1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/access-regs.h> 23 #include <asm/asm-offsets.h> 24 #include <asm/dis.h> 25 #include <linux/uaccess.h> 26 #include <asm/sclp.h> 27 #include <asm/isc.h> 28 #include <asm/gmap.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include <asm/tpi.h> 32 #include "kvm-s390.h" 33 #include "gaccess.h" 34 #include "trace-s390.h" 35 #include "pci.h" 36 37 #define PFAULT_INIT 0x0600 38 #define PFAULT_DONE 0x0680 39 #define VIRTIO_PARAM 0x0d00 40 41 static struct kvm_s390_gib *gib; 42 43 /* handle external calls via sigp interpretation facility */ 44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 45 { 46 int c, scn; 47 48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 49 return 0; 50 51 BUG_ON(!kvm_s390_use_sca_entries()); 52 read_lock(&vcpu->kvm->arch.sca_lock); 53 if (vcpu->kvm->arch.use_esca) { 54 struct esca_block *sca = vcpu->kvm->arch.sca; 55 union esca_sigp_ctrl sigp_ctrl = 56 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 57 58 c = sigp_ctrl.c; 59 scn = sigp_ctrl.scn; 60 } else { 61 struct bsca_block *sca = vcpu->kvm->arch.sca; 62 union bsca_sigp_ctrl sigp_ctrl = 63 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 64 65 c = sigp_ctrl.c; 66 scn = sigp_ctrl.scn; 67 } 68 read_unlock(&vcpu->kvm->arch.sca_lock); 69 70 if (src_id) 71 *src_id = scn; 72 73 return c; 74 } 75 76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 77 { 78 int expect, rc; 79 80 BUG_ON(!kvm_s390_use_sca_entries()); 81 read_lock(&vcpu->kvm->arch.sca_lock); 82 if (vcpu->kvm->arch.use_esca) { 83 struct esca_block *sca = vcpu->kvm->arch.sca; 84 union esca_sigp_ctrl *sigp_ctrl = 85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 86 union esca_sigp_ctrl new_val = {0}, old_val; 87 88 old_val = READ_ONCE(*sigp_ctrl); 89 new_val.scn = src_id; 90 new_val.c = 1; 91 old_val.c = 0; 92 93 expect = old_val.value; 94 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 95 } else { 96 struct bsca_block *sca = vcpu->kvm->arch.sca; 97 union bsca_sigp_ctrl *sigp_ctrl = 98 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 99 union bsca_sigp_ctrl new_val = {0}, old_val; 100 101 old_val = READ_ONCE(*sigp_ctrl); 102 new_val.scn = src_id; 103 new_val.c = 1; 104 old_val.c = 0; 105 106 expect = old_val.value; 107 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 108 } 109 read_unlock(&vcpu->kvm->arch.sca_lock); 110 111 if (rc != expect) { 112 /* another external call is pending */ 113 return -EBUSY; 114 } 115 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 116 return 0; 117 } 118 119 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 120 { 121 int rc, expect; 122 123 if (!kvm_s390_use_sca_entries()) 124 return; 125 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 126 read_lock(&vcpu->kvm->arch.sca_lock); 127 if (vcpu->kvm->arch.use_esca) { 128 struct esca_block *sca = vcpu->kvm->arch.sca; 129 union esca_sigp_ctrl *sigp_ctrl = 130 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 131 union esca_sigp_ctrl old; 132 133 old = READ_ONCE(*sigp_ctrl); 134 expect = old.value; 135 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 136 } else { 137 struct bsca_block *sca = vcpu->kvm->arch.sca; 138 union bsca_sigp_ctrl *sigp_ctrl = 139 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 140 union bsca_sigp_ctrl old; 141 142 old = READ_ONCE(*sigp_ctrl); 143 expect = old.value; 144 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 145 } 146 read_unlock(&vcpu->kvm->arch.sca_lock); 147 WARN_ON(rc != expect); /* cannot clear? */ 148 } 149 150 int psw_extint_disabled(struct kvm_vcpu *vcpu) 151 { 152 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 153 } 154 155 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 156 { 157 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 158 } 159 160 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 161 { 162 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 163 } 164 165 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 166 { 167 return psw_extint_disabled(vcpu) && 168 psw_ioint_disabled(vcpu) && 169 psw_mchk_disabled(vcpu); 170 } 171 172 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 173 { 174 if (psw_extint_disabled(vcpu) || 175 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 176 return 0; 177 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 178 /* No timer interrupts when single stepping */ 179 return 0; 180 return 1; 181 } 182 183 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 184 { 185 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 186 const u64 ckc = vcpu->arch.sie_block->ckc; 187 188 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 189 if ((s64)ckc >= (s64)now) 190 return 0; 191 } else if (ckc >= now) { 192 return 0; 193 } 194 return ckc_interrupts_enabled(vcpu); 195 } 196 197 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 198 { 199 return !psw_extint_disabled(vcpu) && 200 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 201 } 202 203 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 204 { 205 if (!cpu_timer_interrupts_enabled(vcpu)) 206 return 0; 207 return kvm_s390_get_cpu_timer(vcpu) >> 63; 208 } 209 210 static uint64_t isc_to_isc_bits(int isc) 211 { 212 return (0x80 >> isc) << 24; 213 } 214 215 static inline u32 isc_to_int_word(u8 isc) 216 { 217 return ((u32)isc << 27) | 0x80000000; 218 } 219 220 static inline u8 int_word_to_isc(u32 int_word) 221 { 222 return (int_word & 0x38000000) >> 27; 223 } 224 225 /* 226 * To use atomic bitmap functions, we have to provide a bitmap address 227 * that is u64 aligned. However, the ipm might be u32 aligned. 228 * Therefore, we logically start the bitmap at the very beginning of the 229 * struct and fixup the bit number. 230 */ 231 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 232 233 /** 234 * gisa_set_iam - change the GISA interruption alert mask 235 * 236 * @gisa: gisa to operate on 237 * @iam: new IAM value to use 238 * 239 * Change the IAM atomically with the next alert address and the IPM 240 * of the GISA if the GISA is not part of the GIB alert list. All three 241 * fields are located in the first long word of the GISA. 242 * 243 * Returns: 0 on success 244 * -EBUSY in case the gisa is part of the alert list 245 */ 246 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 247 { 248 u64 word, _word; 249 250 do { 251 word = READ_ONCE(gisa->u64.word[0]); 252 if ((u64)gisa != word >> 32) 253 return -EBUSY; 254 _word = (word & ~0xffUL) | iam; 255 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 256 257 return 0; 258 } 259 260 /** 261 * gisa_clear_ipm - clear the GISA interruption pending mask 262 * 263 * @gisa: gisa to operate on 264 * 265 * Clear the IPM atomically with the next alert address and the IAM 266 * of the GISA unconditionally. All three fields are located in the 267 * first long word of the GISA. 268 */ 269 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 270 { 271 u64 word, _word; 272 273 do { 274 word = READ_ONCE(gisa->u64.word[0]); 275 _word = word & ~(0xffUL << 24); 276 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 277 } 278 279 /** 280 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 281 * 282 * @gi: gisa interrupt struct to work on 283 * 284 * Atomically restores the interruption alert mask if none of the 285 * relevant ISCs are pending and return the IPM. 286 * 287 * Returns: the relevant pending ISCs 288 */ 289 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 290 { 291 u8 pending_mask, alert_mask; 292 u64 word, _word; 293 294 do { 295 word = READ_ONCE(gi->origin->u64.word[0]); 296 alert_mask = READ_ONCE(gi->alert.mask); 297 pending_mask = (u8)(word >> 24) & alert_mask; 298 if (pending_mask) 299 return pending_mask; 300 _word = (word & ~0xffUL) | alert_mask; 301 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 302 303 return 0; 304 } 305 306 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 307 { 308 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 309 } 310 311 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 312 { 313 return READ_ONCE(gisa->ipm); 314 } 315 316 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 317 { 318 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 319 } 320 321 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 322 { 323 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 324 vcpu->arch.local_int.pending_irqs; 325 326 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 327 return pending; 328 } 329 330 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 331 { 332 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 333 unsigned long pending_mask; 334 335 pending_mask = pending_irqs_no_gisa(vcpu); 336 if (gi->origin) 337 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 338 return pending_mask; 339 } 340 341 static inline int isc_to_irq_type(unsigned long isc) 342 { 343 return IRQ_PEND_IO_ISC_0 - isc; 344 } 345 346 static inline int irq_type_to_isc(unsigned long irq_type) 347 { 348 return IRQ_PEND_IO_ISC_0 - irq_type; 349 } 350 351 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 352 unsigned long active_mask) 353 { 354 int i; 355 356 for (i = 0; i <= MAX_ISC; i++) 357 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 358 active_mask &= ~(1UL << (isc_to_irq_type(i))); 359 360 return active_mask; 361 } 362 363 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 364 { 365 unsigned long active_mask; 366 367 active_mask = pending_irqs(vcpu); 368 if (!active_mask) 369 return 0; 370 371 if (psw_extint_disabled(vcpu)) 372 active_mask &= ~IRQ_PEND_EXT_MASK; 373 if (psw_ioint_disabled(vcpu)) 374 active_mask &= ~IRQ_PEND_IO_MASK; 375 else 376 active_mask = disable_iscs(vcpu, active_mask); 377 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 378 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 379 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 380 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 381 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 382 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 383 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 384 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 385 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 386 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 387 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 388 } 389 if (psw_mchk_disabled(vcpu)) 390 active_mask &= ~IRQ_PEND_MCHK_MASK; 391 /* PV guest cpus can have a single interruption injected at a time. */ 392 if (kvm_s390_pv_cpu_get_handle(vcpu) && 393 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 394 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 395 IRQ_PEND_IO_MASK | 396 IRQ_PEND_MCHK_MASK); 397 /* 398 * Check both floating and local interrupt's cr14 because 399 * bit IRQ_PEND_MCHK_REP could be set in both cases. 400 */ 401 if (!(vcpu->arch.sie_block->gcr[14] & 402 (vcpu->kvm->arch.float_int.mchk.cr14 | 403 vcpu->arch.local_int.irq.mchk.cr14))) 404 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 405 406 /* 407 * STOP irqs will never be actively delivered. They are triggered via 408 * intercept requests and cleared when the stop intercept is performed. 