1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kvm-s390: " fmt 11 12 #include <linux/cpufeature.h> 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/export.h> 17 #include <linux/mmu_context.h> 18 #include <linux/nospec.h> 19 #include <linux/signal.h> 20 #include <linux/slab.h> 21 #include <linux/bitmap.h> 22 #include <linux/vmalloc.h> 23 #include <asm/access-regs.h> 24 #include <asm/asm-offsets.h> 25 #include <asm/dis.h> 26 #include <linux/uaccess.h> 27 #include <asm/sclp.h> 28 #include <asm/isc.h> 29 #include <asm/gmap.h> 30 #include <asm/nmi.h> 31 #include <asm/airq.h> 32 #include <asm/tpi.h> 33 #include "kvm-s390.h" 34 #include "gaccess.h" 35 #include "trace-s390.h" 36 #include "pci.h" 37 38 #define PFAULT_INIT 0x0600 39 #define PFAULT_DONE 0x0680 40 #define VIRTIO_PARAM 0x0d00 41 42 static struct kvm_s390_gib *gib; 43 44 /* handle external calls via sigp interpretation facility */ 45 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 46 { 47 int c, scn; 48 49 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 50 return 0; 51 52 BUG_ON(!kvm_s390_use_sca_entries()); 53 read_lock(&vcpu->kvm->arch.sca_lock); 54 if (vcpu->kvm->arch.use_esca) { 55 struct esca_block *sca = vcpu->kvm->arch.sca; 56 union esca_sigp_ctrl sigp_ctrl = 57 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 58 59 c = sigp_ctrl.c; 60 scn = sigp_ctrl.scn; 61 } else { 62 struct bsca_block *sca = vcpu->kvm->arch.sca; 63 union bsca_sigp_ctrl sigp_ctrl = 64 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 65 66 c = sigp_ctrl.c; 67 scn = sigp_ctrl.scn; 68 } 69 read_unlock(&vcpu->kvm->arch.sca_lock); 70 71 if (src_id) 72 *src_id = scn; 73 74 return c; 75 } 76 77 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 78 { 79 int expect, rc; 80 81 BUG_ON(!kvm_s390_use_sca_entries()); 82 read_lock(&vcpu->kvm->arch.sca_lock); 83 if (vcpu->kvm->arch.use_esca) { 84 struct esca_block *sca = vcpu->kvm->arch.sca; 85 union esca_sigp_ctrl *sigp_ctrl = 86 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 87 union esca_sigp_ctrl new_val = {0}, old_val; 88 89 old_val = READ_ONCE(*sigp_ctrl); 90 new_val.scn = src_id; 91 new_val.c = 1; 92 old_val.c = 0; 93 94 expect = old_val.value; 95 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 96 } else { 97 struct bsca_block *sca = vcpu->kvm->arch.sca; 98 union bsca_sigp_ctrl *sigp_ctrl = 99 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 100 union bsca_sigp_ctrl new_val = {0}, old_val; 101 102 old_val = READ_ONCE(*sigp_ctrl); 103 new_val.scn = src_id; 104 new_val.c = 1; 105 old_val.c = 0; 106 107 expect = old_val.value; 108 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 109 } 110 read_unlock(&vcpu->kvm->arch.sca_lock); 111 112 if (rc != expect) { 113 /* another external call is pending */ 114 return -EBUSY; 115 } 116 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 117 return 0; 118 } 119 120 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 121 { 122 if (!kvm_s390_use_sca_entries()) 123 return; 124 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 125 read_lock(&vcpu->kvm->arch.sca_lock); 126 if (vcpu->kvm->arch.use_esca) { 127 struct esca_block *sca = vcpu->kvm->arch.sca; 128 union esca_sigp_ctrl *sigp_ctrl = 129 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 130 131 WRITE_ONCE(sigp_ctrl->value, 0); 132 } else { 133 struct bsca_block *sca = vcpu->kvm->arch.sca; 134 union bsca_sigp_ctrl *sigp_ctrl = 135 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 136 137 WRITE_ONCE(sigp_ctrl->value, 0); 138 } 139 read_unlock(&vcpu->kvm->arch.sca_lock); 140 } 141 142 int psw_extint_disabled(struct kvm_vcpu *vcpu) 143 { 144 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 145 } 146 147 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 148 { 149 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 150 } 151 152 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 153 { 154 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 155 } 156 157 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 158 { 159 return psw_extint_disabled(vcpu) && 160 psw_ioint_disabled(vcpu) && 161 psw_mchk_disabled(vcpu); 162 } 163 164 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 165 { 166 if (psw_extint_disabled(vcpu) || 167 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 168 return 0; 169 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 170 /* No timer interrupts when single stepping */ 171 return 0; 172 return 1; 173 } 174 175 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 176 { 177 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 178 const u64 ckc = vcpu->arch.sie_block->ckc; 179 180 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 181 if ((s64)ckc >= (s64)now) 182 return 0; 183 } else if (ckc >= now) { 184 return 0; 185 } 186 return ckc_interrupts_enabled(vcpu); 187 } 188 189 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 190 { 191 return !psw_extint_disabled(vcpu) && 192 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 193 } 194 195 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 196 { 197 if (!cpu_timer_interrupts_enabled(vcpu)) 198 return 0; 199 return kvm_s390_get_cpu_timer(vcpu) >> 63; 200 } 201 202 static uint64_t isc_to_isc_bits(int isc) 203 { 204 return (0x80 >> isc) << 24; 205 } 206 207 static inline u32 isc_to_int_word(u8 isc) 208 { 209 return ((u32)isc << 27) | 0x80000000; 210 } 211 212 static inline u8 int_word_to_isc(u32 int_word) 213 { 214 return (int_word & 0x38000000) >> 27; 215 } 216 217 /* 218 * To use atomic bitmap functions, we have to provide a bitmap address 219 * that is u64 aligned. However, the ipm might be u32 aligned. 220 * Therefore, we logically start the bitmap at the very beginning of the 221 * struct and fixup the bit number. 222 */ 223 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 224 225 /** 226 * gisa_set_iam - change the GISA interruption alert mask 227 * 228 * @gisa: gisa to operate on 229 * @iam: new IAM value to use 230 * 231 * Change the IAM atomically with the next alert address and the IPM 232 * of the GISA if the GISA is not part of the GIB alert list. All three 233 * fields are located in the first long word of the GISA. 234 * 235 * Returns: 0 on success 236 * -EBUSY in case the gisa is part of the alert list 237 */ 238 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 239 { 240 u64 word, _word; 241 242 word = READ_ONCE(gisa->u64.word[0]); 243 do { 244 if ((u64)gisa != word >> 32) 245 return -EBUSY; 246 _word = (word & ~0xffUL) | iam; 247 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 248 249 return 0; 250 } 251 252 /** 253 * gisa_clear_ipm - clear the GISA interruption pending mask 254 * 255 * @gisa: gisa to operate on 256 * 257 * Clear the IPM atomically with the next alert address and the IAM 258 * of the GISA unconditionally. All three fields are located in the 259 * first long word of the GISA. 260 */ 261 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 262 { 263 u64 word, _word; 264 265 word = READ_ONCE(gisa->u64.word[0]); 266 do { 267 _word = word & ~(0xffUL << 24); 268 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 269 } 270 271 /** 272 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 273 * 274 * @gi: gisa interrupt struct to work on 275 * 276 * Atomically restores the interruption alert mask if none of the 277 * relevant ISCs are pending and return the IPM. 278 * 279 * Returns: the relevant pending ISCs 280 */ 281 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 282 { 283 u8 pending_mask, alert_mask; 284 u64 word, _word; 285 286 word = READ_ONCE(gi->origin->u64.word[0]); 287 do { 288 alert_mask = READ_ONCE(gi->alert.mask); 289 pending_mask = (u8)(word >> 24) & alert_mask; 290 if (pending_mask) 291 return pending_mask; 292 _word = (word & ~0xffUL) | alert_mask; 293 } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word)); 294 295 return 0; 296 } 297 298 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 299 { 300 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 301 } 302 303 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 304 { 305 return READ_ONCE(gisa->ipm); 306 } 307 308 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 309 { 310 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 311 } 312 313 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 314 { 315 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 316 vcpu->arch.local_int.pending_irqs; 317 318 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 319 return pending; 320 } 321 322 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 323 { 324 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 325 unsigned long pending_mask; 326 327 pending_mask = pending_irqs_no_gisa(vcpu); 328 if (gi->origin) 329 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 330 return pending_mask; 331 } 332 333 static inline int isc_to_irq_type(unsigned long isc) 334 { 335 return IRQ_PEND_IO_ISC_0 - isc; 336 } 337 338 static inline int irq_type_to_isc(unsigned long irq_type) 339 { 340 return IRQ_PEND_IO_ISC_0 - irq_type; 341 } 342 343 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 344 unsigned long active_mask) 345 { 346 int i; 347 348 for (i = 0; i <= MAX_ISC; i++) 349 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 350 active_mask &= ~(1UL << (isc_to_irq_type(i))); 351 352 return active_mask; 353 } 354 355 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 356 { 357 unsigned long active_mask; 358 359 active_mask = pending_irqs(vcpu); 360 if (!active_mask) 361 return 0; 362 363 if (psw_extint_disabled(vcpu)) 364 active_mask &= ~IRQ_PEND_EXT_MASK; 365 if (psw_ioint_disabled(vcpu)) 366 active_mask &= ~IRQ_PEND_IO_MASK; 367 else 368 active_mask = disable_iscs(vcpu, active_mask); 369 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 370 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 371 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 372 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 373 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 374 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 375 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 376 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 377 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 378 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 379 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 380 } 381 if (psw_mchk_disabled(vcpu)) 382 active_mask &= ~IRQ_PEND_MCHK_MASK; 383 /* PV guest cpus can have a single interruption injected at a time. */ 384 if (kvm_s390_pv_cpu_get_handle(vcpu) && 385 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 386 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 387 IRQ_PEND_IO_MASK | 388 IRQ_PEND_MCHK_MASK); 389 /* 390 * Check both floating and local interrupt's cr14 because 391 * bit IRQ_PEND_MCHK_REP could be set in both cases. 392 */ 393 if (!(vcpu->arch.sie_block->gcr[14] & 394 (vcpu->kvm->arch.float_int.mchk.cr14 | 395 vcpu->arch.local_int.irq.mchk.cr14))) 396 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 397 398 /* 399 * STOP irqs will never be actively delivered. They are triggered via 400 * intercept requests and cleared when the stop intercept is performed. 