {
496 			set_kvm_facility(kvm->arch.model.fac_mask, 129);
497 			set_kvm_facility(kvm->arch.model.fac_list, 129);
498 			r = 0;
499 		} else
500 			r = -EINVAL;
501 		mutex_unlock(&kvm->lock);
502 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
503 			 r ? "(not available)" : "(success)");
504 		break;
505 	case KVM_CAP_S390_RI:
506 		r = -EINVAL;
507 		mutex_lock(&kvm->lock);
508 		if (kvm->created_vcpus) {
509 			r = -EBUSY;
510 		} else if (test_facility(64)) {
511 			set_kvm_facility(kvm->arch.model.fac_mask, 64);
512 			set_kvm_facility(kvm->arch.model.fac_list, 64);
513 			r = 0;
514 		}
515 		mutex_unlock(&kvm->lock);
516 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
517 			 r ? "(not available)" : "(success)");
518 		break;
519 	case KVM_CAP_S390_USER_STSI:
520 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
521 		kvm->arch.user_stsi = 1;
522 		r = 0;
523 		break;
524 	case KVM_CAP_S390_USER_INSTR0:
525 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
526 		kvm->arch.user_instr0 = 1;
527 		icpt_operexc_on_all_vcpus(kvm);
528 		r = 0;
529 		break;
530 	default:
531 		r = -EINVAL;
532 		break;
533 	}
534 	return r;
535 }
536 
537 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
538 {
539 	int ret;
540 
541 	switch (attr->attr) {
542 	case KVM_S390_VM_MEM_LIMIT_SIZE:
543 		ret = 0;
544 		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
545 			 kvm->arch.mem_limit);
546 		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
547 			ret = -EFAULT;
548 		break;
549 	default:
550 		ret = -ENXIO;
551 		break;
552 	}
553 	return ret;
554 }
555 
556 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
557 {
558 	int ret;
559 	unsigned int idx;
560 	switch (attr->attr) {
561 	case KVM_S390_VM_MEM_ENABLE_CMMA:
562 		ret = -ENXIO;
563 		if (!sclp.has_cmma)
564 			break;
565 
566 		ret = -EBUSY;
567 		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
568 		mutex_lock(&kvm->lock);
569 		if (!kvm->created_vcpus) {
570 			kvm->arch.use_cmma = 1;
571 			ret = 0;
572 		}
573 		mutex_unlock(&kvm->lock);
574 		break;
575 	case KVM_S390_VM_MEM_CLR_CMMA:
576 		ret = -ENXIO;
577 		if (!sclp.has_cmma)
578 			break;
579 		ret = -EINVAL;
580 		if (!kvm->arch.use_cmma)
581 			break;
582 
583 		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
584 		mutex_lock(&kvm->lock);
585 		idx = srcu_read_lock(&kvm->srcu);
586 		s390_reset_cmma(kvm->arch.gmap->mm);
587 		srcu_read_unlock(&kvm->srcu, idx);
588 		mutex_unlock(&kvm->lock);
589 		ret = 0;
590 		break;
591 	case KVM_S390_VM_MEM_LIMIT_SIZE: {
592 		unsigned long new_limit;
593 
594 		if (kvm_is_ucontrol(kvm))
595 			return -EINVAL;
596 
597 		if (get_user(new_limit, (u64 __user *)attr->addr))
598 			return -EFAULT;
599 
600 		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
601 		    new_limit > kvm->arch.mem_limit)
602 			return -E2BIG;
603 
604 		if (!new_limit)
605 			return -EINVAL;
606 
607 		/* gmap_create takes last usable address */
608 		if (new_limit != KVM_S390_NO_MEM_LIMIT)
609 			new_limit -= 1;
610 
611 		ret = -EBUSY;
612 		mutex_lock(&kvm->lock);
613 		if (!kvm->created_vcpus) {
614 			/* gmap_create will round the limit up */
615 			struct gmap *new = gmap_create(current->mm, new_limit);
616 
617 			if (!new) {
618 				ret = -ENOMEM;
619 			} else {
620 				gmap_remove(kvm->arch.gmap);
621 				new->private = kvm;
622 				kvm->arch.gmap = new;
623 				ret = 0;
624 			}
625 		}
626 		mutex_unlock(&kvm->lock);
627 		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
628 		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
629 			 (void *) kvm->arch.gmap->asce);
630 		break;
631 	}
632 	default:
633 		ret = -ENXIO;
634 		break;
635 	}
636 	return ret;
637 }
638 
639 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
640 
641 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
642 {
643 	struct kvm_vcpu *vcpu;
644 	int i;
645 
646 	if (!test_kvm_facility(kvm, 76))
647 		return -EINVAL;
648 
649 	mutex_lock(&kvm->lock);
650 	switch (attr->attr) {
651 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
652 		get_random_bytes(
653 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
654 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
655 		kvm->arch.crypto.aes_kw = 1;
656 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
657 		break;
658 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
659 		get_random_bytes(
660 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
661 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
662 		kvm->arch.crypto.dea_kw = 1;
663 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
664 		break;
665 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
666 		kvm->arch.crypto.aes_kw = 0;
667 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
668 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
669 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
670 		break;
671 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
672 		kvm->arch.crypto.dea_kw = 0;
673 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
674 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
675 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
676 		break;
677 	default:
678 		mutex_unlock(&kvm->lock);
679 		return -ENXIO;
680 	}
681 
682 	kvm_for_each_vcpu(i, vcpu, kvm) {
683 		kvm_s390_vcpu_crypto_setup(vcpu);
684 		exit_sie(vcpu);
685 	}
686 	mutex_unlock(&kvm->lock);
687 	return 0;
688 }
689 
690 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
691 {
692 	u8 gtod_high;
693 
694 	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
695 					   sizeof(gtod_high)))
696 		return -EFAULT;
697 
698 	if (gtod_high != 0)
699 		return -EINVAL;
700 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
701 
702 	return 0;
703 }
704 
705 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
706 {
707 	u64 gtod;
708 
709 	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
710 		return -EFAULT;
711 
712 	kvm_s390_set_tod_clock(kvm, gtod);
713 	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
714 	return 0;
715 }
716 
717 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
718 {
719 	int ret;
720 
721 	if (attr->flags)
722 		return -EINVAL;
723 
724 	switch (attr->attr) {
725 	case KVM_S390_VM_TOD_HIGH:
726 		ret = kvm_s390_set_tod_high(kvm, attr);
727 		break;
728 	case KVM_S390_VM_TOD_LOW:
729 		ret = kvm_s390_set_tod_low(kvm, attr);
730 		break;
731 	default:
732 		ret = -ENXIO;
733 		break;
734 	}
735 	return ret;
736 }
737 
738 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
739 {
740 	u8 gtod_high = 0;
741 
742 	if (copy_to_user((void __user *)attr->addr, &gtod_high,
743 					 sizeof(gtod_high)))
744 		return -EFAULT;
745 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
746 
747 	return 0;
748 }
749 
750 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
751 {
752 	u64 gtod;
753 
754 	gtod = kvm_s390_get_tod_clock_fast(kvm);
755 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
756 		return -EFAULT;
757 	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
758 
759 	return 0;
760 }
761 
762 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
763 {
764 	int ret;
765 
766 	if (attr->flags)
767 		return -EINVAL;
768 
769 	switch (attr->attr) {
770 	case KVM_S390_VM_TOD_HIGH:
771 		ret = kvm_s390_get_tod_high(kvm, attr);
772 		break;
773 	case KVM_S390_VM_TOD_LOW:
774 		ret = kvm_s390_get_tod_low(kvm, attr);
775 		break;
776 	default:
777 		ret = -ENXIO;
778 		break;
779 	}
780 	return ret;
781 }
782 
783 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
784 {
785 	struct kvm_s390_vm_cpu_processor *proc;
786 	u16 lowest_ibc, unblocked_ibc;
787 	int ret = 0;
788 
789 	mutex_lock(&kvm->lock);
790 	if (kvm->created_vcpus) {
791 		ret = -EBUSY;
792 		goto out;
793 	}
794 	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
795 	if (!proc) {
796 		ret = -ENOMEM;
797 		goto out;
798 	}
799 	if (!copy_from_user(proc, (void __user *)attr->addr,
800 			    sizeof(*proc))) {
801 		kvm->arch.model.cpuid = proc->cpuid;
802 		lowest_ibc = sclp.ibc >> 16 & 0xfff;
803 		unblocked_ibc = sclp.ibc & 0xfff;
804 		if (lowest_ibc && proc->ibc) {
805 			if (proc->ibc > unblocked_ibc)
806 				kvm->arch.model.ibc = unblocked_ibc;
807 			else if (proc->ibc < lowest_ibc)
808 				kvm->arch.model.ibc = lowest_ibc;
809 			else
810 				kvm->arch.model.ibc = proc->ibc;
811 		}
812 		memcpy(kvm->arch.model.fac_list, proc->fac_list,
813 		       S390_ARCH_FAC_LIST_SIZE_BYTE);
814 	} else
815 		ret = -EFAULT;
816 	kfree(proc);
817 out:
818 	mutex_unlock(&kvm->lock);
819 	return ret;
820 }
821 
822 static int kvm_s390_set_processor_feat(struct kvm *kvm,
823 				       struct kvm_device_attr *attr)
824 {
825 	struct kvm_s390_vm_cpu_feat data;
826 	int ret = -EBUSY;
827 
828 	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
829 		return -EFAULT;
830 	if (!bitmap_subset((unsigned long *) data.feat,
831 			   kvm_s390_available_cpu_feat,
832 			   KVM_S390_VM_CPU_FEAT_NR_BITS))
833 		return -EINVAL;
834 
835 	mutex_lock(&kvm->lock);
836 	if (!atomic_read(&kvm->online_vcpus)) {
837 		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
838 			    KVM_S390_VM_CPU_FEAT_NR_BITS);
839 		ret = 0;
840 	}
841 	mutex_unlock(&kvm->lock);
842 	return ret;
843 }
844 
845 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
846 					  struct kvm_device_attr *attr)
847 {
848 	/*
849 	 * Once supported by kernel + hw, we have to store the subfunctions
850 	 * in kvm->arch and remember that user space configured them.