409 */ 410 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 411 412 return active_mask; 413 } 414 415 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 416 { 417 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 418 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 419 } 420 421 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 422 { 423 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 424 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 425 } 426 427 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 428 { 429 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 430 CPUSTAT_STOP_INT); 431 vcpu->arch.sie_block->lctl = 0x0000; 432 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 433 434 if (guestdbg_enabled(vcpu)) { 435 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 436 LCTL_CR10 | LCTL_CR11); 437 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 438 } 439 } 440 441 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 442 { 443 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 444 return; 445 if (psw_ioint_disabled(vcpu)) 446 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 447 else 448 vcpu->arch.sie_block->lctl |= LCTL_CR6; 449 } 450 451 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 452 { 453 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 454 return; 455 if (psw_extint_disabled(vcpu)) 456 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 457 else 458 vcpu->arch.sie_block->lctl |= LCTL_CR0; 459 } 460 461 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 462 { 463 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 464 return; 465 if (psw_mchk_disabled(vcpu)) 466 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 467 else 468 vcpu->arch.sie_block->lctl |= LCTL_CR14; 469 } 470 471 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 472 { 473 if (kvm_s390_is_stop_irq_pending(vcpu)) 474 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 475 } 476 477 /* Set interception request for non-deliverable interrupts */ 478 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 479 { 480 set_intercept_indicators_io(vcpu); 481 set_intercept_indicators_ext(vcpu); 482 set_intercept_indicators_mchk(vcpu); 483 set_intercept_indicators_stop(vcpu); 484 } 485 486 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 487 { 488 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 489 int rc = 0; 490 491 vcpu->stat.deliver_cputm++; 492 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 493 0, 0); 494 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 495 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 496 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 497 } else { 498 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 499 (u16 *)__LC_EXT_INT_CODE); 500 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 501 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 502 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 503 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 504 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 505 } 506 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 507 return rc ? -EFAULT : 0; 508 } 509 510 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 511 { 512 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 513 int rc = 0; 514 515 vcpu->stat.deliver_ckc++; 516 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 517 0, 0); 518 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 519 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 520 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 521 } else { 522 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 523 (u16 __user *)__LC_EXT_INT_CODE); 524 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 525 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 526 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 527 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 528 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 529 } 530 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 531 return rc ? -EFAULT : 0; 532 } 533 534 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 535 { 536 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 537 struct kvm_s390_ext_info ext; 538 int rc; 539 540 spin_lock(&li->lock); 541 ext = li->irq.ext; 542 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 543 li->irq.ext.ext_params2 = 0; 544 spin_unlock(&li->lock); 545 546 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 547 ext.ext_params2); 548 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 549 KVM_S390_INT_PFAULT_INIT, 550 0, ext.ext_params2); 551 552 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 553 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 554 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 555 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 556 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 557 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 558 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 559 return rc ? -EFAULT : 0; 560 } 561 562 static int __write_machine_check(struct kvm_vcpu *vcpu, 563 struct kvm_s390_mchk_info *mchk) 564 { 565 unsigned long ext_sa_addr; 566 unsigned long lc; 567 freg_t fprs[NUM_FPRS]; 568 union mci mci; 569 int rc; 570 571 /* 572 * All other possible payload for a machine check (e.g. the register 573 * contents in the save area) will be handled by the ultravisor, as 574 * the hypervisor does not not have the needed information for 575 * protected guests. 576 */ 577 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 578 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 579 vcpu->arch.sie_block->mcic = mchk->mcic; 580 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 581 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 582 return 0; 583 } 584 585 mci.val = mchk->mcic; 586 /* take care of lazy register loading */ 587 kvm_s390_fpu_store(vcpu->run); 588 save_access_regs(vcpu->run->s.regs.acrs); 589 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 590 save_gs_cb(current->thread.gs_cb); 591 592 /* Extended save area */ 593 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 594 sizeof(unsigned long)); 595 /* Only bits 0 through 63-LC are used for address formation */ 596 lc = ext_sa_addr & MCESA_LC_MASK; 597 if (test_kvm_facility(vcpu->kvm, 133)) { 598 switch (lc) { 599 case 0: 600 case 10: 601 ext_sa_addr &= ~0x3ffUL; 602 break; 603 case 11: 604 ext_sa_addr &= ~0x7ffUL; 605 break; 606 case 12: 607 ext_sa_addr &= ~0xfffUL; 608 break; 609 default: 610 ext_sa_addr = 0; 611 break; 612 } 613 } else { 614 ext_sa_addr &= ~0x3ffUL; 615 } 616 617 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 618 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 619 512)) 620 mci.vr = 0; 621 } else { 622 mci.vr = 0; 623 } 624 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 625 && (lc == 11 || lc == 12)) { 626 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 627 &vcpu->run->s.regs.gscb, 32)) 628 mci.gs = 0; 629 } else { 630 mci.gs = 0; 631 } 632 633 /* General interruption information */ 634 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 635 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 636 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 637 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 638 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 639 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 640 641 /* Register-save areas */ 642 if (cpu_has_vx()) { 643 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 644 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 645 } else { 646 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 647 vcpu->run->s.regs.fprs, 128); 648 } 649 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 650 vcpu->run->s.regs.gprs, 128); 651 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, 652 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 653 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 654 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 655 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 656 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 657 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 658 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 659 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 660 &vcpu->run->s.regs.acrs, 64); 661 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 662 &vcpu->arch.sie_block->gcr, 128); 663 664 /* Extended interruption information */ 665 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 666 (u32 __user *) __LC_EXT_DAMAGE_CODE); 667 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 668 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 669 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 670 sizeof(mchk->fixed_logout)); 671 return rc ? -EFAULT : 0; 672 } 673 674 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 675 { 676 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 677 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 678 struct kvm_s390_mchk_info mchk = {}; 679 int deliver = 0; 680 int rc = 0; 681 682 spin_lock(&fi->lock); 683 spin_lock(&li->lock); 684 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 685 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 686 /* 687 * If there was an exigent machine check pending, then any 688 * repressible machine checks that might have been pending 689 * are indicated along with it, so always clear bits for 690 * repressible and exigent interrupts 691 */ 692 mchk = li->irq.mchk; 693 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 694 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 695 memset(&li->irq.mchk, 0, sizeof(mchk)); 696 deliver = 1; 697 } 698 /* 699 * We indicate floating repressible conditions along with 700 * other pending conditions. Channel Report Pending and Channel 701 * Subsystem damage are the only two and are indicated by 702 * bits in mcic and masked in cr14. 703 */ 704 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 705 mchk.mcic |= fi->mchk.mcic; 706 mchk.cr14 |= fi->mchk.cr14; 707 memset(&fi->mchk, 0, sizeof(mchk)); 708 deliver = 1; 709 } 710 spin_unlock(&li->lock); 711 spin_unlock(&fi->lock); 712 713 if (deliver) { 714 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 715 mchk.mcic); 716 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 717 KVM_S390_MCHK, 718 mchk.cr14, mchk.mcic); 719 vcpu->stat.deliver_machine_check++; 720 rc = __write_machine_check(vcpu, &mchk); 721 } 722 return rc; 723 } 724 725 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 726 { 727 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 728 int rc = 0; 729 730 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 731 vcpu->stat.deliver_restart_signal++; 732 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 733 734 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 735 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 736 } else { 737 rc = write_guest_lc(vcpu, 738 offsetof(struct lowcore, restart_old_psw), 739 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 740 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 741 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 742 } 743 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 744 return rc ? -EFAULT : 0; 745 } 746 747 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 748 { 749 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 750 struct kvm_s390_prefix_info prefix; 751 752 spin_lock(&li->lock); 753 prefix = li->irq.prefix; 754 li->irq.prefix.address = 0; 755 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 756 spin_unlock(&li->lock); 757 758 vcpu->stat.deliver_prefix_signal++; 759 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 760 KVM_S390_SIGP_SET_PREFIX, 761 prefix.address, 0); 762 763 kvm_s390_set_prefix(vcpu, prefix.address); 764 return 0; 765 } 766 767 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 768 { 769 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 770 int rc; 771 int cpu_addr; 772 773 spin_lock(&li->lock); 774 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 775 clear_bit(cpu_addr, li->sigp_emerg_pending); 776 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 777 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 778 spin_unlock(&li->lock); 779 780 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 781 vcpu->stat.deliver_emergency_signal++; 782 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 783 cpu_addr, 0); 784 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 785 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 786 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 787 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 788 return 0; 789 } 790 791 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 792 (u16 *)__LC_EXT_INT_CODE); 793 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 794 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 795 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 796 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 797 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 798 return rc ? -EFAULT : 0; 799 } 800 801 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 802 { 803 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 804 struct kvm_s390_extcall_info extcall; 805 int rc; 806 807 spin_lock(&li->lock); 808 extcall = li->irq.extcall; 809 li->irq.extcall.code = 0; 810 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 811 spin_unlock(&li->lock); 812 813 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 814 vcpu->stat.deliver_external_call++; 815 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 816 KVM_S390_INT_EXTERNAL_CALL, 817 extcall.code, 0); 818 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 819 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 820 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 821 vcpu->arch.sie_block->extcpuaddr = extcall.code; 822 return 0; 823 } 824 825 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 826 (u16 *)__LC_EXT_INT_CODE); 827 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 828 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 829 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 830 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 831 sizeof(psw_t)); 832 return rc ? -EFAULT : 0; 833 } 834 835 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 836 { 837 switch (code) { 838 case PGM_SPECIFICATION: 839 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 840 break; 841 case PGM_OPERAND: 842 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 843 break; 844 default: 845 return -EINVAL; 846 } 847 return 0; 848 } 849 850 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 851 { 852 