1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/cpufeature.h> 14 #include <linux/interrupt.h> 15 #include <linux/kvm_host.h> 16 #include <linux/hrtimer.h> 17 #include <linux/export.h> 18 #include <linux/mmu_context.h> 19 #include <linux/nospec.h> 20 #include <linux/signal.h> 21 #include <linux/slab.h> 22 #include <linux/bitmap.h> 23 #include <linux/vmalloc.h> 24 #include <asm/access-regs.h> 25 #include <asm/asm-offsets.h> 26 #include <asm/dis.h> 27 #include <linux/uaccess.h> 28 #include <asm/sclp.h> 29 #include <asm/isc.h> 30 #include <asm/gmap.h> 31 #include <asm/nmi.h> 32 #include <asm/airq.h> 33 #include <asm/tpi.h> 34 #include "kvm-s390.h" 35 #include "gaccess.h" 36 #include "trace-s390.h" 37 #include "pci.h" 38 39 #define PFAULT_INIT 0x0600 40 #define PFAULT_DONE 0x0680 41 #define VIRTIO_PARAM 0x0d00 42 43 static struct kvm_s390_gib *gib; 44 45 /* handle external calls via sigp interpretation facility */ 46 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 47 { 48 int c, scn; 49 50 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 51 return 0; 52 53 BUG_ON(!kvm_s390_use_sca_entries()); 54 read_lock(&vcpu->kvm->arch.sca_lock); 55 if (vcpu->kvm->arch.use_esca) { 56 struct esca_block *sca = vcpu->kvm->arch.sca; 57 union esca_sigp_ctrl sigp_ctrl = 58 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 59 60 c = sigp_ctrl.c; 61 scn = sigp_ctrl.scn; 62 } else { 63 struct bsca_block *sca = vcpu->kvm->arch.sca; 64 union bsca_sigp_ctrl sigp_ctrl = 65 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 66 67 c = sigp_ctrl.c; 68 scn = sigp_ctrl.scn; 69 } 70 read_unlock(&vcpu->kvm->arch.sca_lock); 71 72 if (src_id) 73 *src_id = scn; 74 75 return c; 76 } 77 78 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 79 { 80 int expect, rc; 81 82 BUG_ON(!kvm_s390_use_sca_entries()); 83 read_lock(&vcpu->kvm->arch.sca_lock); 84 if (vcpu->kvm->arch.use_esca) { 85 struct esca_block *sca = vcpu->kvm->arch.sca; 86 union esca_sigp_ctrl *sigp_ctrl = 87 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 88 union esca_sigp_ctrl new_val = {0}, old_val; 89 90 old_val = READ_ONCE(*sigp_ctrl); 91 new_val.scn = src_id; 92 new_val.c = 1; 93 old_val.c = 0; 94 95 expect = old_val.value; 96 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 97 } else { 98 struct bsca_block *sca = vcpu->kvm->arch.sca; 99 union bsca_sigp_ctrl *sigp_ctrl = 100 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 101 union bsca_sigp_ctrl new_val = {0}, old_val; 102 103 old_val = READ_ONCE(*sigp_ctrl); 104 new_val.scn = src_id; 105 new_val.c = 1; 106 old_val.c = 0; 107 108 expect = old_val.value; 109 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 110 } 111 read_unlock(&vcpu->kvm->arch.sca_lock); 112 113 if (rc != expect) { 114 /* another external call is pending */ 115 return -EBUSY; 116 } 117 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 118 return 0; 119 } 120 121 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 122 { 123 if (!kvm_s390_use_sca_entries()) 124 return; 125 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 126 read_lock(&vcpu->kvm->arch.sca_lock); 127 if (vcpu->kvm->arch.use_esca) { 128 struct esca_block *sca = vcpu->kvm->arch.sca; 129 union esca_sigp_ctrl *sigp_ctrl = 130 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 131 132 WRITE_ONCE(sigp_ctrl->value, 0); 133 } else { 134 struct bsca_block *sca = vcpu->kvm->arch.sca; 135 union bsca_sigp_ctrl *sigp_ctrl = 136 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 137 138 WRITE_ONCE(sigp_ctrl->value, 0); 139 } 140 read_unlock(&vcpu->kvm->arch.sca_lock); 141 } 142 143 int psw_extint_disabled(struct kvm_vcpu *vcpu) 144 { 145 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 146 } 147 148 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 149 { 150 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 151 } 152 153 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 154 { 155 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 156 } 157 158 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 159 { 160 return psw_extint_disabled(vcpu) && 161 psw_ioint_disabled(vcpu) && 162 psw_mchk_disabled(vcpu); 163 } 164 165 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 166 { 167 if (psw_extint_disabled(vcpu) || 168 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 169 return 0; 170 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 171 /* No timer interrupts when single stepping */ 172 return 0; 173 return 1; 174 } 175 176 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 177 { 178 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 179 const u64 ckc = vcpu->arch.sie_block->ckc; 180 181 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 182 if ((s64)ckc >= (s64)now) 183 return 0; 184 } else if (ckc >= now) { 185 return 0; 186 } 187 return ckc_interrupts_enabled(vcpu); 188 } 189 190 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 191 { 192 return !psw_extint_disabled(vcpu) && 193 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 194 } 195 196 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 197 { 198 if (!cpu_timer_interrupts_enabled(vcpu)) 199 return 0; 200 return kvm_s390_get_cpu_timer(vcpu) >> 63; 201 } 202 203 static uint64_t isc_to_isc_bits(int isc) 204 { 205 return (0x80 >> isc) << 24; 206 } 207 208 static inline u32 isc_to_int_word(u8 isc) 209 { 210 return ((u32)isc << 27) | 0x80000000; 211 } 212 213 static inline u8 int_word_to_isc(u32 int_word) 214 { 215 return (int_word & 0x38000000) >> 27; 216 } 217 218 /* 219 * To use atomic bitmap functions, we have to provide a bitmap address 220 * that is u64 aligned. However, the ipm might be u32 aligned. 221 * Therefore, we logically start the bitmap at the very beginning of the 222 * struct and fixup the bit number. 223 */ 224 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 225 226 /** 227 * gisa_set_iam - change the GISA interruption alert mask 228 * 229 * @gisa: gisa to operate on 230 * @iam: new IAM value to use 231 * 232 * Change the IAM atomically with the next alert address and the IPM 233 * of the GISA if the GISA is not part of the GIB alert list. All three 234 * fields are located in the first long word of the GISA. 235 * 236 * Returns: 0 on success 237 * -EBUSY in case the gisa is part of the alert list 238 */ 239 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 240 { 241 u64 word, _word; 242 243 word = READ_ONCE(gisa->u64.word[0]); 244 do { 245 if ((u64)gisa != word >> 32) 246 return -EBUSY; 247 _word = (word & ~0xffUL) | iam; 248 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 249 250 return 0; 251 } 252 253 /** 254 * gisa_clear_ipm - clear the GISA interruption pending mask 255 * 256 * @gisa: gisa to operate on 257 * 258 * Clear the IPM atomically with the next alert address and the IAM 259 * of the GISA unconditionally. All three fields are located in the 260 * first long word of the GISA. 261 */ 262 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 263 { 264 u64 word, _word; 265 266 word = READ_ONCE(gisa->u64.word[0]); 267 do { 268 _word = word & ~(0xffUL << 24); 269 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 270 } 271 272 /** 273 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 274 * 275 * @gi: gisa interrupt struct to work on 276 * 277 * Atomically restores the interruption alert mask if none of the 278 * relevant ISCs are pending and return the IPM. 279 * 280 * Returns: the relevant pending ISCs 281 */ 282 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 283 { 284 u8 pending_mask, alert_mask; 285 u64 word, _word; 286 287 word = READ_ONCE(gi->origin->u64.word[0]); 288 do { 289 alert_mask = READ_ONCE(gi->alert.mask); 290 pending_mask = (u8)(word >> 24) & alert_mask; 291 if (pending_mask) 292 return pending_mask; 293 _word = (word & ~0xffUL) | alert_mask; 294 } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word)); 295 296 return 0; 297 } 298 299 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 300 { 301 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 302 } 303 304 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 305 { 306 return READ_ONCE(gisa->ipm); 307 } 308 309 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 310 { 311 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 312 } 313 314 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 315 { 316 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 317 vcpu->arch.local_int.pending_irqs; 318 319 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 320 return pending; 321 } 322 323 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 324 { 325 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 326 unsigned long pending_mask; 327 328 pending_mask = pending_irqs_no_gisa(vcpu); 329 if (gi->origin) 330 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 331 return pending_mask; 332 } 333 334 static inline int isc_to_irq_type(unsigned long isc) 335 { 336 return IRQ_PEND_IO_ISC_0 - isc; 337 } 338 339 static inline int irq_type_to_isc(unsigned long irq_type) 340 { 341 return IRQ_PEND_IO_ISC_0 - irq_type; 342 } 343 344 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 345 unsigned long active_mask) 346 { 347 int i; 348 349 for (i = 0; i <= MAX_ISC; i++) 350 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 351 active_mask &= ~(1UL << (isc_to_irq_type(i))); 352 353 return active_mask; 354 } 355 356 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 357 { 358 unsigned long active_mask; 359 360 active_mask = pending_irqs(vcpu); 361 if (!active_mask) 362 return 0; 363 364 if (psw_extint_disabled(vcpu)) 365 active_mask &= ~IRQ_PEND_EXT_MASK; 366 if (psw_ioint_disabled(vcpu)) 367 active_mask &= ~IRQ_PEND_IO_MASK; 368 else 369 active_mask = disable_iscs(vcpu, active_mask); 370 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 371 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 372 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 373 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 374 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 375 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 376 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 377 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 379 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 380 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 381 } 382 if (psw_mchk_disabled(vcpu)) 383 active_mask &= ~IRQ_PEND_MCHK_MASK; 384 /* PV guest cpus can have a single interruption injected at a time. */ 385 if (kvm_s390_pv_cpu_get_handle(vcpu) && 386 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 387 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 388 IRQ_PEND_IO_MASK | 389 IRQ_PEND_MCHK_MASK); 390 /* 391 * Check both floating and local interrupt's cr14 because 392 * bit IRQ_PEND_MCHK_REP could be set in both cases. 393 */ 394 if (!(vcpu->arch.sie_block->gcr[14] & 395 (vcpu->kvm->arch.float_int.mchk.cr14 | 396 vcpu->arch.local_int.irq.mchk.cr14))) 397 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 398 399 /* 400 * STOP irqs will never be actively delivered. They are triggered via 401 * intercept requests and cleared when the stop intercept is performed. 