851 	 */
852 	return -ENXIO;
853 }
854 
855 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
856 {
857 	int ret = -ENXIO;
858 
859 	switch (attr->attr) {
860 	case KVM_S390_VM_CPU_PROCESSOR:
861 		ret = kvm_s390_set_processor(kvm, attr);
862 		break;
863 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
864 		ret = kvm_s390_set_processor_feat(kvm, attr);
865 		break;
866 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
867 		ret = kvm_s390_set_processor_subfunc(kvm, attr);
868 		break;
869 	}
870 	return ret;
871 }
872 
873 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
874 {
875 	struct kvm_s390_vm_cpu_processor *proc;
876 	int ret = 0;
877 
878 	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
879 	if (!proc) {
880 		ret = -ENOMEM;
881 		goto out;
882 	}
883 	proc->cpuid = kvm->arch.model.cpuid;
884 	proc->ibc = kvm->arch.model.ibc;
885 	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
886 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
887 	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
888 		ret = -EFAULT;
889 	kfree(proc);
890 out:
891 	return ret;
892 }
893 
894 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
895 {
896 	struct kvm_s390_vm_cpu_machine *mach;
897 	int ret = 0;
898 
899 	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
900 	if (!mach) {
901 		ret = -ENOMEM;
902 		goto out;
903 	}
904 	get_cpu_id((struct cpuid *) &mach->cpuid);
905 	mach->ibc = sclp.ibc;
906 	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
907 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
908 	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
909 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
910 	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
911 		ret = -EFAULT;
912 	kfree(mach);
913 out:
914 	return ret;
915 }
916 
917 static int kvm_s390_get_processor_feat(struct kvm *kvm,
918 				       struct kvm_device_attr *attr)
919 {
920 	struct kvm_s390_vm_cpu_feat data;
921 
922 	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
923 		    KVM_S390_VM_CPU_FEAT_NR_BITS);
924 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
925 		return -EFAULT;
926 	return 0;
927 }
928 
929 static int kvm_s390_get_machine_feat(struct kvm *kvm,
930 				     struct kvm_device_attr *attr)
931 {
932 	struct kvm_s390_vm_cpu_feat data;
933 
934 	bitmap_copy((unsigned long *) data.feat,
935 		    kvm_s390_available_cpu_feat,
936 		    KVM_S390_VM_CPU_FEAT_NR_BITS);
937 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
938 		return -EFAULT;
939 	return 0;
940 }
941 
942 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
943 					  struct kvm_device_attr *attr)
944 {
945 	/*
946 	 * Once we can actually configure subfunctions (kernel + hw support),
947 	 * we have to check if they were already set by user space, if so copy
948 	 * them from kvm->arch.
949 	 */
950 	return -ENXIO;
951 }
952 
953 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
954 					struct kvm_device_attr *attr)
955 {
956 	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
957 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
958 		return -EFAULT;
959 	return 0;
960 }
961 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
962 {
963 	int ret = -ENXIO;
964 
965 	switch (attr->attr) {
966 	case KVM_S390_VM_CPU_PROCESSOR:
967 		ret = kvm_s390_get_processor(kvm, attr);
968 		break;
969 	case KVM_S390_VM_CPU_MACHINE:
970 		ret = kvm_s390_get_machine(kvm, attr);
971 		break;
972 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
973 		ret = kvm_s390_get_processor_feat(kvm, attr);
974 		break;
975 	case KVM_S390_VM_CPU_MACHINE_FEAT:
976 		ret = kvm_s390_get_machine_feat(kvm, attr);
977 		break;
978 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
979 		ret = kvm_s390_get_processor_subfunc(kvm, attr);
980 		break;
981 	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
982 		ret = kvm_s390_get_machine_subfunc(kvm, attr);
983 		break;
984 	}
985 	return ret;
986 }
987 
988 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
989 {
990 	int ret;
991 
992 	switch (attr->group) {
993 	case KVM_S390_VM_MEM_CTRL:
994 		ret = kvm_s390_set_mem_control(kvm, attr);
995 		break;
996 	case KVM_S390_VM_TOD:
997 		ret = kvm_s390_set_tod(kvm, attr);
998 		break;
999 	case KVM_S390_VM_CPU_MODEL:
1000 		ret = kvm_s390_set_cpu_model(kvm, attr);
1001 		break;
1002 	case KVM_S390_VM_CRYPTO:
1003 		ret = kvm_s390_vm_set_crypto(kvm, attr);
1004 		break;
1005 	default:
1006 		ret = -ENXIO;
1007 		break;
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1014 {
1015 	int ret;
1016 
1017 	switch (attr->group) {
1018 	case KVM_S390_VM_MEM_CTRL:
1019 		ret = kvm_s390_get_mem_control(kvm, attr);
1020 		break;
1021 	case KVM_S390_VM_TOD:
1022 		ret = kvm_s390_get_tod(kvm, attr);
1023 		break;
1024 	case KVM_S390_VM_CPU_MODEL:
1025 		ret = kvm_s390_get_cpu_model(kvm, attr);
1026 		break;
1027 	default:
1028 		ret = -ENXIO;
1029 		break;
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1036 {
1037 	int ret;
1038 
1039 	switch (attr->group) {
1040 	case KVM_S390_VM_MEM_CTRL:
1041 		switch (attr->attr) {
1042 		case KVM_S390_VM_MEM_ENABLE_CMMA:
1043 		case KVM_S390_VM_MEM_CLR_CMMA:
1044 			ret = sclp.has_cmma ? 0 : -ENXIO;
1045 			break;
1046 		case KVM_S390_VM_MEM_LIMIT_SIZE:
1047 			ret = 0;
1048 			break;
1049 		default:
1050 			ret = -ENXIO;
1051 			break;
1052 		}
1053 		break;
1054 	case KVM_S390_VM_TOD:
1055 		switch (attr->attr) {
1056 		case KVM_S390_VM_TOD_LOW:
1057 		case KVM_S390_VM_TOD_HIGH:
1058 			ret = 0;
1059 			break;
1060 		default:
1061 			ret = -ENXIO;
1062 			break;
1063 		}
1064 		break;
1065 	case KVM_S390_VM_CPU_MODEL:
1066 		switch (attr->attr) {
1067 		case KVM_S390_VM_CPU_PROCESSOR:
1068 		case KVM_S390_VM_CPU_MACHINE:
1069 		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1070 		case KVM_S390_VM_CPU_MACHINE_FEAT:
1071 		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1072 			ret = 0;
1073 			break;
1074 		/* configuring subfunctions is not supported yet */
1075 		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1076 		default:
1077 			ret = -ENXIO;
1078 			break;
1079 		}
1080 		break;
1081 	case KVM_S390_VM_CRYPTO:
1082 		switch (attr->attr) {
1083 		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1084 		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1085 		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1086 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1087 			ret = 0;
1088 			break;
1089 		default:
1090 			ret = -ENXIO;
1091 			break;
1092 		}
1093 		break;
1094 	default:
1095 		ret = -ENXIO;
1096 		break;
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1103 {
1104 	uint8_t *keys;
1105 	uint64_t hva;
1106 	int i, r = 0;
1107 
1108 	if (args->flags != 0)
1109 		return -EINVAL;
1110 
1111 	/* Is this guest using storage keys? */
1112 	if (!mm_use_skey(current->mm))
1113 		return KVM_S390_GET_SKEYS_NONE;
1114 
1115 	/* Enforce sane limit on memory allocation */
1116 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1117 		return -EINVAL;
1118 
1119 	keys = kmalloc_array(args->count, sizeof(uint8_t),
1120 			     GFP_KERNEL | __GFP_NOWARN);
1121 	if (!keys)
1122 		keys = vmalloc(sizeof(uint8_t) * args->count);
1123 	if (!keys)
1124 		return -ENOMEM;
1125 
1126 	down_read(&current->mm->mmap_sem);
1127 	for (i = 0; i < args->count; i++) {
1128 		hva = gfn_to_hva(kvm, args->start_gfn + i);
1129 		if (kvm_is_error_hva(hva)) {
1130 			r = -EFAULT;
1131 			break;
1132 		}
1133 
1134 		r = get_guest_storage_key(current->mm, hva, &keys[i]);
1135 		if (r)
1136 			break;
1137 	}
1138 	up_read(&current->mm->mmap_sem);
1139 
1140 	if (!r) {
1141 		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1142 				 sizeof(uint8_t) * args->count);
1143 		if (r)
1144 			r = -EFAULT;
1145 	}
1146 
1147 	kvfree(keys);
1148 	return r;
1149 }
1150 
1151 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1152 {
1153 	uint8_t *keys;
1154 	uint64_t hva;
1155 	int i, r = 0;
1156 
1157 	if (args->flags != 0)
1158 		return -EINVAL;
1159 
1160 	/* Enforce sane limit on memory allocation */
1161 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1162 		return -EINVAL;
1163 
1164 	keys = kmalloc_array(args->count, sizeof(uint8_t),
1165 			     GFP_KERNEL | __GFP_NOWARN);
1166 	if (!keys)
1167 		keys = vmalloc(sizeof(uint8_t) * args->count);
1168 	if (!keys)
1169 		return -ENOMEM;
1170 
1171 	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1172 			   sizeof(uint8_t) * args->count);
1173 	if (r) {
1174 		r = -EFAULT;
1175 		goto out;
1176 	}
1177 
1178 	/* Enable storage key handling for the guest */
1179 	r = s390_enable_skey();
1180 	if (r)
1181 		goto out;
1182 
1183 	down_read(&current->mm->mmap_sem);
1184 	for (i = 0; i < args->count; i++) {
1185 		hva = gfn_to_hva(kvm, args->start_gfn + i);
1186 		if (kvm_is_error_hva(hva)) {
1187 			r = -EFAULT;
1188 			break;
1189 		}
1190 
1191 		/* Lowest order bit is reserved */
1192 		if (keys[i] & 0x01) {
1193 			r = -EINVAL;
1194 			break;
1195 		}
1196 
1197 		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1198 		if (r)
1199 			break;
1200 	}
1201 	up_read(&current->mm->mmap_sem);
1202 out:
1203 	kvfree(keys);
1204 	return r;
1205 }
1206 
1207 long kvm_arch_vm_ioctl(struct file *filp,
1208 		       unsigned int ioctl, unsigned long arg)
1209 {
1210 	struct kvm *kvm = filp->private_data;
1211 	void __user *argp = (void __user *)arg;
1212 	struct kvm_device_attr attr;
1213 	int r;
1214 
1215 	switch (ioctl) {
1216 	case KVM_S390_INTERRUPT: {
1217 		struct kvm_s390_interrupt s390int;
1218 
1219 		r = -EFAULT;
1220 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
1221 			break;
1222 		r = kvm_s390_inject_vm(kvm, &s390int);
1223 		break;
1224 	}
1225 	case KVM_ENABLE_CAP: {
1226 		struct kvm_enable_cap cap;
1227 		r = -EFAULT;
1228 		if (copy_from_user(&cap, argp, sizeof(cap)))
1229 			break;
1230 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1231 		break;
1232 	}
1233 	case KVM_CREATE_IRQCHIP: {
1234 		struct kvm_irq_routing_entry routing;
1235 
1236 		r = -EINVAL;
1237 		if (kvm->arch.use_irqchip) {
1238 			/* Set up dummy routing. */
1239 			memset(&routing, 0, sizeof(routing));
1240 			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1241 		}
1242 		break;
1243 	}
1244 	case KVM_SET_DEVICE_ATTR: {
