1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/asm-offsets.h> 23 #include <asm/dis.h> 24 #include <linux/uaccess.h> 25 #include <asm/sclp.h> 26 #include <asm/isc.h> 27 #include <asm/gmap.h> 28 #include <asm/switch_to.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include <asm/tpi.h> 32 #include "kvm-s390.h" 33 #include "gaccess.h" 34 #include "trace-s390.h" 35 #include "pci.h" 36 37 #define PFAULT_INIT 0x0600 38 #define PFAULT_DONE 0x0680 39 #define VIRTIO_PARAM 0x0d00 40 41 static struct kvm_s390_gib *gib; 42 43 /* handle external calls via sigp interpretation facility */ 44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 45 { 46 int c, scn; 47 48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 49 return 0; 50 51 BUG_ON(!kvm_s390_use_sca_entries()); 52 read_lock(&vcpu->kvm->arch.sca_lock); 53 if (vcpu->kvm->arch.use_esca) { 54 struct esca_block *sca = vcpu->kvm->arch.sca; 55 union esca_sigp_ctrl sigp_ctrl = 56 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 57 58 c = sigp_ctrl.c; 59 scn = sigp_ctrl.scn; 60 } else { 61 struct bsca_block *sca = vcpu->kvm->arch.sca; 62 union bsca_sigp_ctrl sigp_ctrl = 63 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 64 65 c = sigp_ctrl.c; 66 scn = sigp_ctrl.scn; 67 } 68 read_unlock(&vcpu->kvm->arch.sca_lock); 69 70 if (src_id) 71 *src_id = scn; 72 73 return c; 74 } 75 76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 77 { 78 int expect, rc; 79 80 BUG_ON(!kvm_s390_use_sca_entries()); 81 read_lock(&vcpu->kvm->arch.sca_lock); 82 if (vcpu->kvm->arch.use_esca) { 83 struct esca_block *sca = vcpu->kvm->arch.sca; 84 union esca_sigp_ctrl *sigp_ctrl = 85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 86 union esca_sigp_ctrl new_val = {0}, old_val; 87 88 old_val = READ_ONCE(*sigp_ctrl); 89 new_val.scn = src_id; 90 new_val.c = 1; 91 old_val.c = 0; 92 93 expect = old_val.value; 94 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 95 } else { 96 struct bsca_block *sca = vcpu->kvm->arch.sca; 97 union bsca_sigp_ctrl *sigp_ctrl = 98 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 99 union bsca_sigp_ctrl new_val = {0}, old_val; 100 101 old_val = READ_ONCE(*sigp_ctrl); 102 new_val.scn = src_id; 103 new_val.c = 1; 104 old_val.c = 0; 105 106 expect = old_val.value; 107 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 108 } 109 read_unlock(&vcpu->kvm->arch.sca_lock); 110 111 if (rc != expect) { 112 /* another external call is pending */ 113 return -EBUSY; 114 } 115 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 116 return 0; 117 } 118 119 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 120 { 121 int rc, expect; 122 123 if (!kvm_s390_use_sca_entries()) 124 return; 125 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 126 read_lock(&vcpu->kvm->arch.sca_lock); 127 if (vcpu->kvm->arch.use_esca) { 128 struct esca_block *sca = vcpu->kvm->arch.sca; 129 union esca_sigp_ctrl *sigp_ctrl = 130 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 131 union esca_sigp_ctrl old; 132 133 old = READ_ONCE(*sigp_ctrl); 134 expect = old.value; 135 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 136 } else { 137 struct bsca_block *sca = vcpu->kvm->arch.sca; 138 union bsca_sigp_ctrl *sigp_ctrl = 139 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 140 union bsca_sigp_ctrl old; 141 142 old = READ_ONCE(*sigp_ctrl); 143 expect = old.value; 144 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 145 } 146 read_unlock(&vcpu->kvm->arch.sca_lock); 147 WARN_ON(rc != expect); /* cannot clear? */ 148 } 149 150 int psw_extint_disabled(struct kvm_vcpu *vcpu) 151 { 152 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 153 } 154 155 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 156 { 157 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 158 } 159 160 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 161 { 162 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 163 } 164 165 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 166 { 167 return psw_extint_disabled(vcpu) && 168 psw_ioint_disabled(vcpu) && 169 psw_mchk_disabled(vcpu); 170 } 171 172 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 173 { 174 if (psw_extint_disabled(vcpu) || 175 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 176 return 0; 177 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 178 /* No timer interrupts when single stepping */ 179 return 0; 180 return 1; 181 } 182 183 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 184 { 185 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 186 const u64 ckc = vcpu->arch.sie_block->ckc; 187 188 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 189 if ((s64)ckc >= (s64)now) 190 return 0; 191 } else if (ckc >= now) { 192 return 0; 193 } 194 return ckc_interrupts_enabled(vcpu); 195 } 196 197 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 198 { 199 return !psw_extint_disabled(vcpu) && 200 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 201 } 202 203 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 204 { 205 if (!cpu_timer_interrupts_enabled(vcpu)) 206 return 0; 207 return kvm_s390_get_cpu_timer(vcpu) >> 63; 208 } 209 210 static uint64_t isc_to_isc_bits(int isc) 211 { 212 return (0x80 >> isc) << 24; 213 } 214 215 static inline u32 isc_to_int_word(u8 isc) 216 { 217 return ((u32)isc << 27) | 0x80000000; 218 } 219 220 static inline u8 int_word_to_isc(u32 int_word) 221 { 222 return (int_word & 0x38000000) >> 27; 223 } 224 225 /* 226 * To use atomic bitmap functions, we have to provide a bitmap address 227 * that is u64 aligned. However, the ipm might be u32 aligned. 228 * Therefore, we logically start the bitmap at the very beginning of the 229 * struct and fixup the bit number. 230 */ 231 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 232 233 /** 234 * gisa_set_iam - change the GISA interruption alert mask 235 * 236 * @gisa: gisa to operate on 237 * @iam: new IAM value to use 238 * 239 * Change the IAM atomically with the next alert address and the IPM 240 * of the GISA if the GISA is not part of the GIB alert list. All three 241 * fields are located in the first long word of the GISA. 242 * 243 * Returns: 0 on success 244 * -EBUSY in case the gisa is part of the alert list 245 */ 246 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 247 { 248 u64 word, _word; 249 250 do { 251 word = READ_ONCE(gisa->u64.word[0]); 252 if ((u64)gisa != word >> 32) 253 return -EBUSY; 254 _word = (word & ~0xffUL) | iam; 255 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 256 257 return 0; 258 } 259 260 /** 261 * gisa_clear_ipm - clear the GISA interruption pending mask 262 * 263 * @gisa: gisa to operate on 264 * 265 * Clear the IPM atomically with the next alert address and the IAM 266 * of the GISA unconditionally. All three fields are located in the 267 * first long word of the GISA. 268 */ 269 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 270 { 271 u64 word, _word; 272 273 do { 274 word = READ_ONCE(gisa->u64.word[0]); 275 _word = word & ~(0xffUL << 24); 276 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 277 } 278 279 /** 280 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 281 * 282 * @gi: gisa interrupt struct to work on 283 * 284 * Atomically restores the interruption alert mask if none of the 285 * relevant ISCs are pending and return the IPM. 286 * 287 * Returns: the relevant pending ISCs 288 */ 289 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 290 { 291 u8 pending_mask, alert_mask; 292 u64 word, _word; 293 294 do { 295 word = READ_ONCE(gi->origin->u64.word[0]); 296 alert_mask = READ_ONCE(gi->alert.mask); 297 pending_mask = (u8)(word >> 24) & alert_mask; 298 if (pending_mask) 299 return pending_mask; 300 _word = (word & ~0xffUL) | alert_mask; 301 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 302 303 return 0; 304 } 305 306 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa) 307 { 308 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa; 309 } 310 311 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 312 { 313 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 314 } 315 316 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 317 { 318 return READ_ONCE(gisa->ipm); 319 } 320 321 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 322 { 323 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 324 } 325 326 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 327 { 328 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 329 vcpu->arch.local_int.pending_irqs; 330 331 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 332 return pending; 333 } 334 335 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 336 { 337 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 338 unsigned long pending_mask; 339 340 pending_mask = pending_irqs_no_gisa(vcpu); 341 if (gi->origin) 342 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 343 return pending_mask; 344 } 345 346 static inline int isc_to_irq_type(unsigned long isc) 347 { 348 return IRQ_PEND_IO_ISC_0 - isc; 349 } 350 351 static inline int irq_type_to_isc(unsigned long irq_type) 352 { 353 return IRQ_PEND_IO_ISC_0 - irq_type; 354 } 355 356 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 357 unsigned long active_mask) 358 { 359 int i; 360 361 for (i = 0; i <= MAX_ISC; i++) 362 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 363 active_mask &= ~(1UL << (isc_to_irq_type(i))); 364 365 return active_mask; 366 } 367 368 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 369 { 370 unsigned long active_mask; 371 372 active_mask = pending_irqs(vcpu); 373 if (!active_mask) 374 return 0; 375 376 if (psw_extint_disabled(vcpu)) 377 active_mask &= ~IRQ_PEND_EXT_MASK; 378 if (psw_ioint_disabled(vcpu)) 379 active_mask &= ~IRQ_PEND_IO_MASK; 380 else 381 active_mask = disable_iscs(vcpu, active_mask); 382 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 383 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 384 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 385 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 386 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 387 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 388 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 389 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 390 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 391 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 392 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 393 } 394 if (psw_mchk_disabled(vcpu)) 395 active_mask &= ~IRQ_PEND_MCHK_MASK; 396 /* PV guest cpus can have a single interruption injected at a time. */ 397 if (kvm_s390_pv_cpu_get_handle(vcpu) && 398 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 399 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 400 IRQ_PEND_IO_MASK | 401 IRQ_PEND_MCHK_MASK); 402 /* 403 * Check both floating and local interrupt's cr14 because 404 * bit IRQ_PEND_MCHK_REP could be set in both cases. 405 */ 406 if (!(vcpu->arch.sie_block->gcr[14] & 407 (vcpu->kvm->arch.float_int.mchk.cr14 | 408 vcpu->arch.local_int.irq.mchk.cr14))) 409 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 410 411 /* 412 * STOP irqs will never be actively delivered. They are triggered via 413 * intercept requests and cleared when the stop intercept is performed. 