402 */ 403 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 404 405 return active_mask; 406 } 407 408 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 409 { 410 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 411 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 412 } 413 414 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 415 { 416 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 417 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 418 } 419 420 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 421 { 422 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 423 CPUSTAT_STOP_INT); 424 vcpu->arch.sie_block->lctl = 0x0000; 425 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 426 427 if (guestdbg_enabled(vcpu)) { 428 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 429 LCTL_CR10 | LCTL_CR11); 430 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 431 } 432 } 433 434 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 435 { 436 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 437 return; 438 if (psw_ioint_disabled(vcpu)) 439 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 440 else 441 vcpu->arch.sie_block->lctl |= LCTL_CR6; 442 } 443 444 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 445 { 446 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 447 return; 448 if (psw_extint_disabled(vcpu)) 449 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 450 else 451 vcpu->arch.sie_block->lctl |= LCTL_CR0; 452 } 453 454 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 455 { 456 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 457 return; 458 if (psw_mchk_disabled(vcpu)) 459 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 460 else 461 vcpu->arch.sie_block->lctl |= LCTL_CR14; 462 } 463 464 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 465 { 466 if (kvm_s390_is_stop_irq_pending(vcpu)) 467 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 468 } 469 470 /* Set interception request for non-deliverable interrupts */ 471 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 472 { 473 set_intercept_indicators_io(vcpu); 474 set_intercept_indicators_ext(vcpu); 475 set_intercept_indicators_mchk(vcpu); 476 set_intercept_indicators_stop(vcpu); 477 } 478 479 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 480 { 481 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 482 int rc = 0; 483 484 vcpu->stat.deliver_cputm++; 485 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 486 0, 0); 487 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 488 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 489 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 490 } else { 491 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 492 (u16 *)__LC_EXT_INT_CODE); 493 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 494 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 495 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 496 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 497 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 498 } 499 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 500 return rc ? -EFAULT : 0; 501 } 502 503 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 504 { 505 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 506 int rc = 0; 507 508 vcpu->stat.deliver_ckc++; 509 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 510 0, 0); 511 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 512 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 513 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 514 } else { 515 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 516 (u16 __user *)__LC_EXT_INT_CODE); 517 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 518 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 519 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 520 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 521 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 522 } 523 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 524 return rc ? -EFAULT : 0; 525 } 526 527 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 528 { 529 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 530 struct kvm_s390_ext_info ext; 531 int rc; 532 533 spin_lock(&li->lock); 534 ext = li->irq.ext; 535 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 536 li->irq.ext.ext_params2 = 0; 537 spin_unlock(&li->lock); 538 539 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 540 ext.ext_params2); 541 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 542 KVM_S390_INT_PFAULT_INIT, 543 0, ext.ext_params2); 544 545 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 546 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 547 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 548 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 549 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 550 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 551 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 552 return rc ? -EFAULT : 0; 553 } 554 555 static int __write_machine_check(struct kvm_vcpu *vcpu, 556 struct kvm_s390_mchk_info *mchk) 557 { 558 unsigned long ext_sa_addr; 559 unsigned long lc; 560 freg_t fprs[NUM_FPRS]; 561 union mci mci; 562 int rc; 563 564 /* 565 * All other possible payload for a machine check (e.g. the register 566 * contents in the save area) will be handled by the ultravisor, as 567 * the hypervisor does not not have the needed information for 568 * protected guests. 569 */ 570 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 571 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 572 vcpu->arch.sie_block->mcic = mchk->mcic; 573 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 574 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 575 return 0; 576 } 577 578 mci.val = mchk->mcic; 579 /* take care of lazy register loading */ 580 kvm_s390_fpu_store(vcpu->run); 581 save_access_regs(vcpu->run->s.regs.acrs); 582 if (cpu_has_gs() && vcpu->arch.gs_enabled) 583 save_gs_cb(current->thread.gs_cb); 584 585 /* Extended save area */ 586 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 587 sizeof(unsigned long)); 588 /* Only bits 0 through 63-LC are used for address formation */ 589 lc = ext_sa_addr & MCESA_LC_MASK; 590 if (test_kvm_facility(vcpu->kvm, 133)) { 591 switch (lc) { 592 case 0: 593 case 10: 594 ext_sa_addr &= ~0x3ffUL; 595 break; 596 case 11: 597 ext_sa_addr &= ~0x7ffUL; 598 break; 599 case 12: 600 ext_sa_addr &= ~0xfffUL; 601 break; 602 default: 603 ext_sa_addr = 0; 604 break; 605 } 606 } else { 607 ext_sa_addr &= ~0x3ffUL; 608 } 609 610 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 611 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 612 512)) 613 mci.vr = 0; 614 } else { 615 mci.vr = 0; 616 } 617 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 618 && (lc == 11 || lc == 12)) { 619 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 620 &vcpu->run->s.regs.gscb, 32)) 621 mci.gs = 0; 622 } else { 623 mci.gs = 0; 624 } 625 626 /* General interruption information */ 627 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 628 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 629 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 630 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 631 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 632 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 633 634 /* Register-save areas */ 635 if (cpu_has_vx()) { 636 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 637 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 638 } else { 639 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 640 vcpu->run->s.regs.fprs, 128); 641 } 642 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 643 vcpu->run->s.regs.gprs, 128); 644 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, 645 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 646 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 647 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 648 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 649 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 650 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 651 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 652 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 653 &vcpu->run->s.regs.acrs, 64); 654 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 655 &vcpu->arch.sie_block->gcr, 128); 656 657 /* Extended interruption information */ 658 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 659 (u32 __user *) __LC_EXT_DAMAGE_CODE); 660 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 661 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 662 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 663 sizeof(mchk->fixed_logout)); 664 return rc ? -EFAULT : 0; 665 } 666 667 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 668 { 669 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 670 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 671 struct kvm_s390_mchk_info mchk = {}; 672 int deliver = 0; 673 int rc = 0; 674 675 spin_lock(&fi->lock); 676 spin_lock(&li->lock); 677 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 678 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 679 /* 680 * If there was an exigent machine check pending, then any 681 * repressible machine checks that might have been pending 682 * are indicated along with it, so always clear bits for 683 * repressible and exigent interrupts 684 */ 685 mchk = li->irq.mchk; 686 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 687 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 688 memset(&li->irq.mchk, 0, sizeof(mchk)); 689 deliver = 1; 690 } 691 /* 692 * We indicate floating repressible conditions along with 693 * other pending conditions. Channel Report Pending and Channel 694 * Subsystem damage are the only two and are indicated by 695 * bits in mcic and masked in cr14. 696 */ 697 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 698 mchk.mcic |= fi->mchk.mcic; 699 mchk.cr14 |= fi->mchk.cr14; 700 memset(&fi->mchk, 0, sizeof(mchk)); 701 deliver = 1; 702 } 703 spin_unlock(&li->lock); 704 spin_unlock(&fi->lock); 705 706 if (deliver) { 707 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 708 mchk.mcic); 709 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 710 KVM_S390_MCHK, 711 mchk.cr14, mchk.mcic); 712 vcpu->stat.deliver_machine_check++; 713 rc = __write_machine_check(vcpu, &mchk); 714 } 715 return rc; 716 } 717 718 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 719 { 720 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 721 int rc = 0; 722 723 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 724 vcpu->stat.deliver_restart_signal++; 725 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 726 727 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 728 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 729 } else { 730 rc = write_guest_lc(vcpu, 731 offsetof(struct lowcore, restart_old_psw), 732 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 733 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 734 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 735 } 736 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 737 return rc ? -EFAULT : 0; 738 } 739 740 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 741 { 742 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 743 struct kvm_s390_prefix_info prefix; 744 745 spin_lock(&li->lock); 746 prefix = li->irq.prefix; 747 li->irq.prefix.address = 0; 748 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 749 spin_unlock(&li->lock); 750 751 vcpu->stat.deliver_prefix_signal++; 752 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 753 KVM_S390_SIGP_SET_PREFIX, 754 prefix.address, 0); 755 756 kvm_s390_set_prefix(vcpu, prefix.address); 757 return 0; 758 } 759 760 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 761 { 762 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 763 int rc; 764 int cpu_addr; 765 766 spin_lock(&li->lock); 767 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 768 clear_bit(cpu_addr, li->sigp_emerg_pending); 769 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 770 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 771 spin_unlock(&li->lock); 772 773 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 774 vcpu->stat.deliver_emergency_signal++; 775 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 776 cpu_addr, 0); 777 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 778 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 779 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 780 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 781 return 0; 782 } 783 784 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 785 (u16 *)__LC_EXT_INT_CODE); 786 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 787 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 788 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 789 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 790 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 791 return rc ? -EFAULT : 0; 792 } 793 794 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 795 { 796 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 797 struct kvm_s390_extcall_info extcall; 798 int rc; 799 800 spin_lock(&li->lock); 801 extcall = li->irq.extcall; 802 li->irq.extcall.code = 0; 803 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 804 spin_unlock(&li->lock); 805 806 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 807 vcpu->stat.deliver_external_call++; 808 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 809 KVM_S390_INT_EXTERNAL_CALL, 810 extcall.code, 0); 811 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 812 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 813 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 814 vcpu->arch.sie_block->extcpuaddr = extcall.code; 815 return 0; 816 } 817 818 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 819 (u16 *)__LC_EXT_INT_CODE); 820 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 821 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 822 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 823 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 824 sizeof(psw_t)); 825 return rc ? -EFAULT : 0; 826 } 827 828 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 829 { 830 switch (code) { 831 case PGM_SPECIFICATION: 832 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 833 break; 834 case PGM_OPERAND: 835 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 836 break; 837 default: 838 return -EINVAL; 839 } 840 return 0; 841 } 842 843 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 844 { 845 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 846 struct kvm_s390_pgm_info