401 */ 402 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 403 404 return active_mask; 405 } 406 407 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 408 { 409 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 410 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 411 } 412 413 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 414 { 415 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 416 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 417 } 418 419 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 420 { 421 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 422 CPUSTAT_STOP_INT); 423 vcpu->arch.sie_block->lctl = 0x0000; 424 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 425 426 if (guestdbg_enabled(vcpu)) { 427 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 428 LCTL_CR10 | LCTL_CR11); 429 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 430 } 431 } 432 433 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 434 { 435 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 436 return; 437 if (psw_ioint_disabled(vcpu)) 438 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 439 else 440 vcpu->arch.sie_block->lctl |= LCTL_CR6; 441 } 442 443 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 444 { 445 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 446 return; 447 if (psw_extint_disabled(vcpu)) 448 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 449 else 450 vcpu->arch.sie_block->lctl |= LCTL_CR0; 451 } 452 453 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 454 { 455 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 456 return; 457 if (psw_mchk_disabled(vcpu)) 458 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 459 else 460 vcpu->arch.sie_block->lctl |= LCTL_CR14; 461 } 462 463 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 464 { 465 if (kvm_s390_is_stop_irq_pending(vcpu)) 466 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 467 } 468 469 /* Set interception request for non-deliverable interrupts */ 470 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 471 { 472 set_intercept_indicators_io(vcpu); 473 set_intercept_indicators_ext(vcpu); 474 set_intercept_indicators_mchk(vcpu); 475 set_intercept_indicators_stop(vcpu); 476 } 477 478 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 479 { 480 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 481 int rc = 0; 482 483 vcpu->stat.deliver_cputm++; 484 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 485 0, 0); 486 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 487 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 488 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 489 } else { 490 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 491 (u16 *)__LC_EXT_INT_CODE); 492 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 493 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 494 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 495 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 496 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 497 } 498 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 499 return rc ? -EFAULT : 0; 500 } 501 502 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 503 { 504 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 505 int rc = 0; 506 507 vcpu->stat.deliver_ckc++; 508 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 509 0, 0); 510 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 511 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 512 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 513 } else { 514 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 515 (u16 __user *)__LC_EXT_INT_CODE); 516 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 517 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 518 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 519 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 520 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 521 } 522 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 523 return rc ? -EFAULT : 0; 524 } 525 526 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 527 { 528 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 529 struct kvm_s390_ext_info ext; 530 int rc; 531 532 spin_lock(&li->lock); 533 ext = li->irq.ext; 534 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 535 li->irq.ext.ext_params2 = 0; 536 spin_unlock(&li->lock); 537 538 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 539 ext.ext_params2); 540 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 541 KVM_S390_INT_PFAULT_INIT, 542 0, ext.ext_params2); 543 544 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 545 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 546 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 547 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 548 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 549 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 550 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 551 return rc ? -EFAULT : 0; 552 } 553 554 static int __write_machine_check(struct kvm_vcpu *vcpu, 555 struct kvm_s390_mchk_info *mchk) 556 { 557 unsigned long ext_sa_addr; 558 unsigned long lc; 559 freg_t fprs[NUM_FPRS]; 560 union mci mci; 561 int rc; 562 563 /* 564 * All other possible payload for a machine check (e.g. the register 565 * contents in the save area) will be handled by the ultravisor, as 566 * the hypervisor does not not have the needed information for 567 * protected guests. 568 */ 569 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 570 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 571 vcpu->arch.sie_block->mcic = mchk->mcic; 572 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 573 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 574 return 0; 575 } 576 577 mci.val = mchk->mcic; 578 /* take care of lazy register loading */ 579 kvm_s390_fpu_store(vcpu->run); 580 save_access_regs(vcpu->run->s.regs.acrs); 581 if (cpu_has_gs() && vcpu->arch.gs_enabled) 582 save_gs_cb(current->thread.gs_cb); 583 584 /* Extended save area */ 585 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 586 sizeof(unsigned long)); 587 /* Only bits 0 through 63-LC are used for address formation */ 588 lc = ext_sa_addr & MCESA_LC_MASK; 589 if (test_kvm_facility(vcpu->kvm, 133)) { 590 switch (lc) { 591 case 0: 592 case 10: 593 ext_sa_addr &= ~0x3ffUL; 594 break; 595 case 11: 596 ext_sa_addr &= ~0x7ffUL; 597 break; 598 case 12: 599 ext_sa_addr &= ~0xfffUL; 600 break; 601 default: 602 ext_sa_addr = 0; 603 break; 604 } 605 } else { 606 ext_sa_addr &= ~0x3ffUL; 607 } 608 609 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 610 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 611 512)) 612 mci.vr = 0; 613 } else { 614 mci.vr = 0; 615 } 616 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 617 && (lc == 11 || lc == 12)) { 618 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 619 &vcpu->run->s.regs.gscb, 32)) 620 mci.gs = 0; 621 } else { 622 mci.gs = 0; 623 } 624 625 /* General interruption information */ 626 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 627 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 628 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 629 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 630 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 631 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 632 633 /* Register-save areas */ 634 if (cpu_has_vx()) { 635 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 636 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 637 } else { 638 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 639 vcpu->run->s.regs.fprs, 128); 640 } 641 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 642 vcpu->run->s.regs.gprs, 128); 643 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, 644 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 645 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 646 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 647 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 648 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 649 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 650 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 651 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 652 &vcpu->run->s.regs.acrs, 64); 653 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 654 &vcpu->arch.sie_block->gcr, 128); 655 656 /* Extended interruption information */ 657 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 658 (u32 __user *) __LC_EXT_DAMAGE_CODE); 659 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 660 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 661 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 662 sizeof(mchk->fixed_logout)); 663 return rc ? -EFAULT : 0; 664 } 665 666 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 667 { 668 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 669 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 670 struct kvm_s390_mchk_info mchk = {}; 671 int deliver = 0; 672 int rc = 0; 673 674 spin_lock(&fi->lock); 675 spin_lock(&li->lock); 676 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 677 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 678 /* 679 * If there was an exigent machine check pending, then any 680 * repressible machine checks that might have been pending 681 * are indicated along with it, so always clear bits for 682 * repressible and exigent interrupts 683 */ 684 mchk = li->irq.mchk; 685 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 686 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 687 memset(&li->irq.mchk, 0, sizeof(mchk)); 688 deliver = 1; 689 } 690 /* 691 * We indicate floating repressible conditions along with 692 * other pending conditions. Channel Report Pending and Channel 693 * Subsystem damage are the only two and are indicated by 694 * bits in mcic and masked in cr14. 695 */ 696 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 697 mchk.mcic |= fi->mchk.mcic; 698 mchk.cr14 |= fi->mchk.cr14; 699 memset(&fi->mchk, 0, sizeof(mchk)); 700 deliver = 1; 701 } 702 spin_unlock(&li->lock); 703 spin_unlock(&fi->lock); 704 705 if (deliver) { 706 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 707 mchk.mcic); 708 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 709 KVM_S390_MCHK, 710 mchk.cr14, mchk.mcic); 711 vcpu->stat.deliver_machine_check++; 712 rc = __write_machine_check(vcpu, &mchk); 713 } 714 return rc; 715 } 716 717 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 718 { 719 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 720 int rc = 0; 721 722 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 723 vcpu->stat.deliver_restart_signal++; 724 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 725 726 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 727 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 728 } else { 729 rc = write_guest_lc(vcpu, 730 offsetof(struct lowcore, restart_old_psw), 731 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 732 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 733 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 734 } 735 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 736 return rc ? -EFAULT : 0; 737 } 738 739 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 740 { 741 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 742 struct kvm_s390_prefix_info prefix; 743 744 spin_lock(&li->lock); 745 prefix = li->irq.prefix; 746 li->irq.prefix.address = 0; 747 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 748 spin_unlock(&li->lock); 749 750 vcpu->stat.deliver_prefix_signal++; 751 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 752 KVM_S390_SIGP_SET_PREFIX, 753 prefix.address, 0); 754 755 kvm_s390_set_prefix(vcpu, prefix.address); 756 return 0; 757 } 758 759 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 760 { 761 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 762 int rc; 763 int cpu_addr; 764 765 spin_lock(&li->lock); 766 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 767 clear_bit(cpu_addr, li->sigp_emerg_pending); 768 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 769 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 770 spin_unlock(&li->lock); 771 772 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 773 vcpu->stat.deliver_emergency_signal++; 774 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 775 cpu_addr, 0); 776 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 777 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 778 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 779 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 780 return 0; 781 } 782 783 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 784 (u16 *)__LC_EXT_INT_CODE); 785 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 786 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 787 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 788 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 789 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 790 return rc ? -EFAULT : 0; 791 } 792 793 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 794 { 795 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 796 struct kvm_s390_extcall_info extcall; 797 int rc; 798 799 spin_lock(&li->lock); 800 extcall = li->irq.extcall; 801 li->irq.extcall.code = 0; 802 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 803 spin_unlock(&li->lock); 804 805 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 806 vcpu->stat.deliver_external_call++; 807 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 808 KVM_S390_INT_EXTERNAL_CALL, 809 extcall.code, 0); 810 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 811 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 812 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 813 vcpu->arch.sie_block->extcpuaddr = extcall.code; 814 return 0; 815 } 816 817 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 818 (u16 *)__LC_EXT_INT_CODE); 819 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 820 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 821 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 822 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 823 sizeof(psw_t)); 824 return rc ? -EFAULT : 0; 825 } 826 827 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 828 { 829 switch (code) { 830 case PGM_SPECIFICATION: 831 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 832 break; 833 case PGM_OPERAND: 834 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 835 break; 836 default: 837 return -EINVAL; 838 } 839 return 0; 840 } 841 842 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 843 { 844 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 