1245 		r = -EFAULT;
1246 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1247 			break;
1248 		r = kvm_s390_vm_set_attr(kvm, &attr);
1249 		break;
1250 	}
1251 	case KVM_GET_DEVICE_ATTR: {
1252 		r = -EFAULT;
1253 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1254 			break;
1255 		r = kvm_s390_vm_get_attr(kvm, &attr);
1256 		break;
1257 	}
1258 	case KVM_HAS_DEVICE_ATTR: {
1259 		r = -EFAULT;
1260 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1261 			break;
1262 		r = kvm_s390_vm_has_attr(kvm, &attr);
1263 		break;
1264 	}
1265 	case KVM_S390_GET_SKEYS: {
1266 		struct kvm_s390_skeys args;
1267 
1268 		r = -EFAULT;
1269 		if (copy_from_user(&args, argp,
1270 				   sizeof(struct kvm_s390_skeys)))
1271 			break;
1272 		r = kvm_s390_get_skeys(kvm, &args);
1273 		break;
1274 	}
1275 	case KVM_S390_SET_SKEYS: {
1276 		struct kvm_s390_skeys args;
1277 
1278 		r = -EFAULT;
1279 		if (copy_from_user(&args, argp,
1280 				   sizeof(struct kvm_s390_skeys)))
1281 			break;
1282 		r = kvm_s390_set_skeys(kvm, &args);
1283 		break;
1284 	}
1285 	default:
1286 		r = -ENOTTY;
1287 	}
1288 
1289 	return r;
1290 }
1291 
1292 static int kvm_s390_query_ap_config(u8 *config)
1293 {
1294 	u32 fcn_code = 0x04000000UL;
1295 	u32 cc = 0;
1296 
1297 	memset(config, 0, 128);
1298 	asm volatile(
1299 		"lgr 0,%1\n"
1300 		"lgr 2,%2\n"
1301 		".long 0xb2af0000\n"		/* PQAP(QCI) */
1302 		"0: ipm %0\n"
1303 		"srl %0,28\n"
1304 		"1:\n"
1305 		EX_TABLE(0b, 1b)
1306 		: "+r" (cc)
1307 		: "r" (fcn_code), "r" (config)
1308 		: "cc", "0", "2", "memory"
1309 	);
1310 
1311 	return cc;
1312 }
1313 
1314 static int kvm_s390_apxa_installed(void)
1315 {
1316 	u8 config[128];
1317 	int cc;
1318 
1319 	if (test_facility(12)) {
1320 		cc = kvm_s390_query_ap_config(config);
1321 
1322 		if (cc)
1323 			pr_err("PQAP(QCI) failed with cc=%d", cc);
1324 		else
1325 			return config[0] & 0x40;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1332 {
1333 	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1334 
1335 	if (kvm_s390_apxa_installed())
1336 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1337 	else
1338 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1339 }
1340 
1341 static u64 kvm_s390_get_initial_cpuid(void)
1342 {
1343 	struct cpuid cpuid;
1344 
1345 	get_cpu_id(&cpuid);
1346 	cpuid.version = 0xff;
1347 	return *((u64 *) &cpuid);
1348 }
1349 
1350 static void kvm_s390_crypto_init(struct kvm *kvm)
1351 {
1352 	if (!test_kvm_facility(kvm, 76))
1353 		return;
1354 
1355 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1356 	kvm_s390_set_crycb_format(kvm);
1357 
1358 	/* Enable AES/DEA protected key functions by default */
1359 	kvm->arch.crypto.aes_kw = 1;
1360 	kvm->arch.crypto.dea_kw = 1;
1361 	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1362 			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1363 	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1364 			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1365 }
1366 
1367 static void sca_dispose(struct kvm *kvm)
1368 {
1369 	if (kvm->arch.use_esca)
1370 		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1371 	else
1372 		free_page((unsigned long)(kvm->arch.sca));
1373 	kvm->arch.sca = NULL;
1374 }
1375 
1376 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1377 {
1378 	gfp_t alloc_flags = GFP_KERNEL;
1379 	int i, rc;
1380 	char debug_name[16];
1381 	static unsigned long sca_offset;
1382 
1383 	rc = -EINVAL;
1384 #ifdef CONFIG_KVM_S390_UCONTROL
1385 	if (type & ~KVM_VM_S390_UCONTROL)
1386 		goto out_err;
1387 	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1388 		goto out_err;
1389 #else
1390 	if (type)
1391 		goto out_err;
1392 #endif
1393 
1394 	rc = s390_enable_sie();
1395 	if (rc)
1396 		goto out_err;
1397 
1398 	rc = -ENOMEM;
1399 
1400 	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);
1401 
1402 	kvm->arch.use_esca = 0; /* start with basic SCA */
1403 	if (!sclp.has_64bscao)
1404 		alloc_flags |= GFP_DMA;
1405 	rwlock_init(&kvm->arch.sca_lock);
1406 	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1407 	if (!kvm->arch.sca)
1408 		goto out_err;
1409 	spin_lock(&kvm_lock);
1410 	sca_offset += 16;
1411 	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1412 		sca_offset = 0;
1413 	kvm->arch.sca = (struct bsca_block *)
1414 			((char *) kvm->arch.sca + sca_offset);
1415 	spin_unlock(&kvm_lock);
1416 
1417 	sprintf(debug_name, "kvm-%u", current->pid);
1418 
1419 	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1420 	if (!kvm->arch.dbf)
1421 		goto out_err;
1422 
1423 	kvm->arch.sie_page2 =
1424 	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1425 	if (!kvm->arch.sie_page2)
1426 		goto out_err;
1427 
1428 	/* Populate the facility mask initially. */
1429 	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1430 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1431 	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1432 		if (i < kvm_s390_fac_list_mask_size())
1433 			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1434 		else
1435 			kvm->arch.model.fac_mask[i] = 0UL;
1436 	}
1437 
1438 	/* Populate the facility list initially. */
1439 	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
1440 	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1441 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1442 
1443 	set_kvm_facility(kvm->arch.model.fac_mask, 74);
1444 	set_kvm_facility(kvm->arch.model.fac_list, 74);
1445 
1446 	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1447 	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1448 
1449 	kvm_s390_crypto_init(kvm);
1450 
1451 	spin_lock_init(&kvm->arch.float_int.lock);
1452 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
1453 		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1454 	init_waitqueue_head(&kvm->arch.ipte_wq);
1455 	mutex_init(&kvm->arch.ipte_mutex);
1456 
1457 	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1458 	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1459 
1460 	if (type & KVM_VM_S390_UCONTROL) {
1461 		kvm->arch.gmap = NULL;
1462 		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1463 	} else {
1464 		if (sclp.hamax == U64_MAX)
1465 			kvm->arch.mem_limit = TASK_MAX_SIZE;
1466 		else
1467 			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1468 						    sclp.hamax + 1);
1469 		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1470 		if (!kvm->arch.gmap)
1471 			goto out_err;
1472 		kvm->arch.gmap->private = kvm;
1473 		kvm->arch.gmap->pfault_enabled = 0;
1474 	}
1475 
1476 	kvm->arch.css_support = 0;
1477 	kvm->arch.use_irqchip = 0;
1478 	kvm->arch.epoch = 0;
1479 
1480 	spin_lock_init(&kvm->arch.start_stop_lock);
1481 	kvm_s390_vsie_init(kvm);
1482 	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1483 
1484 	return 0;
1485 out_err:
1486 	free_page((unsigned long)kvm->arch.sie_page2);
1487 	debug_unregister(kvm->arch.dbf);
1488 	sca_dispose(kvm);
1489 	KVM_EVENT(3, "creation of vm failed: %d", rc);
1490 	return rc;
1491 }
1492 
1493 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1494 {
1495 	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1496 	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1497 	kvm_s390_clear_local_irqs(vcpu);
1498 	kvm_clear_async_pf_completion_queue(vcpu);
1499 	if (!kvm_is_ucontrol(vcpu->kvm))
1500 		sca_del_vcpu(vcpu);
1501 
1502 	if (kvm_is_ucontrol(vcpu->kvm))
1503 		gmap_remove(vcpu->arch.gmap);
1504 
1505 	if (vcpu->kvm->arch.use_cmma)
1506 		kvm_s390_vcpu_unsetup_cmma(vcpu);
1507 	free_page((unsigned long)(vcpu->arch.sie_block));
1508 
1509 	kvm_vcpu_uninit(vcpu);
1510 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1511 }
1512 
1513 static void kvm_free_vcpus(struct kvm *kvm)
1514 {
1515 	unsigned int i;
1516 	struct kvm_vcpu *vcpu;
1517 
1518 	kvm_for_each_vcpu(i, vcpu, kvm)
1519 		kvm_arch_vcpu_destroy(vcpu);
1520 
1521 	mutex_lock(&kvm->lock);
1522 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1523 		kvm->vcpus[i] = NULL;
1524 
1525 	atomic_set(&kvm->online_vcpus, 0);
1526 	mutex_unlock(&kvm->lock);
1527 }
1528 
1529 void kvm_arch_destroy_vm(struct kvm *kvm)
1530 {
1531 	kvm_free_vcpus(kvm);
1532 	sca_dispose(kvm);
1533 	debug_unregister(kvm->arch.dbf);
1534 	free_page((unsigned long)kvm->arch.sie_page2);
1535 	if (!kvm_is_ucontrol(kvm))
1536 		gmap_remove(kvm->arch.gmap);
1537 	kvm_s390_destroy_adapters(kvm);
1538 	kvm_s390_clear_float_irqs(kvm);
1539 	kvm_s390_vsie_destroy(kvm);
1540 	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1541 }
1542 
1543 /* Section: vcpu related */
1544 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1545 {
1546 	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1547 	if (!vcpu->arch.gmap)
1548 		return -ENOMEM;
1549 	vcpu->arch.gmap->private = vcpu->kvm;
1550 
1551 	return 0;
1552 }
1553 
1554 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1555 {
1556 	read_lock(&vcpu->kvm->arch.sca_lock);
1557 	if (vcpu->kvm->arch.use_esca) {
1558 		struct esca_block *sca = vcpu->kvm->arch.sca;
1559 
1560 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1561 		sca->cpu[vcpu->vcpu_id].sda = 0;
1562 	} else {
1563 		struct bsca_block *sca = vcpu->kvm->arch.sca;
1564 
1565 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1566 		sca->cpu[vcpu->vcpu_id].sda = 0;
1567 	}
1568 	read_unlock(&vcpu->kvm->arch.sca_lock);
1569 }
1570 
1571 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1572 {
1573 	read_lock(&vcpu->kvm->arch.sca_lock);
1574 	if (vcpu->kvm->arch.use_esca) {
1575 		struct esca_block *sca = vcpu->kvm->arch.sca;
1576 
1577 		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1578 		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1579 		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1580 		vcpu->arch.sie_block->ecb2 |= 0x04U;
1581 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1582 	} else {
1583 		struct bsca_block *sca = vcpu->kvm->arch.sca;
1584 
1585 		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1586 		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1587 		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1588 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1589 	}
1590 	read_unlock(&vcpu->kvm->arch.sca_lock);
1591 }
1592 
1593 /* Basic SCA to Extended SCA data copy routines */
1594 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1595 {