pgm_info; 847 int rc = 0, nullifying = false; 848 u16 ilen; 849 850 spin_lock(&li->lock); 851 pgm_info = li->irq.pgm; 852 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 853 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 854 spin_unlock(&li->lock); 855 856 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 857 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 858 pgm_info.code, ilen); 859 vcpu->stat.deliver_program++; 860 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 861 pgm_info.code, 0); 862 863 /* PER is handled by the ultravisor */ 864 if (kvm_s390_pv_cpu_is_protected(vcpu)) 865 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 866 867 switch (pgm_info.code & ~PGM_PER) { 868 case PGM_AFX_TRANSLATION: 869 case PGM_ASX_TRANSLATION: 870 case PGM_EX_TRANSLATION: 871 case PGM_LFX_TRANSLATION: 872 case PGM_LSTE_SEQUENCE: 873 case PGM_LSX_TRANSLATION: 874 case PGM_LX_TRANSLATION: 875 case PGM_PRIMARY_AUTHORITY: 876 case PGM_SECONDARY_AUTHORITY: 877 nullifying = true; 878 fallthrough; 879 case PGM_SPACE_SWITCH: 880 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 881 (u64 *)__LC_TRANS_EXC_CODE); 882 break; 883 case PGM_ALEN_TRANSLATION: 884 case PGM_ALE_SEQUENCE: 885 case PGM_ASTE_INSTANCE: 886 case PGM_ASTE_SEQUENCE: 887 case PGM_ASTE_VALIDITY: 888 case PGM_EXTENDED_AUTHORITY: 889 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 890 (u8 *)__LC_EXC_ACCESS_ID); 891 nullifying = true; 892 break; 893 case PGM_ASCE_TYPE: 894 case PGM_PAGE_TRANSLATION: 895 case PGM_REGION_FIRST_TRANS: 896 case PGM_REGION_SECOND_TRANS: 897 case PGM_REGION_THIRD_TRANS: 898 case PGM_SEGMENT_TRANSLATION: 899 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 900 (u64 *)__LC_TRANS_EXC_CODE); 901 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 902 (u8 *)__LC_EXC_ACCESS_ID); 903 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 904 (u8 *)__LC_OP_ACCESS_ID); 905 nullifying = true; 906 break; 907 case PGM_MONITOR: 908 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 909 (u16 *)__LC_MON_CLASS_NR); 910 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 911 (u64 *)__LC_MON_CODE); 912 break; 913 case PGM_VECTOR_PROCESSING: 914 case PGM_DATA: 915 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 916 (u32 *)__LC_DATA_EXC_CODE); 917 break; 918 case PGM_PROTECTION: 919 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 920 (u64 *)__LC_TRANS_EXC_CODE); 921 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 922 (u8 *)__LC_EXC_ACCESS_ID); 923 break; 924 case PGM_STACK_FULL: 925 case PGM_STACK_EMPTY: 926 case PGM_STACK_SPECIFICATION: 927 case PGM_STACK_TYPE: 928 case PGM_STACK_OPERATION: 929 case PGM_TRACE_TABEL: 930 case PGM_CRYPTO_OPERATION: 931 nullifying = true; 932 break; 933 } 934 935 if (pgm_info.code & PGM_PER) { 936 rc |= put_guest_lc(vcpu, pgm_info.per_code, 937 (u8 *) __LC_PER_CODE); 938 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 939 (u8 *)__LC_PER_ATMID); 940 rc |= put_guest_lc(vcpu, pgm_info.per_address, 941 (u64 *) __LC_PER_ADDRESS); 942 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 943 (u8 *) __LC_PER_ACCESS_ID); 944 } 945 946 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 947 kvm_s390_rewind_psw(vcpu, ilen); 948 949 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 950 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 951 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 952 (u64 *) __LC_PGM_LAST_BREAK); 953 rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE); 954 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 955 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 956 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 957 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 958 return rc ? -EFAULT : 0; 959 } 960 961 #define SCCB_MASK 0xFFFFFFF8 962 #define SCCB_EVENT_PENDING 0x3 963 964 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 965 { 966 int rc; 967 968 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 969 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 970 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 971 vcpu->arch.sie_block->eiparams = parm; 972 return 0; 973 } 974 975 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 976 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 977 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 978 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 979 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 980 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 981 rc |= put_guest_lc(vcpu, parm, 982 (u32 *)__LC_EXT_PARAMS); 983 984 return rc ? -EFAULT : 0; 985 } 986 987 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 988 { 989 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 990 struct kvm_s390_ext_info ext; 991 992 spin_lock(&fi->lock); 993 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 994 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 995 spin_unlock(&fi->lock); 996 return 0; 997 } 998 ext = fi->srv_signal; 999 memset(&fi->srv_signal, 0, sizeof(ext)); 1000 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1001 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1002 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1003 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1004 spin_unlock(&fi->lock); 1005 1006 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1007 ext.ext_params); 1008 vcpu->stat.deliver_service_signal++; 1009 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1010 ext.ext_params, 0); 1011 1012 return write_sclp(vcpu, ext.ext_params); 1013 } 1014 1015 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1016 { 1017 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1018 struct kvm_s390_ext_info ext; 1019 1020 spin_lock(&fi->lock); 1021 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1022 spin_unlock(&fi->lock); 1023 return 0; 1024 } 1025 ext = fi->srv_signal; 1026 /* only clear the event bits */ 1027 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1028 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1029 spin_unlock(&fi->lock); 1030 1031 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1032 vcpu->stat.deliver_service_signal++; 1033 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1034 ext.ext_params, 0); 1035 1036 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); 1037 } 1038 1039 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1040 { 1041 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1042 struct kvm_s390_interrupt_info *inti; 1043 int rc = 0; 1044 1045 spin_lock(&fi->lock); 1046 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1047 struct kvm_s390_interrupt_info, 1048 list); 1049 if (inti) { 1050 list_del(&inti->list); 1051 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1052 } 1053 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1054 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1055 spin_unlock(&fi->lock); 1056 1057 if (inti) { 1058 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1059 KVM_S390_INT_PFAULT_DONE, 0, 1060 inti->ext.ext_params2); 1061 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1062 inti->ext.ext_params2); 1063 1064 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1065 (u16 *)__LC_EXT_INT_CODE); 1066 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1067 (u16 *)__LC_EXT_CPU_ADDR); 1068 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1069 &vcpu->arch.sie_block->gpsw, 1070 sizeof(psw_t)); 1071 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1072 &vcpu->arch.sie_block->gpsw, 1073 sizeof(psw_t)); 1074 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1075 (u64 *)__LC_EXT_PARAMS2); 1076 kfree(inti); 1077 } 1078 return rc ? -EFAULT : 0; 1079 } 1080 1081 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1082 { 1083 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1084 struct kvm_s390_interrupt_info *inti; 1085 int rc = 0; 1086 1087 spin_lock(&fi->lock); 1088 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1089 struct kvm_s390_interrupt_info, 1090 list); 1091 if (inti) { 1092 VCPU_EVENT(vcpu, 4, 1093 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1094 inti->ext.ext_params, inti->ext.ext_params2); 1095 vcpu->stat.deliver_virtio++; 1096 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1097 inti->type, 1098 inti->ext.ext_params, 1099 inti->ext.ext_params2); 1100 list_del(&inti->list); 1101 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1102 } 1103 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1104 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1105 spin_unlock(&fi->lock); 1106 1107 if (inti) { 1108 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1109 (u16 *)__LC_EXT_INT_CODE); 1110 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1111 (u16 *)__LC_EXT_CPU_ADDR); 1112 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1113 &vcpu->arch.sie_block->gpsw, 1114 sizeof(psw_t)); 1115 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1116 &vcpu->arch.sie_block->gpsw, 1117 sizeof(psw_t)); 1118 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1119 (u32 *)__LC_EXT_PARAMS); 1120 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1121 (u64 *)__LC_EXT_PARAMS2); 1122 kfree(inti); 1123 } 1124 return rc ? -EFAULT : 0; 1125 } 1126 1127 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1128 { 1129 int rc; 1130 1131 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1132 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1133 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1134 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1135 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1136 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1137 return 0; 1138 } 1139 1140 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1141 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1142 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1143 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1144 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1145 &vcpu->arch.sie_block->gpsw, 1146 sizeof(psw_t)); 1147 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1148 &vcpu->arch.sie_block->gpsw, 1149 sizeof(psw_t)); 1150 return rc ? -EFAULT : 0; 1151 } 1152 1153 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1154 unsigned long irq_type) 1155 { 1156 struct list_head *isc_list; 1157 struct kvm_s390_float_interrupt *fi; 1158 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1159 struct kvm_s390_interrupt_info *inti = NULL; 1160 struct kvm_s390_io_info io; 1161 u32 isc; 1162 int rc = 0; 1163 1164 fi = &vcpu->kvm->arch.float_int; 1165 1166 spin_lock(&fi->lock); 1167 isc = irq_type_to_isc(irq_type); 1168 isc_list = &fi->lists[isc]; 1169 inti = list_first_entry_or_null(isc_list, 1170 struct kvm_s390_interrupt_info, 1171 list); 1172 if (inti) { 1173 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1174 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1175 else 1176 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1177 inti->io.subchannel_id >> 8, 1178 inti->io.subchannel_id >> 1 & 0x3, 1179 inti->io.subchannel_nr); 1180 1181 vcpu->stat.deliver_io++; 1182 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1183 inti->type, 1184 ((__u32)inti->io.subchannel_id << 16) | 1185 inti->io.subchannel_nr, 1186 ((__u64)inti->io.io_int_parm << 32) | 1187 inti->io.io_int_word); 1188 list_del(&inti->list); 1189 fi->counters[FIRQ_CNTR_IO] -= 1; 1190 } 1191 if (list_empty(isc_list)) 1192 clear_bit(irq_type, &fi->pending_irqs); 1193 spin_unlock(&fi->lock); 1194 1195 if (inti) { 1196 rc = __do_deliver_io(vcpu, &(inti->io)); 1197 kfree(inti); 1198 goto out; 1199 } 1200 1201 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1202 /* 1203 * in case an adapter interrupt was not delivered 1204 * in SIE context KVM will handle the delivery 1205 */ 1206 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1207 memset(&io, 0, sizeof(io)); 1208 io.io_int_word = isc_to_int_word(isc); 1209 vcpu->stat.deliver_io++; 1210 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1211 KVM_S390_INT_IO(1, 0, 0, 0), 1212 ((__u32)io.subchannel_id << 16) | 1213 io.subchannel_nr, 1214 ((__u64)io.io_int_parm << 32) | 1215 io.io_int_word); 1216 rc = __do_deliver_io(vcpu, &io); 1217 } 1218 out: 1219 return rc; 1220 } 1221 1222 /* Check whether an external call is pending (deliverable or not) */ 1223 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1224 { 1225 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1226 1227 if (!sclp.has_sigpif) 1228 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1229 1230 return sca_ext_call_pending(vcpu, NULL); 1231 } 1232 1233 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1234 { 1235 if (deliverable_irqs(vcpu)) 1236 return 1; 1237 1238 if (kvm_cpu_has_pending_timer(vcpu)) 1239 return 1; 1240 1241 /* external call pending and deliverable */ 1242 if (kvm_s390_ext_call_pending(vcpu) && 1243 !psw_extint_disabled(vcpu) && 1244 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1245 