845 struct kvm_s390_pgm_info pgm_info; 846 int rc = 0, nullifying = false; 847 u16 ilen; 848 849 spin_lock(&li->lock); 850 pgm_info = li->irq.pgm; 851 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 852 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 853 spin_unlock(&li->lock); 854 855 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 856 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 857 pgm_info.code, ilen); 858 vcpu->stat.deliver_program++; 859 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 860 pgm_info.code, 0); 861 862 /* PER is handled by the ultravisor */ 863 if (kvm_s390_pv_cpu_is_protected(vcpu)) 864 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 865 866 switch (pgm_info.code & ~PGM_PER) { 867 case PGM_AFX_TRANSLATION: 868 case PGM_ASX_TRANSLATION: 869 case PGM_EX_TRANSLATION: 870 case PGM_LFX_TRANSLATION: 871 case PGM_LSTE_SEQUENCE: 872 case PGM_LSX_TRANSLATION: 873 case PGM_LX_TRANSLATION: 874 case PGM_PRIMARY_AUTHORITY: 875 case PGM_SECONDARY_AUTHORITY: 876 nullifying = true; 877 fallthrough; 878 case PGM_SPACE_SWITCH: 879 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 880 (u64 *)__LC_TRANS_EXC_CODE); 881 break; 882 case PGM_ALEN_TRANSLATION: 883 case PGM_ALE_SEQUENCE: 884 case PGM_ASTE_INSTANCE: 885 case PGM_ASTE_SEQUENCE: 886 case PGM_ASTE_VALIDITY: 887 case PGM_EXTENDED_AUTHORITY: 888 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 889 (u8 *)__LC_EXC_ACCESS_ID); 890 nullifying = true; 891 break; 892 case PGM_ASCE_TYPE: 893 case PGM_PAGE_TRANSLATION: 894 case PGM_REGION_FIRST_TRANS: 895 case PGM_REGION_SECOND_TRANS: 896 case PGM_REGION_THIRD_TRANS: 897 case PGM_SEGMENT_TRANSLATION: 898 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 899 (u64 *)__LC_TRANS_EXC_CODE); 900 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 901 (u8 *)__LC_EXC_ACCESS_ID); 902 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 903 (u8 *)__LC_OP_ACCESS_ID); 904 nullifying = true; 905 break; 906 case PGM_MONITOR: 907 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 908 (u16 *)__LC_MON_CLASS_NR); 909 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 910 (u64 *)__LC_MON_CODE); 911 break; 912 case PGM_VECTOR_PROCESSING: 913 case PGM_DATA: 914 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 915 (u32 *)__LC_DATA_EXC_CODE); 916 break; 917 case PGM_PROTECTION: 918 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 919 (u64 *)__LC_TRANS_EXC_CODE); 920 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 921 (u8 *)__LC_EXC_ACCESS_ID); 922 break; 923 case PGM_STACK_FULL: 924 case PGM_STACK_EMPTY: 925 case PGM_STACK_SPECIFICATION: 926 case PGM_STACK_TYPE: 927 case PGM_STACK_OPERATION: 928 case PGM_TRACE_TABEL: 929 case PGM_CRYPTO_OPERATION: 930 nullifying = true; 931 break; 932 } 933 934 if (pgm_info.code & PGM_PER) { 935 rc |= put_guest_lc(vcpu, pgm_info.per_code, 936 (u8 *) __LC_PER_CODE); 937 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 938 (u8 *)__LC_PER_ATMID); 939 rc |= put_guest_lc(vcpu, pgm_info.per_address, 940 (u64 *) __LC_PER_ADDRESS); 941 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 942 (u8 *) __LC_PER_ACCESS_ID); 943 } 944 945 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 946 kvm_s390_rewind_psw(vcpu, ilen); 947 948 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 949 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 950 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 951 (u64 *) __LC_PGM_LAST_BREAK); 952 rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE); 953 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 954 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 955 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 956 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 957 return rc ? -EFAULT : 0; 958 } 959 960 #define SCCB_MASK 0xFFFFFFF8 961 #define SCCB_EVENT_PENDING 0x3 962 963 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 964 { 965 int rc; 966 967 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 968 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 969 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 970 vcpu->arch.sie_block->eiparams = parm; 971 return 0; 972 } 973 974 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 975 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 976 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 977 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 978 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 979 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 980 rc |= put_guest_lc(vcpu, parm, 981 (u32 *)__LC_EXT_PARAMS); 982 983 return rc ? -EFAULT : 0; 984 } 985 986 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 987 { 988 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 989 struct kvm_s390_ext_info ext; 990 991 spin_lock(&fi->lock); 992 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 993 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 994 spin_unlock(&fi->lock); 995 return 0; 996 } 997 ext = fi->srv_signal; 998 memset(&fi->srv_signal, 0, sizeof(ext)); 999 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1000 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1001 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1002 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1003 spin_unlock(&fi->lock); 1004 1005 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1006 ext.ext_params); 1007 vcpu->stat.deliver_service_signal++; 1008 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1009 ext.ext_params, 0); 1010 1011 return write_sclp(vcpu, ext.ext_params); 1012 } 1013 1014 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1015 { 1016 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1017 struct kvm_s390_ext_info ext; 1018 1019 spin_lock(&fi->lock); 1020 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1021 spin_unlock(&fi->lock); 1022 return 0; 1023 } 1024 ext = fi->srv_signal; 1025 /* only clear the event bits */ 1026 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1027 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1028 spin_unlock(&fi->lock); 1029 1030 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1031 vcpu->stat.deliver_service_signal++; 1032 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1033 ext.ext_params, 0); 1034 1035 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); 1036 } 1037 1038 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1039 { 1040 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1041 struct kvm_s390_interrupt_info *inti; 1042 int rc = 0; 1043 1044 spin_lock(&fi->lock); 1045 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1046 struct kvm_s390_interrupt_info, 1047 list); 1048 if (inti) { 1049 list_del(&inti->list); 1050 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1051 } 1052 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1053 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1054 spin_unlock(&fi->lock); 1055 1056 if (inti) { 1057 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1058 KVM_S390_INT_PFAULT_DONE, 0, 1059 inti->ext.ext_params2); 1060 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1061 inti->ext.ext_params2); 1062 1063 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1064 (u16 *)__LC_EXT_INT_CODE); 1065 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1066 (u16 *)__LC_EXT_CPU_ADDR); 1067 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1068 &vcpu->arch.sie_block->gpsw, 1069 sizeof(psw_t)); 1070 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1071 &vcpu->arch.sie_block->gpsw, 1072 sizeof(psw_t)); 1073 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1074 (u64 *)__LC_EXT_PARAMS2); 1075 kfree(inti); 1076 } 1077 return rc ? -EFAULT : 0; 1078 } 1079 1080 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1081 { 1082 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1083 struct kvm_s390_interrupt_info *inti; 1084 int rc = 0; 1085 1086 spin_lock(&fi->lock); 1087 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1088 struct kvm_s390_interrupt_info, 1089 list); 1090 if (inti) { 1091 VCPU_EVENT(vcpu, 4, 1092 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1093 inti->ext.ext_params, inti->ext.ext_params2); 1094 vcpu->stat.deliver_virtio++; 1095 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1096 inti->type, 1097 inti->ext.ext_params, 1098 inti->ext.ext_params2); 1099 list_del(&inti->list); 1100 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1101 } 1102 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1103 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1104 spin_unlock(&fi->lock); 1105 1106 if (inti) { 1107 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1108 (u16 *)__LC_EXT_INT_CODE); 1109 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1110 (u16 *)__LC_EXT_CPU_ADDR); 1111 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1112 &vcpu->arch.sie_block->gpsw, 1113 sizeof(psw_t)); 1114 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1115 &vcpu->arch.sie_block->gpsw, 1116 sizeof(psw_t)); 1117 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1118 (u32 *)__LC_EXT_PARAMS); 1119 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1120 (u64 *)__LC_EXT_PARAMS2); 1121 kfree(inti); 1122 } 1123 return rc ? -EFAULT : 0; 1124 } 1125 1126 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1127 { 1128 int rc; 1129 1130 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1131 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1132 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1133 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1134 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1135 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1136 return 0; 1137 } 1138 1139 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1140 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1141 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1142 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1143 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1144 &vcpu->arch.sie_block->gpsw, 1145 sizeof(psw_t)); 1146 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1147 &vcpu->arch.sie_block->gpsw, 1148 sizeof(psw_t)); 1149 return rc ? -EFAULT : 0; 1150 } 1151 1152 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1153 unsigned long irq_type) 1154 { 1155 struct list_head *isc_list; 1156 struct kvm_s390_float_interrupt *fi; 1157 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1158 struct kvm_s390_interrupt_info *inti = NULL; 1159 struct kvm_s390_io_info io; 1160 u32 isc; 1161 int rc = 0; 1162 1163 fi = &vcpu->kvm->arch.float_int; 1164 1165 spin_lock(&fi->lock); 1166 isc = irq_type_to_isc(irq_type); 1167 isc_list = &fi->lists[isc]; 1168 inti = list_first_entry_or_null(isc_list, 1169 struct kvm_s390_interrupt_info, 1170 list); 1171 if (inti) { 1172 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1173 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1174 else 1175 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1176 inti->io.subchannel_id >> 8, 1177 inti->io.subchannel_id >> 1 & 0x3, 1178 inti->io.subchannel_nr); 1179 1180 vcpu->stat.deliver_io++; 1181 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1182 inti->type, 1183 ((__u32)inti->io.subchannel_id << 16) | 1184 inti->io.subchannel_nr, 1185 ((__u64)inti->io.io_int_parm << 32) | 1186 inti->io.io_int_word); 1187 list_del(&inti->list); 1188 fi->counters[FIRQ_CNTR_IO] -= 1; 1189 } 1190 if (list_empty(isc_list)) 1191 clear_bit(irq_type, &fi->pending_irqs); 1192 spin_unlock(&fi->lock); 1193 1194 if (inti) { 1195 rc = __do_deliver_io(vcpu, &(inti->io)); 1196 kfree(inti); 1197 goto out; 1198 } 1199 1200 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1201 /* 1202 * in case an adapter interrupt was not delivered 1203 * in SIE context KVM will handle the delivery 1204 */ 1205 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1206 memset(&io, 0, sizeof(io)); 1207 io.io_int_word = isc_to_int_word(isc); 1208 vcpu->stat.deliver_io++; 1209 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1210 KVM_S390_INT_IO(1, 0, 0, 0), 1211 ((__u32)io.subchannel_id << 16) | 1212 io.subchannel_nr, 1213 ((__u64)io.io_int_parm << 32) | 1214 io.io_int_word); 1215 rc = __do_deliver_io(vcpu, &io); 1216 } 1217 out: 1218 return rc; 1219 } 1220 1221 /* Check whether an external call is pending (deliverable or not) */ 1222 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1223 { 1224 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1225 1226 if (!sclp.has_sigpif) 1227 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1228 1229 return sca_ext_call_pending(vcpu, NULL); 1230 } 1231 1232 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1233 { 1234 if (deliverable_irqs(vcpu)) 1235 return 1; 1236 1237 if (kvm_cpu_has_pending_timer(vcpu)) 1238 return 1; 1239 1240 /* external call pending and deliverable */ 1241 if (kvm_s390_ext_call_pending(vcpu) && 1242 !psw_extint_disabled(vcpu) && 1243 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1244 