414 */ 415 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 416 417 return active_mask; 418 } 419 420 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 421 { 422 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 423 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 424 } 425 426 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 427 { 428 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 429 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 430 } 431 432 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 433 { 434 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 435 CPUSTAT_STOP_INT); 436 vcpu->arch.sie_block->lctl = 0x0000; 437 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 438 439 if (guestdbg_enabled(vcpu)) { 440 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 441 LCTL_CR10 | LCTL_CR11); 442 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 443 } 444 } 445 446 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 447 { 448 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 449 return; 450 if (psw_ioint_disabled(vcpu)) 451 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 452 else 453 vcpu->arch.sie_block->lctl |= LCTL_CR6; 454 } 455 456 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 457 { 458 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 459 return; 460 if (psw_extint_disabled(vcpu)) 461 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 462 else 463 vcpu->arch.sie_block->lctl |= LCTL_CR0; 464 } 465 466 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 467 { 468 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 469 return; 470 if (psw_mchk_disabled(vcpu)) 471 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 472 else 473 vcpu->arch.sie_block->lctl |= LCTL_CR14; 474 } 475 476 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 477 { 478 if (kvm_s390_is_stop_irq_pending(vcpu)) 479 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 480 } 481 482 /* Set interception request for non-deliverable interrupts */ 483 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 484 { 485 set_intercept_indicators_io(vcpu); 486 set_intercept_indicators_ext(vcpu); 487 set_intercept_indicators_mchk(vcpu); 488 set_intercept_indicators_stop(vcpu); 489 } 490 491 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 492 { 493 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 494 int rc = 0; 495 496 vcpu->stat.deliver_cputm++; 497 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 498 0, 0); 499 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 500 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 501 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 502 } else { 503 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 504 (u16 *)__LC_EXT_INT_CODE); 505 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 506 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 507 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 508 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 509 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 510 } 511 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 512 return rc ? -EFAULT : 0; 513 } 514 515 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 516 { 517 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 518 int rc = 0; 519 520 vcpu->stat.deliver_ckc++; 521 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 522 0, 0); 523 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 524 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 525 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 526 } else { 527 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 528 (u16 __user *)__LC_EXT_INT_CODE); 529 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 530 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 531 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 532 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 533 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 534 } 535 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 536 return rc ? -EFAULT : 0; 537 } 538 539 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 540 { 541 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 542 struct kvm_s390_ext_info ext; 543 int rc; 544 545 spin_lock(&li->lock); 546 ext = li->irq.ext; 547 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 548 li->irq.ext.ext_params2 = 0; 549 spin_unlock(&li->lock); 550 551 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 552 ext.ext_params2); 553 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 554 KVM_S390_INT_PFAULT_INIT, 555 0, ext.ext_params2); 556 557 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 558 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 559 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 560 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 561 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 562 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 563 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 564 return rc ? -EFAULT : 0; 565 } 566 567 static int __write_machine_check(struct kvm_vcpu *vcpu, 568 struct kvm_s390_mchk_info *mchk) 569 { 570 unsigned long ext_sa_addr; 571 unsigned long lc; 572 freg_t fprs[NUM_FPRS]; 573 union mci mci; 574 int rc; 575 576 /* 577 * All other possible payload for a machine check (e.g. the register 578 * contents in the save area) will be handled by the ultravisor, as 579 * the hypervisor does not not have the needed information for 580 * protected guests. 581 */ 582 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 583 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 584 vcpu->arch.sie_block->mcic = mchk->mcic; 585 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 586 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 587 return 0; 588 } 589 590 mci.val = mchk->mcic; 591 /* take care of lazy register loading */ 592 save_fpu_regs(); 593 save_access_regs(vcpu->run->s.regs.acrs); 594 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 595 save_gs_cb(current->thread.gs_cb); 596 597 /* Extended save area */ 598 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 599 sizeof(unsigned long)); 600 /* Only bits 0 through 63-LC are used for address formation */ 601 lc = ext_sa_addr & MCESA_LC_MASK; 602 if (test_kvm_facility(vcpu->kvm, 133)) { 603 switch (lc) { 604 case 0: 605 case 10: 606 ext_sa_addr &= ~0x3ffUL; 607 break; 608 case 11: 609 ext_sa_addr &= ~0x7ffUL; 610 break; 611 case 12: 612 ext_sa_addr &= ~0xfffUL; 613 break; 614 default: 615 ext_sa_addr = 0; 616 break; 617 } 618 } else { 619 ext_sa_addr &= ~0x3ffUL; 620 } 621 622 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 623 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 624 512)) 625 mci.vr = 0; 626 } else { 627 mci.vr = 0; 628 } 629 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 630 && (lc == 11 || lc == 12)) { 631 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 632 &vcpu->run->s.regs.gscb, 32)) 633 mci.gs = 0; 634 } else { 635 mci.gs = 0; 636 } 637 638 /* General interruption information */ 639 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 640 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 641 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 642 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 643 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 644 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 645 646 /* Register-save areas */ 647 if (MACHINE_HAS_VX) { 648 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 649 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 650 } else { 651 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 652 vcpu->run->s.regs.fprs, 128); 653 } 654 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 655 vcpu->run->s.regs.gprs, 128); 656 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc, 657 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 658 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 659 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 660 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 661 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 662 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 663 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 664 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 665 &vcpu->run->s.regs.acrs, 64); 666 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 667 &vcpu->arch.sie_block->gcr, 128); 668 669 /* Extended interruption information */ 670 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 671 (u32 __user *) __LC_EXT_DAMAGE_CODE); 672 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 673 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 674 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 675 sizeof(mchk->fixed_logout)); 676 return rc ? -EFAULT : 0; 677 } 678 679 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 680 { 681 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 682 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 683 struct kvm_s390_mchk_info mchk = {}; 684 int deliver = 0; 685 int rc = 0; 686 687 spin_lock(&fi->lock); 688 spin_lock(&li->lock); 689 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 690 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 691 /* 692 * If there was an exigent machine check pending, then any 693 * repressible machine checks that might have been pending 694 * are indicated along with it, so always clear bits for 695 * repressible and exigent interrupts 696 */ 697 mchk = li->irq.mchk; 698 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 699 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 700 memset(&li->irq.mchk, 0, sizeof(mchk)); 701 deliver = 1; 702 } 703 /* 704 * We indicate floating repressible conditions along with 705 * other pending conditions. Channel Report Pending and Channel 706 * Subsystem damage are the only two and are indicated by 707 * bits in mcic and masked in cr14. 708 */ 709 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 710 mchk.mcic |= fi->mchk.mcic; 711 mchk.cr14 |= fi->mchk.cr14; 712 memset(&fi->mchk, 0, sizeof(mchk)); 713 deliver = 1; 714 } 715 spin_unlock(&li->lock); 716 spin_unlock(&fi->lock); 717 718 if (deliver) { 719 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 720 mchk.mcic); 721 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 722 KVM_S390_MCHK, 723 mchk.cr14, mchk.mcic); 724 vcpu->stat.deliver_machine_check++; 725 rc = __write_machine_check(vcpu, &mchk); 726 } 727 return rc; 728 } 729 730 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 731 { 732 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 733 int rc = 0; 734 735 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 736 vcpu->stat.deliver_restart_signal++; 737 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 738 739 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 740 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 741 } else { 742 rc = write_guest_lc(vcpu, 743 offsetof(struct lowcore, restart_old_psw), 744 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 745 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 746 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 747 } 748 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 749 return rc ? -EFAULT : 0; 750 } 751 752 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 753 { 754 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 755 struct kvm_s390_prefix_info prefix; 756 757 spin_lock(&li->lock); 758 prefix = li->irq.prefix; 759 li->irq.prefix.address = 0; 760 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 761 spin_unlock(&li->lock); 762 763 vcpu->stat.deliver_prefix_signal++; 764 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 765 KVM_S390_SIGP_SET_PREFIX, 766 prefix.address, 0); 767 768 kvm_s390_set_prefix(vcpu, prefix.address); 769 return 0; 770 } 771 772 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 773 { 774 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 775 int rc; 776 int cpu_addr; 777 778 spin_lock(&li->lock); 779 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 780 clear_bit(cpu_addr, li->sigp_emerg_pending); 781 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 782 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 783 spin_unlock(&li->lock); 784 785 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 786 vcpu->stat.deliver_emergency_signal++; 787 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 788 cpu_addr, 0); 789 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 790 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 791 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 792 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 793 return 0; 794 } 795 796 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 797 (u16 *)__LC_EXT_INT_CODE); 798 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 799 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 800 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 801 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 802 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 803 return rc ? -EFAULT : 0; 804 } 805 806 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 807 { 808 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 809 struct kvm_s390_extcall_info extcall; 810 int rc; 811 812 spin_lock(&li->lock); 813 extcall = li->irq.extcall; 814 li->irq.extcall.code = 0; 815 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 816 spin_unlock(&li->lock); 817 818 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 819 vcpu->stat.deliver_external_call++; 820 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 821 KVM_S390_INT_EXTERNAL_CALL, 822 extcall.code, 0); 823 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 824 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 825 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 826 vcpu->arch.sie_block->extcpuaddr = extcall.code; 827 return 0; 828 } 829 830 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 831 (u16 *)__LC_EXT_INT_CODE); 832 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 833 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 834 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 835 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 836 sizeof(psw_t)); 837 return rc ? -EFAULT : 0; 838 } 839 840 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 841 { 842 switch (code) { 843 case PGM_SPECIFICATION: 844 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 