return 1; 1246 1247 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1248 return 1; 1249 return 0; 1250 } 1251 1252 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1253 { 1254 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1255 } 1256 1257 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1258 { 1259 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1260 const u64 ckc = vcpu->arch.sie_block->ckc; 1261 u64 cputm, sltime = 0; 1262 1263 if (ckc_interrupts_enabled(vcpu)) { 1264 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1265 if ((s64)now < (s64)ckc) 1266 sltime = tod_to_ns((s64)ckc - (s64)now); 1267 } else if (now < ckc) { 1268 sltime = tod_to_ns(ckc - now); 1269 } 1270 /* already expired */ 1271 if (!sltime) 1272 return 0; 1273 if (cpu_timer_interrupts_enabled(vcpu)) { 1274 cputm = kvm_s390_get_cpu_timer(vcpu); 1275 /* already expired? */ 1276 if (cputm >> 63) 1277 return 0; 1278 return min_t(u64, sltime, tod_to_ns(cputm)); 1279 } 1280 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1281 sltime = kvm_s390_get_cpu_timer(vcpu); 1282 /* already expired? */ 1283 if (sltime >> 63) 1284 return 0; 1285 } 1286 return sltime; 1287 } 1288 1289 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1290 { 1291 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1292 u64 sltime; 1293 1294 vcpu->stat.exit_wait_state++; 1295 1296 /* fast path */ 1297 if (kvm_arch_vcpu_runnable(vcpu)) 1298 return 0; 1299 1300 if (psw_interrupts_disabled(vcpu)) { 1301 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1302 return -EOPNOTSUPP; /* disabled wait */ 1303 } 1304 1305 if (gi->origin && 1306 (gisa_get_ipm_or_restore_iam(gi) & 1307 vcpu->arch.sie_block->gcr[6] >> 24)) 1308 return 0; 1309 1310 if (!ckc_interrupts_enabled(vcpu) && 1311 !cpu_timer_interrupts_enabled(vcpu)) { 1312 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1313 __set_cpu_idle(vcpu); 1314 goto no_timer; 1315 } 1316 1317 sltime = __calculate_sltime(vcpu); 1318 if (!sltime) 1319 return 0; 1320 1321 __set_cpu_idle(vcpu); 1322 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1323 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1324 no_timer: 1325 kvm_vcpu_srcu_read_unlock(vcpu); 1326 vcpu->kvm->arch.float_int.last_sleep_cpu = vcpu->vcpu_idx; 1327 kvm_vcpu_halt(vcpu); 1328 vcpu->valid_wakeup = false; 1329 __unset_cpu_idle(vcpu); 1330 kvm_vcpu_srcu_read_lock(vcpu); 1331 1332 hrtimer_cancel(&vcpu->arch.ckc_timer); 1333 return 0; 1334 } 1335 1336 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1337 { 1338 vcpu->valid_wakeup = true; 1339 kvm_vcpu_wake_up(vcpu); 1340 1341 /* 1342 * The VCPU might not be sleeping but rather executing VSIE. Let's 1343 * kick it, so it leaves the SIE to process the request. 1344 */ 1345 kvm_s390_vsie_kick(vcpu); 1346 } 1347 1348 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1349 { 1350 struct kvm_vcpu *vcpu; 1351 u64 sltime; 1352 1353 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1354 sltime = __calculate_sltime(vcpu); 1355 1356 /* 1357 * If the monotonic clock runs faster than the tod clock we might be 1358 * woken up too early and have to go back to sleep to avoid deadlocks. 1359 */ 1360 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1361 return HRTIMER_RESTART; 1362 kvm_s390_vcpu_wakeup(vcpu); 1363 return HRTIMER_NORESTART; 1364 } 1365 1366 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1367 { 1368 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1369 1370 spin_lock(&li->lock); 1371 li->pending_irqs = 0; 1372 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1373 memset(&li->irq, 0, sizeof(li->irq)); 1374 spin_unlock(&li->lock); 1375 1376 sca_clear_ext_call(vcpu); 1377 } 1378 1379 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1380 { 1381 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1382 int rc = 0; 1383 bool delivered = false; 1384 unsigned long irq_type; 1385 unsigned long irqs; 1386 1387 __reset_intercept_indicators(vcpu); 1388 1389 /* pending ckc conditions might have been invalidated */ 1390 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1391 if (ckc_irq_pending(vcpu)) 1392 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1393 1394 /* pending cpu timer conditions might have been invalidated */ 1395 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1396 if (cpu_timer_irq_pending(vcpu)) 1397 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1398 1399 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1400 /* bits are in the reverse order of interrupt priority */ 1401 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1402 switch (irq_type) { 1403 case IRQ_PEND_IO_ISC_0: 1404 case IRQ_PEND_IO_ISC_1: 1405 case IRQ_PEND_IO_ISC_2: 1406 case IRQ_PEND_IO_ISC_3: 1407 case IRQ_PEND_IO_ISC_4: 1408 case IRQ_PEND_IO_ISC_5: 1409 case IRQ_PEND_IO_ISC_6: 1410 case IRQ_PEND_IO_ISC_7: 1411 rc = __deliver_io(vcpu, irq_type); 1412 break; 1413 case IRQ_PEND_MCHK_EX: 1414 case IRQ_PEND_MCHK_REP: 1415 rc = __deliver_machine_check(vcpu); 1416 break; 1417 case IRQ_PEND_PROG: 1418 rc = __deliver_prog(vcpu); 1419 break; 1420 case IRQ_PEND_EXT_EMERGENCY: 1421 rc = __deliver_emergency_signal(vcpu); 1422 break; 1423 case IRQ_PEND_EXT_EXTERNAL: 1424 rc = __deliver_external_call(vcpu); 1425 break; 1426 case IRQ_PEND_EXT_CLOCK_COMP: 1427 rc = __deliver_ckc(vcpu); 1428 break; 1429 case IRQ_PEND_EXT_CPU_TIMER: 1430 rc = __deliver_cpu_timer(vcpu); 1431 break; 1432 case IRQ_PEND_RESTART: 1433 rc = __deliver_restart(vcpu); 1434 break; 1435 case IRQ_PEND_SET_PREFIX: 1436 rc = __deliver_set_prefix(vcpu); 1437 break; 1438 case IRQ_PEND_PFAULT_INIT: 1439 rc = __deliver_pfault_init(vcpu); 1440 break; 1441 case IRQ_PEND_EXT_SERVICE: 1442 rc = __deliver_service(vcpu); 1443 break; 1444 case IRQ_PEND_EXT_SERVICE_EV: 1445 rc = __deliver_service_ev(vcpu); 1446 break; 1447 case IRQ_PEND_PFAULT_DONE: 1448 rc = __deliver_pfault_done(vcpu); 1449 break; 1450 case IRQ_PEND_VIRTIO: 1451 rc = __deliver_virtio(vcpu); 1452 break; 1453 default: 1454 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1455 clear_bit(irq_type, &li->pending_irqs); 1456 } 1457 delivered |= !rc; 1458 } 1459 1460 /* 1461 * We delivered at least one interrupt and modified the PC. Force a 1462 * singlestep event now. 1463 */ 1464 if (delivered && guestdbg_sstep_enabled(vcpu)) { 1465 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; 1466 1467 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; 1468 debug_exit->type = KVM_SINGLESTEP; 1469 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; 1470 } 1471 1472 set_intercept_indicators(vcpu); 1473 1474 return rc; 1475 } 1476 1477 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1478 { 1479 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1480 1481 vcpu->stat.inject_program++; 1482 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1483 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1484 irq->u.pgm.code, 0); 1485 1486 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1487 /* auto detection if no valid ILC was given */ 1488 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1489 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1490 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1491 } 1492 1493 if (irq->u.pgm.code == PGM_PER) { 1494 li->irq.pgm.code |= PGM_PER; 1495 li->irq.pgm.flags = irq->u.pgm.flags; 1496 /* only modify PER related information */ 1497 li->irq.pgm.per_address = irq->u.pgm.per_address; 1498 li->irq.pgm.per_code = irq->u.pgm.per_code; 1499 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1500 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1501 } else if (!(irq->u.pgm.code & PGM_PER)) { 1502 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1503 irq->u.pgm.code; 1504 li->irq.pgm.flags = irq->u.pgm.flags; 1505 /* only modify non-PER information */ 1506 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1507 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1508 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1509 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1510 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1511 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1512 } else { 1513 li->irq.pgm = irq->u.pgm; 1514 } 1515 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1516 return 0; 1517 } 1518 1519 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1520 { 1521 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1522 1523 vcpu->stat.inject_pfault_init++; 1524 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1525 irq->u.ext.ext_params2); 1526 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1527 irq->u.ext.ext_params, 1528 irq->u.ext.ext_params2); 1529 1530 li->irq.ext = irq->u.ext; 1531 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1532 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1533 return 0; 1534 } 1535 1536 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1537 { 1538 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1539 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1540 uint16_t src_id = irq->u.extcall.code; 1541 1542 vcpu->stat.inject_external_call++; 1543 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1544 src_id); 1545 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1546 src_id, 0); 1547 1548 /* sending vcpu invalid */ 1549 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1550 return -EINVAL; 1551 1552 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1553 return sca_inject_ext_call(vcpu, src_id); 1554 1555 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1556 return -EBUSY; 1557 *extcall = irq->u.extcall; 1558 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1559 return 0; 1560 } 1561 1562 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1563 { 1564 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1565 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1566 1567 vcpu->stat.inject_set_prefix++; 1568 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1569 irq->u.prefix.address); 1570 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1571 irq->u.prefix.address, 0); 1572 1573 if (!is_vcpu_stopped(vcpu)) 1574 return -EBUSY; 1575 1576 *prefix = irq->u.prefix; 1577 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1578 return 0; 1579 } 1580 1581 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1582 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1583 { 1584 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1585 struct kvm_s390_stop_info *stop = &li->irq.stop; 1586 int rc = 0; 1587 1588 vcpu->stat.inject_stop_signal++; 1589 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1590 1591 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1592 return -EINVAL; 1593 1594 if (is_vcpu_stopped(vcpu)) { 1595 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1596 rc = kvm_s390_store_status_unloaded(vcpu, 1597 KVM_S390_STORE_STATUS_NOADDR); 1598 return rc; 1599 } 1600 1601 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1602 return -EBUSY; 1603 stop->flags = irq->u.stop.flags; 1604 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1605 return 0; 1606 } 1607 1608 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1609 { 1610 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1611 1612 vcpu->stat.inject_restart++; 1613 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1614 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1615 1616 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1617 return 0; 1618 } 1619 1620 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1621 struct kvm_s390_irq *irq) 1622 { 1623 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1624 1625 vcpu->stat.inject_emergency_signal++; 1626 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1627 irq->u.emerg.code); 1628 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1629 irq->u.emerg.code, 0); 1630 1631 /* sending vcpu invalid */ 1632 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1633 return -EINVAL; 1634 1635 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1636 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1637 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1638 return 0; 1639 } 1640 1641 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1642 { 1643 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1644 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1645 1646 vcpu->stat.inject_mchk++; 1647 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1648 irq->u.mchk.mcic); 1649 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1650 irq->u.mchk.mcic); 1651 1652 /* 1653 * Because repressible machine checks can be indicated along with 1654 * exigent machine checks (PoP, Chapter 11, Interruption action) 1655 * we need to combine cr14, mcic and external damage code. 1656 * Failing storage address and the logout area should not be or'ed 1657 * together, we just indicate the last occurrence of the corresponding 1658 * machine check 1659 */ 1660 mchk->cr14 |= irq->u.mchk.cr14; 1661 mchk->mcic |= irq->u.mchk.mcic; 1662 