return 1; 1245 1246 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1247 return 1; 1248 return 0; 1249 } 1250 1251 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1252 { 1253 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1254 } 1255 1256 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1257 { 1258 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1259 const u64 ckc = vcpu->arch.sie_block->ckc; 1260 u64 cputm, sltime = 0; 1261 1262 if (ckc_interrupts_enabled(vcpu)) { 1263 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1264 if ((s64)now < (s64)ckc) 1265 sltime = tod_to_ns((s64)ckc - (s64)now); 1266 } else if (now < ckc) { 1267 sltime = tod_to_ns(ckc - now); 1268 } 1269 /* already expired */ 1270 if (!sltime) 1271 return 0; 1272 if (cpu_timer_interrupts_enabled(vcpu)) { 1273 cputm = kvm_s390_get_cpu_timer(vcpu); 1274 /* already expired? */ 1275 if (cputm >> 63) 1276 return 0; 1277 return min_t(u64, sltime, tod_to_ns(cputm)); 1278 } 1279 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1280 sltime = kvm_s390_get_cpu_timer(vcpu); 1281 /* already expired? */ 1282 if (sltime >> 63) 1283 return 0; 1284 } 1285 return sltime; 1286 } 1287 1288 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1289 { 1290 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1291 u64 sltime; 1292 1293 vcpu->stat.exit_wait_state++; 1294 1295 /* fast path */ 1296 if (kvm_arch_vcpu_runnable(vcpu)) 1297 return 0; 1298 1299 if (psw_interrupts_disabled(vcpu)) { 1300 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1301 return -EOPNOTSUPP; /* disabled wait */ 1302 } 1303 1304 if (gi->origin && 1305 (gisa_get_ipm_or_restore_iam(gi) & 1306 vcpu->arch.sie_block->gcr[6] >> 24)) 1307 return 0; 1308 1309 if (!ckc_interrupts_enabled(vcpu) && 1310 !cpu_timer_interrupts_enabled(vcpu)) { 1311 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1312 __set_cpu_idle(vcpu); 1313 goto no_timer; 1314 } 1315 1316 sltime = __calculate_sltime(vcpu); 1317 if (!sltime) 1318 return 0; 1319 1320 __set_cpu_idle(vcpu); 1321 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1322 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1323 no_timer: 1324 kvm_vcpu_srcu_read_unlock(vcpu); 1325 vcpu->kvm->arch.float_int.last_sleep_cpu = vcpu->vcpu_idx; 1326 kvm_vcpu_halt(vcpu); 1327 vcpu->valid_wakeup = false; 1328 __unset_cpu_idle(vcpu); 1329 kvm_vcpu_srcu_read_lock(vcpu); 1330 1331 hrtimer_cancel(&vcpu->arch.ckc_timer); 1332 return 0; 1333 } 1334 1335 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1336 { 1337 vcpu->valid_wakeup = true; 1338 kvm_vcpu_wake_up(vcpu); 1339 1340 /* 1341 * The VCPU might not be sleeping but rather executing VSIE. Let's 1342 * kick it, so it leaves the SIE to process the request. 1343 */ 1344 kvm_s390_vsie_kick(vcpu); 1345 } 1346 1347 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1348 { 1349 struct kvm_vcpu *vcpu; 1350 u64 sltime; 1351 1352 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1353 sltime = __calculate_sltime(vcpu); 1354 1355 /* 1356 * If the monotonic clock runs faster than the tod clock we might be 1357 * woken up too early and have to go back to sleep to avoid deadlocks. 1358 */ 1359 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1360 return HRTIMER_RESTART; 1361 kvm_s390_vcpu_wakeup(vcpu); 1362 return HRTIMER_NORESTART; 1363 } 1364 1365 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1366 { 1367 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1368 1369 spin_lock(&li->lock); 1370 li->pending_irqs = 0; 1371 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1372 memset(&li->irq, 0, sizeof(li->irq)); 1373 spin_unlock(&li->lock); 1374 1375 sca_clear_ext_call(vcpu); 1376 } 1377 1378 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1379 { 1380 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1381 int rc = 0; 1382 bool delivered = false; 1383 unsigned long irq_type; 1384 unsigned long irqs; 1385 1386 __reset_intercept_indicators(vcpu); 1387 1388 /* pending ckc conditions might have been invalidated */ 1389 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1390 if (ckc_irq_pending(vcpu)) 1391 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1392 1393 /* pending cpu timer conditions might have been invalidated */ 1394 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1395 if (cpu_timer_irq_pending(vcpu)) 1396 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1397 1398 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1399 /* bits are in the reverse order of interrupt priority */ 1400 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1401 switch (irq_type) { 1402 case IRQ_PEND_IO_ISC_0: 1403 case IRQ_PEND_IO_ISC_1: 1404 case IRQ_PEND_IO_ISC_2: 1405 case IRQ_PEND_IO_ISC_3: 1406 case IRQ_PEND_IO_ISC_4: 1407 case IRQ_PEND_IO_ISC_5: 1408 case IRQ_PEND_IO_ISC_6: 1409 case IRQ_PEND_IO_ISC_7: 1410 rc = __deliver_io(vcpu, irq_type); 1411 break; 1412 case IRQ_PEND_MCHK_EX: 1413 case IRQ_PEND_MCHK_REP: 1414 rc = __deliver_machine_check(vcpu); 1415 break; 1416 case IRQ_PEND_PROG: 1417 rc = __deliver_prog(vcpu); 1418 break; 1419 case IRQ_PEND_EXT_EMERGENCY: 1420 rc = __deliver_emergency_signal(vcpu); 1421 break; 1422 case IRQ_PEND_EXT_EXTERNAL: 1423 rc = __deliver_external_call(vcpu); 1424 break; 1425 case IRQ_PEND_EXT_CLOCK_COMP: 1426 rc = __deliver_ckc(vcpu); 1427 break; 1428 case IRQ_PEND_EXT_CPU_TIMER: 1429 rc = __deliver_cpu_timer(vcpu); 1430 break; 1431 case IRQ_PEND_RESTART: 1432 rc = __deliver_restart(vcpu); 1433 break; 1434 case IRQ_PEND_SET_PREFIX: 1435 rc = __deliver_set_prefix(vcpu); 1436 break; 1437 case IRQ_PEND_PFAULT_INIT: 1438 rc = __deliver_pfault_init(vcpu); 1439 break; 1440 case IRQ_PEND_EXT_SERVICE: 1441 rc = __deliver_service(vcpu); 1442 break; 1443 case IRQ_PEND_EXT_SERVICE_EV: 1444 rc = __deliver_service_ev(vcpu); 1445 break; 1446 case IRQ_PEND_PFAULT_DONE: 1447 rc = __deliver_pfault_done(vcpu); 1448 break; 1449 case IRQ_PEND_VIRTIO: 1450 rc = __deliver_virtio(vcpu); 1451 break; 1452 default: 1453 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1454 clear_bit(irq_type, &li->pending_irqs); 1455 } 1456 delivered |= !rc; 1457 } 1458 1459 /* 1460 * We delivered at least one interrupt and modified the PC. Force a 1461 * singlestep event now. 1462 */ 1463 if (delivered && guestdbg_sstep_enabled(vcpu)) { 1464 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; 1465 1466 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; 1467 debug_exit->type = KVM_SINGLESTEP; 1468 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; 1469 } 1470 1471 set_intercept_indicators(vcpu); 1472 1473 return rc; 1474 } 1475 1476 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1477 { 1478 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1479 1480 vcpu->stat.inject_program++; 1481 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1482 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1483 irq->u.pgm.code, 0); 1484 1485 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1486 /* auto detection if no valid ILC was given */ 1487 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1488 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1489 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1490 } 1491 1492 if (irq->u.pgm.code == PGM_PER) { 1493 li->irq.pgm.code |= PGM_PER; 1494 li->irq.pgm.flags = irq->u.pgm.flags; 1495 /* only modify PER related information */ 1496 li->irq.pgm.per_address = irq->u.pgm.per_address; 1497 li->irq.pgm.per_code = irq->u.pgm.per_code; 1498 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1499 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1500 } else if (!(irq->u.pgm.code & PGM_PER)) { 1501 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1502 irq->u.pgm.code; 1503 li->irq.pgm.flags = irq->u.pgm.flags; 1504 /* only modify non-PER information */ 1505 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1506 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1507 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1508 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1509 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1510 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1511 } else { 1512 li->irq.pgm = irq->u.pgm; 1513 } 1514 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1515 return 0; 1516 } 1517 1518 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1519 { 1520 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1521 1522 vcpu->stat.inject_pfault_init++; 1523 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1524 irq->u.ext.ext_params2); 1525 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1526 irq->u.ext.ext_params, 1527 irq->u.ext.ext_params2); 1528 1529 li->irq.ext = irq->u.ext; 1530 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1531 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1532 return 0; 1533 } 1534 1535 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1536 { 1537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1538 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1539 uint16_t src_id = irq->u.extcall.code; 1540 1541 vcpu->stat.inject_external_call++; 1542 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1543 src_id); 1544 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1545 src_id, 0); 1546 1547 /* sending vcpu invalid */ 1548 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1549 return -EINVAL; 1550 1551 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1552 return sca_inject_ext_call(vcpu, src_id); 1553 1554 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1555 return -EBUSY; 1556 *extcall = irq->u.extcall; 1557 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1558 return 0; 1559 } 1560 1561 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1562 { 1563 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1564 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1565 1566 vcpu->stat.inject_set_prefix++; 1567 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1568 irq->u.prefix.address); 1569 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1570 irq->u.prefix.address, 0); 1571 1572 if (!is_vcpu_stopped(vcpu)) 1573 return -EBUSY; 1574 1575 *prefix = irq->u.prefix; 1576 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1577 return 0; 1578 } 1579 1580 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1581 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1582 { 1583 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1584 struct kvm_s390_stop_info *stop = &li->irq.stop; 1585 int rc = 0; 1586 1587 vcpu->stat.inject_stop_signal++; 1588 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1589 1590 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1591 return -EINVAL; 1592 1593 if (is_vcpu_stopped(vcpu)) { 1594 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1595 rc = kvm_s390_store_status_unloaded(vcpu, 1596 KVM_S390_STORE_STATUS_NOADDR); 1597 return rc; 1598 } 1599 1600 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1601 return -EBUSY; 1602 stop->flags = irq->u.stop.flags; 1603 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1604 return 0; 1605 } 1606 1607 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1608 { 1609 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1610 1611 vcpu->stat.inject_restart++; 1612 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1613 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1614 1615 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1616 return 0; 1617 } 1618 1619 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1620 struct kvm_s390_irq *irq) 1621 { 1622 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1623 1624 vcpu->stat.inject_emergency_signal++; 1625 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1626 irq->u.emerg.code); 1627 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1628 irq->u.emerg.code, 0); 1629 1630 /* sending vcpu invalid */ 1631 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1632 return -EINVAL; 1633 1634 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1635 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1636 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1637 return 0; 1638 } 1639 1640 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1641 { 1642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1643 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1644 1645 vcpu->stat.inject_mchk++; 1646 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1647 irq->u.mchk.mcic); 1648 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1649 irq->u.mchk.mcic); 1650 1651 /* 1652 * Because repressible machine checks can be indicated along with 1653 * exigent machine checks (PoP, Chapter 11, Interruption action) 1654 * we need to combine cr14, mcic and external damage code. 1655 * Failing storage address and the logout area should not be or'ed 1656 * together, we just indicate the last occurrence of the corresponding 1657 * machine check 1658 */ 1659 mchk->cr14 |= irq->u.mchk.cr14; 1660 mchk->mcic |= irq->u.mchk.mcic; 1661 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1662 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1663 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1664 sizeof(mchk->fixed_logout)); 1665 if (mchk->mcic & MCHK_EX_MASK) 1666 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1667 else if (mchk->mcic & MCHK_REP_MASK) 1668 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1669 return 0; 1670 } 1671 1672 static int __inject_ckc(struct kvm_vcpu *vcpu) 1673 { 1674 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1675 1676 vcpu->stat.inject_ckc++; 1677 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1678 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1679 0, 0); 1680 1681 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1682 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1683 return 0; 1684 } 1685 1686 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1687 { 1688 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1689 1690 vcpu->stat.inject_cputm++; 1691 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1692 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1693 0, 0); 1694 1695 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1696 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1697 return 0; 1698 } 1699 1700 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1701 int isc, u32 schid) 1702 { 1703 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1704 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1705 struct kvm_s390_interrupt_info *iter; 1706 u16 id = (schid & 0xffff0000U) >> 16; 1707 u16 nr = schid & 0x0000ffffU; 1708 1709 spin_lock(&fi->lock); 1710 list_for_each_entry(iter, isc_list, list) { 1711 if (schid && (id != iter->io.subchannel_id || 1712 nr != iter->io.subchannel_nr)) 1713 continue; 1714 /* found an appropriate entry */ 1715 list_del_init(&iter->list); 1716 fi->counters[FIRQ_CNTR_IO] -= 1; 1717 if (list_empty(isc_list)) 1718 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1719 spin_unlock(&fi->lock); 1720 return iter; 1721 } 1722 spin_unlock(&fi->lock); 1723 return NULL; 1724 } 1725 1726 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1727 u64 isc_mask, u32 schid) 1728 { 1729 struct kvm_s390_interrupt_info *inti = NULL; 1730 int isc; 1731 1732 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1733 if (isc_mask & isc_to_isc_bits(isc)) 1734 inti = get_io_int(kvm, isc, schid); 1735 } 1736 return inti; 1737 } 1738 1739 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1740 { 1741 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1742 unsigned long active_mask; 1743 int isc; 1744 1745 if (schid) 1746 goto out; 1747 if (!gi->origin) 1748 goto out; 1749 1750 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1751 while (active_mask) { 1752 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1753 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1754 return isc; 1755 clear_bit_inv(isc, &active_mask); 1756 } 1757 out: 1758 return -EINVAL; 1759 } 1760 1761 /* 1762 * Dequeue and return an I/O interrupt matching any of the interruption 1763 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1764 * Take into account the interrupts pending in the interrupt list and in GISA. 1765 * 1766 * Note that for a guest that does not enable I/O interrupts 1767 * but relies on TPI, a flood of classic interrupts may starve 1768 * out adapter interrupts on the same isc. Linux does not do 1769 * that, and it is possible to work around the issue by configuring 1770 * different iscs for classic and adapter interrupts in the guest, 1771 * but we may want to revisit this in the future. 1772 */ 1773 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1774 u64 isc_mask, u32 schid) 1775 { 1776 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1777 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1778 int isc; 1779 1780 inti = get_top_io_int(kvm, isc_mask, schid); 1781 1782 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1783 if (isc < 0) 1784 /* no AI in GISA */ 1785 goto out; 1786 1787 if (!inti) 1788 /* AI in GISA but no classical IO int */ 1789 goto gisa_out; 1790 1791 /* both types of interrupts present */ 1792 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1793 /* classical IO int with higher priority */ 1794 gisa_set_ipm_gisc(gi->origin, isc); 1795 goto out; 1796 } 1797 gisa_out: 1798 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1799 if (tmp_inti) { 1800 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1801 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1802 if (inti) 1803 kvm_s390_reinject_io_int(kvm, inti); 1804 inti = tmp_inti; 1805 } else 1806 gisa_set_ipm_gisc(gi->origin, isc); 1807 out: 1808 return inti; 1809 } 1810 1811 static int __inject_service(struct kvm *kvm, 1812 struct kvm_s390_interrupt_info *inti) 1813 { 1814 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1815 1816 kvm->stat.inject_service_signal++; 1817 spin_lock(&fi->lock); 1818 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1819 1820 /* We always allow events, track them separately from the sccb ints */ 1821 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1822 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1823 1824 /* 1825 * Early versions of the QEMU s390 bios will inject several 1826 * service interrupts after another without handling a 1827 * condition code indicating busy. 1828 * We will silently ignore those superfluous sccb values. 1829 * A future version of QEMU will take care of serialization 1830 * of servc requests 1831 */ 1832 if (fi->srv_signal.ext_params & SCCB_MASK) 1833 goto out; 1834 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1835 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1836 out: 1837 spin_unlock(&fi->lock); 1838 kfree(inti); 1839 return 0; 1840 } 1841 1842 static int __inject_virtio(struct kvm *kvm, 1843 struct kvm_s390_interrupt_info *inti) 1844 { 1845 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1846 1847 kvm->stat.inject_virtio++; 1848 spin_lock(&fi->lock); 1849 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1850 spin_unlock(&fi->lock); 1851 return -EBUSY; 1852 } 1853 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1854 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1855 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1856 spin_unlock(&fi->lock); 1857 return 0; 1858 } 1859 1860 static int __inject_pfault_done(struct kvm *kvm, 1861 struct kvm_s390_interrupt_info *inti) 1862 { 1863 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1864 1865 kvm->stat.inject_pfault_done++; 1866 spin_lock(&fi->lock); 1867 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1868 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1869 spin_unlock(&fi->lock); 1870 return -EBUSY; 1871 } 1872 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1873 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1874 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1875 spin_unlock(&fi->lock); 1876 return 0; 1877 } 1878 1879 #define CR_PENDING_SUBCLASS 28 1880 static int __inject_float_mchk(struct kvm *kvm, 1881 struct kvm_s390_interrupt_info *inti) 1882 { 1883 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1884 1885 kvm->stat.inject_float_mchk++; 1886 spin_lock(&fi->lock); 1887 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1888 fi->mchk.mcic |= inti->mchk.mcic; 1889 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1890 spin_unlock(&fi->lock); 1891 kfree(inti); 1892 return 0; 1893 } 1894 1895 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1896 { 1897 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1898 struct kvm_s390_float_interrupt *fi; 1899 struct list_head *list; 1900 int isc; 1901 1902 kvm->stat.inject_io++; 1903 isc = int_word_to_isc(inti->io.io_int_word); 1904 1905 /* 1906 * We do not use the lock checking variant as this is just a 1907 * performance optimization and we do not hold the lock here. 1908 * This is ok as the code will pick interrupts from both "lists" 1909 * for delivery. 1910 */ 1911 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1912 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1913 gisa_set_ipm_gisc(gi->origin, isc); 1914 kfree(inti); 1915 return 0; 1916 } 1917 1918 fi = &kvm->arch.float_int; 1919 spin_lock(&fi->lock); 1920 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1921 spin_unlock(&fi->lock); 1922 return -EBUSY; 1923 } 1924 fi->counters[FIRQ_CNTR_IO] += 1; 1925 1926 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1927 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1928 else 1929 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1930 inti->io.subchannel_id >> 8, 1931 inti->io.subchannel_id >> 1 & 0x3, 1932 inti->io.subchannel_nr); 1933 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1934 list_add_tail(&inti->list, list); 1935 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1936 spin_unlock(&fi->lock); 1937 return 0; 1938 } 1939 1940 /* 1941 * Find a destination VCPU for a floating irq and kick it. 1942 */ 1943 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1944 { 1945 struct kvm_vcpu *dst_vcpu; 1946 int sigcpu, online_vcpus, nr_tries = 0; 1947 1948 online_vcpus = atomic_read(&kvm->online_vcpus); 1949 if (!online_vcpus) 1950 return; 1951 1952 for (sigcpu = kvm->arch.float_int.last_sleep_cpu; ; sigcpu++) { 1953 sigcpu %= online_vcpus; 1954 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1955 if (!is_vcpu_stopped(dst_vcpu)) 1956 break; 1957 /* avoid endless loops if all vcpus are stopped */ 1958 if (nr_tries++ >= online_vcpus) 1959 return; 1960 } 1961 1962 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1963 switch (type) { 1964 case KVM_S390_MCHK: 1965 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1966 break; 1967 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1968 if (!(type & KVM_S390_INT_IO_AI_MASK && 1969 kvm->arch.gisa_int.origin) || 1970 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1971 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1972 break; 1973 default: 1974 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1975 break; 1976 } 1977 kvm_s390_vcpu_wakeup(dst_vcpu); 1978 } 1979 1980 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1981 { 1982 u64 type = READ_ONCE(inti->type); 1983 int rc; 1984 1985 switch (type) { 1986 case KVM_S390_MCHK: 1987 rc = __inject_float_mchk(kvm, inti); 1988 break; 1989 case KVM_S390_INT_VIRTIO: 1990 rc = __inject_virtio(kvm, inti); 1991 break; 1992 case KVM_S390_INT_SERVICE: 1993 rc = __inject_service(kvm, inti); 1994 break; 1995 case KVM_S390_INT_PFAULT_DONE: 1996 rc = __inject_pfault_done(kvm, inti); 1997 break; 1998 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1999 rc = __inject_io(kvm, inti); 2000 break; 2001 default: 2002 rc = -EINVAL; 2003 } 2004 if (rc) 2005 return rc; 2006 2007 __floating_irq_kick(kvm, type); 2008 return 0; 2009 } 2010 2011 int kvm_s390_inject_vm(struct kvm *kvm, 2012 struct kvm_s390_interrupt *s390int) 2013 { 2014 struct kvm_s390_interrupt_info *inti; 2015 int rc; 2016 2017 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2018 if (!inti) 2019 return -ENOMEM; 2020 2021 inti->type = s390int->type; 2022 switch (inti->type) { 2023 case KVM_S390_INT_VIRTIO: 2024 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2025 s390int->parm, s390int->parm64); 2026 inti->ext.ext_params = s390int->parm; 2027 inti->ext.ext_params2 = s390int->parm64; 2028 break; 2029 case KVM_S390_INT_SERVICE: 2030 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2031 inti->ext.ext_params = s390int->parm; 2032 break; 2033 case KVM_S390_INT_PFAULT_DONE: 2034 inti->ext.ext_params2 = s390int->parm64; 2035 break; 2036 case KVM_S390_MCHK: 2037 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2038 s390int->parm64); 2039 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2040 inti->mchk.mcic = s390int->parm64; 2041 break; 2042 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2043 inti->io.subchannel_id = s390int->parm >> 16; 2044 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2045 inti->io.io_int_parm = s390int->parm64 >> 32; 2046 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2047 break; 2048 default: 2049 kfree(inti); 2050 return -EINVAL; 2051 } 2052 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2053 2); 2054 2055 rc = __inject_vm(kvm, inti); 2056 if (rc) 2057 kfree(inti); 2058 return rc; 2059 } 2060 2061 int kvm_s390_reinject_io_int(struct kvm *kvm, 2062 struct kvm_s390_interrupt_info *inti) 2063 { 2064 return __inject_vm(kvm, inti); 2065 } 2066 2067 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2068 struct kvm_s390_irq *irq) 2069 { 2070 irq->type = s390int->type; 2071 switch (irq->type) { 2072 case KVM_S390_PROGRAM_INT: 2073 if (s390int->parm & 0xffff0000) 2074 return -EINVAL; 2075 irq->u.pgm.code = s390int->parm; 2076 break; 2077 case KVM_S390_SIGP_SET_PREFIX: 2078 irq->u.prefix.address = s390int->parm; 2079 break; 2080 case KVM_S390_SIGP_STOP: 2081 irq->u.stop.flags = s390int->parm; 2082 