1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/cpufeature.h> 14 #include <linux/interrupt.h> 15 #include <linux/kvm_host.h> 16 #include <linux/hrtimer.h> 17 #include <linux/export.h> 18 #include <linux/mmu_context.h> 19 #include <linux/nospec.h> 20 #include <linux/signal.h> 21 #include <linux/slab.h> 22 #include <linux/bitmap.h> 23 #include <linux/vmalloc.h> 24 #include <asm/access-regs.h> 25 #include <asm/asm-offsets.h> 26 #include <asm/dis.h> 27 #include <linux/uaccess.h> 28 #include <asm/sclp.h> 29 #include <asm/isc.h> 30 #include <asm/gmap.h> 31 #include <asm/nmi.h> 32 #include <asm/airq.h> 33 #include <asm/tpi.h> 34 #include "kvm-s390.h" 35 #include "gaccess.h" 36 #include "trace-s390.h" 37 #include "pci.h" 38 39 #define PFAULT_INIT 0x0600 40 #define PFAULT_DONE 0x0680 41 #define VIRTIO_PARAM 0x0d00 42 43 static struct kvm_s390_gib *gib; 44 45 /* handle external calls via sigp interpretation facility */ 46 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 47 { 48 int c, scn; 49 50 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 51 return 0; 52 53 BUG_ON(!kvm_s390_use_sca_entries()); 54 read_lock(&vcpu->kvm->arch.sca_lock); 55 if (vcpu->kvm->arch.use_esca) { 56 struct esca_block *sca = vcpu->kvm->arch.sca; 57 union esca_sigp_ctrl sigp_ctrl = 58 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 59 60 c = sigp_ctrl.c; 61 scn = sigp_ctrl.scn; 62 } else { 63 struct bsca_block *sca = vcpu->kvm->arch.sca; 64 union bsca_sigp_ctrl sigp_ctrl = 65 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 66 67 c = sigp_ctrl.c; 68 scn = sigp_ctrl.scn; 69 } 70 read_unlock(&vcpu->kvm->arch.sca_lock); 71 72 if (src_id) 73 *src_id = scn; 74 75 return c; 76 } 77 78 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 79 { 80 int expect, rc; 81 82 BUG_ON(!kvm_s390_use_sca_entries()); 83 read_lock(&vcpu->kvm->arch.sca_lock); 84 if (vcpu->kvm->arch.use_esca) { 85 struct esca_block *sca = vcpu->kvm->arch.sca; 86 union esca_sigp_ctrl *sigp_ctrl = 87 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 88 union esca_sigp_ctrl new_val = {0}, old_val; 89 90 old_val = READ_ONCE(*sigp_ctrl); 91 new_val.scn = src_id; 92 new_val.c = 1; 93 old_val.c = 0; 94 95 expect = old_val.value; 96 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 97 } else { 98 struct bsca_block *sca = vcpu->kvm->arch.sca; 99 union bsca_sigp_ctrl *sigp_ctrl = 100 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 101 union bsca_sigp_ctrl new_val = {0}, old_val; 102 103 old_val = READ_ONCE(*sigp_ctrl); 104 new_val.scn = src_id; 105 new_val.c = 1; 106 old_val.c = 0; 107 108 expect = old_val.value; 109 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 110 } 111 read_unlock(&vcpu->kvm->arch.sca_lock); 112 113 if (rc != expect) { 114 /* another external call is pending */ 115 return -EBUSY; 116 } 117 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 118 return 0; 119 } 120 121 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 122 { 123 if (!kvm_s390_use_sca_entries()) 124 return; 125 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 126 read_lock(&vcpu->kvm->arch.sca_lock); 127 if (vcpu->kvm->arch.use_esca) { 128 struct esca_block *sca = vcpu->kvm->arch.sca; 129 union esca_sigp_ctrl *sigp_ctrl = 130 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 131 132 WRITE_ONCE(sigp_ctrl->value, 0); 133 } else { 134 struct bsca_block *sca = vcpu->kvm->arch.sca; 135 union bsca_sigp_ctrl *sigp_ctrl = 136 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 137 138 WRITE_ONCE(sigp_ctrl->value, 0); 139 } 140 read_unlock(&vcpu->kvm->arch.sca_lock); 141 } 142 143 int psw_extint_disabled(struct kvm_vcpu *vcpu) 144 { 145 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 146 } 147 148 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 149 { 150 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 151 } 152 153 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 154 { 155 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 156 } 157 158 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 159 { 160 return psw_extint_disabled(vcpu) && 161 psw_ioint_disabled(vcpu) && 162 psw_mchk_disabled(vcpu); 163 } 164 165 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 166 { 167 if (psw_extint_disabled(vcpu) || 168 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 169 return 0; 170 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 171 /* No timer interrupts when single stepping */ 172 return 0; 173 return 1; 174 } 175 176 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 177 { 178 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 179 const u64 ckc = vcpu->arch.sie_block->ckc; 180 181 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 182 if ((s64)ckc >= (s64)now) 183 return 0; 184 } else if (ckc >= now) { 185 return 0; 186 } 187 return