845 break; 846 case PGM_OPERAND: 847 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 848 break; 849 default: 850 return -EINVAL; 851 } 852 return 0; 853 } 854 855 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 856 { 857 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 858 struct kvm_s390_pgm_info pgm_info; 859 int rc = 0, nullifying = false; 860 u16 ilen; 861 862 spin_lock(&li->lock); 863 pgm_info = li->irq.pgm; 864 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 865 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 866 spin_unlock(&li->lock); 867 868 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 869 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 870 pgm_info.code, ilen); 871 vcpu->stat.deliver_program++; 872 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 873 pgm_info.code, 0); 874 875 /* PER is handled by the ultravisor */ 876 if (kvm_s390_pv_cpu_is_protected(vcpu)) 877 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 878 879 switch (pgm_info.code & ~PGM_PER) { 880 case PGM_AFX_TRANSLATION: 881 case PGM_ASX_TRANSLATION: 882 case PGM_EX_TRANSLATION: 883 case PGM_LFX_TRANSLATION: 884 case PGM_LSTE_SEQUENCE: 885 case PGM_LSX_TRANSLATION: 886 case PGM_LX_TRANSLATION: 887 case PGM_PRIMARY_AUTHORITY: 888 case PGM_SECONDARY_AUTHORITY: 889 nullifying = true; 890 fallthrough; 891 case PGM_SPACE_SWITCH: 892 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 893 (u64 *)__LC_TRANS_EXC_CODE); 894 break; 895 case PGM_ALEN_TRANSLATION: 896 case PGM_ALE_SEQUENCE: 897 case PGM_ASTE_INSTANCE: 898 case PGM_ASTE_SEQUENCE: 899 case PGM_ASTE_VALIDITY: 900 case PGM_EXTENDED_AUTHORITY: 901 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 902 (u8 *)__LC_EXC_ACCESS_ID); 903 nullifying = true; 904 break; 905 case PGM_ASCE_TYPE: 906 case PGM_PAGE_TRANSLATION: 907 case PGM_REGION_FIRST_TRANS: 908 case PGM_REGION_SECOND_TRANS: 909 case PGM_REGION_THIRD_TRANS: 910 case PGM_SEGMENT_TRANSLATION: 911 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 912 (u64 *)__LC_TRANS_EXC_CODE); 913 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 914 (u8 *)__LC_EXC_ACCESS_ID); 915 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 916 (u8 *)__LC_OP_ACCESS_ID); 917 nullifying = true; 918 break; 919 case PGM_MONITOR: 920 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 921 (u16 *)__LC_MON_CLASS_NR); 922 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 923 (u64 *)__LC_MON_CODE); 924 break; 925 case PGM_VECTOR_PROCESSING: 926 case PGM_DATA: 927 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 928 (u32 *)__LC_DATA_EXC_CODE); 929 break; 930 case PGM_PROTECTION: 931 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 932 (u64 *)__LC_TRANS_EXC_CODE); 933 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 934 (u8 *)__LC_EXC_ACCESS_ID); 935 break; 936 case PGM_STACK_FULL: 937 case PGM_STACK_EMPTY: 938 case PGM_STACK_SPECIFICATION: 939 case PGM_STACK_TYPE: 940 case PGM_STACK_OPERATION: 941 case PGM_TRACE_TABEL: 942 case PGM_CRYPTO_OPERATION: 943 nullifying = true; 944 break; 945 } 946 947 if (pgm_info.code & PGM_PER) { 948 rc |= put_guest_lc(vcpu, pgm_info.per_code, 949 (u8 *) __LC_PER_CODE); 950 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 951 (u8 *)__LC_PER_ATMID); 952 rc |= put_guest_lc(vcpu, pgm_info.per_address, 953 (u64 *) __LC_PER_ADDRESS); 954 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 955 (u8 *) __LC_PER_ACCESS_ID); 956 } 957 958 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 959 kvm_s390_rewind_psw(vcpu, ilen); 960 961 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 962 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 963 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 964 (u64 *) __LC_PGM_LAST_BREAK); 965 rc |= put_guest_lc(vcpu, pgm_info.code, 966 (u16 *)__LC_PGM_INT_CODE); 967 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 968 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 969 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 970 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 971 return rc ? -EFAULT : 0; 972 } 973 974 #define SCCB_MASK 0xFFFFFFF8 975 #define SCCB_EVENT_PENDING 0x3 976 977 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 978 { 979 int rc; 980 981 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 982 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 983 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 984 vcpu->arch.sie_block->eiparams = parm; 985 return 0; 986 } 987 988 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 989 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 990 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 991 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 992 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 993 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 994 rc |= put_guest_lc(vcpu, parm, 995 (u32 *)__LC_EXT_PARAMS); 996 997 return rc ? -EFAULT : 0; 998 } 999 1000 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 1001 { 1002 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1003 struct kvm_s390_ext_info ext; 1004 1005 spin_lock(&fi->lock); 1006 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 1007 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 1008 spin_unlock(&fi->lock); 1009 return 0; 1010 } 1011 ext = fi->srv_signal; 1012 memset(&fi->srv_signal, 0, sizeof(ext)); 1013 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1014 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1015 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1016 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1017 spin_unlock(&fi->lock); 1018 1019 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1020 ext.ext_params); 1021 vcpu->stat.deliver_service_signal++; 1022 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1023 ext.ext_params, 0); 1024 1025 return write_sclp(vcpu, ext.ext_params); 1026 } 1027 1028 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1029 { 1030 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1031 struct kvm_s390_ext_info ext; 1032 1033 spin_lock(&fi->lock); 1034 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1035 spin_unlock(&fi->lock); 1036 return 0; 1037 } 1038 ext = fi->srv_signal; 1039 /* only clear the event bit */ 1040 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1041 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1042 spin_unlock(&fi->lock); 1043 1044 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1045 vcpu->stat.deliver_service_signal++; 1046 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1047 ext.ext_params, 0); 1048 1049 return write_sclp(vcpu, SCCB_EVENT_PENDING); 1050 } 1051 1052 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1053 { 1054 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1055 struct kvm_s390_interrupt_info *inti; 1056 int rc = 0; 1057 1058 spin_lock(&fi->lock); 1059 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1060 struct kvm_s390_interrupt_info, 1061 list); 1062 if (inti) { 1063 list_del(&inti->list); 1064 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1065 } 1066 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1067 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1068 spin_unlock(&fi->lock); 1069 1070 if (inti) { 1071 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1072 KVM_S390_INT_PFAULT_DONE, 0, 1073 inti->ext.ext_params2); 1074 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1075 inti->ext.ext_params2); 1076 1077 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1078 (u16 *)__LC_EXT_INT_CODE); 1079 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1080 (u16 *)__LC_EXT_CPU_ADDR); 1081 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1082 &vcpu->arch.sie_block->gpsw, 1083 sizeof(psw_t)); 1084 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1085 &vcpu->arch.sie_block->gpsw, 1086 sizeof(psw_t)); 1087 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1088 (u64 *)__LC_EXT_PARAMS2); 1089 kfree(inti); 1090 } 1091 return rc ? -EFAULT : 0; 1092 } 1093 1094 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1095 { 1096 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1097 struct kvm_s390_interrupt_info *inti; 1098 int rc = 0; 1099 1100 spin_lock(&fi->lock); 1101 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1102 struct kvm_s390_interrupt_info, 1103 list); 1104 if (inti) { 1105 VCPU_EVENT(vcpu, 4, 1106 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1107 inti->ext.ext_params, inti->ext.ext_params2); 1108 vcpu->stat.deliver_virtio++; 1109 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1110 inti->type, 1111 inti->ext.ext_params, 1112 inti->ext.ext_params2); 1113 list_del(&inti->list); 1114 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1115 } 1116 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1117 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1118 spin_unlock(&fi->lock); 1119 1120 if (inti) { 1121 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1122 (u16 *)__LC_EXT_INT_CODE); 1123 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1124 (u16 *)__LC_EXT_CPU_ADDR); 1125 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1126 &vcpu->arch.sie_block->gpsw, 1127 sizeof(psw_t)); 1128 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1129 &vcpu->arch.sie_block->gpsw, 1130 sizeof(psw_t)); 1131 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1132 (u32 *)__LC_EXT_PARAMS); 1133 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1134 (u64 *)__LC_EXT_PARAMS2); 1135 kfree(inti); 1136 } 1137 return rc ? -EFAULT : 0; 1138 } 1139 1140 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1141 { 1142 int rc; 1143 1144 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1145 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1146 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1147 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1148 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1149 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1150 return 0; 1151 } 1152 1153 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1154 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1155 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1156 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1157 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1158 &vcpu->arch.sie_block->gpsw, 1159 sizeof(psw_t)); 1160 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1161 &vcpu->arch.sie_block->gpsw, 1162 sizeof(psw_t)); 1163 return rc ? -EFAULT : 0; 1164 } 1165 1166 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1167 unsigned long irq_type) 1168 { 1169 struct list_head *isc_list; 1170 struct kvm_s390_float_interrupt *fi; 1171 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1172 struct kvm_s390_interrupt_info *inti = NULL; 1173 struct kvm_s390_io_info io; 1174 u32 isc; 1175 int rc = 0; 1176 1177 fi = &vcpu->kvm->arch.float_int; 1178 1179 spin_lock(&fi->lock); 1180 isc = irq_type_to_isc(irq_type); 1181 isc_list = &fi->lists[isc]; 1182 inti = list_first_entry_or_null(isc_list, 1183 struct kvm_s390_interrupt_info, 1184 list); 1185 if (inti) { 1186 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1187 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1188 else 1189 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1190 inti->io.subchannel_id >> 8, 1191 inti->io.subchannel_id >> 1 & 0x3, 1192 inti->io.subchannel_nr); 1193 1194 vcpu->stat.deliver_io++; 1195 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1196 inti->type, 1197 ((__u32)inti->io.subchannel_id << 16) | 1198 inti->io.subchannel_nr, 1199 ((__u64)inti->io.io_int_parm << 32) | 1200 inti->io.io_int_word); 1201 list_del(&inti->list); 1202 fi->counters[FIRQ_CNTR_IO] -= 1; 1203 } 1204 if (list_empty(isc_list)) 1205 clear_bit(irq_type, &fi->pending_irqs); 1206 spin_unlock(&fi->lock); 1207 1208 if (inti) { 1209 rc = __do_deliver_io(vcpu, &(inti->io)); 1210 kfree(inti); 1211 goto out; 1212 } 1213 1214 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1215 /* 1216 * in case an adapter interrupt was not delivered 1217 * in SIE context KVM will handle the delivery 1218 */ 1219 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1220 memset(&io, 0, sizeof(io)); 1221 io.io_int_word = isc_to_int_word(isc); 1222 vcpu->stat.deliver_io++; 1223 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1224 KVM_S390_INT_IO(1, 0, 0, 0), 1225 ((__u32)io.subchannel_id << 16) | 1226 io.subchannel_nr, 1227 ((__u64)io.io_int_parm << 32) | 1228 io.io_int_word); 1229 rc = __do_deliver_io(vcpu, &io); 1230 } 1231 out: 1232 return rc; 1233 } 1234 1235 /* Check whether an external call is pending (deliverable or not) */ 1236 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1237 { 1238 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1239 1240 if (!sclp.has_sigpif) 1241 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1242 