break; 2083 case KVM_S390_INT_EXTERNAL_CALL: 2084 if (s390int->parm & 0xffff0000) 2085 return -EINVAL; 2086 irq->u.extcall.code = s390int->parm; 2087 break; 2088 case KVM_S390_INT_EMERGENCY: 2089 if (s390int->parm & 0xffff0000) 2090 return -EINVAL; 2091 irq->u.emerg.code = s390int->parm; 2092 break; 2093 case KVM_S390_MCHK: 2094 irq->u.mchk.mcic = s390int->parm64; 2095 break; 2096 case KVM_S390_INT_PFAULT_INIT: 2097 irq->u.ext.ext_params = s390int->parm; 2098 irq->u.ext.ext_params2 = s390int->parm64; 2099 break; 2100 case KVM_S390_RESTART: 2101 case KVM_S390_INT_CLOCK_COMP: 2102 case KVM_S390_INT_CPU_TIMER: 2103 break; 2104 default: 2105 return -EINVAL; 2106 } 2107 return 0; 2108 } 2109 2110 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2111 { 2112 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2113 2114 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2115 } 2116 2117 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2118 { 2119 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2120 2121 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2122 } 2123 2124 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2125 { 2126 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2127 2128 spin_lock(&li->lock); 2129 li->irq.stop.flags = 0; 2130 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2131 spin_unlock(&li->lock); 2132 } 2133 2134 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2135 { 2136 int rc; 2137 2138 switch (irq->type) { 2139 case KVM_S390_PROGRAM_INT: 2140 rc = __inject_prog(vcpu, irq); 2141 break; 2142 case KVM_S390_SIGP_SET_PREFIX: 2143 rc = __inject_set_prefix(vcpu, irq); 2144 break; 2145 case KVM_S390_SIGP_STOP: 2146 rc = __inject_sigp_stop(vcpu, irq); 2147 break; 2148 case KVM_S390_RESTART: 2149 rc = __inject_sigp_restart(vcpu); 2150 break; 2151 case KVM_S390_INT_CLOCK_COMP: 2152 rc = __inject_ckc(vcpu); 2153 break; 2154 case KVM_S390_INT_CPU_TIMER: 2155 rc = __inject_cpu_timer(vcpu); 2156 break; 2157 case KVM_S390_INT_EXTERNAL_CALL: 2158 rc = __inject_extcall(vcpu, irq); 2159 break; 2160 case KVM_S390_INT_EMERGENCY: 2161 rc = __inject_sigp_emergency(vcpu, irq); 2162 break; 2163 case KVM_S390_MCHK: 2164 rc = __inject_mchk(vcpu, irq); 2165 break; 2166 case KVM_S390_INT_PFAULT_INIT: 2167 rc = __inject_pfault_init(vcpu, irq); 2168 break; 2169 case KVM_S390_INT_VIRTIO: 2170 case KVM_S390_INT_SERVICE: 2171 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2172 default: 2173 rc = -EINVAL; 2174 } 2175 2176 return rc; 2177 } 2178 2179 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2180 { 2181 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2182 int rc; 2183 2184 spin_lock(&li->lock); 2185 rc = do_inject_vcpu(vcpu, irq); 2186 spin_unlock(&li->lock); 2187 if (!rc) 2188 kvm_s390_vcpu_wakeup(vcpu); 2189 return rc; 2190 } 2191 2192 static inline void clear_irq_list(struct list_head *_list) 2193 { 2194 struct kvm_s390_interrupt_info *inti, *n; 2195 2196 list_for_each_entry_safe(inti, n, _list, list) { 2197 list_del(&inti->list); 2198 kfree(inti); 2199 } 2200 } 2201 2202 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2203 struct kvm_s390_irq *irq) 2204 { 2205 irq->type = inti->type; 2206 switch (inti->type) { 2207 case KVM_S390_INT_PFAULT_INIT: 2208 case KVM_S390_INT_PFAULT_DONE: 2209 case KVM_S390_INT_VIRTIO: 2210 irq->u.ext = inti->ext; 2211 break; 2212 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2213 irq->u.io = inti->io; 2214 break; 2215 } 2216 } 2217 2218 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2219 { 2220 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2221 int i; 2222 2223 mutex_lock(&kvm->lock); 2224 if (!kvm_s390_pv_is_protected(kvm)) 2225 fi->masked_irqs = 0; 2226 mutex_unlock(&kvm->lock); 2227 spin_lock(&fi->lock); 2228 fi->pending_irqs = 0; 2229 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2230 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2231 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2232 clear_irq_list(&fi->lists[i]); 2233 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2234 fi->counters[i] = 0; 2235 spin_unlock(&fi->lock); 2236 kvm_s390_gisa_clear(kvm); 2237 }; 2238 2239 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2240 { 2241 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2242 struct kvm_s390_interrupt_info *inti; 2243 struct kvm_s390_float_interrupt *fi; 2244 struct kvm_s390_irq *buf; 2245 struct kvm_s390_irq *irq; 2246 int max_irqs; 2247 int ret = 0; 2248 int n = 0; 2249 int i; 2250 2251 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2252 return -EINVAL; 2253 2254 /* 2255 * We are already using -ENOMEM to signal 2256 * userspace it may retry with a bigger buffer, 2257 * so we need to use something else for this case 2258 */ 2259 buf = vzalloc(len); 2260 if (!buf) 2261 return -ENOBUFS; 2262 2263 max_irqs = len / sizeof(struct kvm_s390_irq); 2264 2265 if (gi->origin && gisa_get_ipm(gi->origin)) { 2266 for (i = 0; i <= MAX_ISC; i++) { 2267 if (n == max_irqs) { 2268 /* signal userspace to try again */ 2269 ret = -ENOMEM; 2270 goto out_nolock; 2271 } 2272 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2273 irq = (struct kvm_s390_irq *) &buf[n]; 2274 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2275 irq->u.io.io_int_word = isc_to_int_word(i); 2276 n++; 2277 } 2278 } 2279 } 2280 fi = &kvm->arch.float_int; 2281 spin_lock(&fi->lock); 2282 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2283 list_for_each_entry(inti, &fi->lists[i], list) { 2284 if (n == max_irqs) { 2285 /* signal userspace to try again */ 2286 ret = -ENOMEM; 2287 goto out; 2288 } 2289 inti_to_irq(inti, &buf[n]); 2290 n++; 2291 } 2292 } 2293 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2294 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2295 if (n == max_irqs) { 2296 /* signal userspace to try again */ 2297 ret = -ENOMEM; 2298 goto out; 2299 } 2300 irq = (struct kvm_s390_irq *) &buf[n]; 2301 irq->type = KVM_S390_INT_SERVICE; 2302 irq->u.ext = fi->srv_signal; 2303 n++; 2304 } 2305 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2306 if (n == max_irqs) { 2307 /* signal userspace to try again */ 2308 ret = -ENOMEM; 2309 goto out; 2310 } 2311 irq = (struct kvm_s390_irq *) &buf[n]; 2312 irq->type = KVM_S390_MCHK; 2313 irq->u.mchk = fi->mchk; 2314 n++; 2315 } 2316 2317 out: 2318 spin_unlock(&fi->lock); 2319 out_nolock: 2320 if (!ret && n > 0) { 2321 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2322 ret = -EFAULT; 2323 } 2324 vfree(buf); 2325 2326 return ret < 0 ? ret : n; 2327 } 2328 2329 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2330 { 2331 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2332 struct kvm_s390_ais_all ais; 2333 2334 if (attr->attr < sizeof(ais)) 2335 return -EINVAL; 2336 2337 if (!test_kvm_facility(kvm, 72)) 2338 return -EOPNOTSUPP; 2339 2340 mutex_lock(&fi->ais_lock); 2341 ais.simm = fi->simm; 2342 ais.nimm = fi->nimm; 2343 mutex_unlock(&fi->ais_lock); 2344 2345 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2346 return -EFAULT; 2347 2348 return 0; 2349 } 2350 2351 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2352 { 2353 int r; 2354 2355 switch (attr->group) { 2356 case KVM_DEV_FLIC_GET_ALL_IRQS: 2357 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2358 attr->attr); 2359 break; 2360 case KVM_DEV_FLIC_AISM_ALL: 2361 r = flic_ais_mode_get_all(dev->kvm, attr); 2362 break; 2363 default: 2364 r = -EINVAL; 2365 } 2366 2367 return r; 2368 } 2369 2370 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2371 u64 addr) 2372 { 2373 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2374 void *target = NULL; 2375 void __user *source; 2376 u64 size; 2377 2378 if (get_user(inti->type, (u64 __user *)addr)) 2379 return -EFAULT; 2380 2381 switch (inti->type) { 2382 case KVM_S390_INT_PFAULT_INIT: 2383 case KVM_S390_INT_PFAULT_DONE: 2384 case KVM_S390_INT_VIRTIO: 2385 case KVM_S390_INT_SERVICE: 2386 target = (void *) &inti->ext; 2387 source = &uptr->u.ext; 2388 size = sizeof(inti->ext); 2389 break; 2390 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2391 target = (void *) &inti->io; 2392 source = &uptr->u.io; 2393 size = sizeof(inti->io); 2394 break; 2395 case KVM_S390_MCHK: 2396 target = (void *) &inti->mchk; 2397 source = &uptr->u.mchk; 2398 size = sizeof(inti->mchk); 2399 break; 2400 default: 2401 return -EINVAL; 2402 } 2403 2404 if (copy_from_user(target, source, size)) 2405 return -EFAULT; 2406 2407 return 0; 2408 } 2409 2410 static int enqueue_floating_irq(struct kvm_device *dev, 2411 struct kvm_device_attr *attr) 2412 { 2413 struct kvm_s390_interrupt_info *inti = NULL; 2414 int r = 0; 2415 int len = attr->attr; 2416 2417 if (len % sizeof(struct kvm_s390_irq) != 0) 2418 return -EINVAL; 2419 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2420 return -EINVAL; 2421 2422 while (len >= sizeof(struct kvm_s390_irq)) { 2423 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2424 if (!inti) 2425 return -ENOMEM; 2426 2427 r = copy_irq_from_user(inti, attr->addr); 2428 if (r) { 2429 kfree(inti); 2430 return r; 2431 } 2432 r = __inject_vm(dev->kvm, inti); 2433 if (r) { 2434 kfree(inti); 2435 return r; 2436 } 2437 len -= sizeof(struct kvm_s390_irq); 2438 attr->addr += sizeof(struct kvm_s390_irq); 2439 } 2440 2441 return r; 2442 } 2443 2444 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2445 { 2446 if (id >= MAX_S390_IO_ADAPTERS) 2447 return NULL; 2448 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2449 return kvm->arch.adapters[id]; 2450 } 2451 2452 static int register_io_adapter(struct kvm_device *dev, 2453 struct kvm_device_attr *attr) 2454 { 2455 struct s390_io_adapter *adapter; 2456 struct kvm_s390_io_adapter adapter_info; 2457 2458 if (copy_from_user(&adapter_info, 2459 (void __user *)attr->addr, sizeof(adapter_info))) 2460 return -EFAULT; 2461 2462 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2463 return -EINVAL; 2464 2465 adapter_info.id = array_index_nospec(adapter_info.id, 2466 MAX_S390_IO_ADAPTERS); 2467 2468 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2469 return -EINVAL; 2470 2471 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2472 if (!adapter) 2473 return -ENOMEM; 2474 2475 adapter->id = adapter_info.id; 2476 adapter->isc = adapter_info.isc; 2477 adapter->maskable = adapter_info.maskable; 2478 adapter->masked = false; 2479 adapter->swap = adapter_info.swap; 2480 adapter->suppressible = (adapter_info.flags) & 2481 KVM_S390_ADAPTER_SUPPRESSIBLE; 2482 dev->kvm->arch.adapters[adapter->id] = adapter; 2483 2484 return 0; 2485 } 2486 2487 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2488 { 2489 int ret; 2490 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2491 2492 if (!adapter || !adapter->maskable) 2493 return -EINVAL; 2494 ret = adapter->masked; 2495 adapter->masked = masked; 2496 return ret; 2497 } 2498 2499 void kvm_s390_destroy_adapters(struct kvm *kvm) 2500 { 2501 int i; 2502 2503 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2504 kfree(kvm->arch.adapters[i]); 2505 } 2506 2507 static int modify_io_adapter(struct kvm_device *dev, 2508 struct kvm_device_attr *attr) 2509 { 2510 struct kvm_s390_io_adapter_req req; 2511 struct s390_io_adapter *adapter; 2512 int ret; 2513 2514 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2515 return -EFAULT; 2516 2517 adapter = get_io_adapter(dev->kvm, req.id); 2518 if (!adapter) 2519 return -EINVAL; 2520 switch (req.type) { 2521 case KVM_S390_IO_ADAPTER_MASK: 2522 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2523 if (ret > 0) 2524 ret = 0; 2525 break; 2526 /* 2527 * The following operations are no longer needed and therefore no-ops. 2528 * The gpa to hva translation is done when an IRQ route is set up. The 2529 * set_irq code uses get_user_pages_remote() to do the actual write. 