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 853 struct kvm_s390_pgm_info pgm_info; 854 int rc = 0, nullifying = false; 855 u16 ilen; 856 857 spin_lock(&li->lock); 858 pgm_info = li->irq.pgm; 859 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 860 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 861 spin_unlock(&li->lock); 862 863 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 864 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 865 pgm_info.code, ilen); 866 vcpu->stat.deliver_program++; 867 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 868 pgm_info.code, 0); 869 870 /* PER is handled by the ultravisor */ 871 if (kvm_s390_pv_cpu_is_protected(vcpu)) 872 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 873 874 switch (pgm_info.code & ~PGM_PER) { 875 case PGM_AFX_TRANSLATION: 876 case PGM_ASX_TRANSLATION: 877 case PGM_EX_TRANSLATION: 878 case PGM_LFX_TRANSLATION: 879 case PGM_LSTE_SEQUENCE: 880 case PGM_LSX_TRANSLATION: 881 case PGM_LX_TRANSLATION: 882 case PGM_PRIMARY_AUTHORITY: 883 case PGM_SECONDARY_AUTHORITY: 884 nullifying = true; 885 fallthrough; 886 case PGM_SPACE_SWITCH: 887 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 888 (u64 *)__LC_TRANS_EXC_CODE); 889 break; 890 case PGM_ALEN_TRANSLATION: 891 case PGM_ALE_SEQUENCE: 892 case PGM_ASTE_INSTANCE: 893 case PGM_ASTE_SEQUENCE: 894 case PGM_ASTE_VALIDITY: 895 case PGM_EXTENDED_AUTHORITY: 896 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 897 (u8 *)__LC_EXC_ACCESS_ID); 898 nullifying = true; 899 break; 900 case PGM_ASCE_TYPE: 901 case PGM_PAGE_TRANSLATION: 902 case PGM_REGION_FIRST_TRANS: 903 case PGM_REGION_SECOND_TRANS: 904 case PGM_REGION_THIRD_TRANS: 905 case PGM_SEGMENT_TRANSLATION: 906 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 907 (u64 *)__LC_TRANS_EXC_CODE); 908 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 909 (u8 *)__LC_EXC_ACCESS_ID); 910 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 911 (u8 *)__LC_OP_ACCESS_ID); 912 nullifying = true; 913 break; 914 case PGM_MONITOR: 915 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 916 (u16 *)__LC_MON_CLASS_NR); 917 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 918 (u64 *)__LC_MON_CODE); 919 break; 920 case PGM_VECTOR_PROCESSING: 921 case PGM_DATA: 922 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 923 (u32 *)__LC_DATA_EXC_CODE); 924 break; 925 case PGM_PROTECTION: 926 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 927 (u64 *)__LC_TRANS_EXC_CODE); 928 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 929 (u8 *)__LC_EXC_ACCESS_ID); 930 break; 931 case PGM_STACK_FULL: 932 case PGM_STACK_EMPTY: 933 case PGM_STACK_SPECIFICATION: 934 case PGM_STACK_TYPE: 935 case PGM_STACK_OPERATION: 936 case PGM_TRACE_TABEL: 937 case PGM_CRYPTO_OPERATION: 938 nullifying = true; 939 break; 940 } 941 942 if (pgm_info.code & PGM_PER) { 943 rc |= put_guest_lc(vcpu, pgm_info.per_code, 944 (u8 *) __LC_PER_CODE); 945 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 946 (u8 *)__LC_PER_ATMID); 947 rc |= put_guest_lc(vcpu, pgm_info.per_address, 948 (u64 *) __LC_PER_ADDRESS); 949 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 950 (u8 *) __LC_PER_ACCESS_ID); 951 } 952 953 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 954 kvm_s390_rewind_psw(vcpu, ilen); 955 956 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 957 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 958 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 959 (u64 *) __LC_PGM_LAST_BREAK); 960 rc |= put_guest_lc(vcpu, pgm_info.code, 961 (u16 *)__LC_PGM_INT_CODE); 962 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 963 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 964 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 965 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 966 return rc ? -EFAULT : 0; 967 } 968 969 #define SCCB_MASK 0xFFFFFFF8 970 #define SCCB_EVENT_PENDING 0x3 971 972 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 973 { 974 int rc; 975 976 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 977 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 978 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 979 vcpu->arch.sie_block->eiparams = parm; 980 return 0; 981 } 982 983 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 984 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 985 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 986 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 987 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 988 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 989 rc |= put_guest_lc(vcpu, parm, 990 (u32 *)__LC_EXT_PARAMS); 991 992 return rc ? -EFAULT : 0; 993 } 994 995 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 996 { 997 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 998 struct kvm_s390_ext_info ext; 999 1000 spin_lock(&fi->lock); 1001 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 1002 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 1003 spin_unlock(&fi->lock); 1004 return 0; 1005 } 1006 ext = fi->srv_signal; 1007 memset(&fi->srv_signal, 0, sizeof(ext)); 1008 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1009 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1010 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1011 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1012 spin_unlock(&fi->lock); 1013 1014 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1015 ext.ext_params); 1016 vcpu->stat.deliver_service_signal++; 1017 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1018 ext.ext_params, 0); 1019 1020 return write_sclp(vcpu, ext.ext_params); 1021 } 1022 1023 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1024 { 1025 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1026 struct kvm_s390_ext_info ext; 1027 1028 spin_lock(&fi->lock); 1029 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1030 spin_unlock(&fi->lock); 1031 return 0; 1032 } 1033 ext = fi->srv_signal; 1034 /* only clear the event bits */ 1035 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1036 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1037 spin_unlock(&fi->lock); 1038 1039 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1040 vcpu->stat.deliver_service_signal++; 1041 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1042 ext.ext_params, 0); 1043 1044 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); 1045 } 1046 1047 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1048 { 1049 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1050 struct kvm_s390_interrupt_info *inti; 1051 int rc = 0; 1052 1053 spin_lock(&fi->lock); 1054 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1055 struct kvm_s390_interrupt_info, 1056 list); 1057 if (inti) { 1058 list_del(&inti->list); 1059 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1060 } 1061 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1062 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1063 spin_unlock(&fi->lock); 1064 1065 if (inti) { 1066 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1067 KVM_S390_INT_PFAULT_DONE, 0, 1068 inti->ext.ext_params2); 1069 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1070 inti->ext.ext_params2); 1071 1072 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1073 (u16 *)__LC_EXT_INT_CODE); 1074 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1075 (u16 *)__LC_EXT_CPU_ADDR); 1076 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1077 &vcpu->arch.sie_block->gpsw, 1078 sizeof(psw_t)); 1079 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1080 &vcpu->arch.sie_block->gpsw, 1081 sizeof(psw_t)); 1082 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1083 (u64 *)__LC_EXT_PARAMS2); 1084 kfree(inti); 1085 } 1086 return rc ? -EFAULT : 0; 1087 } 1088 1089 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1090 { 1091 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1092 struct kvm_s390_interrupt_info *inti; 1093 int rc = 0; 1094 1095 spin_lock(&fi->lock); 1096 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1097 struct kvm_s390_interrupt_info, 1098 list); 1099 if (inti) { 1100 VCPU_EVENT(vcpu, 4, 1101 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1102 inti->ext.ext_params, inti->ext.ext_params2); 1103 vcpu->stat.deliver_virtio++; 1104 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1105 inti->type, 1106 inti->ext.ext_params, 1107 inti->ext.ext_params2); 1108 list_del(&inti->list); 1109 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1110 } 1111 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1112 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1113 spin_unlock(&fi->lock); 1114 1115 if (inti) { 1116 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1117 (u16 *)__LC_EXT_INT_CODE); 1118 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1119 (u16 *)__LC_EXT_CPU_ADDR); 1120 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1121 &vcpu->arch.sie_block->gpsw, 1122 sizeof(psw_t)); 1123 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1124 &vcpu->arch.sie_block->gpsw, 1125 sizeof(psw_t)); 1126 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1127 (u32 *)__LC_EXT_PARAMS); 1128 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1129 (u64 *)__LC_EXT_PARAMS2); 1130 kfree(inti); 1131 } 1132 return rc ? -EFAULT : 0; 1133 } 1134 1135 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1136 { 1137 int rc; 1138 1139 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1140 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1141 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1142 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1143 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1144 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1145 return 0; 1146 } 1147 1148 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1149 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1150 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1151 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1152 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1153 &vcpu->arch.sie_block->gpsw, 1154 sizeof(psw_t)); 1155 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1156 &vcpu->arch.sie_block->gpsw, 1157 sizeof(psw_t)); 1158 return rc ? -EFAULT : 0; 1159 } 1160 1161 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1162 unsigned long irq_type) 1163 { 1164 struct list_head *isc_list; 1165 struct kvm_s390_float_interrupt *fi; 1166 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1167 struct kvm_s390_interrupt_info *inti = NULL; 1168 struct kvm_s390_io_info io; 1169 u32 isc; 1170 int rc = 0; 1171 1172 fi = &vcpu->kvm->arch.float_int; 1173 1174 spin_lock(&fi->lock); 1175 isc = irq_type_to_isc(irq_type); 1176 isc_list = &fi->lists[isc]; 1177 inti = list_first_entry_or_null(isc_list, 1178 struct kvm_s390_interrupt_info, 1179 list); 1180 if (inti) { 1181 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1182 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1183 else 1184 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1185 inti->io.subchannel_id >> 8, 1186 inti->io.subchannel_id >> 1 & 0x3, 1187 inti->io.subchannel_nr); 1188 1189 vcpu->stat.deliver_io++; 1190 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1191 inti->type, 1192 ((__u32)inti->io.subchannel_id << 16) | 1193 inti->io.subchannel_nr, 1194 ((__u64)inti->io.io_int_parm << 32) | 1195 inti->io.io_int_word); 1196 list_del(&inti->list); 1197 fi->counters[FIRQ_CNTR_IO] -= 1; 1198 } 1199 if (list_empty(isc_list)) 1200 clear_bit(irq_type, &fi->pending_irqs); 1201 spin_unlock(&fi->lock); 1202 1203 if (inti) { 1204 rc = __do_deliver_io(vcpu, &(inti->io)); 1205 kfree(inti); 1206 goto out; 1207 } 1208 1209 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1210 /* 1211 * in case an adapter interrupt was not delivered 1212 * in SIE context KVM will handle the delivery 1213 */ 1214 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1215 memset(&io, 0, sizeof(io)); 1216 io.io_int_word = isc_to_int_word(isc); 1217 vcpu->stat.deliver_io++; 1218 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1219 KVM_S390_INT_IO(1, 0, 0, 0), 1220 ((__u32)io.subchannel_id << 16) | 1221 io.subchannel_nr, 1222 ((__u64)io.io_int_parm << 32) | 1223 io.io_int_word); 1224 rc = __do_deliver_io(vcpu, &io); 1225 } 1226 out: 1227 return rc; 1228 } 1229 1230 /* Check whether an external call is pending (deliverable or not) */ 1231 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1232 { 1233 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1234 1235 if (!sclp.has_sigpif) 1236 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1237 1238 return sca_ext_call_pending(vcpu, NULL); 1239 } 1240 1241 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1242 { 1243 if (deliverable_irqs(vcpu)) 1244 return 1; 1245 1246 if (kvm_cpu_has_pending_timer(vcpu)) 1247 return 1; 1248 1249 /* external call pending and deliverable */ 1250 if (kvm_s390_ext_call_pending(vcpu) && 1251 !psw_extint_disabled(vcpu) && 1252 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1253 return 1; 1254 1255 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1256 return 1; 1257 return 0; 1258 } 1259 1260 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1261 { 1262 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1263 } 1264 1265 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1266 { 1267 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1268 const u64 ckc = vcpu->arch.sie_block->ckc; 1269 u64 cputm, sltime = 0; 1270 1271 if (ckc_interrupts_enabled(vcpu)) { 1272 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1273 if ((s64)now < (s64)ckc) 1274 sltime = tod_to_ns((s64)ckc - (s64)now); 1275 } else if (now < ckc) { 1276 sltime = tod_to_ns(ckc - now); 1277 } 1278 /* already expired */ 1279 if (!sltime) 1280 return 0; 1281 if (cpu_timer_interrupts_enabled(vcpu)) { 1282 cputm = kvm_s390_get_cpu_timer(vcpu); 1283 /* already expired? */ 1284 if (cputm >> 63) 1285 return 0; 1286 return min_t(u64, sltime, tod_to_ns(cputm)); 1287 } 1288 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1289 sltime = kvm_s390_get_cpu_timer(vcpu); 1290 /* already expired? */ 1291 if (sltime >> 63) 1292 return 0; 1293 } 1294 return sltime; 1295 } 1296 1297 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1298 { 1299 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1300 u64 sltime; 1301 1302 vcpu->stat.exit_wait_state++; 1303 1304 /* fast path */ 1305 if (kvm_arch_vcpu_runnable(vcpu)) 1306 return 0; 1307 1308 if (psw_interrupts_disabled(vcpu)) { 1309 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1310 return -EOPNOTSUPP; /* disabled wait */ 1311 } 1312 1313 if (gi->origin && 1314 (gisa_get_ipm_or_restore_iam(gi) & 1315 vcpu->arch.sie_block->gcr[6] >> 24)) 1316 return 0; 1317 1318 if (!ckc_interrupts_enabled(vcpu) && 1319 !cpu_timer_interrupts_enabled(vcpu)) { 1320 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1321 __set_cpu_idle(vcpu); 1322 goto no_timer; 1323 } 1324 1325 sltime = __calculate_sltime(vcpu); 1326 if (!sltime) 1327 return 0; 1328 1329 __set_cpu_idle(vcpu); 1330 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1331 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1332 no_timer: 1333 kvm_vcpu_srcu_read_unlock(vcpu); 1334 kvm_vcpu_halt(vcpu); 1335 vcpu->valid_wakeup = false; 1336 __unset_cpu_idle(vcpu); 1337 kvm_vcpu_srcu_read_lock(vcpu); 1338 1339 hrtimer_cancel(&vcpu->arch.ckc_timer); 1340 return 0; 1341 } 1342 1343 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1344 { 1345 vcpu->valid_wakeup = true; 1346 kvm_vcpu_wake_up(vcpu); 1347 1348 /* 1349 * The VCPU might not be sleeping but rather executing VSIE. Let's 1350 * kick it, so it leaves the SIE to process the request. 1351 */ 1352 kvm_s390_vsie_kick(vcpu); 1353 } 1354 1355 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1356 { 1357 struct kvm_vcpu *vcpu; 1358 u64 sltime; 1359 1360 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1361 sltime = __calculate_sltime(vcpu); 1362 1363 /* 1364 * If the monotonic clock runs faster than the tod clock we might be 1365 * woken up too early and have to go back to sleep to avoid deadlocks. 1366 */ 1367 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1368 return HRTIMER_RESTART; 1369 kvm_s390_vcpu_wakeup(vcpu); 1370 return HRTIMER_NORESTART; 1371 } 1372 1373 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1374 { 1375 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1376 1377 spin_lock(&li->lock); 1378 li->pending_irqs = 0; 1379 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1380 memset(&li->irq, 0, sizeof(li->irq)); 1381 spin_unlock(&li->lock); 1382 1383 sca_clear_ext_call(vcpu); 1384 } 1385 1386 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1387 { 1388 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1389 int rc = 0; 1390 bool delivered = false; 1391 unsigned long irq_type; 1392 unsigned long irqs; 1393 1394 __reset_intercept_indicators(vcpu); 1395 1396 /* pending ckc conditions might have been invalidated */ 1397 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1398 if (ckc_irq_pending(vcpu)) 1399 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1400 1401 /* pending cpu timer conditions might have been invalidated */ 1402 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1403 if (cpu_timer_irq_pending(vcpu)) 1404 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1405 1406 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1407 /* bits are in the reverse order of interrupt priority */ 1408 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1409 switch (irq_type) { 1410 case IRQ_PEND_IO_ISC_0: 1411 case IRQ_PEND_IO_ISC_1: 1412 case IRQ_PEND_IO_ISC_2: 1413 case IRQ_PEND_IO_ISC_3: 1414 case IRQ_PEND_IO_ISC_4: 1415 case IRQ_PEND_IO_ISC_5: 1416 case IRQ_PEND_IO_ISC_6: 1417 case IRQ_PEND_IO_ISC_7: 1418 rc = __deliver_io(vcpu, irq_type); 1419 break; 1420 case IRQ_PEND_MCHK_EX: 1421 case IRQ_PEND_MCHK_REP: 1422 rc = __deliver_machine_check(vcpu); 1423 break; 1424 case IRQ_PEND_PROG: 1425 rc = __deliver_prog(vcpu); 1426 break; 1427 case IRQ_PEND_EXT_EMERGENCY: 1428 rc = __deliver_emergency_signal(vcpu); 1429 break; 1430 case IRQ_PEND_EXT_EXTERNAL: 1431 rc = __deliver_external_call(vcpu); 1432 break; 1433 case IRQ_PEND_EXT_CLOCK_COMP: 1434 rc = __deliver_ckc(vcpu); 1435 break; 1436 case IRQ_PEND_EXT_CPU_TIMER: 1437 rc = __deliver_cpu_timer(vcpu); 1438 break; 1439 case IRQ_PEND_RESTART: 1440 rc = __deliver_restart(vcpu); 1441 break; 1442 case IRQ_PEND_SET_PREFIX: 1443 rc = __deliver_set_prefix(vcpu); 1444 break; 1445 case IRQ_PEND_PFAULT_INIT: 1446 rc = __deliver_pfault_init(vcpu); 1447 break; 1448 case IRQ_PEND_EXT_SERVICE: 1449 rc = __deliver_service(vcpu); 1450 break; 1451 case IRQ_PEND_EXT_SERVICE_EV: 1452 rc = __deliver_service_ev(vcpu); 1453 break; 1454 case IRQ_PEND_PFAULT_DONE: 1455 rc = __deliver_pfault_done(vcpu); 1456 break; 1457 case IRQ_PEND_VIRTIO: 1458 rc = __deliver_virtio(vcpu); 1459 break; 1460 default: 1461 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1462 clear_bit(irq_type, &li->pending_irqs); 1463 } 1464 delivered |= !rc; 1465 } 1466 1467 /* 1468 * We delivered at least one interrupt and modified the PC. Force a 1469 * singlestep event now. 1470 */ 1471 if (delivered && guestdbg_sstep_enabled(vcpu)) { 1472 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; 1473 1474 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; 1475 debug_exit->type = KVM_SINGLESTEP; 1476 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; 1477 } 1478 1479 set_intercept_indicators(vcpu); 1480 1481 return rc; 1482 } 1483 1484 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1485 { 1486 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1487 1488 vcpu->stat.inject_program++; 1489 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1490 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1491 irq->u.pgm.code, 0); 1492 1493 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1494 /* auto detection if no valid ILC was given */ 1495 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1496 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1497 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1498 } 1499 1500 if (irq->u.pgm.code == PGM_PER) { 1501 li->irq.pgm.code |= PGM_PER; 1502 li->irq.pgm.flags = irq->u.pgm.flags; 1503 /* only modify PER related information */ 1504 li->irq.pgm.per_address = irq->u.pgm.per_address; 1505 li->irq.pgm.per_code = irq->u.pgm.per_code; 1506 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1507 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1508 } else if (!(irq->u.pgm.code & PGM_PER)) { 1509 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1510 irq->u.pgm.code; 1511 li->irq.pgm.flags = irq->u.pgm.flags; 1512 /* only modify non-PER information */ 1513 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1514 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1515 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1516 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1517 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1518 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1519 } else { 1520 li->irq.pgm = irq->u.pgm; 1521 } 1522 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1523 return 0; 1524 } 1525 1526 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1527 { 1528 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1529 1530 vcpu->stat.inject_pfault_init++; 1531 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1532 irq->u.ext.ext_params2); 1533 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1534 irq->u.ext.ext_params, 1535 irq->u.ext.ext_params2); 1536 1537 li->irq.ext = irq->u.ext; 1538 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1539 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1540 return 0; 1541 } 1542 1543 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1544 { 1545 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1546 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1547 uint16_t src_id = irq->u.extcall.code; 1548 1549 vcpu->stat.inject_external_call++; 1550 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1551 src_id); 1552 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1553 src_id, 0); 1554 1555 /* sending vcpu invalid */ 1556 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1557 return -EINVAL; 1558 1559 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1560 return sca_inject_ext_call(vcpu, src_id); 1561 1562 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1563 return -EBUSY; 1564 *extcall = irq->u.extcall; 1565 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1566 return 0; 1567 } 1568 1569 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1570 { 1571 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1572 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1573 1574 vcpu->stat.inject_set_prefix++; 1575 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1576 irq->u.prefix.address); 1577 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1578 irq->u.prefix.address, 0); 1579 1580 if (!is_vcpu_stopped(vcpu)) 1581 return -EBUSY; 1582 1583 *prefix = irq->u.prefix; 1584 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1585 return 0; 1586 } 1587 1588 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1589 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1590 { 1591 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1592 struct kvm_s390_stop_info *stop = &li->irq.stop; 1593 int rc = 0; 1594 1595 vcpu->stat.inject_stop_signal++; 1596 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1597 1598 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1599 return -EINVAL; 1600 1601 if (is_vcpu_stopped(vcpu)) { 1602 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1603 rc = kvm_s390_store_status_unloaded(vcpu, 1604 KVM_S390_STORE_STATUS_NOADDR); 1605 return rc; 1606 } 1607 1608 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1609 return -EBUSY; 1610 stop->flags = irq->u.stop.flags; 1611 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1612 return 0; 1613 } 1614 1615 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1616 { 1617 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1618 1619 vcpu->stat.inject_restart++; 1620 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1621 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1622 1623 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1624 return 0; 1625 } 1626 1627 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1628 struct kvm_s390_irq *irq) 1629 { 1630 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1631 1632 vcpu->stat.inject_emergency_signal++; 1633 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1634 irq->u.emerg.code); 1635 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1636 irq->u.emerg.code, 0); 1637 1638 /* sending vcpu invalid */ 1639 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1640 return -EINVAL; 1641 1642 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1643 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1644 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1645 return 0; 1646 } 1647 1648 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1649 { 1650 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1651 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1652 1653 vcpu->stat.inject_mchk++; 1654 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1655 irq->u.mchk.mcic); 1656 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1657 irq->u.mchk.mcic); 1658 1659 /* 1660 * Because repressible machine checks can be indicated along with 1661 * exigent machine checks (PoP, Chapter 11, Interruption action) 1662 * we need to combine cr14, mcic and external damage code. 1663 * Failing storage address and the logout area should not be or'ed 1664 * together, we just indicate the last occurrence of the corresponding 1665 * machine check 1666 */ 