ckc_interrupts_enabled(vcpu); 188 } 189 190 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 191 { 192 return !psw_extint_disabled(vcpu) && 193 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 194 } 195 196 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 197 { 198 if (!cpu_timer_interrupts_enabled(vcpu)) 199 return 0; 200 return kvm_s390_get_cpu_timer(vcpu) >> 63; 201 } 202 203 static uint64_t isc_to_isc_bits(int isc) 204 { 205 return (0x80 >> isc) << 24; 206 } 207 208 static inline u32 isc_to_int_word(u8 isc) 209 { 210 return ((u32)isc << 27) | 0x80000000; 211 } 212 213 static inline u8 int_word_to_isc(u32 int_word) 214 { 215 return (int_word & 0x38000000) >> 27; 216 } 217 218 /* 219 * To use atomic bitmap functions, we have to provide a bitmap address 220 * that is u64 aligned. However, the ipm might be u32 aligned. 221 * Therefore, we logically start the bitmap at the very beginning of the 222 * struct and fixup the bit number. 223 */ 224 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 225 226 /** 227 * gisa_set_iam - change the GISA interruption alert mask 228 * 229 * @gisa: gisa to operate on 230 * @iam: new IAM value to use 231 * 232 * Change the IAM atomically with the next alert address and the IPM 233 * of the GISA if the GISA is not part of the GIB alert list. All three 234 * fields are located in the first long word of the GISA. 235 * 236 * Returns: 0 on success 237 * -EBUSY in case the gisa is part of the alert list 238 */ 239 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 240 { 241 u64 word, _word; 242 243 word = READ_ONCE(gisa->u64.word[0]); 244 do { 245 if ((u64)gisa != word >> 32) 246 return -EBUSY; 247 _word = (word & ~0xffUL) | iam; 248 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 249 250 return 0; 251 } 252 253 /** 254 * gisa_clear_ipm - clear the GISA interruption pending mask 255 * 256 * @gisa: gisa to operate on 257 * 258 * Clear the IPM atomically with the next alert address and the IAM 259 * of the GISA unconditionally. All three fields are located in the 260 * first long word of the GISA. 261 */ 262 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 263 { 264 u64 word, _word; 265 266 word = READ_ONCE(gisa->u64.word[0]); 267 do { 268 _word = word & ~(0xffUL << 24); 269 } while (!try_cmpxchg(&gisa->u64.word[0], &word, _word)); 270 } 271 272 /** 273 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 274 * 275 * @gi: gisa interrupt struct to work on 276 * 277 * Atomically restores the interruption alert mask if none of the 278 * relevant ISCs are pending and return the IPM. 279 * 280 * Returns: the relevant pending ISCs 281 */ 282 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 283 { 284 u8 pending_mask, alert_mask; 285 u64 word, _word; 286 287 word = READ_ONCE(gi->origin->u64.word[0]); 288 do { 289 alert_mask = READ_ONCE(gi->alert.mask); 290 pending_mask = (u8)(word >> 24) & alert_mask; 291 if (pending_mask) 292 return pending_mask; 293 _word = (word & ~0xffUL) | alert_mask; 294 } while (!try_cmpxchg(&gi->origin->u64.word[0], &word, _word)); 295 296 return 0; 297 } 298 299 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 300 { 301 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 302 } 303 304 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 305 { 306 return READ_ONCE(gisa->ipm); 307 } 308 309 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 310 { 311 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 312 } 313 314 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 315 { 316 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 317 vcpu->arch.local_int.pending_irqs; 318 319 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 320 return pending; 321 } 322 323 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 324 { 325 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 326 unsigned long pending_mask; 327 328 pending_mask = pending_irqs_no_gisa(vcpu); 329 if (gi->origin) 330 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 331 return pending_mask; 332 } 333 334 static inline int isc_to_irq_type(unsigned long isc) 335 { 336 return IRQ_PEND_IO_ISC_0 - isc; 337 } 338 339 static inline int irq_type_to_isc(unsigned long irq_type) 340 { 341 return IRQ_PEND_IO_ISC_0 - irq_type; 342 } 343 344 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 345 unsigned long active_mask) 346 { 347 int i; 348 349 for (i = 0; i <= MAX_ISC; i++) 350 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 351 active_mask &= ~(1UL << (isc_to_irq_type(i))); 352 353 return active_mask; 354 } 355 356 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 357 { 358 unsigned long active_mask; 359 360 active_mask = pending_irqs(vcpu); 361 if (!active_mask) 362 return 0; 363 364 if (psw_extint_disabled(vcpu)) 365 active_mask &= ~IRQ_PEND_EXT_MASK; 366 if (psw_ioint_disabled(vcpu)) 