2530 */ 2531 case KVM_S390_IO_ADAPTER_MAP: 2532 case KVM_S390_IO_ADAPTER_UNMAP: 2533 ret = 0; 2534 break; 2535 default: 2536 ret = -EINVAL; 2537 } 2538 2539 return ret; 2540 } 2541 2542 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2543 2544 { 2545 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2546 u32 schid; 2547 2548 if (attr->flags) 2549 return -EINVAL; 2550 if (attr->attr != sizeof(schid)) 2551 return -EINVAL; 2552 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2553 return -EFAULT; 2554 if (!schid) 2555 return -EINVAL; 2556 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2557 /* 2558 * If userspace is conforming to the architecture, we can have at most 2559 * one pending I/O interrupt per subchannel, so this is effectively a 2560 * clear all. 2561 */ 2562 return 0; 2563 } 2564 2565 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2566 { 2567 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2568 struct kvm_s390_ais_req req; 2569 int ret = 0; 2570 2571 if (!test_kvm_facility(kvm, 72)) 2572 return -EOPNOTSUPP; 2573 2574 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2575 return -EFAULT; 2576 2577 if (req.isc > MAX_ISC) 2578 return -EINVAL; 2579 2580 trace_kvm_s390_modify_ais_mode(req.isc, 2581 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2582 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2583 2 : KVM_S390_AIS_MODE_SINGLE : 2584 KVM_S390_AIS_MODE_ALL, req.mode); 2585 2586 mutex_lock(&fi->ais_lock); 2587 switch (req.mode) { 2588 case KVM_S390_AIS_MODE_ALL: 2589 fi->simm &= ~AIS_MODE_MASK(req.isc); 2590 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2591 break; 2592 case KVM_S390_AIS_MODE_SINGLE: 2593 fi->simm |= AIS_MODE_MASK(req.isc); 2594 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2595 break; 2596 default: 2597 ret = -EINVAL; 2598 } 2599 mutex_unlock(&fi->ais_lock); 2600 2601 return ret; 2602 } 2603 2604 static int kvm_s390_inject_airq(struct kvm *kvm, 2605 struct s390_io_adapter *adapter) 2606 { 2607 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2608 struct kvm_s390_interrupt s390int = { 2609 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2610 .parm = 0, 2611 .parm64 = isc_to_int_word(adapter->isc), 2612 }; 2613 int ret = 0; 2614 2615 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2616 return kvm_s390_inject_vm(kvm, &s390int); 2617 2618 mutex_lock(&fi->ais_lock); 2619 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2620 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2621 goto out; 2622 } 2623 2624 ret = kvm_s390_inject_vm(kvm, &s390int); 2625 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2626 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2627 trace_kvm_s390_modify_ais_mode(adapter->isc, 2628 KVM_S390_AIS_MODE_SINGLE, 2); 2629 } 2630 out: 2631 mutex_unlock(&fi->ais_lock); 2632 return ret; 2633 } 2634 2635 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2636 { 2637 unsigned int id = attr->attr; 2638 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2639 2640 if (!adapter) 2641 return -EINVAL; 2642 2643 return kvm_s390_inject_airq(kvm, adapter); 2644 } 2645 2646 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2647 { 2648 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2649 struct kvm_s390_ais_all ais; 2650 2651 if (!test_kvm_facility(kvm, 72)) 2652 return -EOPNOTSUPP; 2653 2654 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2655 return -EFAULT; 2656 2657 mutex_lock(&fi->ais_lock); 2658 fi->simm = ais.simm; 2659 fi->nimm = ais.nimm; 2660 mutex_unlock(&fi->ais_lock); 2661 2662 return 0; 2663 } 2664 2665 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2666 { 2667 int r = 0; 2668 unsigned long i; 2669 struct kvm_vcpu *vcpu; 2670 2671 switch (attr->group) { 2672 case KVM_DEV_FLIC_ENQUEUE: 2673 r = enqueue_floating_irq(dev, attr); 2674 break; 2675 case KVM_DEV_FLIC_CLEAR_IRQS: 2676 kvm_s390_clear_float_irqs(dev->kvm); 2677 break; 2678 case KVM_DEV_FLIC_APF_ENABLE: 2679 if (kvm_is_ucontrol(dev->kvm)) 2680 return -EINVAL; 2681 dev->kvm->arch.gmap->pfault_enabled = 1; 2682 break; 2683 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2684 if (kvm_is_ucontrol(dev->kvm)) 2685 return -EINVAL; 2686 dev->kvm->arch.gmap->pfault_enabled = 0; 2687 /* 2688 * Make sure no async faults are in transition when 2689 * clearing the queues. So we don't need to worry 2690 * about late coming workers. 2691 */ 2692 synchronize_srcu(&dev->kvm->srcu); 2693 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2694 kvm_clear_async_pf_completion_queue(vcpu); 2695 break; 2696 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2697 r = register_io_adapter(dev, attr); 2698 break; 2699 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2700 r = modify_io_adapter(dev, attr); 2701 break; 2702 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2703 r = clear_io_irq(dev->kvm, attr); 2704 break; 2705 case KVM_DEV_FLIC_AISM: 2706 r = modify_ais_mode(dev->kvm, attr); 2707 break; 2708 case KVM_DEV_FLIC_AIRQ_INJECT: 2709 r = flic_inject_airq(dev->kvm, attr); 2710 break; 2711 case KVM_DEV_FLIC_AISM_ALL: 2712 r = flic_ais_mode_set_all(dev->kvm, attr); 2713 break; 2714 default: 2715 r = -EINVAL; 2716 } 2717 2718 return r; 2719 } 2720 2721 static int flic_has_attr(struct kvm_device *dev, 2722 struct kvm_device_attr *attr) 2723 { 2724 switch (attr->group) { 2725 case KVM_DEV_FLIC_GET_ALL_IRQS: 2726 case KVM_DEV_FLIC_ENQUEUE: 2727 case KVM_DEV_FLIC_CLEAR_IRQS: 2728 case KVM_DEV_FLIC_APF_ENABLE: 2729 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2730 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2731 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2732 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2733 case KVM_DEV_FLIC_AISM: 2734 case KVM_DEV_FLIC_AIRQ_INJECT: 2735 case KVM_DEV_FLIC_AISM_ALL: 2736 return 0; 2737 } 2738 return -ENXIO; 2739 } 2740 2741 static int flic_create(struct kvm_device *dev, u32 type) 2742 { 2743 if (!dev) 2744 return -EINVAL; 2745 if (dev->kvm->arch.flic) 2746 return -EINVAL; 2747 dev->kvm->arch.flic = dev; 2748 return 0; 2749 } 2750 2751 static void flic_destroy(struct kvm_device *dev) 2752 { 2753 dev->kvm->arch.flic = NULL; 2754 kfree(dev); 2755 } 2756 2757 /* s390 floating irq controller (flic) */ 2758 struct kvm_device_ops kvm_flic_ops = { 2759 .name = "kvm-flic", 2760 .get_attr = flic_get_attr, 2761 .set_attr = flic_set_attr, 2762 .has_attr = flic_has_attr, 2763 .create = flic_create, 2764 .destroy = flic_destroy, 2765 }; 2766 2767 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2768 { 2769 unsigned long bit; 2770 2771 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2772 2773 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2774 } 2775 2776 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2777 { 2778 struct mm_struct *mm = kvm->mm; 2779 struct page *page = NULL; 2780 int locked = 1; 2781 2782 if (mmget_not_zero(mm)) { 2783 mmap_read_lock(mm); 2784 get_user_pages_remote(mm, uaddr, 1, FOLL_WRITE, 2785 &page, &locked); 2786 if (locked) 2787 mmap_read_unlock(mm); 2788 mmput(mm); 2789 } 2790 2791 return page; 2792 } 2793 2794 static int adapter_indicators_set(struct kvm *kvm, 2795 struct s390_io_adapter *adapter, 2796 struct kvm_s390_adapter_int *adapter_int) 2797 { 2798 unsigned long bit; 2799 int summary_set, idx; 2800 struct page *ind_page, *summary_page; 2801 void *map; 2802 2803 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2804 if (!ind_page) 2805 return -1; 2806 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2807 if (!summary_page) { 2808 put_page(ind_page); 2809 return -1; 2810 } 2811 2812 idx = srcu_read_lock(&kvm->srcu); 2813 map = page_address(ind_page); 2814 bit = get_ind_bit(adapter_int->ind_addr, 2815 adapter_int->ind_offset, adapter->swap); 2816 set_bit(bit, map); 2817 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2818 set_page_dirty_lock(ind_page); 2819 map = page_address(summary_page); 2820 bit = get_ind_bit(adapter_int->summary_addr, 2821 adapter_int->summary_offset, adapter->swap); 2822 summary_set = test_and_set_bit(bit, map); 2823 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2824 set_page_dirty_lock(summary_page); 2825 srcu_read_unlock(&kvm->srcu, idx); 2826 2827 put_page(ind_page); 2828 put_page(summary_page); 2829 return summary_set ? 0 : 1; 2830 } 2831 2832 /* 2833 * < 0 - not injected due to error 2834 * = 0 - coalesced, summary indicator already active 2835 * > 0 - injected interrupt 2836 */ 2837 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2838 struct kvm *kvm, int irq_source_id, int level, 2839 bool line_status) 2840 { 2841 int ret; 2842 struct s390_io_adapter *adapter; 2843 2844 /* We're only interested in the 0->1 transition. */ 2845 if (!level) 2846 return 0; 2847 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2848 if (!adapter) 2849 return -1; 2850 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2851 if ((ret > 0) && !adapter->masked) { 2852 ret = kvm_s390_inject_airq(kvm, adapter); 2853 if (ret == 0) 2854 ret = 1; 2855 } 2856 return ret; 2857 } 2858 2859 /* 2860 * Inject the machine check to the guest. 2861 */ 2862 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2863 struct mcck_volatile_info *mcck_info) 2864 { 2865 struct kvm_s390_interrupt_info inti; 2866 struct kvm_s390_irq irq; 2867 struct kvm_s390_mchk_info *mchk; 2868 union mci mci; 2869 __u64 cr14 = 0; /* upper bits are not used */ 2870 int rc; 2871 2872 mci.val = mcck_info->mcic; 2873 if (mci.sr) 2874 cr14 |= CR14_RECOVERY_SUBMASK; 2875 if (mci.dg) 2876 cr14 |= CR14_DEGRADATION_SUBMASK; 2877 if (mci.w) 2878 cr14 |= CR14_WARNING_SUBMASK; 2879 2880 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2881 mchk->cr14 = cr14; 2882 mchk->mcic = mcck_info->mcic; 2883 mchk->ext_damage_code = mcck_info->ext_damage_code; 2884 mchk->failing_storage_address = mcck_info->failing_storage_address; 2885 if (mci.ck) { 2886 /* Inject the floating machine check */ 2887 inti.type = KVM_S390_MCHK; 2888 rc = __inject_vm(vcpu->kvm, &inti); 2889 } else { 2890 /* Inject the machine check to specified vcpu */ 2891 irq.type = KVM_S390_MCHK; 2892 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2893 } 2894 WARN_ON_ONCE(rc); 2895 } 2896 2897 int kvm_set_routing_entry(struct kvm *kvm, 2898 struct kvm_kernel_irq_routing_entry *e, 2899 const struct kvm_irq_routing_entry *ue) 2900 { 2901 u64 uaddr_s, uaddr_i; 2902 int idx; 2903 2904 switch (ue->type) { 2905 /* we store the userspace addresses instead of the guest addresses */ 2906 case KVM_IRQ_ROUTING_S390_ADAPTER: 2907 if (kvm_is_ucontrol(kvm)) 2908 return -EINVAL; 2909 e->set = set_adapter_int; 2910 2911 idx = srcu_read_lock(&kvm->srcu); 2912 uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr); 2913 uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr); 2914 srcu_read_unlock(&kvm->srcu, idx); 2915 2916 if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i)) 2917 return -EFAULT; 2918 e->adapter.summary_addr = uaddr_s; 2919 e->adapter.ind_addr = uaddr_i; 2920 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2921 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2922 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2923 return 0; 2924 default: 2925 return -EINVAL; 2926 } 2927 } 2928 2929 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2930 int irq_source_id, int level, bool line_status) 2931 { 2932 return -EINVAL; 2933 } 2934 2935 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2936 { 2937 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2938 struct kvm_s390_irq *buf; 2939 int r = 0; 2940 int n; 2941 2942 buf = vmalloc(len); 2943 if (!buf) 2944 return -ENOMEM; 2945 2946 if (copy_from_user((void *) buf, irqstate, len)) { 2947 r = -EFAULT; 2948 goto out_free; 2949 } 2950 2951 /* 2952 * Don't allow setting the interrupt state 2953 * when there are already interrupts pending 2954 */ 2955 spin_lock(&li->lock); 2956 if (li->pending_irqs) { 2957 r = -EBUSY; 2958 goto out_unlock; 2959 } 2960 2961 for (n = 0; n < len / sizeof(*buf); n++) { 2962 r = do_inject_vcpu(vcpu, &buf[n]); 2963 if (r) 2964 break; 2965 } 2966 2967 out_unlock: 2968 spin_unlock(&li->lock); 2969 out_free: 2970 vfree(buf); 2971 2972 return r; 2973 } 2974 2975 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2976 struct kvm_s390_irq *irq, 2977 unsigned long irq_type) 2978 { 2979 switch (irq_type) { 2980 case IRQ_PEND_MCHK_EX: 2981 case IRQ_PEND_MCHK_REP: 2982 irq->type = KVM_S390_MCHK; 2983 irq->u.mchk = li->irq.mchk; 2984 break; 2985 case IRQ_PEND_PROG: 2986 irq->type = KVM_S390_PROGRAM_INT; 2987 irq->u.pgm = li->irq.pgm; 2988 break; 2989 case IRQ_PEND_PFAULT_INIT: 2990 irq->type = KVM_S390_INT_PFAULT_INIT; 2991 irq->u.ext = li->irq.ext; 2992 break; 2993 case IRQ_PEND_EXT_EXTERNAL: 2994 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2995 irq->u.extcall = li->irq.extcall; 2996 break; 2997 case IRQ_PEND_EXT_CLOCK_COMP: 2998 irq->type = KVM_S390_INT_CLOCK_COMP; 2999 break; 3000 case IRQ_PEND_EXT_CPU_TIMER: 3001 irq->type = KVM_S390_INT_CPU_TIMER; 3002 break; 3003 case IRQ_PEND_SIGP_STOP: 3004 irq->type = KVM_S390_SIGP_STOP; 3005 irq->u.stop = li->irq.stop; 3006 break; 3007 case IRQ_PEND_RESTART: 3008 irq->type = KVM_S390_RESTART; 3009 break; 3010 case IRQ_PEND_SET_PREFIX: 3011 irq->type = KVM_S390_SIGP_SET_PREFIX; 3012 irq->u.prefix = li->irq.prefix; 3013 break; 3014 } 3015 } 3016 3017 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3018 { 3019 int scn; 3020 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3021 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3022 unsigned long pending_irqs; 3023 struct kvm_s390_irq irq; 3024 unsigned long irq_type; 3025 int cpuaddr; 3026 int n = 0; 3027 3028 spin_lock(&li->lock); 3029 pending_irqs = li->pending_irqs; 3030 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3031 sizeof(sigp_emerg_pending)); 3032 spin_unlock(&li->lock); 3033 3034 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3035 memset(&irq, 0, sizeof(irq)); 3036 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3037 continue; 3038 if (n + sizeof(irq) > len) 3039 return -ENOBUFS; 3040 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3041 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3042 return -EFAULT; 3043 n += sizeof(irq); 