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1663 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1664 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1665 sizeof(mchk->fixed_logout)); 1666 if (mchk->mcic & MCHK_EX_MASK) 1667 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1668 else if (mchk->mcic & MCHK_REP_MASK) 1669 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1670 return 0; 1671 } 1672 1673 static int __inject_ckc(struct kvm_vcpu *vcpu) 1674 { 1675 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1676 1677 vcpu->stat.inject_ckc++; 1678 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1679 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1680 0, 0); 1681 1682 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1683 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1684 return 0; 1685 } 1686 1687 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1688 { 1689 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1690 1691 vcpu->stat.inject_cputm++; 1692 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1693 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1694 0, 0); 1695 1696 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1697 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1698 return 0; 1699 } 1700 1701 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1702 int isc, u32 schid) 1703 { 1704 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1705 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1706 struct kvm_s390_interrupt_info *iter; 1707 u16 id = (schid & 0xffff0000U) >> 16; 1708 u16 nr = schid & 0x0000ffffU; 1709 1710 spin_lock(&fi->lock); 1711 list_for_each_entry(iter, isc_list, list) { 1712 if (schid && (id != iter->io.subchannel_id || 1713 nr != iter->io.subchannel_nr)) 1714 continue; 1715 /* found an appropriate entry */ 1716 list_del_init(&iter->list); 1717 fi->counters[FIRQ_CNTR_IO] -= 1; 1718 if (list_empty(isc_list)) 1719 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1720 spin_unlock(&fi->lock); 1721 return iter; 1722 } 1723 spin_unlock(&fi->lock); 1724 return NULL; 1725 } 1726 1727 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1728 u64 isc_mask, u32 schid) 1729 { 1730 struct kvm_s390_interrupt_info *inti = NULL; 1731 int isc; 1732 1733 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1734 if (isc_mask & isc_to_isc_bits(isc)) 1735 inti = get_io_int(kvm, isc, schid); 1736 } 1737 return inti; 1738 } 1739 1740 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1741 { 1742 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1743 unsigned long active_mask; 1744 int isc; 1745 1746 if (schid) 1747 goto out; 1748 if (!gi->origin) 1749 goto out; 1750 1751 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1752 while (active_mask) { 1753 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1754 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1755 return isc; 1756 clear_bit_inv(isc, &active_mask); 1757 } 1758 out: 1759 return -EINVAL; 1760 } 1761 1762 /* 1763 * Dequeue and return an I/O interrupt matching any of the interruption 1764 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1765 * Take into account the interrupts pending in the interrupt list and in GISA. 1766 * 1767 * Note that for a guest that does not enable I/O interrupts 1768 * but relies on TPI, a flood of classic interrupts may starve 1769 * out adapter interrupts on the same isc. Linux does not do 1770 * that, and it is possible to work around the issue by configuring 1771 * different iscs for classic and adapter interrupts in the guest, 1772 * but we may want to revisit this in the future. 1773 */ 1774 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1775 u64 isc_mask, u32 schid) 1776 { 1777 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1778 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1779 int isc; 1780 1781 inti = get_top_io_int(kvm, isc_mask, schid); 1782 1783 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1784 if (isc < 0) 1785 /* no AI in GISA */ 1786 goto out; 1787 1788 if (!inti) 1789 /* AI in GISA but no classical IO int */ 1790 goto gisa_out; 1791 1792 /* both types of interrupts present */ 1793 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1794 /* classical IO int with higher priority */ 1795 gisa_set_ipm_gisc(gi->origin, isc); 1796 goto out; 1797 } 1798 gisa_out: 1799 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1800 if (tmp_inti) { 1801 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1802 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1803 if (inti) 1804 kvm_s390_reinject_io_int(kvm, inti); 1805 inti = tmp_inti; 1806 } else 1807 gisa_set_ipm_gisc(gi->origin, isc); 1808 out: 1809 return inti; 1810 } 1811 1812 static int __inject_service(struct kvm *kvm, 1813 struct kvm_s390_interrupt_info *inti) 1814 { 1815 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1816 1817 kvm->stat.inject_service_signal++; 1818 spin_lock(&fi->lock); 1819 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1820 1821 /* We always allow events, track them separately from the sccb ints */ 1822 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1823 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1824 1825 /* 1826 * Early versions of the QEMU s390 bios will inject several 1827 * service interrupts after another without handling a 1828 * condition code indicating busy. 1829 * We will silently ignore those superfluous sccb values. 1830 * A future version of QEMU will take care of serialization 1831 * of servc requests 1832 */ 1833 if (fi->srv_signal.ext_params & SCCB_MASK) 1834 goto out; 1835 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1836 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1837 out: 1838 spin_unlock(&fi->lock); 1839 kfree(inti); 1840 return 0; 1841 } 1842 1843 static int __inject_virtio(struct kvm *kvm, 1844 struct kvm_s390_interrupt_info *inti) 1845 { 1846 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1847 1848 kvm->stat.inject_virtio++; 1849 spin_lock(&fi->lock); 1850 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1851 spin_unlock(&fi->lock); 1852 return -EBUSY; 1853 } 1854 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1855 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1856 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1857 spin_unlock(&fi->lock); 1858 return 0; 1859 } 1860 1861 static int __inject_pfault_done(struct kvm *kvm, 1862 struct kvm_s390_interrupt_info *inti) 1863 { 1864 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1865 1866 kvm->stat.inject_pfault_done++; 1867 spin_lock(&fi->lock); 1868 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1869 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1870 spin_unlock(&fi->lock); 1871 return -EBUSY; 1872 } 1873 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1874 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1875 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1876 spin_unlock(&fi->lock); 1877 return 0; 1878 } 1879 1880 #define CR_PENDING_SUBCLASS 28 1881 static int __inject_float_mchk(struct kvm *kvm, 1882 struct kvm_s390_interrupt_info *inti) 1883 { 1884 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1885 1886 kvm->stat.inject_float_mchk++; 1887 spin_lock(&fi->lock); 1888 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1889 fi->mchk.mcic |= inti->mchk.mcic; 1890 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1891 spin_unlock(&fi->lock); 1892 kfree(inti); 1893 return 0; 1894 } 1895 1896 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1897 { 1898 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1899 struct kvm_s390_float_interrupt *fi; 1900 struct list_head *list; 1901 int isc; 1902 1903 kvm->stat.inject_io++; 1904 isc = int_word_to_isc(inti->io.io_int_word); 1905 1906 /* 1907 * We do not use the lock checking variant as this is just a 1908 * performance optimization and we do not hold the lock here. 1909 * This is ok as the code will pick interrupts from both "lists" 1910 * for delivery. 1911 */ 1912 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1913 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1914 gisa_set_ipm_gisc(gi->origin, isc); 1915 kfree(inti); 1916 return 0; 1917 } 1918 1919 fi = &kvm->arch.float_int; 1920 spin_lock(&fi->lock); 1921 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1922 spin_unlock(&fi->lock); 1923 return -EBUSY; 1924 } 1925 fi->counters[FIRQ_CNTR_IO] += 1; 1926 1927 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1928 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1929 else 1930 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1931 inti->io.subchannel_id >> 8, 1932 inti->io.subchannel_id >> 1 & 0x3, 1933 inti->io.subchannel_nr); 1934 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1935 list_add_tail(&inti->list, list); 1936 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1937 spin_unlock(&fi->lock); 1938 return 0; 1939 } 1940 1941 /* 1942 * Find a destination VCPU for a floating irq and kick it. 1943 */ 1944 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1945 { 1946 struct kvm_vcpu *dst_vcpu; 1947 int sigcpu, online_vcpus, nr_tries = 0; 1948 1949 online_vcpus = atomic_read(&kvm->online_vcpus); 1950 if (!online_vcpus) 1951 return; 1952 1953 for (sigcpu = kvm->arch.float_int.last_sleep_cpu; ; sigcpu++) { 1954 sigcpu %= online_vcpus; 1955 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1956 if (!is_vcpu_stopped(dst_vcpu)) 1957 break; 1958 /* avoid endless loops if all vcpus are stopped */ 1959 if (nr_tries++ >= online_vcpus) 1960 return; 1961 } 1962 1963 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1964 switch (type) { 1965 case KVM_S390_MCHK: 1966 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1967 break; 1968 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1969 if (!(type & KVM_S390_INT_IO_AI_MASK && 1970 kvm->arch.gisa_int.origin) || 1971 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1972 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1973 break; 1974 default: 1975 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1976 break; 1977 } 1978 kvm_s390_vcpu_wakeup(dst_vcpu); 1979 } 1980 1981 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1982 { 1983 u64 type = READ_ONCE(inti->type); 1984 int rc; 1985 1986 switch (type) { 1987 case KVM_S390_MCHK: 1988 rc = __inject_float_mchk(kvm, inti); 1989 break; 1990 case KVM_S390_INT_VIRTIO: 1991 rc = __inject_virtio(kvm, inti); 1992 break; 1993 case KVM_S390_INT_SERVICE: 1994 rc = __inject_service(kvm, inti); 1995 break; 1996 case KVM_S390_INT_PFAULT_DONE: 1997 rc = __inject_pfault_done(kvm, inti); 1998 break; 1999 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2000 rc = __inject_io(kvm, inti); 2001 break; 2002 default: 2003 rc = -EINVAL; 2004 } 2005 if (rc) 2006 return rc; 2007 2008 __floating_irq_kick(kvm, type); 2009 return 0; 2010 } 2011 2012 int kvm_s390_inject_vm(struct kvm *kvm, 2013 struct kvm_s390_interrupt *s390int) 2014 { 2015 struct kvm_s390_interrupt_info *inti; 2016 int rc; 2017 2018 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2019 if (!inti) 2020 return -ENOMEM; 2021 2022 inti->type = s390int->type; 2023 switch (inti->type) { 2024 case KVM_S390_INT_VIRTIO: 2025 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2026 s390int->parm, s390int->parm64); 2027 inti->ext.ext_params = s390int->parm; 2028 inti->ext.ext_params2 = s390int->parm64; 2029 break; 2030 case KVM_S390_INT_SERVICE: 2031 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2032 inti->ext.ext_params = s390int->parm; 2033 break; 2034 case KVM_S390_INT_PFAULT_DONE: 2035 inti->ext.ext_params2 = s390int->parm64; 2036 break; 2037 case KVM_S390_MCHK: 2038 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2039 s390int->parm64); 2040 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2041 inti->mchk.mcic = s390int->parm64; 2042 break; 2043 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2044 inti->io.subchannel_id = s390int->parm >> 16; 2045 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2046 inti->io.io_int_parm = s390int->parm64 >> 32; 2047 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2048 break; 2049 default: 2050 kfree(inti); 2051 return -EINVAL; 2052 } 2053 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2054 2); 2055 2056 rc = __inject_vm(kvm, inti); 2057 if (rc) 2058 kfree(inti); 2059 return rc; 2060 } 2061 2062 int kvm_s390_reinject_io_int(struct kvm *kvm, 2063 struct kvm_s390_interrupt_info *inti) 2064 { 2065 return __inject_vm(kvm, inti); 2066 } 2067 2068 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2069 struct kvm_s390_irq *irq) 2070 { 2071 irq->type = s390int->type; 2072 switch (irq->type) { 2073 case KVM_S390_PROGRAM_INT: 2074 if (s390int->parm & 0xffff0000) 2075 return -EINVAL; 2076 irq->u.pgm.code = s390int->parm; 2077 break; 2078 case KVM_S390_SIGP_SET_PREFIX: 2079 irq->u.prefix.address = s390int->parm; 2080 break; 2081 case KVM_S390_SIGP_STOP: 2082 irq->u.stop.flags = s390int->parm; 2083 break; 2084 