367 active_mask &= ~IRQ_PEND_IO_MASK; 368 else 369 active_mask = disable_iscs(vcpu, active_mask); 370 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 371 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 372 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 373 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 374 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 375 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 376 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 377 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 379 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 380 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 381 } 382 if (psw_mchk_disabled(vcpu)) 383 active_mask &= ~IRQ_PEND_MCHK_MASK; 384 /* PV guest cpus can have a single interruption injected at a time. */ 385 if (kvm_s390_pv_cpu_get_handle(vcpu) && 386 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 387 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 388 IRQ_PEND_IO_MASK | 389 IRQ_PEND_MCHK_MASK); 390 /* 391 * Check both floating and local interrupt's cr14 because 392 * bit IRQ_PEND_MCHK_REP could be set in both cases. 393 */ 394 if (!(vcpu->arch.sie_block->gcr[14] & 395 (vcpu->kvm->arch.float_int.mchk.cr14 | 396 vcpu->arch.local_int.irq.mchk.cr14))) 397 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 398 399 /* 400 * STOP irqs will never be actively delivered. They are triggered via 401 * intercept requests and cleared when the stop intercept is performed. 402 */ 403 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 404 405 return active_mask; 406 } 407 408 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 409 { 410 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 411 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 412 } 413 414 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 415 { 416 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 417 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 418 } 419 420 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 421 { 422 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 423 CPUSTAT_STOP_INT); 424 vcpu->arch.sie_block->lctl = 0x0000; 425 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 426 427 if (guestdbg_enabled(vcpu)) { 428 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 429 LCTL_CR10 | LCTL_CR11); 430 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 431 } 432 } 433 434 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 435 { 436 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 437 return; 438 if (psw_ioint_disabled(vcpu)) 439 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 440 else 441 vcpu->arch.sie_block->lctl |= LCTL_CR6; 442 } 443 444 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 445 { 446 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 447 return; 448 if (psw_extint_disabled(vcpu)) 449 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 450 else 451 vcpu->arch.sie_block->lctl |= LCTL_CR0; 452 } 453 454 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 455 { 456 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 457 return; 458 if (psw_mchk_disabled(vcpu)) 459 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 460 else 461 vcpu->arch.sie_block->lctl |= LCTL_CR14; 462 } 463 464 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 465 { 466 if (kvm_s390_is_stop_irq_pending(vcpu)) 467 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 468 } 469 470 /* Set interception request for non-deliverable interrupts */ 471 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 472 { 473 set_intercept_indicators_io(vcpu); 474 set_intercept_indicators_ext(vcpu); 475 set_intercept_indicators_mchk(vcpu); 476 set_intercept_indicators_stop(vcpu); 477 } 478 479 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 480 { 481 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 482 int rc = 0; 483 484 vcpu->stat.deliver_cputm++; 485 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 486 0, 0); 487 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 488 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 489 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 490 } else { 491 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 492 (u16 *)__LC_EXT_INT_CODE); 493 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 494 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 495 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 496 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 497 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 498 } 499 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 500 return rc ? -EFAULT : 0; 501 } 502 503 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 504 { 505 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 