1243 return sca_ext_call_pending(vcpu, NULL); 1244 } 1245 1246 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1247 { 1248 if (deliverable_irqs(vcpu)) 1249 return 1; 1250 1251 if (kvm_cpu_has_pending_timer(vcpu)) 1252 return 1; 1253 1254 /* external call pending and deliverable */ 1255 if (kvm_s390_ext_call_pending(vcpu) && 1256 !psw_extint_disabled(vcpu) && 1257 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1258 return 1; 1259 1260 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1261 return 1; 1262 return 0; 1263 } 1264 1265 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1266 { 1267 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1268 } 1269 1270 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1271 { 1272 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1273 const u64 ckc = vcpu->arch.sie_block->ckc; 1274 u64 cputm, sltime = 0; 1275 1276 if (ckc_interrupts_enabled(vcpu)) { 1277 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1278 if ((s64)now < (s64)ckc) 1279 sltime = tod_to_ns((s64)ckc - (s64)now); 1280 } else if (now < ckc) { 1281 sltime = tod_to_ns(ckc - now); 1282 } 1283 /* already expired */ 1284 if (!sltime) 1285 return 0; 1286 if (cpu_timer_interrupts_enabled(vcpu)) { 1287 cputm = kvm_s390_get_cpu_timer(vcpu); 1288 /* already expired? */ 1289 if (cputm >> 63) 1290 return 0; 1291 return min_t(u64, sltime, tod_to_ns(cputm)); 1292 } 1293 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1294 sltime = kvm_s390_get_cpu_timer(vcpu); 1295 /* already expired? */ 1296 if (sltime >> 63) 1297 return 0; 1298 } 1299 return sltime; 1300 } 1301 1302 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1303 { 1304 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1305 u64 sltime; 1306 1307 vcpu->stat.exit_wait_state++; 1308 1309 /* fast path */ 1310 if (kvm_arch_vcpu_runnable(vcpu)) 1311 return 0; 1312 1313 if (psw_interrupts_disabled(vcpu)) { 1314 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1315 return -EOPNOTSUPP; /* disabled wait */ 1316 } 1317 1318 if (gi->origin && 1319 (gisa_get_ipm_or_restore_iam(gi) & 1320 vcpu->arch.sie_block->gcr[6] >> 24)) 1321 return 0; 1322 1323 if (!ckc_interrupts_enabled(vcpu) && 1324 !cpu_timer_interrupts_enabled(vcpu)) { 1325 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1326 __set_cpu_idle(vcpu); 1327 goto no_timer; 1328 } 1329 1330 sltime = __calculate_sltime(vcpu); 1331 if (!sltime) 1332 return 0; 1333 1334 __set_cpu_idle(vcpu); 1335 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1336 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1337 no_timer: 1338 kvm_vcpu_srcu_read_unlock(vcpu); 1339 kvm_vcpu_halt(vcpu); 1340 vcpu->valid_wakeup = false; 1341 __unset_cpu_idle(vcpu); 1342 kvm_vcpu_srcu_read_lock(vcpu); 1343 1344 hrtimer_cancel(&vcpu->arch.ckc_timer); 1345 return 0; 1346 } 1347 1348 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1349 { 1350 vcpu->valid_wakeup = true; 1351 kvm_vcpu_wake_up(vcpu); 1352 1353 /* 1354 * The VCPU might not be sleeping but rather executing VSIE. Let's 1355 * kick it, so it leaves the SIE to process the request. 1356 */ 1357 kvm_s390_vsie_kick(vcpu); 1358 } 1359 1360 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1361 { 1362 struct kvm_vcpu *vcpu; 1363 u64 sltime; 1364 1365 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1366 sltime = __calculate_sltime(vcpu); 1367 1368 /* 1369 * If the monotonic clock runs faster than the tod clock we might be 1370 * woken up too early and have to go back to sleep to avoid deadlocks. 1371 */ 1372 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1373 return HRTIMER_RESTART; 1374 kvm_s390_vcpu_wakeup(vcpu); 1375 return HRTIMER_NORESTART; 1376 } 1377 1378 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1379 { 1380 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1381 1382 spin_lock(&li->lock); 1383 li->pending_irqs = 0; 1384 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1385 memset(&li->irq, 0, sizeof(li->irq)); 1386 spin_unlock(&li->lock); 1387 1388 sca_clear_ext_call(vcpu); 1389 } 1390 1391 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1392 { 1393 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1394 int rc = 0; 1395 unsigned long irq_type; 1396 unsigned long irqs; 1397 1398 __reset_intercept_indicators(vcpu); 1399 1400 /* pending ckc conditions might have been invalidated */ 1401 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1402 if (ckc_irq_pending(vcpu)) 1403 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1404 1405 /* pending cpu timer conditions might have been invalidated */ 1406 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1407 if (cpu_timer_irq_pending(vcpu)) 1408 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1409 1410 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1411 /* bits are in the reverse order of interrupt priority */ 1412 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1413 switch (irq_type) { 1414 case IRQ_PEND_IO_ISC_0: 1415 case IRQ_PEND_IO_ISC_1: 1416 case IRQ_PEND_IO_ISC_2: 1417 case IRQ_PEND_IO_ISC_3: 1418 case IRQ_PEND_IO_ISC_4: 1419 case IRQ_PEND_IO_ISC_5: 1420 case IRQ_PEND_IO_ISC_6: 1421 case IRQ_PEND_IO_ISC_7: 1422 rc = __deliver_io(vcpu, irq_type); 1423 break; 1424 case IRQ_PEND_MCHK_EX: 1425 case IRQ_PEND_MCHK_REP: 1426 rc = __deliver_machine_check(vcpu); 1427 break; 1428 case IRQ_PEND_PROG: 1429 rc = __deliver_prog(vcpu); 1430 break; 1431 case IRQ_PEND_EXT_EMERGENCY: 1432 rc = __deliver_emergency_signal(vcpu); 1433 break; 1434 case IRQ_PEND_EXT_EXTERNAL: 1435 rc = __deliver_external_call(vcpu); 1436 break; 1437 case IRQ_PEND_EXT_CLOCK_COMP: 1438 rc = __deliver_ckc(vcpu); 1439 break; 1440 case IRQ_PEND_EXT_CPU_TIMER: 1441 rc = __deliver_cpu_timer(vcpu); 1442 break; 1443 case IRQ_PEND_RESTART: 1444 rc = __deliver_restart(vcpu); 1445 break; 1446 case IRQ_PEND_SET_PREFIX: 1447 rc = __deliver_set_prefix(vcpu); 1448 break; 1449 case IRQ_PEND_PFAULT_INIT: 1450 rc = __deliver_pfault_init(vcpu); 1451 break; 1452 case IRQ_PEND_EXT_SERVICE: 1453 rc = __deliver_service(vcpu); 1454 break; 1455 case IRQ_PEND_EXT_SERVICE_EV: 1456 rc = __deliver_service_ev(vcpu); 1457 break; 1458 case IRQ_PEND_PFAULT_DONE: 1459 rc = __deliver_pfault_done(vcpu); 1460 break; 1461 case IRQ_PEND_VIRTIO: 1462 rc = __deliver_virtio(vcpu); 1463 break; 1464 default: 1465 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1466 clear_bit(irq_type, &li->pending_irqs); 1467 } 1468 } 1469 1470 set_intercept_indicators(vcpu); 1471 1472 return rc; 1473 } 1474 1475 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1476 { 1477 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1478 1479 vcpu->stat.inject_program++; 1480 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1481 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1482 irq->u.pgm.code, 0); 1483 1484 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1485 /* auto detection if no valid ILC was given */ 1486 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1487 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1488 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1489 } 1490 1491 if (irq->u.pgm.code == PGM_PER) { 1492 li->irq.pgm.code |= PGM_PER; 1493 li->irq.pgm.flags = irq->u.pgm.flags; 1494 /* only modify PER related information */ 1495 li->irq.pgm.per_address = irq->u.pgm.per_address; 1496 li->irq.pgm.per_code = irq->u.pgm.per_code; 1497 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1498 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1499 } else if (!(irq->u.pgm.code & PGM_PER)) { 1500 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1501 irq->u.pgm.code; 1502 li->irq.pgm.flags = irq->u.pgm.flags; 1503 /* only modify non-PER information */ 1504 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1505 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1506 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1507 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1508 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1509 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1510 } else { 1511 li->irq.pgm = irq->u.pgm; 1512 } 1513 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1514 return 0; 1515 } 1516 1517 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1518 { 1519 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1520 1521 vcpu->stat.inject_pfault_init++; 1522 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1523 irq->u.ext.ext_params2); 1524 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1525 irq->u.ext.ext_params, 1526 irq->u.ext.ext_params2); 1527 1528 li->irq.ext = irq->u.ext; 1529 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1530 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1531 return 0; 1532 } 1533 1534 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1535 { 1536 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1537 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1538 uint16_t src_id = irq->u.extcall.code; 1539 1540 vcpu->stat.inject_external_call++; 1541 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1542 src_id); 1543 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1544 src_id, 0); 1545 1546 /* sending vcpu invalid */ 1547 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1548 return -EINVAL; 1549 1550 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1551 return sca_inject_ext_call(vcpu, src_id); 1552 1553 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1554 return -EBUSY; 1555 *extcall = irq->u.extcall; 1556 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1557 return 0; 1558 } 1559 1560 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1561 { 1562 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1563 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1564 1565 vcpu->stat.inject_set_prefix++; 1566 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1567 irq->u.prefix.address); 1568 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1569 irq->u.prefix.address, 0); 1570 1571 if (!is_vcpu_stopped(vcpu)) 1572 return -EBUSY; 1573 1574 *prefix = irq->u.prefix; 1575 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1576 return 0; 1577 } 1578 1579 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1580 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1581 { 1582 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1583 struct kvm_s390_stop_info *stop = &li->irq.stop; 1584 int rc = 0; 1585 1586 vcpu->stat.inject_stop_signal++; 1587 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1588 1589 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1590 return -EINVAL; 1591 1592 if (is_vcpu_stopped(vcpu)) { 1593 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1594 rc = kvm_s390_store_status_unloaded(vcpu, 1595 KVM_S390_STORE_STATUS_NOADDR); 1596 return rc; 1597 } 1598 1599 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1600 return -EBUSY; 1601 stop->flags = irq->u.stop.flags; 1602 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1603 return 0; 1604 } 1605 1606 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1607 { 1608 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1609 1610 vcpu->stat.inject_restart++; 1611 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1612 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1613 1614 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1615 return 0; 1616 } 1617 1618 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1619 struct kvm_s390_irq *irq) 1620 { 1621 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1622 1623 vcpu->stat.inject_emergency_signal++; 1624 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1625 irq->u.emerg.code); 1626 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1627 irq->u.emerg.code, 0); 1628 1629 /* sending vcpu invalid */ 1630 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1631 return -EINVAL; 1632 1633 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1634 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1635 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1636 return 0; 1637 } 1638 1639 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1640 { 1641 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1642 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1643 1644 vcpu->stat.inject_mchk++; 1645 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1646 irq->u.mchk.mcic); 1647 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1648 irq->u.mchk.mcic); 1649 1650 /* 1651 * Because repressible machine checks can be indicated along with 1652 * exigent machine checks (PoP, Chapter 11, Interruption action) 1653 * we need to combine cr14, mcic and external damage code. 1654 * Failing storage address and the logout area should not be or'ed 1655 * together, we just indicate the last occurrence of the corresponding 1656 * machine check 1657 */ 1658 mchk->cr14 |= irq->u.mchk.cr14; 1659 mchk->mcic |= irq->u.mchk.mcic; 