1596 	d->sda = s->sda;
1597 	d->sigp_ctrl.c = s->sigp_ctrl.c;
1598 	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1599 }
1600 
1601 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1602 {
1603 	int i;
1604 
1605 	d->ipte_control = s->ipte_control;
1606 	d->mcn[0] = s->mcn;
1607 	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1608 		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1609 }
1610 
1611 static int sca_switch_to_extended(struct kvm *kvm)
1612 {
1613 	struct bsca_block *old_sca = kvm->arch.sca;
1614 	struct esca_block *new_sca;
1615 	struct kvm_vcpu *vcpu;
1616 	unsigned int vcpu_idx;
1617 	u32 scaol, scaoh;
1618 
1619 	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1620 	if (!new_sca)
1621 		return -ENOMEM;
1622 
1623 	scaoh = (u32)((u64)(new_sca) >> 32);
1624 	scaol = (u32)(u64)(new_sca) & ~0x3fU;
1625 
1626 	kvm_s390_vcpu_block_all(kvm);
1627 	write_lock(&kvm->arch.sca_lock);
1628 
1629 	sca_copy_b_to_e(new_sca, old_sca);
1630 
1631 	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1632 		vcpu->arch.sie_block->scaoh = scaoh;
1633 		vcpu->arch.sie_block->scaol = scaol;
1634 		vcpu->arch.sie_block->ecb2 |= 0x04U;
1635 	}
1636 	kvm->arch.sca = new_sca;
1637 	kvm->arch.use_esca = 1;
1638 
1639 	write_unlock(&kvm->arch.sca_lock);
1640 	kvm_s390_vcpu_unblock_all(kvm);
1641 
1642 	free_page((unsigned long)old_sca);
1643 
1644 	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1645 		 old_sca, kvm->arch.sca);
1646 	return 0;
1647 }
1648 
1649 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1650 {
1651 	int rc;
1652 
1653 	if (id < KVM_S390_BSCA_CPU_SLOTS)
1654 		return true;
1655 	if (!sclp.has_esca || !sclp.has_64bscao)
1656 		return false;
1657 
1658 	mutex_lock(&kvm->lock);
1659 	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1660 	mutex_unlock(&kvm->lock);
1661 
1662 	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1663 }
1664 
1665 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1666 {
1667 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1668 	kvm_clear_async_pf_completion_queue(vcpu);
1669 	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1670 				    KVM_SYNC_GPRS |
1671 				    KVM_SYNC_ACRS |
1672 				    KVM_SYNC_CRS |
1673 				    KVM_SYNC_ARCH0 |
1674 				    KVM_SYNC_PFAULT;
1675 	if (test_kvm_facility(vcpu->kvm, 64))
1676 		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1677 	/* fprs can be synchronized via vrs, even if the guest has no vx. With
1678 	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
1679 	 */
1680 	if (MACHINE_HAS_VX)
1681 		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1682 	else
1683 		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1684 
1685 	if (kvm_is_ucontrol(vcpu->kvm))
1686 		return __kvm_ucontrol_vcpu_init(vcpu);
1687 
1688 	return 0;
1689 }
1690 
1691 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1692 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1693 {
1694 	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1695 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1696 	vcpu->arch.cputm_start = get_tod_clock_fast();
1697 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1698 }
1699 
1700 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1701 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1702 {
1703 	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1704 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1705 	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1706 	vcpu->arch.cputm_start = 0;
1707 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1708 }
1709 
1710 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1711 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1712 {
1713 	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
1714 	vcpu->arch.cputm_enabled = true;
1715 	__start_cpu_timer_accounting(vcpu);
1716 }
1717 
1718 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1719 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1720 {
1721 	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
1722 	__stop_cpu_timer_accounting(vcpu);
1723 	vcpu->arch.cputm_enabled = false;
1724 }
1725 
1726 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1727 {
1728 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1729 	__enable_cpu_timer_accounting(vcpu);
1730 	preempt_enable();
1731 }
1732 
1733 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1734 {
1735 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1736 	__disable_cpu_timer_accounting(vcpu);
1737 	preempt_enable();
1738 }
1739 
1740 /* set the cpu timer - may only be called from the VCPU thread itself */
1741 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
1742 {
1743 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1744 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1745 	if (vcpu->arch.cputm_enabled)
1746 		vcpu->arch.cputm_start = get_tod_clock_fast();
1747 	vcpu->arch.sie_block->cputm = cputm;
1748 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1749 	preempt_enable();
1750 }
1751 
1752 /* update and get the cpu timer - can also be called from other VCPU threads */
1753 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
1754 {
1755 	unsigned int seq;
1756 	__u64 value;
1757 
1758 	if (unlikely(!vcpu->arch.cputm_enabled))
1759 		return vcpu->arch.sie_block->cputm;
1760 
1761 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1762 	do {
1763 		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
1764 		/*
1765 		 * If the writer would ever execute a read in the critical
1766 		 * section, e.g. in irq context, we have a deadlock.
1767 		 */
1768 		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
1769 		value = vcpu->arch.sie_block->cputm;
1770 		/* if cputm_start is 0, accounting is being started/stopped */
1771 		if (likely(vcpu->arch.cputm_start))
1772 			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1773 	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
1774 	preempt_enable();
1775 	return value;
1776 }
1777 
1778 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1779 {
1780 	/* Save host register state */
1781 	save_fpu_regs();
1782 	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
1783 	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1784 
1785 	if (MACHINE_HAS_VX)
1786 		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
1787 	else
1788 		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1789 	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1790 	if (test_fp_ctl(current->thread.fpu.fpc))
1791 		/* User space provided an invalid FPC, let's clear it */
1792 		current->thread.fpu.fpc = 0;
1793 
1794 	save_access_regs(vcpu->arch.host_acrs);
1795 	restore_access_regs(vcpu->run->s.regs.acrs);
1796 	gmap_enable(vcpu->arch.enabled_gmap);
1797 	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1798 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1799 		__start_cpu_timer_accounting(vcpu);
1800 	vcpu->cpu = cpu;
1801 }
1802 
1803 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1804 {
1805 	vcpu->cpu = -1;
1806 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1807 		__stop_cpu_timer_accounting(vcpu);
1808 	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1809 	vcpu->arch.enabled_gmap = gmap_get_enabled();
1810 	gmap_disable(vcpu->arch.enabled_gmap);
1811 
1812 	/* Save guest register state */
1813 	save_fpu_regs();
1814 	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1815 
1816 	/* Restore host register state */
1817 	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
1818 	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1819 
1820 	save_access_regs(vcpu->run->s.regs.acrs);
1821 	restore_access_regs(vcpu->arch.host_acrs);
1822 }
1823 
1824 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1825 {
1826 	/* this equals initial cpu reset in pop, but we don't switch to ESA */
1827 	vcpu->arch.sie_block->gpsw.mask = 0UL;
1828 	vcpu->arch.sie_block->gpsw.addr = 0UL;
1829 	kvm_s390_set_prefix(vcpu, 0);
1830 	kvm_s390_set_cpu_timer(vcpu, 0);
1831 	vcpu->arch.sie_block->ckc       = 0UL;
1832 	vcpu->arch.sie_block->todpr     = 0;
1833 	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1834 	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
1835 	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1836 	/* make sure the new fpc will be lazily loaded */
1837 	save_fpu_regs();
1838 	current->thread.fpu.fpc = 0;
1839 	vcpu->arch.sie_block->gbea = 1;
1840 	vcpu->arch.sie_block->pp = 0;
1841 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1842 	kvm_clear_async_pf_completion_queue(vcpu);
1843 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1844 		kvm_s390_vcpu_stop(vcpu);
1845 	kvm_s390_clear_local_irqs(vcpu);
1846 }
1847 
1848 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1849 {
1850 	mutex_lock(&vcpu->kvm->lock);
1851 	preempt_disable();
1852 	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1853 	preempt_enable();
1854 	mutex_unlock(&vcpu->kvm->lock);
1855 	if (!kvm_is_ucontrol(vcpu->kvm)) {
1856 		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1857 		sca_add_vcpu(vcpu);
1858 	}
1859 	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
1860 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1861 	/* make vcpu_load load the right gmap on the first trigger */
1862 	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1863 }
1864 
1865 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1866 {
1867 	if (!test_kvm_facility(vcpu->kvm, 76))
1868 		return;
1869 
1870 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1871 
1872 	if (vcpu->kvm->arch.crypto.aes_kw)
1873 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1874 	if (vcpu->kvm->arch.crypto.dea_kw)
1875 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1876 
1877 	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1878 }
1879 
1880 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1881 {
1882 	free_page(vcpu->arch.sie_block->cbrlo);
1883 	vcpu->arch.sie_block->cbrlo = 0;
1884 }
1885 
1886 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1887 {
1888 	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1889 	if (!vcpu->arch.sie_block->cbrlo)
1890 		return -ENOMEM;
1891 
1892 	vcpu->arch.sie_block->ecb2 |= 0x80;
1893 	vcpu->arch.sie_block->ecb2 &= ~0x08;
1894 	return 0;
1895 }
1896 