3044 } 3045 3046 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3047 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3048 memset(&irq, 0, sizeof(irq)); 3049 if (n + sizeof(irq) > len) 3050 return -ENOBUFS; 3051 irq.type = KVM_S390_INT_EMERGENCY; 3052 irq.u.emerg.code = cpuaddr; 3053 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3054 return -EFAULT; 3055 n += sizeof(irq); 3056 } 3057 } 3058 3059 if (sca_ext_call_pending(vcpu, &scn)) { 3060 if (n + sizeof(irq) > len) 3061 return -ENOBUFS; 3062 memset(&irq, 0, sizeof(irq)); 3063 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3064 irq.u.extcall.code = scn; 3065 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3066 return -EFAULT; 3067 n += sizeof(irq); 3068 } 3069 3070 return n; 3071 } 3072 3073 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3074 { 3075 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3076 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3077 struct kvm_vcpu *vcpu; 3078 u8 vcpu_isc_mask; 3079 3080 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3081 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3082 if (psw_ioint_disabled(vcpu)) 3083 continue; 3084 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3085 if (deliverable_mask & vcpu_isc_mask) { 3086 /* lately kicked but not yet running */ 3087 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3088 return; 3089 kvm_s390_vcpu_wakeup(vcpu); 3090 return; 3091 } 3092 } 3093 } 3094 3095 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3096 { 3097 struct kvm_s390_gisa_interrupt *gi = 3098 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3099 struct kvm *kvm = 3100 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3101 u8 pending_mask; 3102 3103 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3104 if (pending_mask) { 3105 __airqs_kick_single_vcpu(kvm, pending_mask); 3106 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3107 return HRTIMER_RESTART; 3108 } 3109 3110 return HRTIMER_NORESTART; 3111 } 3112 3113 #define NULL_GISA_ADDR 0x00000000UL 3114 #define NONE_GISA_ADDR 0x00000001UL 3115 #define GISA_ADDR_MASK 0xfffff000UL 3116 3117 static void process_gib_alert_list(void) 3118 { 3119 struct kvm_s390_gisa_interrupt *gi; 3120 u32 final, gisa_phys, origin = 0UL; 3121 struct kvm_s390_gisa *gisa; 3122 struct kvm *kvm; 3123 3124 do { 3125 /* 3126 * If the NONE_GISA_ADDR is still stored in the alert list 3127 * origin, we will leave the outer loop. No further GISA has 3128 * been added to the alert list by millicode while processing 3129 * the current alert list. 3130 */ 3131 final = (origin & NONE_GISA_ADDR); 3132 /* 3133 * Cut off the alert list and store the NONE_GISA_ADDR in the 3134 * alert list origin to avoid further GAL interruptions. 3135 * A new alert list can be build up by millicode in parallel 3136 * for guests not in the yet cut-off alert list. When in the 3137 * final loop, store the NULL_GISA_ADDR instead. This will re- 3138 * enable GAL interruptions on the host again. 3139 */ 3140 origin = xchg(&gib->alert_list_origin, 3141 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3142 /* 3143 * Loop through the just cut-off alert list and start the 3144 * gisa timers to kick idle vcpus to consume the pending 3145 * interruptions asap. 3146 */ 3147 while (origin & GISA_ADDR_MASK) { 3148 gisa_phys = origin; 3149 gisa = phys_to_virt(gisa_phys); 3150 origin = gisa->next_alert; 3151 gisa->next_alert = gisa_phys; 3152 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3153 gi = &kvm->arch.gisa_int; 3154 if (hrtimer_active(&gi->timer)) 3155 hrtimer_cancel(&gi->timer); 3156 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3157 } 3158 } while (!final); 3159 3160 } 3161 3162 void kvm_s390_gisa_clear(struct kvm *kvm) 3163 { 3164 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3165 3166 if (!gi->origin) 3167 return; 3168 gisa_clear_ipm(gi->origin); 3169 VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin); 3170 } 3171 3172 void kvm_s390_gisa_init(struct kvm *kvm) 3173 { 3174 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3175 3176 if (!css_general_characteristics.aiv) 3177 return; 3178 gi->origin = &kvm->arch.sie_page2->gisa; 3179 gi->alert.mask = 0; 3180 spin_lock_init(&gi->alert.ref_lock); 3181 gi->expires = 50 * 1000; /* 50 usec */ 3182 hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3183 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3184 gi->origin->next_alert = (u32)virt_to_phys(gi->origin); 3185 VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin); 3186 } 3187 3188 void kvm_s390_gisa_enable(struct kvm *kvm) 3189 { 3190 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3191 struct kvm_vcpu *vcpu; 3192 unsigned long i; 3193 u32 gisa_desc; 3194 3195 if (gi->origin) 3196 return; 3197 kvm_s390_gisa_init(kvm); 3198 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3199 if (!gisa_desc) 3200 return; 3201 kvm_for_each_vcpu(i, vcpu, kvm) { 3202 mutex_lock(&vcpu->mutex); 3203 vcpu->arch.sie_block->gd = gisa_desc; 3204 vcpu->arch.sie_block->eca |= ECA_AIV; 3205 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3206 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3207 mutex_unlock(&vcpu->mutex); 3208 } 3209 } 3210 3211 void kvm_s390_gisa_destroy(struct kvm *kvm) 3212 { 3213 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3214 struct kvm_s390_gisa *gisa = gi->origin; 3215 3216 if (!gi->origin) 3217 return; 3218 WARN(gi->alert.mask != 0x00, 3219 "unexpected non zero alert.mask 0x%02x", 3220 gi->alert.mask); 3221 gi->alert.mask = 0x00; 3222 if (gisa_set_iam(gi->origin, gi->alert.mask)) 3223 process_gib_alert_list(); 3224 hrtimer_cancel(&gi->timer); 3225 gi->origin = NULL; 3226 VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa); 3227 } 3228 3229 void kvm_s390_gisa_disable(struct kvm *kvm) 3230 { 3231 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3232 struct kvm_vcpu *vcpu; 3233 unsigned long i; 3234 3235 if (!gi->origin) 3236 return; 3237 kvm_for_each_vcpu(i, vcpu, kvm) { 3238 mutex_lock(&vcpu->mutex); 3239 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3240 vcpu->arch.sie_block->gd = 0U; 3241 mutex_unlock(&vcpu->mutex); 3242 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3243 } 3244 kvm_s390_gisa_destroy(kvm); 3245 } 3246 3247 /** 3248 * kvm_s390_gisc_register - register a guest ISC 3249 * 3250 * @kvm: the kernel vm to work with 3251 * @gisc: the guest interruption sub class to register 3252 * 3253 * The function extends the vm specific alert mask to use. 3254 * The effective IAM mask in the GISA is updated as well 3255 * in case the GISA is not part of the GIB alert list. 3256 * It will be updated latest when the IAM gets restored 3257 * by gisa_get_ipm_or_restore_iam(). 3258 * 3259 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3260 * has registered with the channel subsystem. 3261 * -ENODEV in case the vm uses no GISA 3262 * -ERANGE in case the guest ISC is invalid 3263 */ 3264 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3265 { 3266 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3267 3268 if (!gi->origin) 3269 return -ENODEV; 3270 if (gisc > MAX_ISC) 3271 return -ERANGE; 3272 3273 spin_lock(&gi->alert.ref_lock); 3274 gi->alert.ref_count[gisc]++; 3275 if (gi->alert.ref_count[gisc] == 1) { 3276 gi->alert.mask |= 0x80 >> gisc; 3277 gisa_set_iam(gi->origin, gi->alert.mask); 3278 } 3279 spin_unlock(&gi->alert.ref_lock); 3280 3281 return gib->nisc; 3282 } 3283 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3284 3285 /** 3286 * kvm_s390_gisc_unregister - unregister a guest ISC 3287 * 3288 * @kvm: the kernel vm to work with 3289 * @gisc: the guest interruption sub class to register 3290 * 3291 * The function reduces the vm specific alert mask to use. 3292 * The effective IAM mask in the GISA is updated as well 3293 * in case the GISA is not part of the GIB alert list. 3294 * It will be updated latest when the IAM gets restored 3295 * by gisa_get_ipm_or_restore_iam(). 3296 * 3297 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3298 * has registered with the channel subsystem. 3299 * -ENODEV in case the vm uses no GISA 3300 * -ERANGE in case the guest ISC is invalid 3301 * -EINVAL in case the guest ISC is not registered 3302 */ 3303 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3304 { 3305 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3306 int rc = 0; 3307 3308 if (!gi->origin) 3309 return -ENODEV; 3310 if (gisc > MAX_ISC) 3311 return -ERANGE; 3312 3313 spin_lock(&gi->alert.ref_lock); 3314 if (gi->alert.ref_count[gisc] == 0) { 3315 rc = -EINVAL; 3316 goto out; 3317 } 3318 gi->alert.ref_count[gisc]--; 3319 if (gi->alert.ref_count[gisc] == 0) { 3320 gi->alert.mask &= ~(0x80 >> gisc); 3321 gisa_set_iam(gi->origin, gi->alert.mask); 3322 } 3323 out: 3324 spin_unlock(&gi->alert.ref_lock); 3325 3326 return rc; 3327 } 3328 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3329 3330 static void aen_host_forward(unsigned long si) 3331 { 3332 struct kvm_s390_gisa_interrupt *gi; 3333 struct zpci_gaite *gaite; 3334 struct kvm *kvm; 3335 3336 gaite = (struct zpci_gaite *)aift->gait + 3337 (si * sizeof(struct zpci_gaite)); 3338 if (gaite->count == 0) 3339 return; 3340 if (gaite->aisb != 0) 3341 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3342 3343 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3344 if (!kvm) 3345 return; 3346 gi = &kvm->arch.gisa_int; 3347 3348 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3349 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3350 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3351 if (hrtimer_active(&gi->timer)) 3352 hrtimer_cancel(&gi->timer); 3353 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3354 kvm->stat.aen_forward++; 3355 } 3356 } 3357 3358 static void aen_process_gait(u8 isc) 3359 { 3360 bool found = false, first = true; 3361 union zpci_sic_iib iib = {{0}}; 3362 unsigned long si, flags; 3363 3364 spin_lock_irqsave(&aift->gait_lock, flags); 3365 3366 if (!aift->gait) { 3367 spin_unlock_irqrestore(&aift->gait_lock, flags); 3368 return; 3369 } 3370 3371 for (si = 0;;) { 3372 /* Scan adapter summary indicator bit vector */ 3373 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3374 if (si == -1UL) { 3375 if (first || found) { 3376 /* Re-enable interrupts. */ 3377 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3378 &iib); 3379 first = found = false; 3380 } else { 3381 /* Interrupts on and all bits processed */ 3382 break; 3383 } 3384 found = false; 3385 si = 0; 3386 /* Scan again after re-enabling interrupts */ 3387 continue; 3388 } 3389 found = true; 3390 aen_host_forward(si); 3391 } 3392 3393 spin_unlock_irqrestore(&aift->gait_lock, flags); 3394 } 3395 3396 static void gib_alert_irq_handler(struct airq_struct *airq, 3397 struct tpi_info *tpi_info) 3398 { 3399 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3400 3401 inc_irq_stat(IRQIO_GAL); 3402 3403 if ((info->forward || info->error) && 3404 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3405 aen_process_gait(info->isc); 3406 if (info->aism != 0) 3407 process_gib_alert_list(); 3408 } else { 3409 process_gib_alert_list(); 3410 } 3411 } 3412 3413 static struct airq_struct gib_alert_irq = { 3414 .handler = gib_alert_irq_handler, 3415 }; 3416 3417 void kvm_s390_gib_destroy(void) 3418 { 3419 if (!gib) 3420 return; 3421 if (kvm_s390_pci_interp_allowed() && aift) { 3422 mutex_lock(&aift->aift_lock); 3423 kvm_s390_pci_aen_exit(); 3424 mutex_unlock(&aift->aift_lock); 3425 } 3426 chsc_sgib(0); 3427 unregister_adapter_interrupt(&gib_alert_irq); 3428 free_page((unsigned long)gib); 3429 gib = NULL; 3430 } 3431 3432 int __init kvm_s390_gib_init(u8 nisc) 3433 { 3434 u32 gib_origin; 3435 int rc = 0; 3436 3437 if (!css_general_characteristics.aiv) { 3438 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3439 goto out; 3440 } 3441 3442 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3443 if (!gib) { 3444 rc = -ENOMEM; 3445 goto out; 3446 } 3447 3448 gib_alert_irq.isc = nisc; 3449 if (register_adapter_interrupt(&gib_alert_irq)) { 3450 pr_err("Registering the GIB alert interruption handler failed\n"); 3451 rc = -EIO; 3452 goto out_free_gib; 3453 } 3454 /* adapter interrupts used for AP (applicable here) don't use the LSI */ 3455 *gib_alert_irq.lsi_ptr = 0xff; 3456 3457 gib->nisc = nisc; 3458 gib_origin = virt_to_phys(gib); 3459 if (chsc_sgib(gib_origin)) { 3460 pr_err("Associating the GIB with the AIV facility failed\n"); 3461 free_page((unsigned long)gib); 3462 gib = NULL; 3463 rc = -EIO; 3464 goto out_unreg_gal; 3465 } 3466 3467 if (kvm_s390_pci_interp_allowed()) { 3468 if (kvm_s390_pci_aen_init(nisc)) { 3469 pr_err("Initializing AEN for PCI failed\n"); 3470 rc = -EIO; 3471 goto out_unreg_gal; 3472 } 3473 } 3474 3475 KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc); 3476 goto out; 3477 3478 out_unreg_gal: 3479 unregister_adapter_interrupt(&gib_alert_irq); 3480 out_free_gib: 3481 free_page((unsigned long)gib); 3482 gib = NULL; 3483 out: 3484 return rc; 3485 } 3486