1660 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1661 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1662 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1663 sizeof(mchk->fixed_logout)); 1664 if (mchk->mcic & MCHK_EX_MASK) 1665 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1666 else if (mchk->mcic & MCHK_REP_MASK) 1667 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1668 return 0; 1669 } 1670 1671 static int __inject_ckc(struct kvm_vcpu *vcpu) 1672 { 1673 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1674 1675 vcpu->stat.inject_ckc++; 1676 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1677 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1678 0, 0); 1679 1680 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1681 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1682 return 0; 1683 } 1684 1685 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1686 { 1687 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1688 1689 vcpu->stat.inject_cputm++; 1690 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1691 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1692 0, 0); 1693 1694 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1695 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1696 return 0; 1697 } 1698 1699 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1700 int isc, u32 schid) 1701 { 1702 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1703 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1704 struct kvm_s390_interrupt_info *iter; 1705 u16 id = (schid & 0xffff0000U) >> 16; 1706 u16 nr = schid & 0x0000ffffU; 1707 1708 spin_lock(&fi->lock); 1709 list_for_each_entry(iter, isc_list, list) { 1710 if (schid && (id != iter->io.subchannel_id || 1711 nr != iter->io.subchannel_nr)) 1712 continue; 1713 /* found an appropriate entry */ 1714 list_del_init(&iter->list); 1715 fi->counters[FIRQ_CNTR_IO] -= 1; 1716 if (list_empty(isc_list)) 1717 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1718 spin_unlock(&fi->lock); 1719 return iter; 1720 } 1721 spin_unlock(&fi->lock); 1722 return NULL; 1723 } 1724 1725 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1726 u64 isc_mask, u32 schid) 1727 { 1728 struct kvm_s390_interrupt_info *inti = NULL; 1729 int isc; 1730 1731 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1732 if (isc_mask & isc_to_isc_bits(isc)) 1733 inti = get_io_int(kvm, isc, schid); 1734 } 1735 return inti; 1736 } 1737 1738 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1739 { 1740 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1741 unsigned long active_mask; 1742 int isc; 1743 1744 if (schid) 1745 goto out; 1746 if (!gi->origin) 1747 goto out; 1748 1749 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1750 while (active_mask) { 1751 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1752 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1753 return isc; 1754 clear_bit_inv(isc, &active_mask); 1755 } 1756 out: 1757 return -EINVAL; 1758 } 1759 1760 /* 1761 * Dequeue and return an I/O interrupt matching any of the interruption 1762 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1763 * Take into account the interrupts pending in the interrupt list and in GISA. 1764 * 1765 * Note that for a guest that does not enable I/O interrupts 1766 * but relies on TPI, a flood of classic interrupts may starve 1767 * out adapter interrupts on the same isc. Linux does not do 1768 * that, and it is possible to work around the issue by configuring 1769 * different iscs for classic and adapter interrupts in the guest, 1770 * but we may want to revisit this in the future. 1771 */ 1772 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1773 u64 isc_mask, u32 schid) 1774 { 1775 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1776 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1777 int isc; 1778 1779 inti = get_top_io_int(kvm, isc_mask, schid); 1780 1781 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1782 if (isc < 0) 1783 /* no AI in GISA */ 1784 goto out; 1785 1786 if (!inti) 1787 /* AI in GISA but no classical IO int */ 1788 goto gisa_out; 1789 1790 /* both types of interrupts present */ 1791 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1792 /* classical IO int with higher priority */ 1793 gisa_set_ipm_gisc(gi->origin, isc); 1794 goto out; 1795 } 1796 gisa_out: 1797 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1798 if (tmp_inti) { 1799 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1800 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1801 if (inti) 1802 kvm_s390_reinject_io_int(kvm, inti); 1803 inti = tmp_inti; 1804 } else 1805 gisa_set_ipm_gisc(gi->origin, isc); 1806 out: 1807 return inti; 1808 } 1809 1810 static int __inject_service(struct kvm *kvm, 1811 struct kvm_s390_interrupt_info *inti) 1812 { 1813 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1814 1815 kvm->stat.inject_service_signal++; 1816 spin_lock(&fi->lock); 1817 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1818 1819 /* We always allow events, track them separately from the sccb ints */ 1820 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1821 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1822 1823 /* 1824 * Early versions of the QEMU s390 bios will inject several 1825 * service interrupts after another without handling a 1826 * condition code indicating busy. 1827 * We will silently ignore those superfluous sccb values. 1828 * A future version of QEMU will take care of serialization 1829 * of servc requests 1830 */ 1831 if (fi->srv_signal.ext_params & SCCB_MASK) 1832 goto out; 1833 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1834 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1835 out: 1836 spin_unlock(&fi->lock); 1837 kfree(inti); 1838 return 0; 1839 } 1840 1841 static int __inject_virtio(struct kvm *kvm, 1842 struct kvm_s390_interrupt_info *inti) 1843 { 1844 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1845 1846 kvm->stat.inject_virtio++; 1847 spin_lock(&fi->lock); 1848 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1849 spin_unlock(&fi->lock); 1850 return -EBUSY; 1851 } 1852 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1853 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1854 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1855 spin_unlock(&fi->lock); 1856 return 0; 1857 } 1858 1859 static int __inject_pfault_done(struct kvm *kvm, 1860 struct kvm_s390_interrupt_info *inti) 1861 { 1862 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1863 1864 kvm->stat.inject_pfault_done++; 1865 spin_lock(&fi->lock); 1866 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1867 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1868 spin_unlock(&fi->lock); 1869 return -EBUSY; 1870 } 1871 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1872 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1873 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1874 spin_unlock(&fi->lock); 1875 return 0; 1876 } 1877 1878 #define CR_PENDING_SUBCLASS 28 1879 static int __inject_float_mchk(struct kvm *kvm, 1880 struct kvm_s390_interrupt_info *inti) 1881 { 1882 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1883 1884 kvm->stat.inject_float_mchk++; 1885 spin_lock(&fi->lock); 1886 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1887 fi->mchk.mcic |= inti->mchk.mcic; 1888 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1889 spin_unlock(&fi->lock); 1890 kfree(inti); 1891 return 0; 1892 } 1893 1894 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1895 { 1896 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1897 struct kvm_s390_float_interrupt *fi; 1898 struct list_head *list; 1899 int isc; 1900 1901 kvm->stat.inject_io++; 1902 isc = int_word_to_isc(inti->io.io_int_word); 1903 1904 /* 1905 * We do not use the lock checking variant as this is just a 1906 * performance optimization and we do not hold the lock here. 1907 * This is ok as the code will pick interrupts from both "lists" 1908 * for delivery. 1909 */ 1910 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1911 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1912 gisa_set_ipm_gisc(gi->origin, isc); 1913 kfree(inti); 1914 return 0; 1915 } 1916 1917 fi = &kvm->arch.float_int; 1918 spin_lock(&fi->lock); 1919 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1920 spin_unlock(&fi->lock); 1921 return -EBUSY; 1922 } 1923 fi->counters[FIRQ_CNTR_IO] += 1; 1924 1925 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1926 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1927 else 1928 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1929 inti->io.subchannel_id >> 8, 1930 inti->io.subchannel_id >> 1 & 0x3, 1931 inti->io.subchannel_nr); 1932 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1933 list_add_tail(&inti->list, list); 1934 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1935 spin_unlock(&fi->lock); 1936 return 0; 1937 } 1938 1939 /* 1940 * Find a destination VCPU for a floating irq and kick it. 1941 */ 1942 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1943 { 1944 struct kvm_vcpu *dst_vcpu; 1945 int sigcpu, online_vcpus, nr_tries = 0; 1946 1947 online_vcpus = atomic_read(&kvm->online_vcpus); 1948 if (!online_vcpus) 1949 return; 1950 1951 /* find idle VCPUs first, then round robin */ 1952 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1953 if (sigcpu == online_vcpus) { 1954 do { 1955 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1956 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1957 /* avoid endless loops if all vcpus are stopped */ 1958 if (nr_tries++ >= online_vcpus) 1959 return; 1960 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1961 } 1962 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1963 1964 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1965 switch (type) { 1966 case KVM_S390_MCHK: 1967 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1968 break; 1969 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1970 if (!(type & KVM_S390_INT_IO_AI_MASK && 1971 kvm->arch.gisa_int.origin) || 1972 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1973 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1974 break; 1975 default: 1976 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1977 break; 1978 } 1979 kvm_s390_vcpu_wakeup(dst_vcpu); 1980 } 1981 1982 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1983 { 1984 u64 type = READ_ONCE(inti->type); 1985 int rc; 1986 1987 switch (type) { 1988 case KVM_S390_MCHK: 1989 rc = __inject_float_mchk(kvm, inti); 1990 break; 1991 case KVM_S390_INT_VIRTIO: 1992 rc = __inject_virtio(kvm, inti); 1993 break; 1994 case KVM_S390_INT_SERVICE: 1995 rc = __inject_service(kvm, inti); 1996 break; 1997 case KVM_S390_INT_PFAULT_DONE: 1998 rc = __inject_pfault_done(kvm, inti); 1999 break; 2000 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2001 rc = __inject_io(kvm, inti); 2002 break; 2003 default: 2004 rc = -EINVAL; 2005 } 2006 if (rc) 2007 return rc; 2008 2009 __floating_irq_kick(kvm, type); 2010 return 0; 2011 } 2012 2013 int kvm_s390_inject_vm(struct kvm *kvm, 2014 struct kvm_s390_interrupt *s390int) 2015 { 2016 struct kvm_s390_interrupt_info *inti; 2017 int rc; 2018 2019 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2020 if (!inti) 2021 return -ENOMEM; 2022 2023 inti->type = s390int->type; 2024 switch (inti->type) { 2025 case KVM_S390_INT_VIRTIO: 2026 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2027 s390int->parm, s390int->parm64); 2028 inti->ext.ext_params = s390int->parm; 2029 inti->ext.ext_params2 = s390int->parm64; 2030 break; 2031 case KVM_S390_INT_SERVICE: 2032 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2033 inti->ext.ext_params = s390int->parm; 2034 break; 2035 case KVM_S390_INT_PFAULT_DONE: 2036 inti->ext.ext_params2 = s390int->parm64; 2037 break; 2038 case KVM_S390_MCHK: 2039 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2040 s390int->parm64); 2041 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2042 inti->mchk.mcic = s390int->parm64; 2043 break; 2044 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2045 inti->io.subchannel_id = s390int->parm >> 16; 2046 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2047 inti->io.io_int_parm = s390int->parm64 >> 32; 2048 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2049 break; 2050 default: 2051 kfree(inti); 2052 return -EINVAL; 2053 } 2054 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2055 2); 2056 2057 rc = __inject_vm(kvm, inti); 2058 if (rc) 2059 kfree(inti); 2060 return rc; 2061 } 2062 2063 int kvm_s390_reinject_io_int(struct kvm *kvm, 2064 struct kvm_s390_interrupt_info *inti) 2065 { 2066 return __inject_vm(kvm, inti); 2067 } 2068 2069 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2070 struct kvm_s390_irq *irq) 2071 { 2072 irq->type = s390int->type; 2073 switch (irq->type) { 2074 case KVM_S390_PROGRAM_INT: 2075 if (s390int->parm & 0xffff0000) 2076 return -EINVAL; 2077 irq->u.pgm.code = s390int->parm; 2078 break; 2079 case KVM_S390_SIGP_SET_PREFIX: 2080 irq->u.prefix.address = s390int->parm; 2081 break; 2082 case KVM_S390_SIGP_STOP: 2083 irq->u.stop.flags = s390int->parm; 2084 break; 2085 case KVM_S390_INT_EXTERNAL_CALL: 2086 if (s390int->parm & 0xffff0000) 2087 return -EINVAL; 2088 irq->u.extcall.code = s390int->parm; 2089 break; 2090 case KVM_S390_INT_EMERGENCY: 2091 if (s390int->parm & 0xffff0000) 2092 return -EINVAL; 2093 irq->u.emerg.code = s390int->parm; 2094 break; 2095 case KVM_S390_MCHK: 2096 irq->u.mchk.mcic = s390int->parm64; 2097 break; 2098 case KVM_S390_INT_PFAULT_INIT: 2099 irq->u.ext.ext_params = s390int->parm; 2100 irq->u.ext.ext_params2 = s390int->parm64; 2101 break; 2102 case KVM_S390_RESTART: 2103 case KVM_S390_INT_CLOCK_COMP: 2104 case KVM_S390_INT_CPU_TIMER: 2105 break; 2106 default: 2107 return -EINVAL; 2108 } 2109 return 0; 2110 } 2111 2112 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2113 { 2114 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2115 2116 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2117 } 2118 2119 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2120 { 2121 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2122 2123 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2124 } 2125 2126 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2127 { 2128 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2129 2130 spin_lock(&li->lock); 2131 li->irq.stop.flags = 0; 2132 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2133 spin_unlock(&li->lock); 2134 } 2135 2136 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2137 { 2138 int rc; 2139 2140 switch (irq->type) { 2141 case KVM_S390_PROGRAM_INT: 2142 rc = __inject_prog(vcpu, irq); 2143 break; 2144 case KVM_S390_SIGP_SET_PREFIX: 2145 rc = __inject_set_prefix(vcpu, irq); 2146 break; 2147 case KVM_S390_SIGP_STOP: 2148 rc = __inject_sigp_stop(vcpu, irq); 2149 break; 2150 case KVM_S390_RESTART: 2151 rc = __inject_sigp_restart(vcpu); 2152 break; 2153 case KVM_S390_INT_CLOCK_COMP: 2154 rc = __inject_ckc(vcpu); 2155 break; 2156 case KVM_S390_INT_CPU_TIMER: 2157 rc = __inject_cpu_timer(vcpu); 2158 break; 2159 case KVM_S390_INT_EXTERNAL_CALL: 2160 rc = __inject_extcall(vcpu, irq); 2161 break; 2162 case KVM_S390_INT_EMERGENCY: 2163 rc = __inject_sigp_emergency(vcpu, irq); 2164 break; 2165 case KVM_S390_MCHK: 2166 rc = __inject_mchk(vcpu, irq); 2167 break; 2168 case KVM_S390_INT_PFAULT_INIT: 2169 rc = __inject_pfault_init(vcpu, irq); 2170 break; 2171 case KVM_S390_INT_VIRTIO: 2172 case KVM_S390_INT_SERVICE: 2173 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2174 default: 2175 rc = -EINVAL; 2176 } 2177 2178 return rc; 2179 } 2180 2181 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2182 { 2183 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2184 int rc; 2185 2186 spin_lock(&li->lock); 2187 rc = do_inject_vcpu(vcpu, irq); 2188 spin_unlock(&li->lock); 2189 if (!rc) 2190 kvm_s390_vcpu_wakeup(vcpu); 2191 return rc; 2192 } 2193 2194 static inline void clear_irq_list(struct list_head *_list) 2195 { 2196 struct kvm_s390_interrupt_info *inti, *n; 2197 2198 list_for_each_entry_safe(inti, n, _list, list) { 2199 list_del(&inti->list); 2200 kfree(inti); 2201 } 2202 } 2203 2204 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2205 struct kvm_s390_irq *irq) 2206 { 2207 irq->type = inti->type; 2208 switch (inti->type) { 2209 case KVM_S390_INT_PFAULT_INIT: 2210 case KVM_S390_INT_PFAULT_DONE: 2211 case KVM_S390_INT_VIRTIO: 2212 irq->u.ext = inti->ext; 2213 break; 2214 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2215 irq->u.io = inti->io; 2216 break; 2217 } 2218 } 2219 2220 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2221 { 2222 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2223 int i; 2224 2225 mutex_lock(&kvm->lock); 2226 if (!kvm_s390_pv_is_protected(kvm)) 2227 fi->masked_irqs = 0; 2228 mutex_unlock(&kvm->lock); 2229 spin_lock(&fi->lock); 2230 fi->pending_irqs = 0; 2231 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2232 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2233 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2234 clear_irq_list(&fi->lists[i]); 2235 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2236 fi->counters[i] = 0; 2237 spin_unlock(&fi->lock); 2238 kvm_s390_gisa_clear(kvm); 2239 }; 2240 2241 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2242 { 2243 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2244 struct kvm_s390_interrupt_info *inti; 2245 struct kvm_s390_float_interrupt *fi; 2246 struct kvm_s390_irq *buf; 2247 struct kvm_s390_irq *irq; 2248 int max_irqs; 2249 int ret = 0; 2250 int n = 0; 2251 int i; 2252 2253 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2254 return -EINVAL; 2255 2256 /* 2257 * We are already using -ENOMEM to signal 2258 * userspace it may retry with a bigger buffer, 2259 * so we need to use something else for this case 2260 */ 2261 buf = vzalloc(len); 2262 if (!buf) 2263 return -ENOBUFS; 2264 2265 max_irqs = len / sizeof(struct kvm_s390_irq); 2266 2267 if (gi->origin && gisa_get_ipm(gi->origin)) { 2268 for (i = 0; i <= MAX_ISC; i++) { 2269 if (n == max_irqs) { 2270 /* signal userspace to try again */ 2271 ret = -ENOMEM; 2272 goto out_nolock; 2273 } 2274 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2275 irq = (struct kvm_s390_irq *) &buf[n]; 2276 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2277 irq->u.io.io_int_word = isc_to_int_word(i); 2278 n++; 2279 } 2280 } 2281 } 2282 fi = &kvm->arch.float_int; 2283 spin_lock(&fi->lock); 2284 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2285 list_for_each_entry(inti, &fi->lists[i], list) { 2286 if (n == max_irqs) { 2287 /* signal userspace to try again */ 2288 ret = -ENOMEM; 2289 goto out; 2290 } 2291 inti_to_irq(inti, &buf[n]); 2292 n++; 2293 } 2294 } 2295 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2296 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2297 if (n == max_irqs) { 2298 /* signal userspace to try again */ 2299 ret = -ENOMEM; 2300 goto out; 2301 } 2302 irq = (struct kvm_s390_irq *) &buf[n]; 2303 irq->type = KVM_S390_INT_SERVICE; 2304 irq->u.ext = fi->srv_signal; 2305 n++; 2306 } 2307 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2308 if (n == max_irqs) { 2309 /* signal userspace to try again */ 2310 ret = -ENOMEM; 2311 goto out; 2312 } 2313 irq = (struct kvm_s390_irq *) &buf[n]; 2314 irq->type = KVM_S390_MCHK; 2315 irq->u.mchk = fi->mchk; 2316 n++; 2317 } 2318 2319 out: 2320 spin_unlock(&fi->lock); 2321 out_nolock: 2322 if (!ret && n > 0) { 2323 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2324 ret = -EFAULT; 2325 } 2326 vfree(buf); 2327 2328 return ret < 0 ? ret : n; 2329 } 2330 2331 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2332 { 2333 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2334 struct kvm_s390_ais_all ais; 2335 2336 if (attr->attr < sizeof(ais)) 2337 return -EINVAL; 2338 2339 if (!test_kvm_facility(kvm, 72)) 2340 return -EOPNOTSUPP; 2341 2342 mutex_lock(&fi->ais_lock); 2343 ais.simm = fi->simm; 2344 ais.nimm = fi->nimm; 2345 mutex_unlock(&fi->ais_lock); 2346 2347 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2348 return -EFAULT; 2349 2350 return 0; 2351 } 2352 2353 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2354 { 2355 int r; 2356 2357 switch (attr->group) { 2358 case KVM_DEV_FLIC_GET_ALL_IRQS: 2359 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2360 attr->attr); 2361 break; 2362 case KVM_DEV_FLIC_AISM_ALL: 2363 r = flic_ais_mode_get_all(dev->kvm, attr); 2364 break; 2365 default: 2366 r = -EINVAL; 2367 } 2368 2369 return r; 2370 } 2371 2372 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2373 u64 addr) 2374 { 2375 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2376 void *target = NULL; 2377 void __user *source; 2378 u64 size; 2379 2380 if (get_user(inti->type, (u64 __user *)addr)) 2381 return -EFAULT; 2382 2383 switch (inti->type) { 2384 case KVM_S390_INT_PFAULT_INIT: 2385 case KVM_S390_INT_PFAULT_DONE: 2386 case KVM_S390_INT_VIRTIO: 2387 case KVM_S390_INT_SERVICE: 2388 target = (void *) &inti->ext; 2389 source = &uptr->u.ext; 2390 size = sizeof(inti->ext); 2391 break; 2392 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2393 target = (void *) &inti->io; 2394 source = &uptr->u.io; 2395 size = sizeof(inti->io); 2396 break; 2397 case KVM_S390_MCHK: 2398 target = (void *) &inti->mchk; 2399 source = &uptr->u.mchk; 2400 size = sizeof(inti->mchk); 2401 break; 2402 default: 2403 return -EINVAL; 2404 } 2405 2406 if (copy_from_user(target, source, size)) 2407 return -EFAULT; 2408 2409 return 0; 2410 } 2411 2412 static int enqueue_floating_irq(struct kvm_device *dev, 2413 struct kvm_device_attr *attr) 2414 { 2415 struct kvm_s390_interrupt_info *inti = NULL; 2416 int r = 0; 2417 int len = attr->attr; 2418 2419 if (len % sizeof(struct kvm_s390_irq) != 0) 2420 return -EINVAL; 2421 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2422 return -EINVAL; 2423 2424 while (len >= sizeof(struct kvm_s390_irq)) { 2425 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2426 if (!inti) 2427 return -ENOMEM; 2428 2429 r = copy_irq_from_user(inti, attr->addr); 2430 if (r) { 2431 kfree(inti); 2432 return r; 2433 } 2434 r = __inject_vm(dev->kvm, inti); 2435 if (r) { 2436 kfree(inti); 2437 return r; 2438 } 2439 len -= sizeof(struct kvm_s390_irq); 2440 attr->addr += sizeof(struct kvm_s390_irq); 2441 } 2442 2443 return r; 2444 } 2445 2446 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2447 { 2448 if (id >= MAX_S390_IO_ADAPTERS) 2449 return NULL; 2450 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2451 return kvm->arch.adapters[id]; 2452 } 2453 2454 static int register_io_adapter(struct kvm_device *dev, 2455 struct kvm_device_attr *attr) 2456 { 2457 struct s390_io_adapter *adapter; 2458 struct kvm_s390_io_adapter adapter_info; 2459 2460 if (copy_from_user(&adapter_info, 2461 (void __user *)attr->addr, sizeof(adapter_info))) 2462 return -EFAULT; 2463 2464 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2465 return -EINVAL; 2466 2467 adapter_info.id = array_index_nospec(adapter_info.id, 2468 MAX_S390_IO_ADAPTERS); 2469 2470 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2471 return -EINVAL; 2472 2473 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2474 if (!adapter) 2475 return -ENOMEM; 2476 2477 adapter->id = adapter_info.id; 2478 adapter->isc = adapter_info.isc; 2479 adapter->maskable = adapter_info.maskable; 2480 adapter->masked = false; 2481 adapter->swap = adapter_info.swap; 2482 adapter->suppressible = (adapter_info.flags) & 2483 KVM_S390_ADAPTER_SUPPRESSIBLE; 2484 dev->kvm->arch.adapters[adapter->id] = adapter; 2485 2486 return 0; 2487 } 2488 2489 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2490 { 2491 int ret; 2492 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2493 2494 if (!adapter || !adapter->maskable) 2495 return -EINVAL; 2496 ret = adapter->masked; 2497 adapter->masked = masked; 2498 return ret; 2499 } 2500 2501 void kvm_s390_destroy_adapters(struct kvm *kvm) 2502 { 2503 int i; 2504 2505 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2506 kfree(kvm->arch.adapters[i]); 2507 } 2508 2509 static int modify_io_adapter(struct kvm_device *dev, 2510 struct kvm_device_attr *attr) 2511 { 2512 struct kvm_s390_io_adapter_req req; 2513 struct s390_io_adapter *adapter; 2514 int ret; 2515 2516 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2517 return -EFAULT; 2518 2519 adapter = get_io_adapter(dev->kvm, req.id); 2520 if (!adapter) 2521 return -EINVAL; 2522 switch (req.type) { 2523 case KVM_S390_IO_ADAPTER_MASK: 2524 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2525 if (ret > 0) 2526 ret = 0; 2527 break; 2528 /* 2529 * The following operations are no longer needed and therefore no-ops. 2530 * The gpa to hva translation is done when an IRQ route is set up. The 2531 * set_irq code uses get_user_pages_remote() to do the actual write. 