1897 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1898 {
1899 	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1900 
1901 	vcpu->arch.sie_block->ibc = model->ibc;
1902 	if (test_kvm_facility(vcpu->kvm, 7))
1903 		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1904 }
1905 
1906 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1907 {
1908 	int rc = 0;
1909 
1910 	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1911 						    CPUSTAT_SM |
1912 						    CPUSTAT_STOPPED);
1913 
1914 	if (test_kvm_facility(vcpu->kvm, 78))
1915 		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1916 	else if (test_kvm_facility(vcpu->kvm, 8))
1917 		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1918 
1919 	kvm_s390_vcpu_setup_model(vcpu);
1920 
1921 	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
1922 	if (MACHINE_HAS_ESOP)
1923 		vcpu->arch.sie_block->ecb |= 0x02;
1924 	if (test_kvm_facility(vcpu->kvm, 9))
1925 		vcpu->arch.sie_block->ecb |= 0x04;
1926 	if (test_kvm_facility(vcpu->kvm, 73))
1927 		vcpu->arch.sie_block->ecb |= 0x10;
1928 
1929 	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1930 		vcpu->arch.sie_block->ecb2 |= 0x08;
1931 	vcpu->arch.sie_block->eca = 0x1002000U;
1932 	if (sclp.has_cei)
1933 		vcpu->arch.sie_block->eca |= 0x80000000U;
1934 	if (sclp.has_ib)
1935 		vcpu->arch.sie_block->eca |= 0x40000000U;
1936 	if (sclp.has_siif)
1937 		vcpu->arch.sie_block->eca |= 1;
1938 	if (sclp.has_sigpif)
1939 		vcpu->arch.sie_block->eca |= 0x10000000U;
1940 	if (test_kvm_facility(vcpu->kvm, 64))
1941 		vcpu->arch.sie_block->ecb3 |= 0x01;
1942 	if (test_kvm_facility(vcpu->kvm, 129)) {
1943 		vcpu->arch.sie_block->eca |= 0x00020000;
1944 		vcpu->arch.sie_block->ecd |= 0x20000000;
1945 	}
1946 	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1947 	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1948 
1949 	if (vcpu->kvm->arch.use_cmma) {
1950 		rc = kvm_s390_vcpu_setup_cmma(vcpu);
1951 		if (rc)
1952 			return rc;
1953 	}
1954 	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1955 	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1956 
1957 	kvm_s390_vcpu_crypto_setup(vcpu);
1958 
1959 	return rc;
1960 }
1961 
1962 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1963 				      unsigned int id)
1964 {
1965 	struct kvm_vcpu *vcpu;
1966 	struct sie_page *sie_page;
1967 	int rc = -EINVAL;
1968 
1969 	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1970 		goto out;
1971 
1972 	rc = -ENOMEM;
1973 
1974 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1975 	if (!vcpu)
1976 		goto out;
1977 
1978 	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1979 	if (!sie_page)
1980 		goto out_free_cpu;
1981 
1982 	vcpu->arch.sie_block = &sie_page->sie_block;
1983 	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1984 
1985 	/* the real guest size will always be smaller than msl */
1986 	vcpu->arch.sie_block->mso = 0;
1987 	vcpu->arch.sie_block->msl = sclp.hamax;
1988 
1989 	vcpu->arch.sie_block->icpua = id;
1990 	spin_lock_init(&vcpu->arch.local_int.lock);
1991 	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1992 	vcpu->arch.local_int.wq = &vcpu->wq;
1993 	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1994 	seqcount_init(&vcpu->arch.cputm_seqcount);
1995 
1996 	rc = kvm_vcpu_init(vcpu, kvm, id);
1997 	if (rc)
1998 		goto out_free_sie_block;
1999 	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2000 		 vcpu->arch.sie_block);
2001 	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2002 
2003 	return vcpu;
2004 out_free_sie_block:
2005 	free_page((unsigned long)(vcpu->arch.sie_block));
2006 out_free_cpu:
2007 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2008 out:
2009 	return ERR_PTR(rc);
2010 }
2011 
2012 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
2013 {
2014 	return kvm_s390_vcpu_has_irq(vcpu, 0);
2015 }
2016 
2017 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2018 {
2019 	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2020 	exit_sie(vcpu);
2021 }
2022 
2023 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2024 {
2025 	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2026 }
2027 
2028 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
2029 {
2030 	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2031 	exit_sie(vcpu);
2032 }
2033 
2034 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
2035 {
2036 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2037 }
2038 
2039 /*
2040  * Kick a guest cpu out of SIE and wait until SIE is not running.
2041  * If the CPU is not running (e.g. waiting as idle) the function will
2042  * return immediately. */
2043 void exit_sie(struct kvm_vcpu *vcpu)
2044 {
2045 	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2046 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
2047 		cpu_relax();
2048 }
2049 
2050 /* Kick a guest cpu out of SIE to process a request synchronously */
2051 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2052 {
2053 	kvm_make_request(req, vcpu);
2054 	kvm_s390_vcpu_request(vcpu);
2055 }
2056 
2057 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
2058 			      unsigned long end)
2059 {
2060 	struct kvm *kvm = gmap->private;
2061 	struct kvm_vcpu *vcpu;
2062 	unsigned long prefix;
2063 	int i;
2064 
2065 	if (gmap_is_shadow(gmap))
2066 		return;
2067 	if (start >= 1UL << 31)
2068 		/* We are only interested in prefix pages */
2069 		return;
2070 	kvm_for_each_vcpu(i, vcpu, kvm) {
2071 		/* match against both prefix pages */
2072 		prefix = kvm_s390_get_prefix(vcpu);
2073 		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
2074 			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
2075 				   start, end);
2076 			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2077 		}
2078 	}
2079 }
2080 
2081 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
2082 {
2083 	/* kvm common code refers to this, but never calls it */
2084 	BUG();
2085 	return 0;
2086 }
2087 
2088 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
2089 					   struct kvm_one_reg *reg)
2090 {
2091 	int r = -EINVAL;
2092 
2093 	switch (reg->id) {
2094 	case KVM_REG_S390_TODPR:
2095 		r = put_user(vcpu->arch.sie_block->todpr,
2096 			     (u32 __user *)reg->addr);
2097 		break;
2098 	case KVM_REG_S390_EPOCHDIFF:
2099 		r = put_user(vcpu->arch.sie_block->epoch,
2100 			     (u64 __user *)reg->addr);
2101 		break;
2102 	case KVM_REG_S390_CPU_TIMER:
2103 		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2104 			     (u64 __user *)reg->addr);
2105 		break;
2106 	case KVM_REG_S390_CLOCK_COMP:
2107 		r = put_user(vcpu->arch.sie_block->ckc,
2108 			     (u64 __user *)reg->addr);
2109 		break;
2110 	case KVM_REG_S390_PFTOKEN:
2111 		r = put_user(vcpu->arch.pfault_token,
2112 			     (u64 __user *)reg->addr);
2113 		break;
2114 	case KVM_REG_S390_PFCOMPARE:
2115 		r = put_user(vcpu->arch.pfault_compare,
2116 			     (u64 __user *)reg->addr);
2117 		break;
2118 	case KVM_REG_S390_PFSELECT:
2119 		r = put_user(vcpu->arch.pfault_select,
2120 			     (u64 __user *)reg->addr);
2121 		break;
2122 	case KVM_REG_S390_PP:
2123 		r = put_user(vcpu->arch.sie_block->pp,
2124 			     (u64 __user *)reg->addr);
2125 		break;
2126 	case KVM_REG_S390_GBEA:
2127 		r = put_user(vcpu->arch.sie_block->gbea,
2128 			     (u64 __user *)reg->addr);
2129 		break;
2130 	default:
2131 		break;
2132 	}
2133 
2134 	return r;
2135 }
2136 
2137 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
2138 					   struct kvm_one_reg *reg)
2139 {
2140 	int r = -EINVAL;
2141 	__u64 val;
2142 
2143 	switch (reg->id) {
2144 	case KVM_REG_S390_TODPR:
2145 		r = get_user(vcpu->arch.sie_block->todpr,
2146 			     (u32 __user *)reg->addr);
2147 		break;
2148 	case KVM_REG_S390_EPOCHDIFF:
2149 		r = get_user(vcpu->arch.sie_block->epoch,
2150 			     (u64 __user *)reg->addr);
2151 		break;
2152 	case KVM_REG_S390_CPU_TIMER:
2153 		r = get_user(val, (u64 __user *)reg->addr);
2154 		if (!r)
2155 			kvm_s390_set_cpu_timer(vcpu, val);
2156 		break;
2157 	case KVM_REG_S390_CLOCK_COMP:
2158 		r = get_user(vcpu->arch.sie_block->ckc,
2159 			     (u64 __user *)reg->addr);
2160 		break;
2161 	case KVM_REG_S390_PFTOKEN:
2162 		r = get_user(vcpu->arch.pfault_token,
2163 			     (u64 __user *)reg->addr);
2164 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2165 			kvm_clear_async_pf_completion_queue(vcpu);
2166 		break;
2167 	case KVM_REG_S390_PFCOMPARE:
2168 		r = get_user(vcpu->arch.pfault_compare,
2169 			     (u64 __user *)reg->addr);
2170 		break;
2171 	case KVM_REG_S390_PFSELECT:
2172 		r = get_user(vcpu->arch.pfault_select,
2173 			     (u64 __user *)reg->addr);
2174 		break;
2175 	case KVM_REG_S390_PP:
2176 		r = get_user(vcpu->arch.sie_block->pp,
2177 			     (u64 __user *)reg->addr);
2178 		break;
2179 	case KVM_REG_S390_GBEA:
2180 		r = get_user(vcpu->arch.sie_block->gbea,
2181 			     (u64 __user *)reg->addr);
2182 		break;
2183 	default:
2184 		break;
2185 	}
2186 
2187 	return r;
2188 }
2189 
2190 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
2191 {
2192 	kvm_s390_vcpu_initial_reset(vcpu);
2193 	return 0;
2194 }
2195 
2196 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2197 {
2198 	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2199 	return 0;
2200 }
2201 
2202 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2203 {
2204 	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2205 	return 0;
2206 }
2207 
2208 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2209 				  struct kvm_sregs *sregs)
2210 {
2211 	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2212 	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2213 	restore_access_regs(vcpu->run->s.regs.acrs);
2214 	return 0;
2215 }
2216 
2217 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2218 				  struct kvm_sregs *sregs)
2219 {
2220 	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2221 	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2222 	return 0;
2223 }
2224 
2225 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2226 {
2227 	/* make sure the new values will be lazily loaded */
2228 	save_fpu_regs();
2229 	if (test_fp_ctl(fpu->fpc))
2230 		return -EINVAL;
2231 	current->thread.fpu.fpc = fpu->fpc;
2232 	if (MACHINE_HAS_VX)
2233 		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
2234 	else