case KVM_S390_INT_EXTERNAL_CALL: 2085 if (s390int->parm & 0xffff0000) 2086 return -EINVAL; 2087 irq->u.extcall.code = s390int->parm; 2088 break; 2089 case KVM_S390_INT_EMERGENCY: 2090 if (s390int->parm & 0xffff0000) 2091 return -EINVAL; 2092 irq->u.emerg.code = s390int->parm; 2093 break; 2094 case KVM_S390_MCHK: 2095 irq->u.mchk.mcic = s390int->parm64; 2096 break; 2097 case KVM_S390_INT_PFAULT_INIT: 2098 irq->u.ext.ext_params = s390int->parm; 2099 irq->u.ext.ext_params2 = s390int->parm64; 2100 break; 2101 case KVM_S390_RESTART: 2102 case KVM_S390_INT_CLOCK_COMP: 2103 case KVM_S390_INT_CPU_TIMER: 2104 break; 2105 default: 2106 return -EINVAL; 2107 } 2108 return 0; 2109 } 2110 2111 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2112 { 2113 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2114 2115 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2116 } 2117 2118 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2119 { 2120 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2121 2122 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2123 } 2124 2125 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2126 { 2127 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2128 2129 spin_lock(&li->lock); 2130 li->irq.stop.flags = 0; 2131 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2132 spin_unlock(&li->lock); 2133 } 2134 2135 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2136 { 2137 int rc; 2138 2139 switch (irq->type) { 2140 case KVM_S390_PROGRAM_INT: 2141 rc = __inject_prog(vcpu, irq); 2142 break; 2143 case KVM_S390_SIGP_SET_PREFIX: 2144 rc = __inject_set_prefix(vcpu, irq); 2145 break; 2146 case KVM_S390_SIGP_STOP: 2147 rc = __inject_sigp_stop(vcpu, irq); 2148 break; 2149 case KVM_S390_RESTART: 2150 rc = __inject_sigp_restart(vcpu); 2151 break; 2152 case KVM_S390_INT_CLOCK_COMP: 2153 rc = __inject_ckc(vcpu); 2154 break; 2155 case KVM_S390_INT_CPU_TIMER: 2156 rc = __inject_cpu_timer(vcpu); 2157 break; 2158 case KVM_S390_INT_EXTERNAL_CALL: 2159 rc = __inject_extcall(vcpu, irq); 2160 break; 2161 case KVM_S390_INT_EMERGENCY: 2162 rc = __inject_sigp_emergency(vcpu, irq); 2163 break; 2164 case KVM_S390_MCHK: 2165 rc = __inject_mchk(vcpu, irq); 2166 break; 2167 case KVM_S390_INT_PFAULT_INIT: 2168 rc = __inject_pfault_init(vcpu, irq); 2169 break; 2170 case KVM_S390_INT_VIRTIO: 2171 case KVM_S390_INT_SERVICE: 2172 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2173 default: 2174 rc = -EINVAL; 2175 } 2176 2177 return rc; 2178 } 2179 2180 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2181 { 2182 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2183 int rc; 2184 2185 spin_lock(&li->lock); 2186 rc = do_inject_vcpu(vcpu, irq); 2187 spin_unlock(&li->lock); 2188 if (!rc) 2189 kvm_s390_vcpu_wakeup(vcpu); 2190 return rc; 2191 } 2192 2193 static inline void clear_irq_list(struct list_head *_list) 2194 { 2195 struct kvm_s390_interrupt_info *inti, *n; 2196 2197 list_for_each_entry_safe(inti, n, _list, list) { 2198 list_del(&inti->list); 2199 kfree(inti); 2200 } 2201 } 2202 2203 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2204 struct kvm_s390_irq *irq) 2205 { 2206 irq->type = inti->type; 2207 switch (inti->type) { 2208 case KVM_S390_INT_PFAULT_INIT: 2209 case KVM_S390_INT_PFAULT_DONE: 2210 case KVM_S390_INT_VIRTIO: 2211 irq->u.ext = inti->ext; 2212 break; 2213 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2214 irq->u.io = inti->io; 2215 break; 2216 } 2217 } 2218 2219 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2220 { 2221 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2222 int i; 2223 2224 mutex_lock(&kvm->lock); 2225 if (!kvm_s390_pv_is_protected(kvm)) 2226 fi->masked_irqs = 0; 2227 mutex_unlock(&kvm->lock); 2228 spin_lock(&fi->lock); 2229 fi->pending_irqs = 0; 2230 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2231 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2232 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2233 clear_irq_list(&fi->lists[i]); 2234 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2235 fi->counters[i] = 0; 2236 spin_unlock(&fi->lock); 2237 kvm_s390_gisa_clear(kvm); 2238 }; 2239 2240 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2241 { 2242 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2243 struct kvm_s390_interrupt_info *inti; 2244 struct kvm_s390_float_interrupt *fi; 2245 struct kvm_s390_irq *buf; 2246 struct kvm_s390_irq *irq; 2247 int max_irqs; 2248 int ret = 0; 2249 int n = 0; 2250 int i; 2251 2252 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2253 return -EINVAL; 2254 2255 /* 2256 * We are already using -ENOMEM to signal 2257 * userspace it may retry with a bigger buffer, 2258 * so we need to use something else for this case 2259 */ 2260 buf = vzalloc(len); 2261 if (!buf) 2262 return -ENOBUFS; 2263 2264 max_irqs = len / sizeof(struct kvm_s390_irq); 2265 2266 if (gi->origin && gisa_get_ipm(gi->origin)) { 2267 for (i = 0; i <= MAX_ISC; i++) { 2268 if (n == max_irqs) { 2269 /* signal userspace to try again */ 2270 ret = -ENOMEM; 2271 goto out_nolock; 2272 } 2273 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2274 irq = (struct kvm_s390_irq *) &buf[n]; 2275 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2276 irq->u.io.io_int_word = isc_to_int_word(i); 2277 n++; 2278 } 2279 } 2280 } 2281 fi = &kvm->arch.float_int; 2282 spin_lock(&fi->lock); 2283 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2284 list_for_each_entry(inti, &fi->lists[i], list) { 2285 if (n == max_irqs) { 2286 /* signal userspace to try again */ 2287 ret = -ENOMEM; 2288 goto out; 2289 } 2290 inti_to_irq(inti, &buf[n]); 2291 n++; 2292 } 2293 } 2294 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2295 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2296 if (n == max_irqs) { 2297 /* signal userspace to try again */ 2298 ret = -ENOMEM; 2299 goto out; 2300 } 2301 irq = (struct kvm_s390_irq *) &buf[n]; 2302 irq->type = KVM_S390_INT_SERVICE; 2303 irq->u.ext = fi->srv_signal; 2304 n++; 2305 } 2306 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2307 if (n == max_irqs) { 2308 /* signal userspace to try again */ 2309 ret = -ENOMEM; 2310 goto out; 2311 } 2312 irq = (struct kvm_s390_irq *) &buf[n]; 2313 irq->type = KVM_S390_MCHK; 2314 irq->u.mchk = fi->mchk; 2315 n++; 2316 } 2317 2318 out: 2319 spin_unlock(&fi->lock); 2320 out_nolock: 2321 if (!ret && n > 0) { 2322 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2323 ret = -EFAULT; 2324 } 2325 vfree(buf); 2326 2327 return ret < 0 ? ret : n; 2328 } 2329 2330 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2331 { 2332 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2333 struct kvm_s390_ais_all ais; 2334 2335 if (attr->attr < sizeof(ais)) 2336 return -EINVAL; 2337 2338 if (!test_kvm_facility(kvm, 72)) 2339 return -EOPNOTSUPP; 2340 2341 mutex_lock(&fi->ais_lock); 2342 ais.simm = fi->simm; 2343 ais.nimm = fi->nimm; 2344 mutex_unlock(&fi->ais_lock); 2345 2346 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2347 return -EFAULT; 2348 2349 return 0; 2350 } 2351 2352 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2353 { 2354 int r; 2355 2356 switch (attr->group) { 2357 case KVM_DEV_FLIC_GET_ALL_IRQS: 2358 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2359 attr->attr); 2360 break; 2361 case KVM_DEV_FLIC_AISM_ALL: 2362 r = flic_ais_mode_get_all(dev->kvm, attr); 2363 break; 2364 default: 2365 r = -EINVAL; 2366 } 2367 2368 return r; 2369 } 2370 2371 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2372 u64 addr) 2373 { 2374 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2375 void *target = NULL; 2376 void __user *source; 2377 u64 size; 2378 2379 if (get_user(inti->type, (u64 __user *)addr)) 2380 return -EFAULT; 2381 2382 switch (inti->type) { 2383 case KVM_S390_INT_PFAULT_INIT: 2384 case KVM_S390_INT_PFAULT_DONE: 2385 case KVM_S390_INT_VIRTIO: 2386 case KVM_S390_INT_SERVICE: 2387 target = (void *) &inti->ext; 2388 source = &uptr->u.ext; 2389 size = sizeof(inti->ext); 2390 break; 2391 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2392 target = (void *) &inti->io; 2393 source = &uptr->u.io; 2394 size = sizeof(inti->io); 2395 break; 2396 case KVM_S390_MCHK: 2397 target = (void *) &inti->mchk; 2398 source = &uptr->u.mchk; 2399 size = sizeof(inti->mchk); 2400 break; 2401 default: 2402 return -EINVAL; 2403 } 2404 2405 if (copy_from_user(target, source, size)) 2406 return -EFAULT; 2407 2408 return 0; 2409 } 2410 2411 static int enqueue_floating_irq(struct kvm_device *dev, 2412 struct kvm_device_attr *attr) 2413 { 2414 struct kvm_s390_interrupt_info *inti = NULL; 2415 int r = 0; 2416 int len = attr->attr; 2417 2418 if (len % sizeof(struct kvm_s390_irq) != 0) 2419 return -EINVAL; 2420 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2421 return -EINVAL; 2422 2423 while (len >= sizeof(struct kvm_s390_irq)) { 2424 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2425 if (!inti) 2426 return -ENOMEM; 2427 2428 r = copy_irq_from_user(inti, attr->addr); 2429 if (r) { 2430 kfree(inti); 2431 return r; 2432 } 2433 r = __inject_vm(dev->kvm, inti); 2434 if (r) { 2435 kfree(inti); 2436 return r; 2437 } 2438 len -= sizeof(struct kvm_s390_irq); 2439 attr->addr += sizeof(struct kvm_s390_irq); 2440 } 2441 2442 return r; 2443 } 2444 2445 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2446 { 2447 if (id >= MAX_S390_IO_ADAPTERS) 2448 return NULL; 2449 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2450 return kvm->arch.adapters[id]; 2451 } 2452 2453 static int register_io_adapter(struct kvm_device *dev, 2454 struct kvm_device_attr *attr) 2455 { 2456 struct s390_io_adapter *adapter; 2457 struct kvm_s390_io_adapter adapter_info; 2458 2459 if (copy_from_user(&adapter_info, 2460 (void __user *)attr->addr, sizeof(adapter_info))) 2461 return -EFAULT; 2462 2463 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2464 return -EINVAL; 2465 2466 adapter_info.id = array_index_nospec(adapter_info.id, 2467 MAX_S390_IO_ADAPTERS); 2468 2469 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2470 return -EINVAL; 2471 2472 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2473 if (!adapter) 2474 return -ENOMEM; 2475 2476 adapter->id = adapter_info.id; 2477 adapter->isc = adapter_info.isc; 2478 adapter->maskable = adapter_info.maskable; 2479 adapter->masked = false; 2480 adapter->swap = adapter_info.swap; 2481 adapter->suppressible = (adapter_info.flags) & 2482 KVM_S390_ADAPTER_SUPPRESSIBLE; 2483 dev->kvm->arch.adapters[adapter->id] = adapter; 2484 2485 return 0; 2486 } 2487 2488 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2489 { 2490 int ret; 2491 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2492 2493 if (!adapter || !adapter->maskable) 2494 return -EINVAL; 2495 ret = adapter->masked; 2496 adapter->masked = masked; 2497 return ret; 2498 } 2499 2500 void kvm_s390_destroy_adapters(struct kvm *kvm) 2501 { 2502 int i; 2503 2504 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2505 kfree(kvm->arch.adapters[i]); 2506 } 2507 2508 static int modify_io_adapter(struct kvm_device *dev, 2509 struct kvm_device_attr *attr) 2510 { 2511 struct kvm_s390_io_adapter_req req; 2512 struct s390_io_adapter *adapter; 2513 int ret; 2514 2515 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2516 return -EFAULT; 2517 2518 adapter = get_io_adapter(dev->kvm, req.id); 2519 if (!adapter) 2520 return -EINVAL; 2521 switch (req.type) { 2522 case KVM_S390_IO_ADAPTER_MASK: 2523 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2524 if (ret > 0) 2525 ret = 0; 2526 break; 2527 /* 2528 * The following operations are no longer needed and therefore no-ops. 2529 * The gpa to hva translation is done when an IRQ route is set up. The 2530 * set_irq code uses get_user_pages_remote() to do the actual write. 