1667 mchk->cr14 |= irq->u.mchk.cr14; 1668 mchk->mcic |= irq->u.mchk.mcic; 1669 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1670 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1671 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1672 sizeof(mchk->fixed_logout)); 1673 if (mchk->mcic & MCHK_EX_MASK) 1674 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1675 else if (mchk->mcic & MCHK_REP_MASK) 1676 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1677 return 0; 1678 } 1679 1680 static int __inject_ckc(struct kvm_vcpu *vcpu) 1681 { 1682 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1683 1684 vcpu->stat.inject_ckc++; 1685 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1686 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1687 0, 0); 1688 1689 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1690 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1691 return 0; 1692 } 1693 1694 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1695 { 1696 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1697 1698 vcpu->stat.inject_cputm++; 1699 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1700 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1701 0, 0); 1702 1703 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1704 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1705 return 0; 1706 } 1707 1708 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1709 int isc, u32 schid) 1710 { 1711 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1712 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1713 struct kvm_s390_interrupt_info *iter; 1714 u16 id = (schid & 0xffff0000U) >> 16; 1715 u16 nr = schid & 0x0000ffffU; 1716 1717 spin_lock(&fi->lock); 1718 list_for_each_entry(iter, isc_list, list) { 1719 if (schid && (id != iter->io.subchannel_id || 1720 nr != iter->io.subchannel_nr)) 1721 continue; 1722 /* found an appropriate entry */ 1723 list_del_init(&iter->list); 1724 fi->counters[FIRQ_CNTR_IO] -= 1; 1725 if (list_empty(isc_list)) 1726 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1727 spin_unlock(&fi->lock); 1728 return iter; 1729 } 1730 spin_unlock(&fi->lock); 1731 return NULL; 1732 } 1733 1734 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1735 u64 isc_mask, u32 schid) 1736 { 1737 struct kvm_s390_interrupt_info *inti = NULL; 1738 int isc; 1739 1740 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1741 if (isc_mask & isc_to_isc_bits(isc)) 1742 inti = get_io_int(kvm, isc, schid); 1743 } 1744 return inti; 1745 } 1746 1747 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1748 { 1749 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1750 unsigned long active_mask; 1751 int isc; 1752 1753 if (schid) 1754 goto out; 1755 if (!gi->origin) 1756 goto out; 1757 1758 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1759 while (active_mask) { 1760 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1761 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1762 return isc; 1763 clear_bit_inv(isc, &active_mask); 1764 } 1765 out: 1766 return -EINVAL; 1767 } 1768 1769 /* 1770 * Dequeue and return an I/O interrupt matching any of the interruption 1771 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1772 * Take into account the interrupts pending in the interrupt list and in GISA. 1773 * 1774 * Note that for a guest that does not enable I/O interrupts 1775 * but relies on TPI, a flood of classic interrupts may starve 1776 * out adapter interrupts on the same isc. Linux does not do 1777 * that, and it is possible to work around the issue by configuring 1778 * different iscs for classic and adapter interrupts in the guest, 1779 * but we may want to revisit this in the future. 1780 */ 1781 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1782 u64 isc_mask, u32 schid) 1783 { 1784 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1785 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1786 int isc; 1787 1788 inti = get_top_io_int(kvm, isc_mask, schid); 1789 1790 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1791 if (isc < 0) 1792 /* no AI in GISA */ 1793 goto out; 1794 1795 if (!inti) 1796 /* AI in GISA but no classical IO int */ 1797 goto gisa_out; 1798 1799 /* both types of interrupts present */ 1800 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1801 /* classical IO int with higher priority */ 1802 gisa_set_ipm_gisc(gi->origin, isc); 1803 goto out; 1804 } 1805 gisa_out: 1806 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1807 if (tmp_inti) { 1808 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1809 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1810 if (inti) 1811 kvm_s390_reinject_io_int(kvm, inti); 1812 inti = tmp_inti; 1813 } else 1814 gisa_set_ipm_gisc(gi->origin, isc); 1815 out: 1816 return inti; 1817 } 1818 1819 static int __inject_service(struct kvm *kvm, 1820 struct kvm_s390_interrupt_info *inti) 1821 { 1822 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1823 1824 kvm->stat.inject_service_signal++; 1825 spin_lock(&fi->lock); 1826 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1827 1828 /* We always allow events, track them separately from the sccb ints */ 1829 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1830 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1831 1832 /* 1833 * Early versions of the QEMU s390 bios will inject several 1834 * service interrupts after another without handling a 1835 * condition code indicating busy. 1836 * We will silently ignore those superfluous sccb values. 1837 * A future version of QEMU will take care of serialization 1838 * of servc requests 1839 */ 1840 if (fi->srv_signal.ext_params & SCCB_MASK) 1841 goto out; 1842 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1843 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1844 out: 1845 spin_unlock(&fi->lock); 1846 kfree(inti); 1847 return 0; 1848 } 1849 1850 static int __inject_virtio(struct kvm *kvm, 1851 struct kvm_s390_interrupt_info *inti) 1852 { 1853 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1854 1855 kvm->stat.inject_virtio++; 1856 spin_lock(&fi->lock); 1857 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1858 spin_unlock(&fi->lock); 1859 return -EBUSY; 1860 } 1861 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1862 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1863 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1864 spin_unlock(&fi->lock); 1865 return 0; 1866 } 1867 1868 static int __inject_pfault_done(struct kvm *kvm, 1869 struct kvm_s390_interrupt_info *inti) 1870 { 1871 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1872 1873 kvm->stat.inject_pfault_done++; 1874 spin_lock(&fi->lock); 1875 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1876 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1877 spin_unlock(&fi->lock); 1878 return -EBUSY; 1879 } 1880 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1881 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1882 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1883 spin_unlock(&fi->lock); 1884 return 0; 1885 } 1886 1887 #define CR_PENDING_SUBCLASS 28 1888 static int __inject_float_mchk(struct kvm *kvm, 1889 struct kvm_s390_interrupt_info *inti) 1890 { 1891 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1892 1893 kvm->stat.inject_float_mchk++; 1894 spin_lock(&fi->lock); 1895 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1896 fi->mchk.mcic |= inti->mchk.mcic; 1897 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1898 spin_unlock(&fi->lock); 1899 kfree(inti); 1900 return 0; 1901 } 1902 1903 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1904 { 1905 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1906 struct kvm_s390_float_interrupt *fi; 1907 struct list_head *list; 1908 int isc; 1909 1910 kvm->stat.inject_io++; 1911 isc = int_word_to_isc(inti->io.io_int_word); 1912 1913 /* 1914 * We do not use the lock checking variant as this is just a 1915 * performance optimization and we do not hold the lock here. 1916 * This is ok as the code will pick interrupts from both "lists" 1917 * for delivery. 1918 */ 1919 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1920 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1921 gisa_set_ipm_gisc(gi->origin, isc); 1922 kfree(inti); 1923 return 0; 1924 } 1925 1926 fi = &kvm->arch.float_int; 1927 spin_lock(&fi->lock); 1928 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1929 spin_unlock(&fi->lock); 1930 return -EBUSY; 1931 } 1932 fi->counters[FIRQ_CNTR_IO] += 1; 1933 1934 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1935 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1936 else 1937 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1938 inti->io.subchannel_id >> 8, 1939 inti->io.subchannel_id >> 1 & 0x3, 1940 inti->io.subchannel_nr); 1941 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1942 list_add_tail(&inti->list, list); 1943 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1944 spin_unlock(&fi->lock); 1945 return 0; 1946 } 1947 1948 /* 1949 * Find a destination VCPU for a floating irq and kick it. 1950 */ 1951 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1952 { 1953 struct kvm_vcpu *dst_vcpu; 1954 int sigcpu, online_vcpus, nr_tries = 0; 1955 1956 online_vcpus = atomic_read(&kvm->online_vcpus); 1957 if (!online_vcpus) 1958 return; 1959 1960 /* find idle VCPUs first, then round robin */ 1961 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1962 if (sigcpu == online_vcpus) { 1963 do { 1964 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1965 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1966 /* avoid endless loops if all vcpus are stopped */ 1967 if (nr_tries++ >= online_vcpus) 1968 return; 1969 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1970 } 1971 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1972 1973 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1974 switch (type) { 1975 case KVM_S390_MCHK: 1976 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1977 break; 1978 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1979 if (!(type & KVM_S390_INT_IO_AI_MASK && 1980 kvm->arch.gisa_int.origin) || 1981 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1982 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1983 break; 1984 default: 1985 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1986 break; 1987 } 1988 kvm_s390_vcpu_wakeup(dst_vcpu); 1989 } 1990 1991 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1992 { 1993 u64 type = READ_ONCE(inti->type); 1994 int rc; 1995 1996 switch (type) { 1997 case KVM_S390_MCHK: 1998 rc = __inject_float_mchk(kvm, inti); 1999 break; 2000 case KVM_S390_INT_VIRTIO: 2001 rc = __inject_virtio(kvm, inti); 2002 break; 2003 case KVM_S390_INT_SERVICE: 2004 rc = __inject_service(kvm, inti); 2005 break; 2006 case KVM_S390_INT_PFAULT_DONE: 2007 rc = __inject_pfault_done(kvm, inti); 2008 break; 2009 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2010 rc = __inject_io(kvm, inti); 2011 break; 2012 default: 2013 rc = -EINVAL; 2014 } 2015 if (rc) 2016 return rc; 2017 2018 __floating_irq_kick(kvm, type); 2019 return 0; 2020 } 2021 2022 int kvm_s390_inject_vm(struct kvm *kvm, 2023 struct kvm_s390_interrupt *s390int) 2024 { 2025 struct kvm_s390_interrupt_info *inti; 2026 int rc; 2027 2028 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2029 if (!inti) 2030 return -ENOMEM; 2031 2032 inti->type = s390int->type; 2033 switch (inti->type) { 2034 case KVM_S390_INT_VIRTIO: 2035 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2036 s390int->parm, s390int->parm64); 2037 inti->ext.ext_params = s390int->parm; 2038 inti->ext.ext_params2 = s390int->parm64; 2039 break; 2040 case KVM_S390_INT_SERVICE: 2041 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2042 inti->ext.ext_params = s390int->parm; 2043 break; 2044 case KVM_S390_INT_PFAULT_DONE: 2045 inti->ext.ext_params2 = s390int->parm64; 2046 break; 2047 case KVM_S390_MCHK: 2048 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2049 s390int->parm64); 2050 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2051 inti->mchk.mcic = s390int->parm64; 2052 break; 2053 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2054 inti->io.subchannel_id = s390int->parm >> 16; 2055 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2056 inti->io.io_int_parm = s390int->parm64 >> 32; 2057 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2058 break; 2059 default: 2060 kfree(inti); 2061 return -EINVAL; 2062 } 2063 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2064 2); 2065 2066 rc = __inject_vm(kvm, inti); 2067 if (rc) 2068 kfree(inti); 2069 return rc; 2070 } 2071 2072 int kvm_s390_reinject_io_int(struct kvm *kvm, 2073 struct kvm_s390_interrupt_info *inti) 2074 { 2075 return __inject_vm(kvm, inti); 2076 } 2077 2078 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2079 struct kvm_s390_irq *irq) 2080 { 2081 irq->type = s390int->type; 2082 switch (irq->type) { 2083 case KVM_S390_PROGRAM_INT: 