2532 */ 2533 case KVM_S390_IO_ADAPTER_MAP: 2534 case KVM_S390_IO_ADAPTER_UNMAP: 2535 ret = 0; 2536 break; 2537 default: 2538 ret = -EINVAL; 2539 } 2540 2541 return ret; 2542 } 2543 2544 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2545 2546 { 2547 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2548 u32 schid; 2549 2550 if (attr->flags) 2551 return -EINVAL; 2552 if (attr->attr != sizeof(schid)) 2553 return -EINVAL; 2554 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2555 return -EFAULT; 2556 if (!schid) 2557 return -EINVAL; 2558 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2559 /* 2560 * If userspace is conforming to the architecture, we can have at most 2561 * one pending I/O interrupt per subchannel, so this is effectively a 2562 * clear all. 2563 */ 2564 return 0; 2565 } 2566 2567 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2568 { 2569 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2570 struct kvm_s390_ais_req req; 2571 int ret = 0; 2572 2573 if (!test_kvm_facility(kvm, 72)) 2574 return -EOPNOTSUPP; 2575 2576 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2577 return -EFAULT; 2578 2579 if (req.isc > MAX_ISC) 2580 return -EINVAL; 2581 2582 trace_kvm_s390_modify_ais_mode(req.isc, 2583 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2584 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2585 2 : KVM_S390_AIS_MODE_SINGLE : 2586 KVM_S390_AIS_MODE_ALL, req.mode); 2587 2588 mutex_lock(&fi->ais_lock); 2589 switch (req.mode) { 2590 case KVM_S390_AIS_MODE_ALL: 2591 fi->simm &= ~AIS_MODE_MASK(req.isc); 2592 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2593 break; 2594 case KVM_S390_AIS_MODE_SINGLE: 2595 fi->simm |= AIS_MODE_MASK(req.isc); 2596 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2597 break; 2598 default: 2599 ret = -EINVAL; 2600 } 2601 mutex_unlock(&fi->ais_lock); 2602 2603 return ret; 2604 } 2605 2606 static int kvm_s390_inject_airq(struct kvm *kvm, 2607 struct s390_io_adapter *adapter) 2608 { 2609 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2610 struct kvm_s390_interrupt s390int = { 2611 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2612 .parm = 0, 2613 .parm64 = isc_to_int_word(adapter->isc), 2614 }; 2615 int ret = 0; 2616 2617 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2618 return kvm_s390_inject_vm(kvm, &s390int); 2619 2620 mutex_lock(&fi->ais_lock); 2621 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2622 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2623 goto out; 2624 } 2625 2626 ret = kvm_s390_inject_vm(kvm, &s390int); 2627 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2628 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2629 trace_kvm_s390_modify_ais_mode(adapter->isc, 2630 KVM_S390_AIS_MODE_SINGLE, 2); 2631 } 2632 out: 2633 mutex_unlock(&fi->ais_lock); 2634 return ret; 2635 } 2636 2637 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2638 { 2639 unsigned int id = attr->attr; 2640 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2641 2642 if (!adapter) 2643 return -EINVAL; 2644 2645 return kvm_s390_inject_airq(kvm, adapter); 2646 } 2647 2648 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2649 { 2650 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2651 struct kvm_s390_ais_all ais; 2652 2653 if (!test_kvm_facility(kvm, 72)) 2654 return -EOPNOTSUPP; 2655 2656 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2657 return -EFAULT; 2658 2659 mutex_lock(&fi->ais_lock); 2660 fi->simm = ais.simm; 2661 fi->nimm = ais.nimm; 2662 mutex_unlock(&fi->ais_lock); 2663 2664 return 0; 2665 } 2666 2667 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2668 { 2669 int r = 0; 2670 unsigned long i; 2671 struct kvm_vcpu *vcpu; 2672 2673 switch (attr->group) { 2674 case KVM_DEV_FLIC_ENQUEUE: 2675 r = enqueue_floating_irq(dev, attr); 2676 break; 2677 case KVM_DEV_FLIC_CLEAR_IRQS: 2678 kvm_s390_clear_float_irqs(dev->kvm); 2679 break; 2680 case KVM_DEV_FLIC_APF_ENABLE: 2681 dev->kvm->arch.gmap->pfault_enabled = 1; 2682 break; 2683 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2684 dev->kvm->arch.gmap->pfault_enabled = 0; 2685 /* 2686 * Make sure no async faults are in transition when 2687 * clearing the queues. So we don't need to worry 2688 * about late coming workers. 2689 */ 2690 synchronize_srcu(&dev->kvm->srcu); 2691 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2692 kvm_clear_async_pf_completion_queue(vcpu); 2693 break; 2694 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2695 r = register_io_adapter(dev, attr); 2696 break; 2697 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2698 r = modify_io_adapter(dev, attr); 2699 break; 2700 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2701 r = clear_io_irq(dev->kvm, attr); 2702 break; 2703 case KVM_DEV_FLIC_AISM: 2704 r = modify_ais_mode(dev->kvm, attr); 2705 break; 2706 case KVM_DEV_FLIC_AIRQ_INJECT: 2707 r = flic_inject_airq(dev->kvm, attr); 2708 break; 2709 case KVM_DEV_FLIC_AISM_ALL: 2710 r = flic_ais_mode_set_all(dev->kvm, attr); 2711 break; 2712 default: 2713 r = -EINVAL; 2714 } 2715 2716 return r; 2717 } 2718 2719 static int flic_has_attr(struct kvm_device *dev, 2720 struct kvm_device_attr *attr) 2721 { 2722 switch (attr->group) { 2723 case KVM_DEV_FLIC_GET_ALL_IRQS: 2724 case KVM_DEV_FLIC_ENQUEUE: 2725 case KVM_DEV_FLIC_CLEAR_IRQS: 2726 case KVM_DEV_FLIC_APF_ENABLE: 2727 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2728 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2729 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2730 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2731 case KVM_DEV_FLIC_AISM: 2732 case KVM_DEV_FLIC_AIRQ_INJECT: 2733 case KVM_DEV_FLIC_AISM_ALL: 2734 return 0; 2735 } 2736 return -ENXIO; 2737 } 2738 2739 static int flic_create(struct kvm_device *dev, u32 type) 2740 { 2741 if (!dev) 2742 return -EINVAL; 2743 if (dev->kvm->arch.flic) 2744 return -EINVAL; 2745 dev->kvm->arch.flic = dev; 2746 return 0; 2747 } 2748 2749 static void flic_destroy(struct kvm_device *dev) 2750 { 2751 dev->kvm->arch.flic = NULL; 2752 kfree(dev); 2753 } 2754 2755 /* s390 floating irq controller (flic) */ 2756 struct kvm_device_ops kvm_flic_ops = { 2757 .name = "kvm-flic", 2758 .get_attr = flic_get_attr, 2759 .set_attr = flic_set_attr, 2760 .has_attr = flic_has_attr, 2761 .create = flic_create, 2762 .destroy = flic_destroy, 2763 }; 2764 2765 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2766 { 2767 unsigned long bit; 2768 2769 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2770 2771 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2772 } 2773 2774 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2775 { 2776 struct page *page = NULL; 2777 2778 mmap_read_lock(kvm->mm); 2779 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2780 &page, NULL, NULL); 2781 mmap_read_unlock(kvm->mm); 2782 return page; 2783 } 2784 2785 static int adapter_indicators_set(struct kvm *kvm, 2786 struct s390_io_adapter *adapter, 2787 struct kvm_s390_adapter_int *adapter_int) 2788 { 2789 unsigned long bit; 2790 int summary_set, idx; 2791 struct page *ind_page, *summary_page; 2792 void *map; 2793 2794 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2795 if (!ind_page) 2796 return -1; 2797 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2798 if (!summary_page) { 2799 put_page(ind_page); 2800 return -1; 2801 } 2802 2803 idx = srcu_read_lock(&kvm->srcu); 2804 map = page_address(ind_page); 2805 bit = get_ind_bit(adapter_int->ind_addr, 2806 adapter_int->ind_offset, adapter->swap); 2807 set_bit(bit, map); 2808 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2809 set_page_dirty_lock(ind_page); 2810 map = page_address(summary_page); 2811 bit = get_ind_bit(adapter_int->summary_addr, 2812 adapter_int->summary_offset, adapter->swap); 2813 summary_set = test_and_set_bit(bit, map); 2814 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2815 set_page_dirty_lock(summary_page); 2816 srcu_read_unlock(&kvm->srcu, idx); 2817 2818 put_page(ind_page); 2819 put_page(summary_page); 2820 return summary_set ? 0 : 1; 2821 } 2822 2823 /* 2824 * < 0 - not injected due to error 2825 * = 0 - coalesced, summary indicator already active 2826 * > 0 - injected interrupt 2827 */ 2828 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2829 struct kvm *kvm, int irq_source_id, int level, 2830 bool line_status) 2831 { 2832 int ret; 2833 struct s390_io_adapter *adapter; 2834 2835 /* We're only interested in the 0->1 transition. */ 2836 if (!level) 2837 return 0; 2838 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2839 if (!adapter) 2840 return -1; 2841 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2842 if ((ret > 0) && !adapter->masked) { 2843 ret = kvm_s390_inject_airq(kvm, adapter); 2844 if (ret == 0) 2845 ret = 1; 2846 } 2847 return ret; 2848 } 2849 2850 /* 2851 * Inject the machine check to the guest. 2852 */ 2853 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2854 struct mcck_volatile_info *mcck_info) 2855 { 2856 struct kvm_s390_interrupt_info inti; 2857 struct kvm_s390_irq irq; 2858 struct kvm_s390_mchk_info *mchk; 2859 union mci mci; 2860 __u64 cr14 = 0; /* upper bits are not used */ 2861 int rc; 2862 2863 mci.val = mcck_info->mcic; 2864 if (mci.sr) 2865 cr14 |= CR14_RECOVERY_SUBMASK; 2866 if (mci.dg) 2867 cr14 |= CR14_DEGRADATION_SUBMASK; 2868 if (mci.w) 2869 cr14 |= CR14_WARNING_SUBMASK; 2870 2871 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2872 mchk->cr14 = cr14; 2873 mchk->mcic = mcck_info->mcic; 2874 mchk->ext_damage_code = mcck_info->ext_damage_code; 2875 mchk->failing_storage_address = mcck_info->failing_storage_address; 2876 if (mci.ck) { 2877 /* Inject the floating machine check */ 2878 inti.type = KVM_S390_MCHK; 2879 rc = __inject_vm(vcpu->kvm, &inti); 2880 } else { 2881 /* Inject the machine check to specified vcpu */ 2882 irq.type = KVM_S390_MCHK; 2883 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2884 } 2885 WARN_ON_ONCE(rc); 2886 } 2887 2888 int kvm_set_routing_entry(struct kvm *kvm, 2889 struct kvm_kernel_irq_routing_entry *e, 2890 const struct kvm_irq_routing_entry *ue) 2891 { 2892 u64 uaddr; 2893 2894 switch (ue->type) { 2895 /* we store the userspace addresses instead of the guest addresses */ 2896 case KVM_IRQ_ROUTING_S390_ADAPTER: 2897 e->set = set_adapter_int; 2898 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr); 2899 if (uaddr == -EFAULT) 2900 return -EFAULT; 2901 e->adapter.summary_addr = uaddr; 2902 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr); 2903 if (uaddr == -EFAULT) 2904 return -EFAULT; 2905 e->adapter.ind_addr = uaddr; 2906 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2907 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2908 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2909 return 0; 2910 default: 2911 return -EINVAL; 2912 } 2913 } 2914 2915 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2916 int irq_source_id, int level, bool line_status) 2917 { 2918 return -EINVAL; 2919 } 2920 2921 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2922 { 2923 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2924 struct kvm_s390_irq *buf; 2925 int r = 0; 2926 int n; 2927 2928 buf = vmalloc(len); 2929 if (!buf) 2930 return -ENOMEM; 2931 2932 if (copy_from_user((void *) buf, irqstate, len)) { 2933 r = -EFAULT; 2934 goto out_free; 2935 } 2936 2937 /* 2938 * Don't allow setting the interrupt state 2939 * when there are already interrupts pending 2940 */ 2941 spin_lock(&li->lock); 2942 if (li->pending_irqs) { 2943 r = -EBUSY; 2944 goto out_unlock; 2945 } 2946 2947 for (n = 0; n < len / sizeof(*buf); n++) { 2948 r = do_inject_vcpu(vcpu, &buf[n]); 2949 if (r) 2950 break; 2951 } 2952 2953 out_unlock: 2954 spin_unlock(&li->lock); 2955 out_free: 2956 vfree(buf); 2957 2958 return r; 2959 } 2960 2961 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2962 struct kvm_s390_irq *irq, 2963 unsigned long irq_type) 2964 { 2965 switch (irq_type) { 2966 case IRQ_PEND_MCHK_EX: 2967 case IRQ_PEND_MCHK_REP: 2968 irq->type = KVM_S390_MCHK; 2969 irq->u.mchk = li->irq.mchk; 2970 break; 2971 case IRQ_PEND_PROG: 2972 irq->type = KVM_S390_PROGRAM_INT; 2973 irq->u.pgm = li->irq.pgm; 2974 break; 2975 case IRQ_PEND_PFAULT_INIT: 2976 irq->type = KVM_S390_INT_PFAULT_INIT; 2977 irq->u.ext = li->irq.ext; 2978 break; 2979 case IRQ_PEND_EXT_EXTERNAL: 2980 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2981 irq->u.extcall = li->irq.extcall; 2982 break; 2983 case IRQ_PEND_EXT_CLOCK_COMP: 2984 irq->type = KVM_S390_INT_CLOCK_COMP; 2985 break; 2986 case IRQ_PEND_EXT_CPU_TIMER: 2987 irq->type = KVM_S390_INT_CPU_TIMER; 2988 break; 2989 case IRQ_PEND_SIGP_STOP: 2990 irq->type = KVM_S390_SIGP_STOP; 2991 irq->u.stop = li->irq.stop; 2992 break; 2993 case IRQ_PEND_RESTART: 2994 irq->type = KVM_S390_RESTART; 2995 break; 2996 case IRQ_PEND_SET_PREFIX: 2997 irq->type = KVM_S390_SIGP_SET_PREFIX; 2998 irq->u.prefix = li->irq.prefix; 2999 break; 3000 } 3001 } 3002 3003 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3004 { 3005 int scn; 3006 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3007 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3008 unsigned long pending_irqs; 3009 struct kvm_s390_irq irq; 3010 unsigned long irq_type; 3011 int cpuaddr; 3012 int n = 0; 3013 3014 spin_lock(&li->lock); 3015 pending_irqs = li->pending_irqs; 3016 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3017 sizeof(sigp_emerg_pending)); 3018 spin_unlock(&li->lock); 3019 3020 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3021 memset(&irq, 0, sizeof(irq)); 3022 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3023 continue; 3024 if (n + sizeof(irq) > len) 3025 return -ENOBUFS; 3026 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3027 