506 int rc = 0; 507 508 vcpu->stat.deliver_ckc++; 509 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 510 0, 0); 511 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 512 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 513 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 514 } else { 515 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 516 (u16 __user *)__LC_EXT_INT_CODE); 517 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 518 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 519 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 520 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 521 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 522 } 523 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 524 return rc ? -EFAULT : 0; 525 } 526 527 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 528 { 529 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 530 struct kvm_s390_ext_info ext; 531 int rc; 532 533 spin_lock(&li->lock); 534 ext = li->irq.ext; 535 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 536 li->irq.ext.ext_params2 = 0; 537 spin_unlock(&li->lock); 538 539 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 540 ext.ext_params2); 541 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 542 KVM_S390_INT_PFAULT_INIT, 543 0, ext.ext_params2); 544 545 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 546 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 547 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 548 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 549 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 550 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 551 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 552 return rc ? -EFAULT : 0; 553 } 554 555 static int __write_machine_check(struct kvm_vcpu *vcpu, 556 struct kvm_s390_mchk_info *mchk) 557 { 558 unsigned long ext_sa_addr; 559 unsigned long lc; 560 freg_t fprs[NUM_FPRS]; 561 union mci mci; 562 int rc; 563 564 /* 565 * All other possible payload for a machine check (e.g. the register 566 * contents in the save area) will be handled by the ultravisor, as 567 * the hypervisor does not not have the needed information for 568 * protected guests. 569 */ 570 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 571 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 572 vcpu->arch.sie_block->mcic = mchk->mcic; 573 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 574 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 575 return 0; 576 } 577 578 mci.val = mchk->mcic; 579 /* take care of lazy register loading */ 580 kvm_s390_fpu_store(vcpu->run); 581 save_access_regs(vcpu->run->s.regs.acrs); 582 if (cpu_has_gs() && vcpu->arch.gs_enabled) 583 save_gs_cb(current->thread.gs_cb); 584 585 /* Extended save area */ 586 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 587 sizeof(unsigned long)); 588 /* Only bits 0 through 63-LC are used for address formation */ 589 lc = ext_sa_addr & MCESA_LC_MASK; 590 if (test_kvm_facility(vcpu->kvm, 133)) { 591 switch (lc) { 592 case 0: 593 case 10: 594 ext_sa_addr &= ~0x3ffUL; 595 break; 596 case 11: 597 ext_sa_addr &= ~0x7ffUL; 598 break; 599 case 12: 600 ext_sa_addr &= ~0xfffUL; 601 break; 602 default: 603 ext_sa_addr = 0; 604 break; 605 } 606 } else { 607 ext_sa_addr &= ~0x3ffUL; 608 } 609 610 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 611 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 612 512)) 613 mci.vr = 0; 614 } else { 615 mci.vr = 0; 616 } 617 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 618 && (lc == 11 || lc == 12)) { 619 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 620 &vcpu->run->s.regs.gscb, 32)) 621 mci.gs = 0; 622 } else { 623 mci.gs = 0; 624 } 625 626 /* General interruption information */ 627 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 628 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 629 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 630 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 631 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 632 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 633 634 /* Register-save areas */ 635 if (cpu_has_vx()) { 636 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 637 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 638 } else { 639 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 640 vcpu->run->s.regs.fprs, 128); 641 } 642 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 643 vcpu->run->s.regs.gprs, 128); 644 rc |= put_guest_lc(vcpu, vcpu->run->s.regs.fpc, 645 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 646 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 647 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 648 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 649 