2084 if (s390int->parm & 0xffff0000) 2085 return -EINVAL; 2086 irq->u.pgm.code = s390int->parm; 2087 break; 2088 case KVM_S390_SIGP_SET_PREFIX: 2089 irq->u.prefix.address = s390int->parm; 2090 break; 2091 case KVM_S390_SIGP_STOP: 2092 irq->u.stop.flags = s390int->parm; 2093 break; 2094 case KVM_S390_INT_EXTERNAL_CALL: 2095 if (s390int->parm & 0xffff0000) 2096 return -EINVAL; 2097 irq->u.extcall.code = s390int->parm; 2098 break; 2099 case KVM_S390_INT_EMERGENCY: 2100 if (s390int->parm & 0xffff0000) 2101 return -EINVAL; 2102 irq->u.emerg.code = s390int->parm; 2103 break; 2104 case KVM_S390_MCHK: 2105 irq->u.mchk.mcic = s390int->parm64; 2106 break; 2107 case KVM_S390_INT_PFAULT_INIT: 2108 irq->u.ext.ext_params = s390int->parm; 2109 irq->u.ext.ext_params2 = s390int->parm64; 2110 break; 2111 case KVM_S390_RESTART: 2112 case KVM_S390_INT_CLOCK_COMP: 2113 case KVM_S390_INT_CPU_TIMER: 2114 break; 2115 default: 2116 return -EINVAL; 2117 } 2118 return 0; 2119 } 2120 2121 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2122 { 2123 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2124 2125 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2126 } 2127 2128 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2129 { 2130 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2131 2132 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2133 } 2134 2135 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2136 { 2137 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2138 2139 spin_lock(&li->lock); 2140 li->irq.stop.flags = 0; 2141 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2142 spin_unlock(&li->lock); 2143 } 2144 2145 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2146 { 2147 int rc; 2148 2149 switch (irq->type) { 2150 case KVM_S390_PROGRAM_INT: 2151 rc = __inject_prog(vcpu, irq); 2152 break; 2153 case KVM_S390_SIGP_SET_PREFIX: 2154 rc = __inject_set_prefix(vcpu, irq); 2155 break; 2156 case KVM_S390_SIGP_STOP: 2157 rc = __inject_sigp_stop(vcpu, irq); 2158 break; 2159 case KVM_S390_RESTART: 2160 rc = __inject_sigp_restart(vcpu); 2161 break; 2162 case KVM_S390_INT_CLOCK_COMP: 2163 rc = __inject_ckc(vcpu); 2164 break; 2165 case KVM_S390_INT_CPU_TIMER: 2166 rc = __inject_cpu_timer(vcpu); 2167 break; 2168 case KVM_S390_INT_EXTERNAL_CALL: 2169 rc = __inject_extcall(vcpu, irq); 2170 break; 2171 case KVM_S390_INT_EMERGENCY: 2172 rc = __inject_sigp_emergency(vcpu, irq); 2173 break; 2174 case KVM_S390_MCHK: 2175 rc = __inject_mchk(vcpu, irq); 2176 break; 2177 case KVM_S390_INT_PFAULT_INIT: 2178 rc = __inject_pfault_init(vcpu, irq); 2179 break; 2180 case KVM_S390_INT_VIRTIO: 2181 case KVM_S390_INT_SERVICE: 2182 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2183 default: 2184 rc = -EINVAL; 2185 } 2186 2187 return rc; 2188 } 2189 2190 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2191 { 2192 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2193 int rc; 2194 2195 spin_lock(&li->lock); 2196 rc = do_inject_vcpu(vcpu, irq); 2197 spin_unlock(&li->lock); 2198 if (!rc) 2199 kvm_s390_vcpu_wakeup(vcpu); 2200 return rc; 2201 } 2202 2203 static inline void clear_irq_list(struct list_head *_list) 2204 { 2205 struct kvm_s390_interrupt_info *inti, *n; 2206 2207 list_for_each_entry_safe(inti, n, _list, list) { 2208 list_del(&inti->list); 2209 kfree(inti); 2210 } 2211 } 2212 2213 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2214 struct kvm_s390_irq *irq) 2215 { 2216 irq->type = inti->type; 2217 switch (inti->type) { 2218 case KVM_S390_INT_PFAULT_INIT: 2219 case KVM_S390_INT_PFAULT_DONE: 2220 case KVM_S390_INT_VIRTIO: 2221 irq->u.ext = inti->ext; 2222 break; 2223 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2224 irq->u.io = inti->io; 2225 break; 2226 } 2227 } 2228 2229 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2230 { 2231 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2232 int i; 2233 2234 mutex_lock(&kvm->lock); 2235 if (!kvm_s390_pv_is_protected(kvm)) 2236 fi->masked_irqs = 0; 2237 mutex_unlock(&kvm->lock); 2238 spin_lock(&fi->lock); 2239 fi->pending_irqs = 0; 2240 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2241 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2242 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2243 clear_irq_list(&fi->lists[i]); 2244 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2245 fi->counters[i] = 0; 2246 spin_unlock(&fi->lock); 2247 kvm_s390_gisa_clear(kvm); 2248 }; 2249 2250 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2251 { 2252 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2253 struct kvm_s390_interrupt_info *inti; 2254 struct kvm_s390_float_interrupt *fi; 2255 struct kvm_s390_irq *buf; 2256 struct kvm_s390_irq *irq; 2257 int max_irqs; 2258 int ret = 0; 2259 int n = 0; 2260 int i; 2261 2262 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2263 return -EINVAL; 2264 2265 /* 2266 * We are already using -ENOMEM to signal 2267 * userspace it may retry with a bigger buffer, 2268 * so we need to use something else for this case 2269 */ 2270 buf = vzalloc(len); 2271 if (!buf) 2272 return -ENOBUFS; 2273 2274 max_irqs = len / sizeof(struct kvm_s390_irq); 2275 2276 if (gi->origin && gisa_get_ipm(gi->origin)) { 2277 for (i = 0; i <= MAX_ISC; i++) { 2278 if (n == max_irqs) { 2279 /* signal userspace to try again */ 2280 ret = -ENOMEM; 2281 goto out_nolock; 2282 } 2283 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2284 irq = (struct kvm_s390_irq *) &buf[n]; 2285 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2286 irq->u.io.io_int_word = isc_to_int_word(i); 2287 n++; 2288 } 2289 } 2290 } 2291 fi = &kvm->arch.float_int; 2292 spin_lock(&fi->lock); 2293 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2294 list_for_each_entry(inti, &fi->lists[i], list) { 2295 if (n == max_irqs) { 2296 /* signal userspace to try again */ 2297 ret = -ENOMEM; 2298 goto out; 2299 } 2300 inti_to_irq(inti, &buf[n]); 2301 n++; 2302 } 2303 } 2304 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2305 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2306 if (n == max_irqs) { 2307 /* signal userspace to try again */ 2308 ret = -ENOMEM; 2309 goto out; 2310 } 2311 irq = (struct kvm_s390_irq *) &buf[n]; 2312 irq->type = KVM_S390_INT_SERVICE; 2313 irq->u.ext = fi->srv_signal; 2314 n++; 2315 } 2316 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2317 if (n == max_irqs) { 2318 /* signal userspace to try again */ 2319 ret = -ENOMEM; 2320 goto out; 2321 } 2322 irq = (struct kvm_s390_irq *) &buf[n]; 2323 irq->type = KVM_S390_MCHK; 2324 irq->u.mchk = fi->mchk; 2325 n++; 2326 } 2327 2328 out: 2329 spin_unlock(&fi->lock); 2330 out_nolock: 2331 if (!ret && n > 0) { 2332 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2333 ret = -EFAULT; 2334 } 2335 vfree(buf); 2336 2337 return ret < 0 ? ret : n; 2338 } 2339 2340 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2341 { 2342 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2343 struct kvm_s390_ais_all ais; 2344 2345 if (attr->attr < sizeof(ais)) 2346 return -EINVAL; 2347 2348 if (!test_kvm_facility(kvm, 72)) 2349 return -EOPNOTSUPP; 2350 2351 mutex_lock(&fi->ais_lock); 2352 ais.simm = fi->simm; 2353 ais.nimm = fi->nimm; 2354 mutex_unlock(&fi->ais_lock); 2355 2356 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2357 return -EFAULT; 2358 2359 return 0; 2360 } 2361 2362 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2363 { 2364 int r; 2365 2366 switch (attr->group) { 2367 case KVM_DEV_FLIC_GET_ALL_IRQS: 2368 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2369 attr->attr); 2370 break; 2371 case KVM_DEV_FLIC_AISM_ALL: 2372 r = flic_ais_mode_get_all(dev->kvm, attr); 2373 break; 2374 default: 2375 r = -EINVAL; 2376 } 2377 2378 return r; 2379 } 2380 2381 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2382 u64 addr) 2383 { 2384 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2385 void *target = NULL; 2386 void __user *source; 2387 u64 size; 2388 2389 if (get_user(inti->type, (u64 __user *)addr)) 2390 return -EFAULT; 2391 2392 switch (inti->type) { 2393 case KVM_S390_INT_PFAULT_INIT: 2394 case KVM_S390_INT_PFAULT_DONE: 2395 case KVM_S390_INT_VIRTIO: 2396 case KVM_S390_INT_SERVICE: 2397 target = (void *) &inti->ext; 2398 source = &uptr->u.ext; 2399 size = sizeof(inti->ext); 2400 break; 2401 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2402 target = (void *) &inti->io; 2403 source = &uptr->u.io; 2404 size = sizeof(inti->io); 2405 break; 2406 case KVM_S390_MCHK: 2407 target = (void *) &inti->mchk; 2408 source = &uptr->u.mchk; 2409 size = sizeof(inti->mchk); 2410 break; 2411 default: 2412 return -EINVAL; 2413 } 2414 2415 if (copy_from_user(target, source, size)) 2416 return -EFAULT; 2417 2418 return 0; 2419 } 2420 2421 static int enqueue_floating_irq(struct kvm_device *dev, 2422 struct kvm_device_attr *attr) 2423 { 2424 struct kvm_s390_interrupt_info *inti = NULL; 2425 int r = 0; 2426 int len = attr->attr; 2427 2428 if (len % sizeof(struct kvm_s390_irq) != 0) 2429 return -EINVAL; 2430 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2431 return -EINVAL; 2432 2433 while (len >= sizeof(struct kvm_s390_irq)) { 2434 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2435 if (!inti) 2436 return -ENOMEM; 2437 2438 r = copy_irq_from_user(inti, attr->addr); 2439 if (r) { 2440 kfree(inti); 2441 return r; 2442 } 2443 r = __inject_vm(dev->kvm, inti); 2444 if (r) { 2445 kfree(inti); 2446 return r; 2447 } 2448 len -= sizeof(struct kvm_s390_irq); 2449 attr->addr += sizeof(struct kvm_s390_irq); 2450 } 2451 2452 return r; 2453 } 2454 2455 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2456 { 2457 if (id >= MAX_S390_IO_ADAPTERS) 2458 return NULL; 2459 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2460 return kvm->arch.adapters[id]; 2461 } 2462 2463 static int register_io_adapter(struct kvm_device *dev, 2464 struct kvm_device_attr *attr) 2465 { 2466 struct s390_io_adapter *adapter; 2467 struct kvm_s390_io_adapter adapter_info; 2468 2469 if (copy_from_user(&adapter_info, 2470 (void __user *)attr->addr, sizeof(adapter_info))) 2471 return -EFAULT; 2472 2473 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2474 return -EINVAL; 2475 2476 adapter_info.id = array_index_nospec(adapter_info.id, 2477 MAX_S390_IO_ADAPTERS); 2478 2479 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2480 return -EINVAL; 2481 2482 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2483 if (!adapter) 2484 return -ENOMEM; 2485 2486 adapter->id = adapter_info.id; 2487 adapter->isc = adapter_info.isc; 2488 adapter->maskable = adapter_info.maskable; 2489 adapter->masked = false; 2490 adapter->swap = adapter_info.swap; 2491 adapter->suppressible = (adapter_info.flags) & 2492 KVM_S390_ADAPTER_SUPPRESSIBLE; 2493 dev->kvm->arch.adapters[adapter->id] = adapter; 2494 2495 return 0; 2496 } 2497 2498 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2499 { 2500 int ret; 2501 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2502 2503 if (!adapter || !adapter->maskable) 2504 return -EINVAL; 2505 ret = adapter->masked; 2506 adapter->masked = masked; 2507 return ret; 2508 } 2509 2510 void kvm_s390_destroy_adapters(struct kvm *kvm) 2511 { 2512 int i; 2513 2514 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2515 kfree(kvm->arch.adapters[i]); 2516 } 2517 2518 static int modify_io_adapter(struct kvm_device *dev, 2519 struct kvm_device_attr *attr) 2520 { 2521 struct kvm_s390_io_adapter_req req; 2522 struct s390_io_adapter *adapter; 2523 int ret; 2524 2525 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2526 return -EFAULT; 2527 2528 adapter = get_io_adapter(dev->kvm, req.id); 2529 if (!adapter) 2530 return -EINVAL; 2531 switch (req.type) { 2532 case KVM_S390_IO_ADAPTER_MASK: 2533 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2534 if (ret > 0) 2535 ret = 0; 2536 break; 2537 /* 2538 * The following operations are no longer needed and therefore no-ops. 2539 * The gpa to hva translation is done when an IRQ route is set up. The 2540 * set_irq code uses get_user_pages_remote() to do the actual write. 