2235 		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2236 	return 0;
2237 }
2238 
2239 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2240 {
2241 	/* make sure we have the latest values */
2242 	save_fpu_regs();
2243 	if (MACHINE_HAS_VX)
2244 		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
2245 	else
2246 		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
2247 	fpu->fpc = current->thread.fpu.fpc;
2248 	return 0;
2249 }
2250 
2251 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
2252 {
2253 	int rc = 0;
2254 
2255 	if (!is_vcpu_stopped(vcpu))
2256 		rc = -EBUSY;
2257 	else {
2258 		vcpu->run->psw_mask = psw.mask;
2259 		vcpu->run->psw_addr = psw.addr;
2260 	}
2261 	return rc;
2262 }
2263 
2264 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2265 				  struct kvm_translation *tr)
2266 {
2267 	return -EINVAL; /* not implemented yet */
2268 }
2269 
2270 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
2271 			      KVM_GUESTDBG_USE_HW_BP | \
2272 			      KVM_GUESTDBG_ENABLE)
2273 
2274 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
2275 					struct kvm_guest_debug *dbg)
2276 {
2277 	int rc = 0;
2278 
2279 	vcpu->guest_debug = 0;
2280 	kvm_s390_clear_bp_data(vcpu);
2281 
2282 	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2283 		return -EINVAL;
2284 	if (!sclp.has_gpere)
2285 		return -EINVAL;
2286 
2287 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
2288 		vcpu->guest_debug = dbg->control;
2289 		/* enforce guest PER */
2290 		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2291 
2292 		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
2293 			rc = kvm_s390_import_bp_data(vcpu, dbg);
2294 	} else {
2295 		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2296 		vcpu->arch.guestdbg.last_bp = 0;
2297 	}
2298 
2299 	if (rc) {
2300 		vcpu->guest_debug = 0;
2301 		kvm_s390_clear_bp_data(vcpu);
2302 		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2303 	}
2304 
2305 	return rc;
2306 }
2307 
2308 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2309 				    struct kvm_mp_state *mp_state)
2310 {
2311 	/* CHECK_STOP and LOAD are not supported yet */
2312 	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
2313 				       KVM_MP_STATE_OPERATING;
2314 }
2315 
2316 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2317 				    struct kvm_mp_state *mp_state)
2318 {
2319 	int rc = 0;
2320 
2321 	/* user space knows about this interface - let it control the state */
2322 	vcpu->kvm->arch.user_cpu_state_ctrl = 1;
2323 
2324 	switch (mp_state->mp_state) {
2325 	case KVM_MP_STATE_STOPPED:
2326 		kvm_s390_vcpu_stop(vcpu);
2327 		break;
2328 	case KVM_MP_STATE_OPERATING:
2329 		kvm_s390_vcpu_start(vcpu);
2330 		break;
2331 	case KVM_MP_STATE_LOAD:
2332 	case KVM_MP_STATE_CHECK_STOP:
2333 		/* fall through - CHECK_STOP and LOAD are not supported yet */
2334 	default:
2335 		rc = -ENXIO;
2336 	}
2337 
2338 	return rc;
2339 }
2340 
2341 static bool ibs_enabled(struct kvm_vcpu *vcpu)
2342 {
2343 	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
2344 }
2345 
2346 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
2347 {
2348 retry:
2349 	kvm_s390_vcpu_request_handled(vcpu);
2350 	if (!vcpu->requests)
2351 		return 0;
2352 	/*
2353 	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2354 	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2355 	 * This ensures that the ipte instruction for this request has
2356 	 * already finished. We might race against a second unmapper that
2357 	 * wants to set the blocking bit. Lets just retry the request loop.
2358 	 */
2359 	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2360 		int rc;
2361 		rc = gmap_mprotect_notify(vcpu->arch.gmap,
2362 					  kvm_s390_get_prefix(vcpu),
2363 					  PAGE_SIZE * 2, PROT_WRITE);
2364 		if (rc)
2365 			return rc;
2366 		goto retry;
2367 	}
2368 
2369 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2370 		vcpu->arch.sie_block->ihcpu = 0xffff;
2371 		goto retry;
2372 	}
2373 
2374 	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2375 		if (!ibs_enabled(vcpu)) {
2376 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2377 			atomic_or(CPUSTAT_IBS,
2378 					&vcpu->arch.sie_block->cpuflags);
2379 		}
2380 		goto retry;
2381 	}
2382 
2383 	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2384 		if (ibs_enabled(vcpu)) {
2385 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2386 			atomic_andnot(CPUSTAT_IBS,
2387 					  &vcpu->arch.sie_block->cpuflags);
2388 		}
2389 		goto retry;
2390 	}
2391 
2392 	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
2393 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2394 		goto retry;
2395 	}
2396 
2397 	/* nothing to do, just clear the request */
2398 	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2399 
2400 	return 0;
2401 }
2402 
2403 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2404 {
2405 	struct kvm_vcpu *vcpu;
2406 	int i;
2407 
2408 	mutex_lock(&kvm->lock);
2409 	preempt_disable();
2410 	kvm->arch.epoch = tod - get_tod_clock();
2411 	kvm_s390_vcpu_block_all(kvm);
2412 	kvm_for_each_vcpu(i, vcpu, kvm)
2413 		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2414 	kvm_s390_vcpu_unblock_all(kvm);
2415 	preempt_enable();
2416 	mutex_unlock(&kvm->lock);
2417 }
2418 
2419 /**
2420  * kvm_arch_fault_in_page - fault-in guest page if necessary
2421  * @vcpu: The corresponding virtual cpu
2422  * @gpa: Guest physical address
2423  * @writable: Whether the page should be writable or not
2424  *
2425  * Make sure that a guest page has been faulted-in on the host.
2426  *
2427  * Return: Zero on success, negative error code otherwise.
2428  */
2429 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2430 {
2431 	return gmap_fault(vcpu->arch.gmap, gpa,
2432 			  writable ? FAULT_FLAG_WRITE : 0);
2433 }
2434 
2435 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2436 				      unsigned long token)
2437 {
2438 	struct kvm_s390_interrupt inti;
2439 	struct kvm_s390_irq irq;
2440 
2441 	if (start_token) {
2442 		irq.u.ext.ext_params2 = token;
2443 		irq.type = KVM_S390_INT_PFAULT_INIT;
2444 		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2445 	} else {
2446 		inti.type = KVM_S390_INT_PFAULT_DONE;
2447 		inti.parm64 = token;
2448 		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2449 	}
2450 }
2451 
2452 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2453 				     struct kvm_async_pf *work)
2454 {
2455 	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2456 	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2457 }
2458 
2459 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2460 				 struct kvm_async_pf *work)
2461 {
2462 	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2463 	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2464 }
2465 
2466 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2467 			       struct kvm_async_pf *work)
2468 {
2469 	/* s390 will always inject the page directly */
2470 }
2471 
2472 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2473 {
2474 	/*
2475 	 * s390 will always inject the page directly,
2476 	 * but we still want check_async_completion to cleanup
2477 	 */
2478 	return true;
2479 }
2480 
2481 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2482 {
2483 	hva_t hva;
2484 	struct kvm_arch_async_pf arch;
2485 	int rc;
2486 
2487 	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2488 		return 0;
2489 	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2490 	    vcpu->arch.pfault_compare)
2491 		return 0;
2492 	if (psw_extint_disabled(vcpu))
2493 		return 0;
2494 	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2495 		return 0;
2496 	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2497 		return 0;
2498 	if (!vcpu->arch.gmap->pfault_enabled)
2499 		return 0;
2500 
2501 	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2502 	hva += current->thread.gmap_addr & ~PAGE_MASK;
2503 	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2504 		return 0;
2505 
2506 	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2507 	return rc;
2508 }
2509 
2510 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2511 {
2512 	int rc, cpuflags;
2513 
2514 	/*
2515 	 * On s390 notifications for arriving pages will be delivered directly
2516 	 * to the guest but the house keeping for completed pfaults is
2517 	 * handled outside the worker.
2518 	 */
2519 	kvm_check_async_pf_completion(vcpu);
2520 
2521 	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2522 	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2523 
2524 	if (need_resched())
2525 		schedule();
2526 
2527 	if (test_cpu_flag(CIF_MCCK_PENDING))
2528 		s390_handle_mcck();
2529 
2530 	if (!kvm_is_ucontrol(vcpu->kvm)) {
2531 		rc = kvm_s390_deliver_pending_interrupts(vcpu);
2532 		if (rc)
2533 			return rc;
2534 	}
2535 
2536 	rc = kvm_s390_handle_requests(vcpu);
2537 	if (rc)
2538 		return rc;
2539 
2540 	if (guestdbg_enabled(vcpu)) {
2541 		kvm_s390_backup_guest_per_regs(vcpu);
2542 		kvm_s390_patch_guest_per_regs(vcpu);
2543 	}
2544 
2545 	vcpu->arch.sie_block->icptcode = 0;
2546 	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2547 	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2548 	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2549 
2550 	return 0;
2551 }
2552 
2553 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2554 {
2555 	struct kvm_s390_pgm_info pgm_info = {
2556 		.code = PGM_ADDRESSING,
2557 	};
2558 	u8 opcode, ilen;
2559 	int rc;
2560 
2561 	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2562 	trace_kvm_s390_sie_fault(vcpu);
2563 
2564 	/*
2565 	 * We want to inject an addressing exception, which is defined as a
2566 	 * suppressing or terminating exception. However, since we came here
2567 	 * by a DAT access exception, the PSW still points to the faulting
2568 	 * instruction since DAT exceptions are nullifying. So we've got
2569 	 * to look up the current opcode to get the length of the instruction
2570 	 * to be able to forward the PSW.
2571 	 */
2572 	rc = read_guest_instr(vcpu, &opcode, 1);
2573 	ilen = insn_length(opcode);
2574 	if (rc < 0) {
2575 		return rc;
2576 	} else if (rc) {
2577 		/* Instruction-Fetching Exceptions - we can't detect the ilen.
2578 		 * Forward by arbitrary ilc, injection will take care of
2579 		 * nullification if necessary.