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 650 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 651 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 652 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 653 &vcpu->run->s.regs.acrs, 64); 654 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 655 &vcpu->arch.sie_block->gcr, 128); 656 657 /* Extended interruption information */ 658 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 659 (u32 __user *) __LC_EXT_DAMAGE_CODE); 660 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 661 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 662 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 663 sizeof(mchk->fixed_logout)); 664 return rc ? -EFAULT : 0; 665 } 666 667 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 668 { 669 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 670 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 671 struct kvm_s390_mchk_info mchk = {}; 672 int deliver = 0; 673 int rc = 0; 674 675 spin_lock(&fi->lock); 676 spin_lock(&li->lock); 677 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 678 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 679 /* 680 * If there was an exigent machine check pending, then any 681 * repressible machine checks that might have been pending 682 * are indicated along with it, so always clear bits for 683 * repressible and exigent interrupts 684 */ 685 mchk = li->irq.mchk; 686 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 687 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 688 memset(&li->irq.mchk, 0, sizeof(mchk)); 689 deliver = 1; 690 } 691 /* 692 * We indicate floating repressible conditions along with 693 * other pending conditions. Channel Report Pending and Channel 694 * Subsystem damage are the only two and are indicated by 695 * bits in mcic and masked in cr14. 696 */ 697 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 698 mchk.mcic |= fi->mchk.mcic; 699 mchk.cr14 |= fi->mchk.cr14; 700 memset(&fi->mchk, 0, sizeof(mchk)); 701 deliver = 1; 702 } 703 spin_unlock(&li->lock); 704 spin_unlock(&fi->lock); 705 706 if (deliver) { 707 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 708 mchk.mcic); 709 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 710 KVM_S390_MCHK, 711 mchk.cr14, mchk.mcic); 712 vcpu->stat.deliver_machine_check++; 713 rc = __write_machine_check(vcpu, &mchk); 714 } 715 return rc; 716 } 717 718 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 719 { 720 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 721 int rc = 0; 722 723 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 724 vcpu->stat.deliver_restart_signal++; 725 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 726 727 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 728 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 729 } else { 730 rc = write_guest_lc(vcpu, 731 offsetof(struct lowcore, restart_old_psw), 732 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 733 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 734 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 735 } 736 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 737 return rc ? -EFAULT : 0; 738 } 739 740 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 741 { 742 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 743 struct kvm_s390_prefix_info prefix; 744 745 spin_lock(&li->lock); 746 prefix = li->irq.prefix; 747 li->irq.prefix.address = 0; 748 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 749 spin_unlock(&li->lock); 750 751 vcpu->stat.deliver_prefix_signal++; 752 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 753 KVM_S390_SIGP_SET_PREFIX, 754 prefix.address, 0); 755 756 kvm_s390_set_prefix(vcpu, prefix.address); 757 return 0; 758 } 759 760 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 761 { 762 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 763 int rc; 764 int cpu_addr; 765 766 spin_lock(&li->lock); 767 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 768 clear_bit(cpu_addr, li->sigp_emerg_pending); 769 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 770 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 771 spin_unlock(&li->lock); 772 773 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 774 vcpu->stat.deliver_emergency_signal++; 775 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 776 cpu_addr, 0); 777 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 778 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 779 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 780 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 781 return 0; 782 } 783 784 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 785 (u16 *)__LC_EXT_INT_CODE); 786 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 787 