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3028 return -EFAULT; 3029 n += sizeof(irq); 3030 } 3031 3032 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3033 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3034 memset(&irq, 0, sizeof(irq)); 3035 if (n + sizeof(irq) > len) 3036 return -ENOBUFS; 3037 irq.type = KVM_S390_INT_EMERGENCY; 3038 irq.u.emerg.code = cpuaddr; 3039 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3040 return -EFAULT; 3041 n += sizeof(irq); 3042 } 3043 } 3044 3045 if (sca_ext_call_pending(vcpu, &scn)) { 3046 if (n + sizeof(irq) > len) 3047 return -ENOBUFS; 3048 memset(&irq, 0, sizeof(irq)); 3049 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3050 irq.u.extcall.code = scn; 3051 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3052 return -EFAULT; 3053 n += sizeof(irq); 3054 } 3055 3056 return n; 3057 } 3058 3059 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3060 { 3061 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3062 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3063 struct kvm_vcpu *vcpu; 3064 u8 vcpu_isc_mask; 3065 3066 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3067 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3068 if (psw_ioint_disabled(vcpu)) 3069 continue; 3070 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3071 if (deliverable_mask & vcpu_isc_mask) { 3072 /* lately kicked but not yet running */ 3073 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3074 return; 3075 kvm_s390_vcpu_wakeup(vcpu); 3076 return; 3077 } 3078 } 3079 } 3080 3081 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3082 { 3083 struct kvm_s390_gisa_interrupt *gi = 3084 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3085 struct kvm *kvm = 3086 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3087 u8 pending_mask; 3088 3089 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3090 if (pending_mask) { 3091 __airqs_kick_single_vcpu(kvm, pending_mask); 3092 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3093 return HRTIMER_RESTART; 3094 } 3095 3096 return HRTIMER_NORESTART; 3097 } 3098 3099 #define NULL_GISA_ADDR 0x00000000UL 3100 #define NONE_GISA_ADDR 0x00000001UL 3101 #define GISA_ADDR_MASK 0xfffff000UL 3102 3103 static void process_gib_alert_list(void) 3104 { 3105 struct kvm_s390_gisa_interrupt *gi; 3106 struct kvm_s390_gisa *gisa; 3107 struct kvm *kvm; 3108 u32 final, origin = 0UL; 3109 3110 do { 3111 /* 3112 * If the NONE_GISA_ADDR is still stored in the alert list 3113 * origin, we will leave the outer loop. No further GISA has 3114 * been added to the alert list by millicode while processing 3115 * the current alert list. 3116 */ 3117 final = (origin & NONE_GISA_ADDR); 3118 /* 3119 * Cut off the alert list and store the NONE_GISA_ADDR in the 3120 * alert list origin to avoid further GAL interruptions. 3121 * A new alert list can be build up by millicode in parallel 3122 * for guests not in the yet cut-off alert list. When in the 3123 * final loop, store the NULL_GISA_ADDR instead. This will re- 3124 * enable GAL interruptions on the host again. 3125 */ 3126 origin = xchg(&gib->alert_list_origin, 3127 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3128 /* 3129 * Loop through the just cut-off alert list and start the 3130 * gisa timers to kick idle vcpus to consume the pending 3131 * interruptions asap. 3132 */ 3133 while (origin & GISA_ADDR_MASK) { 3134 gisa = (struct kvm_s390_gisa *)(u64)origin; 3135 origin = gisa->next_alert; 3136 gisa->next_alert = (u32)(u64)gisa; 3137 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3138 gi = &kvm->arch.gisa_int; 3139 if (hrtimer_active(&gi->timer)) 3140 hrtimer_cancel(&gi->timer); 3141 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3142 } 3143 } while (!final); 3144 3145 } 3146 3147 void kvm_s390_gisa_clear(struct kvm *kvm) 3148 { 3149 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3150 3151 if (!gi->origin) 3152 return; 3153 gisa_clear_ipm(gi->origin); 3154 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3155 } 3156 3157 void kvm_s390_gisa_init(struct kvm *kvm) 3158 { 3159 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3160 3161 if (!css_general_characteristics.aiv) 3162 return; 3163 gi->origin = &kvm->arch.sie_page2->gisa; 3164 gi->alert.mask = 0; 3165 spin_lock_init(&gi->alert.ref_lock); 3166 gi->expires = 50 * 1000; /* 50 usec */ 3167 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3168 gi->timer.function = gisa_vcpu_kicker; 3169 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3170 gi->origin->next_alert = (u32)(u64)gi->origin; 3171 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3172 } 3173 3174 void kvm_s390_gisa_enable(struct kvm *kvm) 3175 { 3176 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3177 struct kvm_vcpu *vcpu; 3178 unsigned long i; 3179 u32 gisa_desc; 3180 3181 if (gi->origin) 3182 return; 3183 kvm_s390_gisa_init(kvm); 3184 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3185 if (!gisa_desc) 3186 return; 3187 kvm_for_each_vcpu(i, vcpu, kvm) { 3188 mutex_lock(&vcpu->mutex); 3189 vcpu->arch.sie_block->gd = gisa_desc; 3190 vcpu->arch.sie_block->eca |= ECA_AIV; 3191 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3192 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3193 mutex_unlock(&vcpu->mutex); 3194 } 3195 } 3196 3197 void kvm_s390_gisa_destroy(struct kvm *kvm) 3198 { 3199 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3200 struct kvm_s390_gisa *gisa = gi->origin; 3201 3202 if (!gi->origin) 3203 return; 3204 if (gi->alert.mask) 3205 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x", 3206 kvm, gi->alert.mask); 3207 while (gisa_in_alert_list(gi->origin)) 3208 cpu_relax(); 3209 hrtimer_cancel(&gi->timer); 3210 gi->origin = NULL; 3211 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); 3212 } 3213 3214 void kvm_s390_gisa_disable(struct kvm *kvm) 3215 { 3216 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3217 struct kvm_vcpu *vcpu; 3218 unsigned long i; 3219 3220 if (!gi->origin) 3221 return; 3222 kvm_for_each_vcpu(i, vcpu, kvm) { 3223 mutex_lock(&vcpu->mutex); 3224 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3225 vcpu->arch.sie_block->gd = 0U; 3226 mutex_unlock(&vcpu->mutex); 3227 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3228 } 3229 kvm_s390_gisa_destroy(kvm); 3230 } 3231 3232 /** 3233 * kvm_s390_gisc_register - register a guest ISC 3234 * 3235 * @kvm: the kernel vm to work with 3236 * @gisc: the guest interruption sub class to register 3237 * 3238 * The function extends the vm specific alert mask to use. 3239 * The effective IAM mask in the GISA is updated as well 3240 * in case the GISA is not part of the GIB alert list. 3241 * It will be updated latest when the IAM gets restored 3242 * by gisa_get_ipm_or_restore_iam(). 3243 * 3244 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3245 * has registered with the channel subsystem. 3246 * -ENODEV in case the vm uses no GISA 3247 * -ERANGE in case the guest ISC is invalid 3248 */ 3249 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3250 { 3251 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3252 3253 if (!gi->origin) 3254 return -ENODEV; 3255 if (gisc > MAX_ISC) 3256 return -ERANGE; 3257 3258 spin_lock(&gi->alert.ref_lock); 3259 gi->alert.ref_count[gisc]++; 3260 if (gi->alert.ref_count[gisc] == 1) { 3261 gi->alert.mask |= 0x80 >> gisc; 3262 gisa_set_iam(gi->origin, gi->alert.mask); 3263 } 3264 spin_unlock(&gi->alert.ref_lock); 3265 3266 return gib->nisc; 3267 } 3268 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3269 3270 /** 3271 * kvm_s390_gisc_unregister - unregister a guest ISC 3272 * 3273 * @kvm: the kernel vm to work with 3274 * @gisc: the guest interruption sub class to register 3275 * 3276 * The function reduces the vm specific alert mask to use. 3277 * The effective IAM mask in the GISA is updated as well 3278 * in case the GISA is not part of the GIB alert list. 3279 * It will be updated latest when the IAM gets restored 3280 * by gisa_get_ipm_or_restore_iam(). 3281 * 3282 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3283 * has registered with the channel subsystem. 3284 * -ENODEV in case the vm uses no GISA 3285 * -ERANGE in case the guest ISC is invalid 3286 * -EINVAL in case the guest ISC is not registered 3287 */ 3288 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3289 { 3290 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3291 int rc = 0; 3292 3293 if (!gi->origin) 3294 return -ENODEV; 3295 if (gisc > MAX_ISC) 3296 return -ERANGE; 3297 3298 spin_lock(&gi->alert.ref_lock); 3299 if (gi->alert.ref_count[gisc] == 0) { 3300 rc = -EINVAL; 3301 goto out; 3302 } 3303 gi->alert.ref_count[gisc]--; 3304 if (gi->alert.ref_count[gisc] == 0) { 3305 gi->alert.mask &= ~(0x80 >> gisc); 3306 gisa_set_iam(gi->origin, gi->alert.mask); 3307 } 3308 out: 3309 spin_unlock(&gi->alert.ref_lock); 3310 3311 return rc; 3312 } 3313 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3314 3315 static void aen_host_forward(unsigned long si) 3316 { 3317 struct kvm_s390_gisa_interrupt *gi; 3318 struct zpci_gaite *gaite; 3319 struct kvm *kvm; 3320 3321 gaite = (struct zpci_gaite *)aift->gait + 3322 (si * sizeof(struct zpci_gaite)); 3323 if (gaite->count == 0) 3324 return; 3325 if (gaite->aisb != 0) 3326 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3327 3328 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3329 if (!kvm) 3330 return; 3331 gi = &kvm->arch.gisa_int; 3332 3333 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3334 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3335 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3336 if (hrtimer_active(&gi->timer)) 3337 hrtimer_cancel(&gi->timer); 3338 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3339 kvm->stat.aen_forward++; 3340 } 3341 } 3342 3343 static void aen_process_gait(u8 isc) 3344 { 3345 bool found = false, first = true; 3346 union zpci_sic_iib iib = {{0}}; 3347 unsigned long si, flags; 3348 3349 spin_lock_irqsave(&aift->gait_lock, flags); 3350 3351 if (!aift->gait) { 3352 spin_unlock_irqrestore(&aift->gait_lock, flags); 3353 return; 3354 } 3355 3356 for (si = 0;;) { 3357 /* Scan adapter summary indicator bit vector */ 3358 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3359 if (si == -1UL) { 3360 if (first || found) { 3361 /* Re-enable interrupts. */ 3362 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3363 &iib); 3364 first = found = false; 3365 } else { 3366 /* Interrupts on and all bits processed */ 3367 break; 3368 } 3369 found = false; 3370 si = 0; 3371 /* Scan again after re-enabling interrupts */ 3372 continue; 3373 } 3374 found = true; 3375 aen_host_forward(si); 3376 } 3377 3378 spin_unlock_irqrestore(&aift->gait_lock, flags); 3379 } 3380 3381 static void gib_alert_irq_handler(struct airq_struct *airq, 3382 struct tpi_info *tpi_info) 3383 { 3384 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3385 3386 inc_irq_stat(IRQIO_GAL); 3387 3388 if ((info->forward || info->error) && 3389 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3390 aen_process_gait(info->isc); 3391 if (info->aism != 0) 3392 process_gib_alert_list(); 3393 } else { 3394 process_gib_alert_list(); 3395 } 3396 } 3397 3398 static struct airq_struct gib_alert_irq = { 3399 .handler = gib_alert_irq_handler, 3400 .lsi_ptr = &gib_alert_irq.lsi_mask, 3401 }; 3402 3403 void kvm_s390_gib_destroy(void) 3404 { 3405 if (!gib) 3406 return; 3407 if (kvm_s390_pci_interp_allowed() && aift) { 3408 mutex_lock(&aift->aift_lock); 3409 kvm_s390_pci_aen_exit(); 3410 mutex_unlock(&aift->aift_lock); 3411 } 3412 chsc_sgib(0); 3413 unregister_adapter_interrupt(&gib_alert_irq); 3414 free_page((unsigned long)gib); 3415 gib = NULL; 3416 } 3417 3418 int kvm_s390_gib_init(u8 nisc) 3419 { 3420 int rc = 0; 3421 3422 if (!css_general_characteristics.aiv) { 3423 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3424 goto out; 3425 } 3426 3427 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3428 if (!gib) { 3429 rc = -ENOMEM; 3430 goto out; 3431 } 3432 3433 gib_alert_irq.isc = nisc; 3434 if (register_adapter_interrupt(&gib_alert_irq)) { 3435 pr_err("Registering the GIB alert interruption handler failed\n"); 3436 rc = -EIO; 3437 goto out_free_gib; 3438 } 3439 3440 gib->nisc = nisc; 3441 if (chsc_sgib((u32)(u64)gib)) { 3442 pr_err("Associating the GIB with the AIV facility failed\n"); 3443 free_page((unsigned long)gib); 3444 gib = NULL; 3445 rc = -EIO; 3446 goto out_unreg_gal; 3447 } 3448 3449 if (kvm_s390_pci_interp_allowed()) { 3450 if (kvm_s390_pci_aen_init(nisc)) { 3451 pr_err("Initializing AEN for PCI failed\n"); 3452 rc = -EIO; 3453 goto out_unreg_gal; 3454 } 3455 } 3456 3457 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3458 goto out; 3459 3460 out_unreg_gal: 3461 unregister_adapter_interrupt(&gib_alert_irq); 3462 out_free_gib: 3463 free_page((unsigned long)gib); 3464 gib = NULL; 3465 out: 3466 return rc; 3467 } 3468