2541 */ 2542 case KVM_S390_IO_ADAPTER_MAP: 2543 case KVM_S390_IO_ADAPTER_UNMAP: 2544 ret = 0; 2545 break; 2546 default: 2547 ret = -EINVAL; 2548 } 2549 2550 return ret; 2551 } 2552 2553 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2554 2555 { 2556 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2557 u32 schid; 2558 2559 if (attr->flags) 2560 return -EINVAL; 2561 if (attr->attr != sizeof(schid)) 2562 return -EINVAL; 2563 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2564 return -EFAULT; 2565 if (!schid) 2566 return -EINVAL; 2567 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2568 /* 2569 * If userspace is conforming to the architecture, we can have at most 2570 * one pending I/O interrupt per subchannel, so this is effectively a 2571 * clear all. 2572 */ 2573 return 0; 2574 } 2575 2576 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2577 { 2578 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2579 struct kvm_s390_ais_req req; 2580 int ret = 0; 2581 2582 if (!test_kvm_facility(kvm, 72)) 2583 return -EOPNOTSUPP; 2584 2585 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2586 return -EFAULT; 2587 2588 if (req.isc > MAX_ISC) 2589 return -EINVAL; 2590 2591 trace_kvm_s390_modify_ais_mode(req.isc, 2592 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2593 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2594 2 : KVM_S390_AIS_MODE_SINGLE : 2595 KVM_S390_AIS_MODE_ALL, req.mode); 2596 2597 mutex_lock(&fi->ais_lock); 2598 switch (req.mode) { 2599 case KVM_S390_AIS_MODE_ALL: 2600 fi->simm &= ~AIS_MODE_MASK(req.isc); 2601 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2602 break; 2603 case KVM_S390_AIS_MODE_SINGLE: 2604 fi->simm |= AIS_MODE_MASK(req.isc); 2605 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2606 break; 2607 default: 2608 ret = -EINVAL; 2609 } 2610 mutex_unlock(&fi->ais_lock); 2611 2612 return ret; 2613 } 2614 2615 static int kvm_s390_inject_airq(struct kvm *kvm, 2616 struct s390_io_adapter *adapter) 2617 { 2618 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2619 struct kvm_s390_interrupt s390int = { 2620 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2621 .parm = 0, 2622 .parm64 = isc_to_int_word(adapter->isc), 2623 }; 2624 int ret = 0; 2625 2626 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2627 return kvm_s390_inject_vm(kvm, &s390int); 2628 2629 mutex_lock(&fi->ais_lock); 2630 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2631 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2632 goto out; 2633 } 2634 2635 ret = kvm_s390_inject_vm(kvm, &s390int); 2636 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2637 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2638 trace_kvm_s390_modify_ais_mode(adapter->isc, 2639 KVM_S390_AIS_MODE_SINGLE, 2); 2640 } 2641 out: 2642 mutex_unlock(&fi->ais_lock); 2643 return ret; 2644 } 2645 2646 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2647 { 2648 unsigned int id = attr->attr; 2649 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2650 2651 if (!adapter) 2652 return -EINVAL; 2653 2654 return kvm_s390_inject_airq(kvm, adapter); 2655 } 2656 2657 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2658 { 2659 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2660 struct kvm_s390_ais_all ais; 2661 2662 if (!test_kvm_facility(kvm, 72)) 2663 return -EOPNOTSUPP; 2664 2665 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2666 return -EFAULT; 2667 2668 mutex_lock(&fi->ais_lock); 2669 fi->simm = ais.simm; 2670 fi->nimm = ais.nimm; 2671 mutex_unlock(&fi->ais_lock); 2672 2673 return 0; 2674 } 2675 2676 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2677 { 2678 int r = 0; 2679 unsigned long i; 2680 struct kvm_vcpu *vcpu; 2681 2682 switch (attr->group) { 2683 case KVM_DEV_FLIC_ENQUEUE: 2684 r = enqueue_floating_irq(dev, attr); 2685 break; 2686 case KVM_DEV_FLIC_CLEAR_IRQS: 2687 kvm_s390_clear_float_irqs(dev->kvm); 2688 break; 2689 case KVM_DEV_FLIC_APF_ENABLE: 2690 dev->kvm->arch.gmap->pfault_enabled = 1; 2691 break; 2692 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2693 dev->kvm->arch.gmap->pfault_enabled = 0; 2694 /* 2695 * Make sure no async faults are in transition when 2696 * clearing the queues. So we don't need to worry 2697 * about late coming workers. 2698 */ 2699 synchronize_srcu(&dev->kvm->srcu); 2700 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2701 kvm_clear_async_pf_completion_queue(vcpu); 2702 break; 2703 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2704 r = register_io_adapter(dev, attr); 2705 break; 2706 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2707 r = modify_io_adapter(dev, attr); 2708 break; 2709 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2710 r = clear_io_irq(dev->kvm, attr); 2711 break; 2712 case KVM_DEV_FLIC_AISM: 2713 r = modify_ais_mode(dev->kvm, attr); 2714 break; 2715 case KVM_DEV_FLIC_AIRQ_INJECT: 2716 r = flic_inject_airq(dev->kvm, attr); 2717 break; 2718 case KVM_DEV_FLIC_AISM_ALL: 2719 r = flic_ais_mode_set_all(dev->kvm, attr); 2720 break; 2721 default: 2722 r = -EINVAL; 2723 } 2724 2725 return r; 2726 } 2727 2728 static int flic_has_attr(struct kvm_device *dev, 2729 struct kvm_device_attr *attr) 2730 { 2731 switch (attr->group) { 2732 case KVM_DEV_FLIC_GET_ALL_IRQS: 2733 case KVM_DEV_FLIC_ENQUEUE: 2734 case KVM_DEV_FLIC_CLEAR_IRQS: 2735 case KVM_DEV_FLIC_APF_ENABLE: 2736 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2737 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2738 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2739 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2740 case KVM_DEV_FLIC_AISM: 2741 case KVM_DEV_FLIC_AIRQ_INJECT: 2742 case KVM_DEV_FLIC_AISM_ALL: 2743 return 0; 2744 } 2745 return -ENXIO; 2746 } 2747 2748 static int flic_create(struct kvm_device *dev, u32 type) 2749 { 2750 if (!dev) 2751 return -EINVAL; 2752 if (dev->kvm->arch.flic) 2753 return -EINVAL; 2754 dev->kvm->arch.flic = dev; 2755 return 0; 2756 } 2757 2758 static void flic_destroy(struct kvm_device *dev) 2759 { 2760 dev->kvm->arch.flic = NULL; 2761 kfree(dev); 2762 } 2763 2764 /* s390 floating irq controller (flic) */ 2765 struct kvm_device_ops kvm_flic_ops = { 2766 .name = "kvm-flic", 2767 .get_attr = flic_get_attr, 2768 .set_attr = flic_set_attr, 2769 .has_attr = flic_has_attr, 2770 .create = flic_create, 2771 .destroy = flic_destroy, 2772 }; 2773 2774 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2775 { 2776 unsigned long bit; 2777 2778 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2779 2780 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2781 } 2782 2783 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2784 { 2785 struct page *page = NULL; 2786 2787 mmap_read_lock(kvm->mm); 2788 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2789 &page, NULL); 2790 mmap_read_unlock(kvm->mm); 2791 return page; 2792 } 2793 2794 static int adapter_indicators_set(struct kvm *kvm, 2795 struct s390_io_adapter *adapter, 2796 struct kvm_s390_adapter_int *adapter_int) 2797 { 2798 unsigned long bit; 2799 int summary_set, idx; 2800 struct page *ind_page, *summary_page; 2801 void *map; 2802 2803 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2804 if (!ind_page) 2805 return -1; 2806 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2807 if (!summary_page) { 2808 put_page(ind_page); 2809 return -1; 2810 } 2811 2812 idx = srcu_read_lock(&kvm->srcu); 2813 map = page_address(ind_page); 2814 bit = get_ind_bit(adapter_int->ind_addr, 2815 adapter_int->ind_offset, adapter->swap); 2816 set_bit(bit, map); 2817 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2818 set_page_dirty_lock(ind_page); 2819 map = page_address(summary_page); 2820 bit = get_ind_bit(adapter_int->summary_addr, 2821 adapter_int->summary_offset, adapter->swap); 2822 summary_set = test_and_set_bit(bit, map); 2823 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2824 set_page_dirty_lock(summary_page); 2825 srcu_read_unlock(&kvm->srcu, idx); 2826 2827 put_page(ind_page); 2828 put_page(summary_page); 2829 return summary_set ? 0 : 1; 2830 } 2831 2832 /* 2833 * < 0 - not injected due to error 2834 * = 0 - coalesced, summary indicator already active 2835 * > 0 - injected interrupt 2836 */ 2837 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2838 struct kvm *kvm, int irq_source_id, int level, 2839 bool line_status) 2840 { 2841 int ret; 2842 struct s390_io_adapter *adapter; 2843 2844 /* We're only interested in the 0->1 transition. */ 2845 if (!level) 2846 return 0; 2847 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2848 if (!adapter) 2849 return -1; 2850 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2851 if ((ret > 0) && !adapter->masked) { 2852 ret = kvm_s390_inject_airq(kvm, adapter); 2853 if (ret == 0) 2854 ret = 1; 2855 } 2856 return ret; 2857 } 2858 2859 /* 2860 * Inject the machine check to the guest. 2861 */ 2862 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2863 struct mcck_volatile_info *mcck_info) 2864 { 2865 struct kvm_s390_interrupt_info inti; 2866 struct kvm_s390_irq irq; 2867 struct kvm_s390_mchk_info *mchk; 2868 union mci mci; 2869 __u64 cr14 = 0; /* upper bits are not used */ 2870 int rc; 2871 2872 mci.val = mcck_info->mcic; 2873 if (mci.sr) 2874 cr14 |= CR14_RECOVERY_SUBMASK; 2875 if (mci.dg) 2876 cr14 |= CR14_DEGRADATION_SUBMASK; 2877 if (mci.w) 2878 cr14 |= CR14_WARNING_SUBMASK; 2879 2880 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2881 mchk->cr14 = cr14; 2882 mchk->mcic = mcck_info->mcic; 2883 mchk->ext_damage_code = mcck_info->ext_damage_code; 2884 mchk->failing_storage_address = mcck_info->failing_storage_address; 2885 if (mci.ck) { 2886 /* Inject the floating machine check */ 2887 inti.type = KVM_S390_MCHK; 2888 rc = __inject_vm(vcpu->kvm, &inti); 2889 } else { 2890 /* Inject the machine check to specified vcpu */ 2891 irq.type = KVM_S390_MCHK; 2892 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2893 } 2894 WARN_ON_ONCE(rc); 2895 } 2896 2897 int kvm_set_routing_entry(struct kvm *kvm, 2898 struct kvm_kernel_irq_routing_entry *e, 2899 const struct kvm_irq_routing_entry *ue) 2900 { 2901 u64 uaddr; 2902 2903 switch (ue->type) { 2904 /* we store the userspace addresses instead of the guest addresses */ 2905 case KVM_IRQ_ROUTING_S390_ADAPTER: 2906 e->set = set_adapter_int; 2907 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr); 2908 if (uaddr == -EFAULT) 2909 return -EFAULT; 2910 e->adapter.summary_addr = uaddr; 2911 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr); 2912 if (uaddr == -EFAULT) 2913 return -EFAULT; 2914 e->adapter.ind_addr = uaddr; 2915 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2916 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2917 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2918 return 0; 2919 default: 2920 return -EINVAL; 2921 } 2922 } 2923 2924 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2925 int irq_source_id, int level, bool line_status) 2926 { 2927 return -EINVAL; 2928 } 2929 2930 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2931 { 2932 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2933 struct kvm_s390_irq *buf; 2934 int r = 0; 2935 int n; 2936 2937 buf = vmalloc(len); 2938 if (!buf) 2939 return -ENOMEM; 2940 2941 if (copy_from_user((void *) buf, irqstate, len)) { 2942 r = -EFAULT; 2943 goto out_free; 2944 } 2945 2946 /* 2947 * Don't allow setting the interrupt state 2948 * when there are already interrupts pending 2949 */ 2950 spin_lock(&li->lock); 2951 if (li->pending_irqs) { 2952 r = -EBUSY; 2953 goto out_unlock; 2954 } 2955 2956 for (n = 0; n < len / sizeof(*buf); n++) { 2957 r = do_inject_vcpu(vcpu, &buf[n]); 2958 if (r) 2959 break; 2960 } 2961 2962 out_unlock: 2963 spin_unlock(&li->lock); 2964 out_free: 2965 vfree(buf); 2966 2967 return r; 2968 } 2969 2970 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2971 struct kvm_s390_irq *irq, 2972 unsigned long irq_type) 2973 { 2974 switch (irq_type) { 2975 case IRQ_PEND_MCHK_EX: 2976 case IRQ_PEND_MCHK_REP: 2977 irq->type = KVM_S390_MCHK; 2978 irq->u.mchk = li->irq.mchk; 2979 break; 2980 case IRQ_PEND_PROG: 2981 irq->type = KVM_S390_PROGRAM_INT; 2982 irq->u.pgm = li->irq.pgm; 2983 break; 2984 case IRQ_PEND_PFAULT_INIT: 2985 irq->type = KVM_S390_INT_PFAULT_INIT; 2986 irq->u.ext = li->irq.ext; 2987 break; 2988 case IRQ_PEND_EXT_EXTERNAL: 2989 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2990 irq->u.extcall = li->irq.extcall; 2991 break; 2992 case IRQ_PEND_EXT_CLOCK_COMP: 2993 irq->type = KVM_S390_INT_CLOCK_COMP; 2994 break; 2995 case IRQ_PEND_EXT_CPU_TIMER: 2996 irq->type = KVM_S390_INT_CPU_TIMER; 2997 break; 2998 case IRQ_PEND_SIGP_STOP: 2999 irq->type = KVM_S390_SIGP_STOP; 3000 irq->u.stop = li->irq.stop; 3001 break; 3002 case IRQ_PEND_RESTART: 3003 irq->type = KVM_S390_RESTART; 3004 break; 3005 case IRQ_PEND_SET_PREFIX: 3006 irq->type = KVM_S390_SIGP_SET_PREFIX; 3007 irq->u.prefix = li->irq.prefix; 3008 break; 3009 } 3010 } 3011 3012 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3013 { 3014 int scn; 3015 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3016 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3017 unsigned long pending_irqs; 3018 struct kvm_s390_irq irq; 3019 unsigned long irq_type; 3020 int cpuaddr; 3021 int n = 0; 3022 3023 spin_lock(&li->lock); 3024 pending_irqs = li->pending_irqs; 3025 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3026 sizeof(sigp_emerg_pending)); 3027 spin_unlock(&li->lock); 3028 3029 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3030 memset(&irq, 0, sizeof(irq)); 3031 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3032 continue; 3033 if (n + sizeof(irq) > len) 3034 return -ENOBUFS; 3035 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3036 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3037 return -EFAULT; 3038 n += sizeof(irq); 3039 } 3040 3041 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3042 