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 788 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 789 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 790 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 791 return rc ? -EFAULT : 0; 792 } 793 794 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 795 { 796 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 797 struct kvm_s390_extcall_info extcall; 798 int rc; 799 800 spin_lock(&li->lock); 801 extcall = li->irq.extcall; 802 li->irq.extcall.code = 0; 803 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 804 spin_unlock(&li->lock); 805 806 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 807 vcpu->stat.deliver_external_call++; 808 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 809 KVM_S390_INT_EXTERNAL_CALL, 810 extcall.code, 0); 811 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 812 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 813 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 814 vcpu->arch.sie_block->extcpuaddr = extcall.code; 815 return 0; 816 } 817 818 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 819 (u16 *)__LC_EXT_INT_CODE); 820 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 821 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 822 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 823 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 824 sizeof(psw_t)); 825 return rc ? -EFAULT : 0; 826 } 827 828 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 829 { 830 switch (code) { 831 case PGM_SPECIFICATION: 832 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 833 break; 834 case PGM_OPERAND: 835 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 836 break; 837 default: 838 return -EINVAL; 839 } 840 return 0; 841 } 842 843 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 844 { 845 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 846 struct kvm_s390_pgm_info pgm_info; 847 int rc = 0, nullifying = false; 848 u16 ilen; 849 850 spin_lock(&li->lock); 851 pgm_info = li->irq.pgm; 852 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 853 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 854 spin_unlock(&li->lock); 855 856 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 857 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 858 pgm_info.code, ilen); 859 vcpu->stat.deliver_program++; 860 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 861 pgm_info.code, 0); 862 863 /* PER is handled by the ultravisor */ 864 if (kvm_s390_pv_cpu_is_protected(vcpu)) 865 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 866 867 switch (pgm_info.code & ~PGM_PER) { 868 case PGM_AFX_TRANSLATION: 869 case PGM_ASX_TRANSLATION: 870 case PGM_EX_TRANSLATION: 871 case PGM_LFX_TRANSLATION: 872 case PGM_LSTE_SEQUENCE: 873 case PGM_LSX_TRANSLATION: 874 case PGM_LX_TRANSLATION: 875 case PGM_PRIMARY_AUTHORITY: 876 case PGM_SECONDARY_AUTHORITY: 877 nullifying = true; 878 fallthrough; 879 case PGM_SPACE_SWITCH: 880 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 881 (u64 *)__LC_TRANS_EXC_CODE); 882 break; 883 case PGM_ALEN_TRANSLATION: 884 case PGM_ALE_SEQUENCE: 885 case PGM_ASTE_INSTANCE: 886 case PGM_ASTE_SEQUENCE: 887 case PGM_ASTE_VALIDITY: 888 case PGM_EXTENDED_AUTHORITY: 889 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 890 (u8 *)__LC_EXC_ACCESS_ID); 891 nullifying = true; 892 break; 893 case PGM_ASCE_TYPE: 894 case PGM_PAGE_TRANSLATION: 895 case PGM_REGION_FIRST_TRANS: 896 case PGM_REGION_SECOND_TRANS: 897 case PGM_REGION_THIRD_TRANS: 898 case PGM_SEGMENT_TRANSLATION: 899 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 900 (u64 *)__LC_TRANS_EXC_CODE); 901 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 902 (u8 *)__LC_EXC_ACCESS_ID); 903 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 904 (u8 *)__LC_OP_ACCESS_ID); 905 nullifying = true; 906 break; 907 case PGM_MONITOR: 908 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 909 (u16 *)__LC_MON_CLASS_NR); 910 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 911 (u64 *)__LC_MON_CODE); 912 break; 913 case PGM_VECTOR_PROCESSING: 914 case PGM_DATA: 915 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 916 (u32 *)__LC_DATA_EXC_CODE); 917 break; 918 case PGM_PROTECTION: 919 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 920 (u64 *)__LC_TRANS_EXC_CODE); 921 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 922 (u8 *)__LC_EXC_ACCESS_ID); 923 break; 924 case PGM_STACK_FULL: 925 case PGM_STACK_EMPTY: 926 case PGM_STACK_SPECIFICATION: 927 case PGM_STACK_TYPE: 928 case PGM_STACK_OPERATION: 929 case PGM_TRACE_TABEL: 930 case PGM_CRYPTO_OPERATION: 931 nullifying = true; 932 break; 933 } 934 935 if (pgm_info.code & PGM_PER) { 936 rc |= put_guest_lc(vcpu, pgm_info.per_code, 937 (u8 *) __LC_PER_CODE); 938 