2531 */ 2532 case KVM_S390_IO_ADAPTER_MAP: 2533 case KVM_S390_IO_ADAPTER_UNMAP: 2534 ret = 0; 2535 break; 2536 default: 2537 ret = -EINVAL; 2538 } 2539 2540 return ret; 2541 } 2542 2543 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2544 2545 { 2546 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2547 u32 schid; 2548 2549 if (attr->flags) 2550 return -EINVAL; 2551 if (attr->attr != sizeof(schid)) 2552 return -EINVAL; 2553 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2554 return -EFAULT; 2555 if (!schid) 2556 return -EINVAL; 2557 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2558 /* 2559 * If userspace is conforming to the architecture, we can have at most 2560 * one pending I/O interrupt per subchannel, so this is effectively a 2561 * clear all. 2562 */ 2563 return 0; 2564 } 2565 2566 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2567 { 2568 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2569 struct kvm_s390_ais_req req; 2570 int ret = 0; 2571 2572 if (!test_kvm_facility(kvm, 72)) 2573 return -EOPNOTSUPP; 2574 2575 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2576 return -EFAULT; 2577 2578 if (req.isc > MAX_ISC) 2579 return -EINVAL; 2580 2581 trace_kvm_s390_modify_ais_mode(req.isc, 2582 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2583 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2584 2 : KVM_S390_AIS_MODE_SINGLE : 2585 KVM_S390_AIS_MODE_ALL, req.mode); 2586 2587 mutex_lock(&fi->ais_lock); 2588 switch (req.mode) { 2589 case KVM_S390_AIS_MODE_ALL: 2590 fi->simm &= ~AIS_MODE_MASK(req.isc); 2591 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2592 break; 2593 case KVM_S390_AIS_MODE_SINGLE: 2594 fi->simm |= AIS_MODE_MASK(req.isc); 2595 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2596 break; 2597 default: 2598 ret = -EINVAL; 2599 } 2600 mutex_unlock(&fi->ais_lock); 2601 2602 return ret; 2603 } 2604 2605 static int kvm_s390_inject_airq(struct kvm *kvm, 2606 struct s390_io_adapter *adapter) 2607 { 2608 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2609 struct kvm_s390_interrupt s390int = { 2610 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2611 .parm = 0, 2612 .parm64 = isc_to_int_word(adapter->isc), 2613 }; 2614 int ret = 0; 2615 2616 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2617 return kvm_s390_inject_vm(kvm, &s390int); 2618 2619 mutex_lock(&fi->ais_lock); 2620 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2621 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2622 goto out; 2623 } 2624 2625 ret = kvm_s390_inject_vm(kvm, &s390int); 2626 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2627 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2628 trace_kvm_s390_modify_ais_mode(adapter->isc, 2629 KVM_S390_AIS_MODE_SINGLE, 2); 2630 } 2631 out: 2632 mutex_unlock(&fi->ais_lock); 2633 return ret; 2634 } 2635 2636 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2637 { 2638 unsigned int id = attr->attr; 2639 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2640 2641 if (!adapter) 2642 return -EINVAL; 2643 2644 return kvm_s390_inject_airq(kvm, adapter); 2645 } 2646 2647 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2648 { 2649 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2650 struct kvm_s390_ais_all ais; 2651 2652 if (!test_kvm_facility(kvm, 72)) 2653 return -EOPNOTSUPP; 2654 2655 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2656 return -EFAULT; 2657 2658 mutex_lock(&fi->ais_lock); 2659 fi->simm = ais.simm; 2660 fi->nimm = ais.nimm; 2661 mutex_unlock(&fi->ais_lock); 2662 2663 return 0; 2664 } 2665 2666 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2667 { 2668 int r = 0; 2669 unsigned long i; 2670 struct kvm_vcpu *vcpu; 2671 2672 switch (attr->group) { 2673 case KVM_DEV_FLIC_ENQUEUE: 2674 r = enqueue_floating_irq(dev, attr); 2675 break; 2676 case KVM_DEV_FLIC_CLEAR_IRQS: 2677 kvm_s390_clear_float_irqs(dev->kvm); 2678 break; 2679 case KVM_DEV_FLIC_APF_ENABLE: 2680 if (kvm_is_ucontrol(dev->kvm)) 2681 return -EINVAL; 2682 dev->kvm->arch.gmap->pfault_enabled = 1; 2683 break; 2684 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2685 if (kvm_is_ucontrol(dev->kvm)) 2686 return -EINVAL; 2687 dev->kvm->arch.gmap->pfault_enabled = 0; 2688 /* 2689 * Make sure no async faults are in transition when 2690 * clearing the queues. So we don't need to worry 2691 * about late coming workers. 2692 */ 2693 synchronize_srcu(&dev->kvm->srcu); 2694 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2695 kvm_clear_async_pf_completion_queue(vcpu); 2696 break; 2697 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2698 r = register_io_adapter(dev, attr); 2699 break; 2700 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2701 r = modify_io_adapter(dev, attr); 2702 break; 2703 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2704 r = clear_io_irq(dev->kvm, attr); 2705 break; 2706 case KVM_DEV_FLIC_AISM: 2707 r = modify_ais_mode(dev->kvm, attr); 2708 break; 2709 case KVM_DEV_FLIC_AIRQ_INJECT: 2710 r = flic_inject_airq(dev->kvm, attr); 2711 break; 2712 case KVM_DEV_FLIC_AISM_ALL: 2713 r = flic_ais_mode_set_all(dev->kvm, attr); 2714 break; 2715 default: 2716 r = -EINVAL; 2717 } 2718 2719 return r; 2720 } 2721 2722 static int flic_has_attr(struct kvm_device *dev, 2723 struct kvm_device_attr *attr) 2724 { 2725 switch (attr->group) { 2726 case KVM_DEV_FLIC_GET_ALL_IRQS: 2727 case KVM_DEV_FLIC_ENQUEUE: 2728 case KVM_DEV_FLIC_CLEAR_IRQS: 2729 case KVM_DEV_FLIC_APF_ENABLE: 2730 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2731 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2732 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2733 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2734 case KVM_DEV_FLIC_AISM: 2735 case KVM_DEV_FLIC_AIRQ_INJECT: 2736 case KVM_DEV_FLIC_AISM_ALL: 2737 return 0; 2738 } 2739 return -ENXIO; 2740 } 2741 2742 static int flic_create(struct kvm_device *dev, u32 type) 2743 { 2744 if (!dev) 2745 return -EINVAL; 2746 if (dev->kvm->arch.flic) 2747 return -EINVAL; 2748 dev->kvm->arch.flic = dev; 2749 return 0; 2750 } 2751 2752 static void flic_destroy(struct kvm_device *dev) 2753 { 2754 dev->kvm->arch.flic = NULL; 2755 kfree(dev); 2756 } 2757 2758 /* s390 floating irq controller (flic) */ 2759 struct kvm_device_ops kvm_flic_ops = { 2760 .name = "kvm-flic", 2761 .get_attr = flic_get_attr, 2762 .set_attr = flic_set_attr, 2763 .has_attr = flic_has_attr, 2764 .create = flic_create, 2765 .destroy = flic_destroy, 2766 }; 2767 2768 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2769 { 2770 unsigned long bit; 2771 2772 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2773 2774 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2775 } 2776 2777 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2778 { 2779 struct mm_struct *mm = kvm->mm; 2780 struct page *page = NULL; 2781 int locked = 1; 2782 2783 if (mmget_not_zero(mm)) { 2784 mmap_read_lock(mm); 2785 get_user_pages_remote(mm, uaddr, 1, FOLL_WRITE, 2786 &page, &locked); 2787 if (locked) 2788 mmap_read_unlock(mm); 2789 mmput(mm); 2790 } 2791 2792 return page; 2793 } 2794 2795 static int adapter_indicators_set(struct kvm *kvm, 2796 struct s390_io_adapter *adapter, 2797 struct kvm_s390_adapter_int *adapter_int) 2798 { 2799 unsigned long bit; 2800 int summary_set, idx; 2801 struct page *ind_page, *summary_page; 2802 void *map; 2803 2804 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2805 if (!ind_page) 2806 return -1; 2807 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2808 if (!summary_page) { 2809 put_page(ind_page); 2810 return -1; 2811 } 2812 2813 idx = srcu_read_lock(&kvm->srcu); 2814 map = page_address(ind_page); 2815 bit = get_ind_bit(adapter_int->ind_addr, 2816 adapter_int->ind_offset, adapter->swap); 2817 set_bit(bit, map); 2818 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2819 set_page_dirty_lock(ind_page); 2820 map = page_address(summary_page); 2821 bit = get_ind_bit(adapter_int->summary_addr, 2822 adapter_int->summary_offset, adapter->swap); 2823 summary_set = test_and_set_bit(bit, map); 2824 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2825 set_page_dirty_lock(summary_page); 2826 srcu_read_unlock(&kvm->srcu, idx); 2827 2828 put_page(ind_page); 2829 put_page(summary_page); 2830 return summary_set ? 0 : 1; 2831 } 2832 2833 /* 2834 * < 0 - not injected due to error 2835 * = 0 - coalesced, summary indicator already active 2836 * > 0 - injected interrupt 2837 */ 2838 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2839 struct kvm *kvm, int irq_source_id, int level, 2840 bool line_status) 2841 { 2842 int ret; 2843 struct s390_io_adapter *adapter; 2844 2845 /* We're only interested in the 0->1 transition. */ 2846 if (!level) 2847 return 0; 2848 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2849 if (!adapter) 2850 return -1; 2851 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2852 if ((ret > 0) && !adapter->masked) { 2853 ret = kvm_s390_inject_airq(kvm, adapter); 2854 if (ret == 0) 2855 ret = 1; 2856 } 2857 return ret; 2858 } 2859 2860 /* 2861 * Inject the machine check to the guest. 2862 */ 2863 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2864 struct mcck_volatile_info *mcck_info) 2865 { 2866 struct kvm_s390_interrupt_info inti; 2867 struct kvm_s390_irq irq; 2868 struct kvm_s390_mchk_info *mchk; 2869 union mci mci; 2870 __u64 cr14 = 0; /* upper bits are not used */ 2871 int rc; 2872 2873 mci.val = mcck_info->mcic; 2874 if (mci.sr) 2875 cr14 |= CR14_RECOVERY_SUBMASK; 2876 if (mci.dg) 2877 cr14 |= CR14_DEGRADATION_SUBMASK; 2878 if (mci.w) 2879 cr14 |= CR14_WARNING_SUBMASK; 2880 2881 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2882 mchk->cr14 = cr14; 2883 mchk->mcic = mcck_info->mcic; 2884 mchk->ext_damage_code = mcck_info->ext_damage_code; 2885 mchk->failing_storage_address = mcck_info->failing_storage_address; 2886 if (mci.ck) { 2887 /* Inject the floating machine check */ 2888 inti.type = KVM_S390_MCHK; 2889 rc = __inject_vm(vcpu->kvm, &inti); 2890 } else { 2891 /* Inject the machine check to specified vcpu */ 2892 irq.type = KVM_S390_MCHK; 2893 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2894 } 2895 WARN_ON_ONCE(rc); 2896 } 2897 2898 int kvm_set_routing_entry(struct kvm *kvm, 2899 struct kvm_kernel_irq_routing_entry *e, 2900 const struct kvm_irq_routing_entry *ue) 2901 { 2902 u64 uaddr_s, uaddr_i; 2903 int idx; 2904 2905 switch (ue->type) { 2906 /* we store the userspace addresses instead of the guest addresses */ 2907 case KVM_IRQ_ROUTING_S390_ADAPTER: 2908 if (kvm_is_ucontrol(kvm)) 2909 return -EINVAL; 2910 e->set = set_adapter_int; 2911 2912 idx = srcu_read_lock(&kvm->srcu); 2913 uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr); 2914 uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr); 2915 srcu_read_unlock(&kvm->srcu, idx); 2916 2917 if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i)) 2918 return -EFAULT; 2919 e->adapter.summary_addr = uaddr_s; 2920 e->adapter.ind_addr = uaddr_i; 2921 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2922 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2923 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2924 return 0; 2925 default: 2926 return -EINVAL; 2927 } 2928 } 2929 2930 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2931 int irq_source_id, int level, bool line_status) 2932 { 2933 return -EINVAL; 2934 } 2935 2936 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2937 { 2938 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2939 struct kvm_s390_irq *buf; 2940 int r = 0; 2941 int n; 2942 2943 buf = vmalloc(len); 2944 if (!buf) 2945 return -ENOMEM; 2946 2947 if (copy_from_user((void *) buf, irqstate, len)) { 2948 r = -EFAULT; 2949 goto out_free; 2950 } 2951 2952 /* 2953 * Don't allow setting the interrupt state 2954 * when there are already interrupts pending 2955 */ 2956 spin_lock(&li->lock); 2957 if (li->pending_irqs) { 2958 r = -EBUSY; 2959 goto out_unlock; 2960 } 2961 2962 for (n = 0; n < len / sizeof(*buf); n++) { 2963 r = do_inject_vcpu(vcpu, &buf[n]); 2964 if (r) 2965 break; 2966 } 2967 2968 out_unlock: 2969 spin_unlock(&li->lock); 2970 out_free: 2971 vfree(buf); 2972 2973 return r; 2974 } 2975 2976 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2977 struct kvm_s390_irq *irq, 2978 unsigned long irq_type) 2979 { 2980 switch (irq_type) { 2981 case IRQ_PEND_MCHK_EX: 2982 case IRQ_PEND_MCHK_REP: 2983 irq->type = KVM_S390_MCHK; 2984 irq->u.mchk = li->irq.mchk; 2985 break; 2986 case IRQ_PEND_PROG: 2987 irq->type = KVM_S390_PROGRAM_INT; 2988 irq->u.pgm = li->irq.pgm; 2989 break; 2990 case IRQ_PEND_PFAULT_INIT: 2991 irq->type = KVM_S390_INT_PFAULT_INIT; 2992 irq->u.ext = li->irq.ext; 2993 break; 2994 case IRQ_PEND_EXT_EXTERNAL: 2995 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2996 irq->u.extcall = li->irq.extcall; 2997 break; 2998 case IRQ_PEND_EXT_CLOCK_COMP: 2999 irq->type = KVM_S390_INT_CLOCK_COMP; 3000 break; 3001 case IRQ_PEND_EXT_CPU_TIMER: 3002 irq->type = KVM_S390_INT_CPU_TIMER; 3003 break; 3004 case IRQ_PEND_SIGP_STOP: 3005 irq->type = KVM_S390_SIGP_STOP; 3006 irq->u.stop = li->irq.stop; 3007 break; 3008 case IRQ_PEND_RESTART: 3009 irq->type = KVM_S390_RESTART; 3010 break; 3011 case IRQ_PEND_SET_PREFIX: 3012 irq->type = KVM_S390_SIGP_SET_PREFIX; 3013 irq->u.prefix = li->irq.prefix; 3014 break; 3015 } 3016 } 3017 3018 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3019 { 3020 int scn; 3021 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3022 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3023 unsigned long pending_irqs; 3024 struct kvm_s390_irq irq; 3025 unsigned long irq_type; 3026 int cpuaddr; 3027 int n = 0; 3028 3029 spin_lock(&li->lock); 3030 pending_irqs = li->pending_irqs; 3031 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3032 sizeof(sigp_emerg_pending)); 3033 spin_unlock(&li->lock); 3034 3035 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3036 memset(&irq, 0, sizeof(irq)); 3037 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3038 continue; 3039 if (n + sizeof(irq) > len) 3040 return -ENOBUFS; 3041 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3042 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3043 return -EFAULT; 3044 n += sizeof(irq); 3045 } 