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3043 memset(&irq, 0, sizeof(irq)); 3044 if (n + sizeof(irq) > len) 3045 return -ENOBUFS; 3046 irq.type = KVM_S390_INT_EMERGENCY; 3047 irq.u.emerg.code = cpuaddr; 3048 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3049 return -EFAULT; 3050 n += sizeof(irq); 3051 } 3052 } 3053 3054 if (sca_ext_call_pending(vcpu, &scn)) { 3055 if (n + sizeof(irq) > len) 3056 return -ENOBUFS; 3057 memset(&irq, 0, sizeof(irq)); 3058 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3059 irq.u.extcall.code = scn; 3060 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3061 return -EFAULT; 3062 n += sizeof(irq); 3063 } 3064 3065 return n; 3066 } 3067 3068 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3069 { 3070 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3071 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3072 struct kvm_vcpu *vcpu; 3073 u8 vcpu_isc_mask; 3074 3075 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3076 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3077 if (psw_ioint_disabled(vcpu)) 3078 continue; 3079 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3080 if (deliverable_mask & vcpu_isc_mask) { 3081 /* lately kicked but not yet running */ 3082 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3083 return; 3084 kvm_s390_vcpu_wakeup(vcpu); 3085 return; 3086 } 3087 } 3088 } 3089 3090 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3091 { 3092 struct kvm_s390_gisa_interrupt *gi = 3093 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3094 struct kvm *kvm = 3095 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3096 u8 pending_mask; 3097 3098 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3099 if (pending_mask) { 3100 __airqs_kick_single_vcpu(kvm, pending_mask); 3101 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3102 return HRTIMER_RESTART; 3103 } 3104 3105 return HRTIMER_NORESTART; 3106 } 3107 3108 #define NULL_GISA_ADDR 0x00000000UL 3109 #define NONE_GISA_ADDR 0x00000001UL 3110 #define GISA_ADDR_MASK 0xfffff000UL 3111 3112 static void process_gib_alert_list(void) 3113 { 3114 struct kvm_s390_gisa_interrupt *gi; 3115 u32 final, gisa_phys, origin = 0UL; 3116 struct kvm_s390_gisa *gisa; 3117 struct kvm *kvm; 3118 3119 do { 3120 /* 3121 * If the NONE_GISA_ADDR is still stored in the alert list 3122 * origin, we will leave the outer loop. No further GISA has 3123 * been added to the alert list by millicode while processing 3124 * the current alert list. 3125 */ 3126 final = (origin & NONE_GISA_ADDR); 3127 /* 3128 * Cut off the alert list and store the NONE_GISA_ADDR in the 3129 * alert list origin to avoid further GAL interruptions. 3130 * A new alert list can be build up by millicode in parallel 3131 * for guests not in the yet cut-off alert list. When in the 3132 * final loop, store the NULL_GISA_ADDR instead. This will re- 3133 * enable GAL interruptions on the host again. 3134 */ 3135 origin = xchg(&gib->alert_list_origin, 3136 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3137 /* 3138 * Loop through the just cut-off alert list and start the 3139 * gisa timers to kick idle vcpus to consume the pending 3140 * interruptions asap. 3141 */ 3142 while (origin & GISA_ADDR_MASK) { 3143 gisa_phys = origin; 3144 gisa = phys_to_virt(gisa_phys); 3145 origin = gisa->next_alert; 3146 gisa->next_alert = gisa_phys; 3147 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3148 gi = &kvm->arch.gisa_int; 3149 if (hrtimer_active(&gi->timer)) 3150 hrtimer_cancel(&gi->timer); 3151 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3152 } 3153 } while (!final); 3154 3155 } 3156 3157 void kvm_s390_gisa_clear(struct kvm *kvm) 3158 { 3159 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3160 3161 if (!gi->origin) 3162 return; 3163 gisa_clear_ipm(gi->origin); 3164 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3165 } 3166 3167 void kvm_s390_gisa_init(struct kvm *kvm) 3168 { 3169 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3170 3171 if (!css_general_characteristics.aiv) 3172 return; 3173 gi->origin = &kvm->arch.sie_page2->gisa; 3174 gi->alert.mask = 0; 3175 spin_lock_init(&gi->alert.ref_lock); 3176 gi->expires = 50 * 1000; /* 50 usec */ 3177 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3178 gi->timer.function = gisa_vcpu_kicker; 3179 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3180 gi->origin->next_alert = (u32)virt_to_phys(gi->origin); 3181 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3182 } 3183 3184 void kvm_s390_gisa_enable(struct kvm *kvm) 3185 { 3186 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3187 struct kvm_vcpu *vcpu; 3188 unsigned long i; 3189 u32 gisa_desc; 3190 3191 if (gi->origin) 3192 return; 3193 kvm_s390_gisa_init(kvm); 3194 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3195 if (!gisa_desc) 3196 return; 3197 kvm_for_each_vcpu(i, vcpu, kvm) { 3198 mutex_lock(&vcpu->mutex); 3199 vcpu->arch.sie_block->gd = gisa_desc; 3200 vcpu->arch.sie_block->eca |= ECA_AIV; 3201 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3202 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3203 mutex_unlock(&vcpu->mutex); 3204 } 3205 } 3206 3207 void kvm_s390_gisa_destroy(struct kvm *kvm) 3208 { 3209 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3210 struct kvm_s390_gisa *gisa = gi->origin; 3211 3212 if (!gi->origin) 3213 return; 3214 WARN(gi->alert.mask != 0x00, 3215 "unexpected non zero alert.mask 0x%02x", 3216 gi->alert.mask); 3217 gi->alert.mask = 0x00; 3218 if (gisa_set_iam(gi->origin, gi->alert.mask)) 3219 process_gib_alert_list(); 3220 hrtimer_cancel(&gi->timer); 3221 gi->origin = NULL; 3222 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); 3223 } 3224 3225 void kvm_s390_gisa_disable(struct kvm *kvm) 3226 { 3227 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3228 struct kvm_vcpu *vcpu; 3229 unsigned long i; 3230 3231 if (!gi->origin) 3232 return; 3233 kvm_for_each_vcpu(i, vcpu, kvm) { 3234 mutex_lock(&vcpu->mutex); 3235 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3236 vcpu->arch.sie_block->gd = 0U; 3237 mutex_unlock(&vcpu->mutex); 3238 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3239 } 3240 kvm_s390_gisa_destroy(kvm); 3241 } 3242 3243 /** 3244 * kvm_s390_gisc_register - register a guest ISC 3245 * 3246 * @kvm: the kernel vm to work with 3247 * @gisc: the guest interruption sub class to register 3248 * 3249 * The function extends the vm specific alert mask to use. 3250 * The effective IAM mask in the GISA is updated as well 3251 * in case the GISA is not part of the GIB alert list. 3252 * It will be updated latest when the IAM gets restored 3253 * by gisa_get_ipm_or_restore_iam(). 3254 * 3255 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3256 * has registered with the channel subsystem. 3257 * -ENODEV in case the vm uses no GISA 3258 * -ERANGE in case the guest ISC is invalid 3259 */ 3260 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3261 { 3262 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3263 3264 if (!gi->origin) 3265 return -ENODEV; 3266 if (gisc > MAX_ISC) 3267 return -ERANGE; 3268 3269 spin_lock(&gi->alert.ref_lock); 3270 gi->alert.ref_count[gisc]++; 3271 if (gi->alert.ref_count[gisc] == 1) { 3272 gi->alert.mask |= 0x80 >> gisc; 3273 gisa_set_iam(gi->origin, gi->alert.mask); 3274 } 3275 spin_unlock(&gi->alert.ref_lock); 3276 3277 return gib->nisc; 3278 } 3279 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3280 3281 /** 3282 * kvm_s390_gisc_unregister - unregister a guest ISC 3283 * 3284 * @kvm: the kernel vm to work with 3285 * @gisc: the guest interruption sub class to register 3286 * 3287 * The function reduces the vm specific alert mask to use. 3288 * The effective IAM mask in the GISA is updated as well 3289 * in case the GISA is not part of the GIB alert list. 3290 * It will be updated latest when the IAM gets restored 3291 * by gisa_get_ipm_or_restore_iam(). 3292 * 3293 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3294 * has registered with the channel subsystem. 3295 * -ENODEV in case the vm uses no GISA 3296 * -ERANGE in case the guest ISC is invalid 3297 * -EINVAL in case the guest ISC is not registered 3298 */ 3299 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3300 { 3301 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3302 int rc = 0; 3303 3304 if (!gi->origin) 3305 return -ENODEV; 3306 if (gisc > MAX_ISC) 3307 return -ERANGE; 3308 3309 spin_lock(&gi->alert.ref_lock); 3310 if (gi->alert.ref_count[gisc] == 0) { 3311 rc = -EINVAL; 3312 goto out; 3313 } 3314 gi->alert.ref_count[gisc]--; 3315 if (gi->alert.ref_count[gisc] == 0) { 3316 gi->alert.mask &= ~(0x80 >> gisc); 3317 gisa_set_iam(gi->origin, gi->alert.mask); 3318 } 3319 out: 3320 spin_unlock(&gi->alert.ref_lock); 3321 3322 return rc; 3323 } 3324 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3325 3326 static void aen_host_forward(unsigned long si) 3327 { 3328 struct kvm_s390_gisa_interrupt *gi; 3329 struct zpci_gaite *gaite; 3330 struct kvm *kvm; 3331 3332 gaite = (struct zpci_gaite *)aift->gait + 3333 (si * sizeof(struct zpci_gaite)); 3334 if (gaite->count == 0) 3335 return; 3336 if (gaite->aisb != 0) 3337 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3338 3339 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3340 if (!kvm) 3341 return; 3342 gi = &kvm->arch.gisa_int; 3343 3344 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3345 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3346 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3347 if (hrtimer_active(&gi->timer)) 3348 hrtimer_cancel(&gi->timer); 3349 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3350 kvm->stat.aen_forward++; 3351 } 3352 } 3353 3354 static void aen_process_gait(u8 isc) 3355 { 3356 bool found = false, first = true; 3357 union zpci_sic_iib iib = {{0}}; 3358 unsigned long si, flags; 3359 3360 spin_lock_irqsave(&aift->gait_lock, flags); 3361 3362 if (!aift->gait) { 3363 spin_unlock_irqrestore(&aift->gait_lock, flags); 3364 return; 3365 } 3366 3367 for (si = 0;;) { 3368 /* Scan adapter summary indicator bit vector */ 3369 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3370 if (si == -1UL) { 3371 if (first || found) { 3372 /* Re-enable interrupts. */ 3373 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3374 &iib); 3375 first = found = false; 3376 } else { 3377 /* Interrupts on and all bits processed */ 3378 break; 3379 } 3380 found = false; 3381 si = 0; 3382 /* Scan again after re-enabling interrupts */ 3383 continue; 3384 } 3385 found = true; 3386 aen_host_forward(si); 3387 } 3388 3389 spin_unlock_irqrestore(&aift->gait_lock, flags); 3390 } 3391 3392 static void gib_alert_irq_handler(struct airq_struct *airq, 3393 struct tpi_info *tpi_info) 3394 { 3395 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3396 3397 inc_irq_stat(IRQIO_GAL); 3398 3399 if ((info->forward || info->error) && 3400 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3401 aen_process_gait(info->isc); 3402 if (info->aism != 0) 3403 process_gib_alert_list(); 3404 } else { 3405 process_gib_alert_list(); 3406 } 3407 } 3408 3409 static struct airq_struct gib_alert_irq = { 3410 .handler = gib_alert_irq_handler, 3411 }; 3412 3413 void kvm_s390_gib_destroy(void) 3414 { 3415 if (!gib) 3416 return; 3417 if (kvm_s390_pci_interp_allowed() && aift) { 3418 mutex_lock(&aift->aift_lock); 3419 kvm_s390_pci_aen_exit(); 3420 mutex_unlock(&aift->aift_lock); 3421 } 3422 chsc_sgib(0); 3423 unregister_adapter_interrupt(&gib_alert_irq); 3424 free_page((unsigned long)gib); 3425 gib = NULL; 3426 } 3427 3428 int __init kvm_s390_gib_init(u8 nisc) 3429 { 3430 u32 gib_origin; 3431 int rc = 0; 3432 3433 if (!css_general_characteristics.aiv) { 3434 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3435 goto out; 3436 } 3437 3438 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3439 if (!gib) { 3440 rc = -ENOMEM; 3441 goto out; 3442 } 3443 3444 gib_alert_irq.isc = nisc; 3445 if (register_adapter_interrupt(&gib_alert_irq)) { 3446 pr_err("Registering the GIB alert interruption handler failed\n"); 3447 rc = -EIO; 3448 goto out_free_gib; 3449 } 3450 /* adapter interrupts used for AP (applicable here) don't use the LSI */ 3451 *gib_alert_irq.lsi_ptr = 0xff; 3452 3453 gib->nisc = nisc; 3454 gib_origin = virt_to_phys(gib); 3455 if (chsc_sgib(gib_origin)) { 3456 pr_err("Associating the GIB with the AIV facility failed\n"); 3457 free_page((unsigned long)gib); 3458 gib = NULL; 3459 rc = -EIO; 3460 goto out_unreg_gal; 3461 } 3462 3463 if (kvm_s390_pci_interp_allowed()) { 3464 if (kvm_s390_pci_aen_init(nisc)) { 3465 pr_err("Initializing AEN for PCI failed\n"); 3466 rc = -EIO; 3467 goto out_unreg_gal; 3468 } 3469 } 3470 3471 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3472 goto out; 3473 3474 out_unreg_gal: 3475 unregister_adapter_interrupt(&gib_alert_irq); 3476 out_free_gib: 3477 free_page((unsigned long)gib); 3478 gib = NULL; 3479 out: 3480 return rc; 3481 } 3482