2580 		 */
2581 		pgm_info = vcpu->arch.pgm;
2582 		ilen = 4;
2583 	}
2584 	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
2585 	kvm_s390_forward_psw(vcpu, ilen);
2586 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2587 }
2588 
2589 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2590 {
2591 	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2592 		   vcpu->arch.sie_block->icptcode);
2593 	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2594 
2595 	if (guestdbg_enabled(vcpu))
2596 		kvm_s390_restore_guest_per_regs(vcpu);
2597 
2598 	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2599 	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2600 
2601 	if (vcpu->arch.sie_block->icptcode > 0) {
2602 		int rc = kvm_handle_sie_intercept(vcpu);
2603 
2604 		if (rc != -EOPNOTSUPP)
2605 			return rc;
2606 		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2607 		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2608 		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2609 		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2610 		return -EREMOTE;
2611 	} else if (exit_reason != -EFAULT) {
2612 		vcpu->stat.exit_null++;
2613 		return 0;
2614 	} else if (kvm_is_ucontrol(vcpu->kvm)) {
2615 		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2616 		vcpu->run->s390_ucontrol.trans_exc_code =
2617 						current->thread.gmap_addr;
2618 		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2619 		return -EREMOTE;
2620 	} else if (current->thread.gmap_pfault) {
2621 		trace_kvm_s390_major_guest_pfault(vcpu);
2622 		current->thread.gmap_pfault = 0;
2623 		if (kvm_arch_setup_async_pf(vcpu))
2624 			return 0;
2625 		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2626 	}
2627 	return vcpu_post_run_fault_in_sie(vcpu);
2628 }
2629 
2630 static int __vcpu_run(struct kvm_vcpu *vcpu)
2631 {
2632 	int rc, exit_reason;
2633 
2634 	/*
2635 	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2636 	 * ning the guest), so that memslots (and other stuff) are protected
2637 	 */
2638 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2639 
2640 	do {
2641 		rc = vcpu_pre_run(vcpu);
2642 		if (rc)
2643 			break;
2644 
2645 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2646 		/*
2647 		 * As PF_VCPU will be used in fault handler, between
2648 		 * guest_enter and guest_exit should be no uaccess.
2649 		 */
2650 		local_irq_disable();
2651 		guest_enter_irqoff();
2652 		__disable_cpu_timer_accounting(vcpu);
2653 		local_irq_enable();
2654 		exit_reason = sie64a(vcpu->arch.sie_block,
2655 				     vcpu->run->s.regs.gprs);
2656 		local_irq_disable();
2657 		__enable_cpu_timer_accounting(vcpu);
2658 		guest_exit_irqoff();
2659 		local_irq_enable();
2660 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2661 
2662 		rc = vcpu_post_run(vcpu, exit_reason);
2663 	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2664 
2665 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2666 	return rc;
2667 }
2668 
2669 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2670 {
2671 	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2672 	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2673 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2674 		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2675 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2676 		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2677 		/* some control register changes require a tlb flush */
2678 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2679 	}
2680 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2681 		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2682 		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2683 		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2684 		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2685 		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2686 	}
2687 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2688 		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2689 		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2690 		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2691 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2692 			kvm_clear_async_pf_completion_queue(vcpu);
2693 	}
2694 	kvm_run->kvm_dirty_regs = 0;
2695 }
2696 
2697 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2698 {
2699 	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2700 	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2701 	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2702 	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2703 	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2704 	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2705 	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2706 	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2707 	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2708 	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2709 	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2710 	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2711 }
2712 
2713 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2714 {
2715 	int rc;
2716 	sigset_t sigsaved;
2717 
2718 	if (guestdbg_exit_pending(vcpu)) {
2719 		kvm_s390_prepare_debug_exit(vcpu);
2720 		return 0;
2721 	}
2722 
2723 	if (vcpu->sigset_active)
2724 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2725 
2726 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2727 		kvm_s390_vcpu_start(vcpu);
2728 	} else if (is_vcpu_stopped(vcpu)) {
2729 		pr_err_ratelimited("can't run stopped vcpu %d\n",
2730 				   vcpu->vcpu_id);
2731 		return -EINVAL;
2732 	}
2733 
2734 	sync_regs(vcpu, kvm_run);
2735 	enable_cpu_timer_accounting(vcpu);
2736 
2737 	might_fault();
2738 	rc = __vcpu_run(vcpu);
2739 
2740 	if (signal_pending(current) && !rc) {
2741 		kvm_run->exit_reason = KVM_EXIT_INTR;
2742 		rc = -EINTR;
2743 	}
2744 
2745 	if (guestdbg_exit_pending(vcpu) && !rc)  {
2746 		kvm_s390_prepare_debug_exit(vcpu);
2747 		rc = 0;
2748 	}
2749 
2750 	if (rc == -EREMOTE) {
2751 		/* userspace support is needed, kvm_run has been prepared */
2752 		rc = 0;
2753 	}
2754 
2755 	disable_cpu_timer_accounting(vcpu);
2756 	store_regs(vcpu, kvm_run);
2757 
2758 	if (vcpu->sigset_active)
2759 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2760 
2761 	vcpu->stat.exit_userspace++;
2762 	return rc;
2763 }
2764 
2765 /*
2766  * store status at address
2767  * we use have two special cases:
2768  * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2769  * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2770  */
2771 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2772 {
2773 	unsigned char archmode = 1;
2774 	freg_t fprs[NUM_FPRS];
2775 	unsigned int px;
2776 	u64 clkcomp, cputm;
2777 	int rc;
2778 
2779 	px = kvm_s390_get_prefix(vcpu);
2780 	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2781 		if (write_guest_abs(vcpu, 163, &archmode, 1))
2782 			return -EFAULT;
2783 		gpa = 0;
2784 	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2785 		if (write_guest_real(vcpu, 163, &archmode, 1))
2786 			return -EFAULT;
2787 		gpa = px;
2788 	} else
2789 		gpa -= __LC_FPREGS_SAVE_AREA;
2790 
2791 	/* manually convert vector registers if necessary */
2792 	if (MACHINE_HAS_VX) {
2793 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2794 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2795 				     fprs, 128);
2796 	} else {
2797 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2798 				     vcpu->run->s.regs.fprs, 128);
2799 	}
2800 	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2801 			      vcpu->run->s.regs.gprs, 128);
2802 	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2803 			      &vcpu->arch.sie_block->gpsw, 16);
2804 	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2805 			      &px, 4);
2806 	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2807 			      &vcpu->run->s.regs.fpc, 4);
2808 	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2809 			      &vcpu->arch.sie_block->todpr, 4);
2810 	cputm = kvm_s390_get_cpu_timer(vcpu);
2811 	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2812 			      &cputm, 8);
2813 	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2814 	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2815 			      &clkcomp, 8);
2816 	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2817 			      &vcpu->run->s.regs.acrs, 64);
2818 	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2819 			      &vcpu->arch.sie_block->gcr, 128);
2820 	return rc ? -EFAULT : 0;
2821 }
2822 
2823 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2824 {
2825 	/*
2826 	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2827 	 * copying in vcpu load/put. Lets update our copies before we save
2828 	 * it into the save area
2829 	 */
2830 	save_fpu_regs();
2831 	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2832 	save_access_regs(vcpu->run->s.regs.acrs);
2833 
2834 	return kvm_s390_store_status_unloaded(vcpu, addr);
2835 }
2836 
2837 /*
2838  * store additional status at address
2839  */
2840 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2841 					unsigned long gpa)
2842 {
2843 	/* Only bits 0-53 are used for address formation */
2844 	if (!(gpa & ~0x3ff))
2845 		return 0;
2846 
2847 	return write_guest_abs(vcpu, gpa & ~0x3ff,
2848 			       (void *)&vcpu->run->s.regs.vrs, 512);
2849 }
2850 
2851 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2852 {
2853 	if (!test_kvm_facility(vcpu->kvm, 129))
2854 		return 0;
2855 
2856 	/*
2857 	 * The guest VXRS are in the host VXRs due to the lazy
2858 	 * copying in vcpu load/put. We can simply call save_fpu_regs()
2859 	 * to save the current register state because we are in the
2860 	 * middle of a load/put cycle.
2861 	 *
2862 	 * Let's update our copies before we save it into the save area.
2863 	 */
2864 	save_fpu_regs();
2865 
2866 	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2867 }
2868 
2869 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2870 {
2871 	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2872 	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2873 }
2874 
2875 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2876 {
2877 	unsigned int i;
2878 	struct kvm_vcpu *vcpu;
2879 
2880 	kvm_for_each_vcpu(i, vcpu, kvm) {
2881 		__disable_ibs_on_vcpu(vcpu);
2882 	}
2883 }
2884 
2885 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2886 {
2887 	if (!sclp.has_ibs)
2888 		return;
2889 	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2890 	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2891 }
2892 
2893 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2894 {
2895 	int i, online_vcpus, started_vcpus = 0;
2896 
2897 	if (!is_vcpu_stopped(vcpu))
2898 		return;
2899 
2900 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2901 	/* Only one cpu at a time may enter/leave the STOPPED state. */
2902 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2903 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2904 
2905 	for (i = 0; i < online_vcpus; i++) {
2906 		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2907 			started_vcpus++;
2908 	}
2909 
2910 	if (started_vcpus == 0) {
2911 		/* we're the only active VCPU -> speed it up */
2912 		__enable_ibs_on_vcpu(vcpu);
2913 	} else if (started_vcpus == 1) {
2914 		/*
2915 		 * As we are starting a second VCPU, we have to disable
2916 		 * the IBS facility on all VCPUs to remove potentially
2917 		 * oustanding ENABLE requests.
2918 		 */
2919 		__disable_ibs_on_all_vcpus(vcpu->kvm);
2920 	}
2921 
2922 	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2923 	/*
2924 	 * Another VCPU might have used IBS while we were offline.
2925 	 * Let's play safe and flush the VCPU at startup.
2926 	 */
2927 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2928 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2929 	return;
2930 }
2931 
2932 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2933 {
2934 	int i, online_vcpus, started_vcpus = 0;
2935 	struct kvm_vcpu *started_vcpu = NULL;
2936 
2937 	if (is_vcpu_stopped(vcpu))
2938 		return;
2939 
2940 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2941 	/* Only one cpu at a time may enter/leave the STOPPED state. */
2942 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2943 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2944 
2945 	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2946 	kvm_s390_clear_stop_irq(vcpu);
2947 
2948 	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2949 	__disable_ibs_on_vcpu(vcpu);
2950 
2951 	for (i = 0; i < online_vcpus; i++) {
2952 		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2953 			started_vcpus++;
2954 			started_vcpu = vcpu->kvm->vcpus[i];
2955 		}
2956 	}
2957 
2958 	if (started_vcpus == 1) {
2959 		/*
2960 		 * As we only have one VCPU left, we want to enable the
2961 		 * IBS facility for that VCPU to speed it up.