3046 3047 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3048 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3049 memset(&irq, 0, sizeof(irq)); 3050 if (n + sizeof(irq) > len) 3051 return -ENOBUFS; 3052 irq.type = KVM_S390_INT_EMERGENCY; 3053 irq.u.emerg.code = cpuaddr; 3054 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3055 return -EFAULT; 3056 n += sizeof(irq); 3057 } 3058 } 3059 3060 if (sca_ext_call_pending(vcpu, &scn)) { 3061 if (n + sizeof(irq) > len) 3062 return -ENOBUFS; 3063 memset(&irq, 0, sizeof(irq)); 3064 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3065 irq.u.extcall.code = scn; 3066 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3067 return -EFAULT; 3068 n += sizeof(irq); 3069 } 3070 3071 return n; 3072 } 3073 3074 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3075 { 3076 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3077 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3078 struct kvm_vcpu *vcpu; 3079 u8 vcpu_isc_mask; 3080 3081 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3082 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3083 if (psw_ioint_disabled(vcpu)) 3084 continue; 3085 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3086 if (deliverable_mask & vcpu_isc_mask) { 3087 /* lately kicked but not yet running */ 3088 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3089 return; 3090 kvm_s390_vcpu_wakeup(vcpu); 3091 return; 3092 } 3093 } 3094 } 3095 3096 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3097 { 3098 struct kvm_s390_gisa_interrupt *gi = 3099 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3100 struct kvm *kvm = 3101 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3102 u8 pending_mask; 3103 3104 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3105 if (pending_mask) { 3106 __airqs_kick_single_vcpu(kvm, pending_mask); 3107 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3108 return HRTIMER_RESTART; 3109 } 3110 3111 return HRTIMER_NORESTART; 3112 } 3113 3114 #define NULL_GISA_ADDR 0x00000000UL 3115 #define NONE_GISA_ADDR 0x00000001UL 3116 #define GISA_ADDR_MASK 0xfffff000UL 3117 3118 static void process_gib_alert_list(void) 3119 { 3120 struct kvm_s390_gisa_interrupt *gi; 3121 u32 final, gisa_phys, origin = 0UL; 3122 struct kvm_s390_gisa *gisa; 3123 struct kvm *kvm; 3124 3125 do { 3126 /* 3127 * If the NONE_GISA_ADDR is still stored in the alert list 3128 * origin, we will leave the outer loop. No further GISA has 3129 * been added to the alert list by millicode while processing 3130 * the current alert list. 3131 */ 3132 final = (origin & NONE_GISA_ADDR); 3133 /* 3134 * Cut off the alert list and store the NONE_GISA_ADDR in the 3135 * alert list origin to avoid further GAL interruptions. 3136 * A new alert list can be build up by millicode in parallel 3137 * for guests not in the yet cut-off alert list. When in the 3138 * final loop, store the NULL_GISA_ADDR instead. This will re- 3139 * enable GAL interruptions on the host again. 3140 */ 3141 origin = xchg(&gib->alert_list_origin, 3142 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3143 /* 3144 * Loop through the just cut-off alert list and start the 3145 * gisa timers to kick idle vcpus to consume the pending 3146 * interruptions asap. 3147 */ 3148 while (origin & GISA_ADDR_MASK) { 3149 gisa_phys = origin; 3150 gisa = phys_to_virt(gisa_phys); 3151 origin = gisa->next_alert; 3152 gisa->next_alert = gisa_phys; 3153 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3154 gi = &kvm->arch.gisa_int; 3155 if (hrtimer_active(&gi->timer)) 3156 hrtimer_cancel(&gi->timer); 3157 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3158 } 3159 } while (!final); 3160 3161 } 3162 3163 void kvm_s390_gisa_clear(struct kvm *kvm) 3164 { 3165 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3166 3167 if (!gi->origin) 3168 return; 3169 gisa_clear_ipm(gi->origin); 3170 VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin); 3171 } 3172 3173 void kvm_s390_gisa_init(struct kvm *kvm) 3174 { 3175 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3176 3177 if (!css_general_characteristics.aiv) 3178 return; 3179 gi->origin = &kvm->arch.sie_page2->gisa; 3180 gi->alert.mask = 0; 3181 spin_lock_init(&gi->alert.ref_lock); 3182 gi->expires = 50 * 1000; /* 50 usec */ 3183 hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3184 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3185 gi->origin->next_alert = (u32)virt_to_phys(gi->origin); 3186 VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin); 3187 } 3188 3189 void kvm_s390_gisa_enable(struct kvm *kvm) 3190 { 3191 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3192 struct kvm_vcpu *vcpu; 3193 unsigned long i; 3194 u32 gisa_desc; 3195 3196 if (gi->origin) 3197 return; 3198 kvm_s390_gisa_init(kvm); 3199 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3200 if (!gisa_desc) 3201 return; 3202 kvm_for_each_vcpu(i, vcpu, kvm) { 3203 mutex_lock(&vcpu->mutex); 3204 vcpu->arch.sie_block->gd = gisa_desc; 3205 vcpu->arch.sie_block->eca |= ECA_AIV; 3206 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3207 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3208 mutex_unlock(&vcpu->mutex); 3209 } 3210 } 3211 3212 void kvm_s390_gisa_destroy(struct kvm *kvm) 3213 { 3214 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3215 struct kvm_s390_gisa *gisa = gi->origin; 3216 3217 if (!gi->origin) 3218 return; 3219 WARN(gi->alert.mask != 0x00, 3220 "unexpected non zero alert.mask 0x%02x", 3221 gi->alert.mask); 3222 gi->alert.mask = 0x00; 3223 if (gisa_set_iam(gi->origin, gi->alert.mask)) 3224 process_gib_alert_list(); 3225 hrtimer_cancel(&gi->timer); 3226 gi->origin = NULL; 3227 VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa); 3228 } 3229 3230 void kvm_s390_gisa_disable(struct kvm *kvm) 3231 { 3232 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3233 struct kvm_vcpu *vcpu; 3234 unsigned long i; 3235 3236 if (!gi->origin) 3237 return; 3238 kvm_for_each_vcpu(i, vcpu, kvm) { 3239 mutex_lock(&vcpu->mutex); 3240 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3241 vcpu->arch.sie_block->gd = 0U; 3242 mutex_unlock(&vcpu->mutex); 3243 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3244 } 3245 kvm_s390_gisa_destroy(kvm); 3246 } 3247 3248 /** 3249 * kvm_s390_gisc_register - register a guest ISC 3250 * 3251 * @kvm: the kernel vm to work with 3252 * @gisc: the guest interruption sub class to register 3253 * 3254 * The function extends the vm specific alert mask to use. 3255 * The effective IAM mask in the GISA is updated as well 3256 * in case the GISA is not part of the GIB alert list. 3257 * It will be updated latest when the IAM gets restored 3258 * by gisa_get_ipm_or_restore_iam(). 3259 * 3260 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3261 * has registered with the channel subsystem. 3262 * -ENODEV in case the vm uses no GISA 3263 * -ERANGE in case the guest ISC is invalid 3264 */ 3265 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3266 { 3267 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3268 3269 if (!gi->origin) 3270 return -ENODEV; 3271 if (gisc > MAX_ISC) 3272 return -ERANGE; 3273 3274 spin_lock(&gi->alert.ref_lock); 3275 gi->alert.ref_count[gisc]++; 3276 if (gi->alert.ref_count[gisc] == 1) { 3277 gi->alert.mask |= 0x80 >> gisc; 3278 gisa_set_iam(gi->origin, gi->alert.mask); 3279 } 3280 spin_unlock(&gi->alert.ref_lock); 3281 3282 return gib->nisc; 3283 } 3284 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3285 3286 /** 3287 * kvm_s390_gisc_unregister - unregister a guest ISC 3288 * 3289 * @kvm: the kernel vm to work with 3290 * @gisc: the guest interruption sub class to register 3291 * 3292 * The function reduces the vm specific alert mask to use. 3293 * The effective IAM mask in the GISA is updated as well 3294 * in case the GISA is not part of the GIB alert list. 3295 * It will be updated latest when the IAM gets restored 3296 * by gisa_get_ipm_or_restore_iam(). 3297 * 3298 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3299 * has registered with the channel subsystem. 3300 * -ENODEV in case the vm uses no GISA 3301 * -ERANGE in case the guest ISC is invalid 3302 * -EINVAL in case the guest ISC is not registered 3303 */ 3304 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3305 { 3306 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3307 int rc = 0; 3308 3309 if (!gi->origin) 3310 return -ENODEV; 3311 if (gisc > MAX_ISC) 3312 return -ERANGE; 3313 3314 spin_lock(&gi->alert.ref_lock); 3315 if (gi->alert.ref_count[gisc] == 0) { 3316 rc = -EINVAL; 3317 goto out; 3318 } 3319 gi->alert.ref_count[gisc]--; 3320 if (gi->alert.ref_count[gisc] == 0) { 3321 gi->alert.mask &= ~(0x80 >> gisc); 3322 gisa_set_iam(gi->origin, gi->alert.mask); 3323 } 3324 out: 3325 spin_unlock(&gi->alert.ref_lock); 3326 3327 return rc; 3328 } 3329 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3330 3331 static void aen_host_forward(unsigned long si) 3332 { 3333 struct kvm_s390_gisa_interrupt *gi; 3334 struct zpci_gaite *gaite; 3335 struct kvm *kvm; 3336 3337 gaite = (struct zpci_gaite *)aift->gait + 3338 (si * sizeof(struct zpci_gaite)); 3339 if (gaite->count == 0) 3340 return; 3341 if (gaite->aisb != 0) 3342 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3343 3344 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3345 if (!kvm) 3346 return; 3347 gi = &kvm->arch.gisa_int; 3348 3349 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3350 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3351 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3352 if (hrtimer_active(&gi->timer)) 3353 hrtimer_cancel(&gi->timer); 3354 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3355 kvm->stat.aen_forward++; 3356 } 3357 } 3358 3359 static void aen_process_gait(u8 isc) 3360 { 3361 bool found = false, first = true; 3362 union zpci_sic_iib iib = {{0}}; 3363 unsigned long si, flags; 3364 3365 spin_lock_irqsave(&aift->gait_lock, flags); 3366 3367 if (!aift->gait) { 3368 spin_unlock_irqrestore(&aift->gait_lock, flags); 3369 return; 3370 } 3371 3372 for (si = 0;;) { 3373 /* Scan adapter summary indicator bit vector */ 3374 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3375 if (si == -1UL) { 3376 if (first || found) { 3377 /* Re-enable interrupts. */ 3378 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3379 &iib); 3380 first = found = false; 3381 } else { 3382 /* Interrupts on and all bits processed */ 3383 break; 3384 } 3385 found = false; 3386 si = 0; 3387 /* Scan again after re-enabling interrupts */ 3388 continue; 3389 } 3390 found = true; 3391 aen_host_forward(si); 3392 } 3393 3394 spin_unlock_irqrestore(&aift->gait_lock, flags); 3395 } 3396 3397 static void gib_alert_irq_handler(struct airq_struct *airq, 3398 struct tpi_info *tpi_info) 3399 { 3400 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3401 3402 inc_irq_stat(IRQIO_GAL); 3403 3404 if ((info->forward || info->error) && 3405 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3406 aen_process_gait(info->isc); 3407 if (info->aism != 0) 3408 process_gib_alert_list(); 3409 } else { 3410 process_gib_alert_list(); 3411 } 3412 } 3413 3414 static struct airq_struct gib_alert_irq = { 3415 .handler = gib_alert_irq_handler, 3416 }; 3417 3418 void kvm_s390_gib_destroy(void) 3419 { 3420 if (!gib) 3421 return; 3422 if (kvm_s390_pci_interp_allowed() && aift) { 3423 mutex_lock(&aift->aift_lock); 3424 kvm_s390_pci_aen_exit(); 3425 mutex_unlock(&aift->aift_lock); 3426 } 3427 chsc_sgib(0); 3428 unregister_adapter_interrupt(&gib_alert_irq); 3429 free_page((unsigned long)gib); 3430 gib = NULL; 3431 } 3432 3433 int __init kvm_s390_gib_init(u8 nisc) 3434 { 3435 u32 gib_origin; 3436 int rc = 0; 3437 3438 if (!css_general_characteristics.aiv) { 3439 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3440 goto out; 3441 } 3442 3443 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3444 if (!gib) { 3445 rc = -ENOMEM; 3446 goto out; 3447 } 3448 3449 gib_alert_irq.isc = nisc; 3450 if (register_adapter_interrupt(&gib_alert_irq)) { 3451 pr_err("Registering the GIB alert interruption handler failed\n"); 3452 rc = -EIO; 3453 goto out_free_gib; 3454 } 3455 /* adapter interrupts used for AP (applicable here) don't use the LSI */ 3456 *gib_alert_irq.lsi_ptr = 0xff; 3457 3458 gib->nisc = nisc; 3459 gib_origin = virt_to_phys(gib); 3460 if (chsc_sgib(gib_origin)) { 3461 pr_err("Associating the GIB with the AIV facility failed\n"); 3462 free_page((unsigned long)gib); 3463 gib = NULL; 3464 rc = -EIO; 3465 goto out_unreg_gal; 3466 } 3467 3468 if (kvm_s390_pci_interp_allowed()) { 3469 if (kvm_s390_pci_aen_init(nisc)) { 3470 pr_err("Initializing AEN for PCI failed\n"); 3471 rc = -EIO; 3472 goto out_unreg_gal; 3473 } 3474 } 3475 3476 KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc); 3477 goto out; 3478 3479 out_unreg_gal: 3480 unregister_adapter_interrupt(&gib_alert_irq); 3481 out_free_gib: 3482 free_page((unsigned long)gib); 3483 gib = NULL; 3484 out: 3485 return rc; 3486 } 3487