2962 		 */
2963 		__enable_ibs_on_vcpu(started_vcpu);
2964 	}
2965 
2966 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2967 	return;
2968 }
2969 
2970 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2971 				     struct kvm_enable_cap *cap)
2972 {
2973 	int r;
2974 
2975 	if (cap->flags)
2976 		return -EINVAL;
2977 
2978 	switch (cap->cap) {
2979 	case KVM_CAP_S390_CSS_SUPPORT:
2980 		if (!vcpu->kvm->arch.css_support) {
2981 			vcpu->kvm->arch.css_support = 1;
2982 			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2983 			trace_kvm_s390_enable_css(vcpu->kvm);
2984 		}
2985 		r = 0;
2986 		break;
2987 	default:
2988 		r = -EINVAL;
2989 		break;
2990 	}
2991 	return r;
2992 }
2993 
2994 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2995 				  struct kvm_s390_mem_op *mop)
2996 {
2997 	void __user *uaddr = (void __user *)mop->buf;
2998 	void *tmpbuf = NULL;
2999 	int r, srcu_idx;
3000 	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
3001 				    | KVM_S390_MEMOP_F_CHECK_ONLY;
3002 
3003 	if (mop->flags & ~supported_flags)
3004 		return -EINVAL;
3005 
3006 	if (mop->size > MEM_OP_MAX_SIZE)
3007 		return -E2BIG;
3008 
3009 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
3010 		tmpbuf = vmalloc(mop->size);
3011 		if (!tmpbuf)
3012 			return -ENOMEM;
3013 	}
3014 
3015 	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3016 
3017 	switch (mop->op) {
3018 	case KVM_S390_MEMOP_LOGICAL_READ:
3019 		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3020 			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3021 					    mop->size, GACC_FETCH);
3022 			break;
3023 		}
3024 		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3025 		if (r == 0) {
3026 			if (copy_to_user(uaddr, tmpbuf, mop->size))
3027 				r = -EFAULT;
3028 		}
3029 		break;
3030 	case KVM_S390_MEMOP_LOGICAL_WRITE:
3031 		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3032 			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3033 					    mop->size, GACC_STORE);
3034 			break;
3035 		}
3036 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
3037 			r = -EFAULT;
3038 			break;
3039 		}
3040 		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3041 		break;
3042 	default:
3043 		r = -EINVAL;
3044 	}
3045 
3046 	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3047 
3048 	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
3049 		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
3050 
3051 	vfree(tmpbuf);
3052 	return r;
3053 }
3054 
3055 long kvm_arch_vcpu_ioctl(struct file *filp,
3056 			 unsigned int ioctl, unsigned long arg)
3057 {
3058 	struct kvm_vcpu *vcpu = filp->private_data;
3059 	void __user *argp = (void __user *)arg;
3060 	int idx;
3061 	long r;
3062 
3063 	switch (ioctl) {
3064 	case KVM_S390_IRQ: {
3065 		struct kvm_s390_irq s390irq;
3066 
3067 		r = -EFAULT;
3068 		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3069 			break;
3070 		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3071 		break;
3072 	}
3073 	case KVM_S390_INTERRUPT: {
3074 		struct kvm_s390_interrupt s390int;
3075 		struct kvm_s390_irq s390irq;
3076 
3077 		r = -EFAULT;
3078 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3079 			break;
3080 		if (s390int_to_s390irq(&s390int, &s390irq))
3081 			return -EINVAL;
3082 		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3083 		break;
3084 	}
3085 	case KVM_S390_STORE_STATUS:
3086 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3087 		r = kvm_s390_vcpu_store_status(vcpu, arg);
3088 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3089 		break;
3090 	case KVM_S390_SET_INITIAL_PSW: {
3091 		psw_t psw;
3092 
3093 		r = -EFAULT;
3094 		if (copy_from_user(&psw, argp, sizeof(psw)))
3095 			break;
3096 		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
3097 		break;
3098 	}
3099 	case KVM_S390_INITIAL_RESET:
3100 		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3101 		break;
3102 	case KVM_SET_ONE_REG:
3103 	case KVM_GET_ONE_REG: {
3104 		struct kvm_one_reg reg;
3105 		r = -EFAULT;
3106 		if (copy_from_user(&reg, argp, sizeof(reg)))
3107 			break;
3108 		if (ioctl == KVM_SET_ONE_REG)
3109 			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
3110 		else
3111 			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
3112 		break;
3113 	}
3114 #ifdef CONFIG_KVM_S390_UCONTROL
3115 	case KVM_S390_UCAS_MAP: {
3116 		struct kvm_s390_ucas_mapping ucasmap;
3117 
3118 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3119 			r = -EFAULT;
3120 			break;
3121 		}
3122 
3123 		if (!kvm_is_ucontrol(vcpu->kvm)) {
3124 			r = -EINVAL;
3125 			break;
3126 		}
3127 
3128 		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
3129 				     ucasmap.vcpu_addr, ucasmap.length);
3130 		break;
3131 	}
3132 	case KVM_S390_UCAS_UNMAP: {
3133 		struct kvm_s390_ucas_mapping ucasmap;
3134 
3135 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3136 			r = -EFAULT;
3137 			break;
3138 		}
3139 
3140 		if (!kvm_is_ucontrol(vcpu->kvm)) {
3141 			r = -EINVAL;
3142 			break;
3143 		}
3144 
3145 		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
3146 			ucasmap.length);
3147 		break;
3148 	}
3149 #endif
3150 	case KVM_S390_VCPU_FAULT: {
3151 		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3152 		break;
3153 	}
3154 	case KVM_ENABLE_CAP:
3155 	{
3156 		struct kvm_enable_cap cap;
3157 		r = -EFAULT;
3158 		if (copy_from_user(&cap, argp, sizeof(cap)))
3159 			break;
3160 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3161 		break;
3162 	}
3163 	case KVM_S390_MEM_OP: {
3164 		struct kvm_s390_mem_op mem_op;
3165 
3166 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3167 			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
3168 		else
3169 			r = -EFAULT;
3170 		break;
3171 	}
3172 	case KVM_S390_SET_IRQ_STATE: {
3173 		struct kvm_s390_irq_state irq_state;
3174 
3175 		r = -EFAULT;
3176 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3177 			break;
3178 		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
3179 		    irq_state.len == 0 ||
3180 		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
3181 			r = -EINVAL;
3182 			break;
3183 		}
3184 		r = kvm_s390_set_irq_state(vcpu,
3185 					   (void __user *) irq_state.buf,
3186 					   irq_state.len);
3187 		break;
3188 	}
3189 	case KVM_S390_GET_IRQ_STATE: {
3190 		struct kvm_s390_irq_state irq_state;
3191 
3192 		r = -EFAULT;
3193 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3194 			break;
3195 		if (irq_state.len == 0) {
3196 			r = -EINVAL;
3197 			break;
3198 		}
3199 		r = kvm_s390_get_irq_state(vcpu,
3200 					   (__u8 __user *)  irq_state.buf,
3201 					   irq_state.len);
3202 		break;
3203 	}
3204 	default:
3205 		r = -ENOTTY;
3206 	}
3207 	return r;
3208 }
3209 
3210 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3211 {
3212 #ifdef CONFIG_KVM_S390_UCONTROL
3213 	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
3214 		 && (kvm_is_ucontrol(vcpu->kvm))) {
3215 		vmf->page = virt_to_page(vcpu->arch.sie_block);
3216 		get_page(vmf->page);
3217 		return 0;
3218 	}
3219 #endif
3220 	return VM_FAULT_SIGBUS;
3221 }
3222 
3223 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
3224 			    unsigned long npages)
3225 {
3226 	return 0;
3227 }
3228 
3229 /* Section: memory related */
3230 int kvm_arch_prepare_memory_region(struct kvm *kvm,
3231 				   struct kvm_memory_slot *memslot,
3232 				   const struct kvm_userspace_memory_region *mem,
3233 				   enum kvm_mr_change change)
3234 {
3235 	/* A few sanity checks. We can have memory slots which have to be
3236 	   located/ended at a segment boundary (1MB). The memory in userland is
3237 	   ok to be fragmented into various different vmas. It is okay to mmap()
3238 	   and munmap() stuff in this slot after doing this call at any time */
3239 
3240 	if (mem->userspace_addr & 0xffffful)
3241 		return -EINVAL;
3242 
3243 	if (mem->memory_size & 0xffffful)
3244 		return -EINVAL;
3245 
3246 	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
3247 		return -EINVAL;
3248 
3249 	return 0;
3250 }
3251 
3252 void kvm_arch_commit_memory_region(struct kvm *kvm,
3253 				const struct kvm_userspace_memory_region *mem,
3254 				const struct kvm_memory_slot *old,
3255 				const struct kvm_memory_slot *new,
3256 				enum kvm_mr_change change)
3257 {
3258 	int rc;
3259 
3260 	/* If the basics of the memslot do not change, we do not want
3261 	 * to update the gmap. Every update causes several unnecessary
3262 	 * segment translation exceptions. This is usually handled just
3263 	 * fine by the normal fault handler + gmap, but it will also
3264 	 * cause faults on the prefix page of running guest CPUs.
3265 	 */
3266 	if (old->userspace_addr == mem->userspace_addr &&
3267 	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
3268 	    old->npages * PAGE_SIZE == mem->memory_size)
3269 		return;
3270 
3271 	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
3272 		mem->guest_phys_addr, mem->memory_size);
3273 	if (rc)
3274 		pr_warn("failed to commit memory region\n");
3275 	return;
3276 }
3277 
3278 static inline unsigned long nonhyp_mask(int i)
3279 {
3280 	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
3281 
3282 	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
3283 }
3284 
3285 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
3286 {
3287 	vcpu->valid_wakeup = false;
3288 }
3289 
3290 static int __init kvm_s390_init(void)
3291 {
3292 	int i;
3293 
3294 	if (!sclp.has_sief2) {
3295 		pr_info("SIE not available\n");
3296 		return -ENODEV;
3297 	}
3298 
3299 	for (i = 0; i < 16; i++)
3300 		kvm_s390_fac_list_mask[i] |=
3301 			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
3302 
3303 	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3304 }
3305 
3306 static void __exit kvm_s390_exit(void)
3307 {
3308 	kvm_exit();
3309 }
3310 
3311 module_init(kvm_s390_init);
3312 module_exit(kvm_s390_exit);
3313 
3314 /*
3315  * Enable autoloading of the kvm module.
3316  * Note that we add the module alias here instead of virt/kvm/kvm_main.c
3317  * since x86 takes a different approach.
3318  */
3319 #include <linux/miscdevice.h>
3320 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3321 MODULE_ALIAS("devname:kvm");
3322