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 939 (u8 *)__LC_PER_ATMID); 940 rc |= put_guest_lc(vcpu, pgm_info.per_address, 941 (u64 *) __LC_PER_ADDRESS); 942 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 943 (u8 *) __LC_PER_ACCESS_ID); 944 } 945 946 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 947 kvm_s390_rewind_psw(vcpu, ilen); 948 949 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 950 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 951 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 952 (u64 *) __LC_PGM_LAST_BREAK); 953 rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_CODE); 954 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 955 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 956 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 957 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 958 return rc ? -EFAULT : 0; 959 } 960 961 #define SCCB_MASK 0xFFFFFFF8 962 #define SCCB_EVENT_PENDING 0x3 963 964 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 965 { 966 int rc; 967 968 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 969 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 970 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 971 vcpu->arch.sie_block->eiparams = parm; 972 return 0; 973 } 974 975 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 976 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 977 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 978 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 979 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 980 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 981 rc |= put_guest_lc(vcpu, parm, 982 (u32 *)__LC_EXT_PARAMS); 983 984 return rc ? -EFAULT : 0; 985 } 986 987 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 988 { 989 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 990 struct kvm_s390_ext_info ext; 991 992 spin_lock(&fi->lock); 993 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 994 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 995 spin_unlock(&fi->lock); 996 return 0; 997 } 998 ext = fi->srv_signal; 999 memset(&fi->srv_signal, 0, sizeof(ext)); 1000 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1001 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1002 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1003 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1004 spin_unlock(&fi->lock); 1005 1006 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1007 ext.ext_params); 1008 vcpu->stat.deliver_service_signal++; 1009 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1010 ext.ext_params, 0); 1011 1012 return write_sclp(vcpu, ext.ext_params); 1013 } 1014 1015 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1016 { 1017 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1018 struct kvm_s390_ext_info ext; 1019 1020 spin_lock(&fi->lock); 1021 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1022 spin_unlock(&fi->lock); 1023 return 0; 1024 } 1025 ext = fi->srv_signal; 1026 /* only clear the event bits */ 1027 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1028 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1029 spin_unlock(&fi->lock); 1030 1031 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1032 vcpu->stat.deliver_service_signal++; 1033 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1034 ext.ext_params, 0); 1035 1036 return write_sclp(vcpu, ext.ext_params & SCCB_EVENT_PENDING); 1037 } 1038 1039 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1040 { 1041 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1042 struct kvm_s390_interrupt_info *inti; 1043 int rc = 0; 1044 1045 spin_lock(&fi->lock); 1046 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1047 struct kvm_s390_interrupt_info, 1048 list); 1049 if (inti) { 1050 list_del(&inti->list); 1051 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1052 } 1053 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1054 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1055 spin_unlock(&fi->lock); 1056 1057 if (inti) { 1058 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1059 KVM_S390_INT_PFAULT_DONE, 0, 1060 inti->ext.ext_params2); 1061 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1062 inti->ext.ext_params2); 1063 1064 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1065 (u16 *)__LC_EXT_INT_CODE); 1066 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1067 (u16 *)__LC_EXT_CPU_ADDR); 1068 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1069 &vcpu->arch.sie_block->gpsw, 1070 sizeof(psw_t)); 1071 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1072 &vcpu->arch.sie_block->gpsw, 1073 sizeof(psw_t)); 1074 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1075 (u64 *)__LC_EXT_PARAMS2); 1076 kfree(inti); 1077 } 1078 return rc ? -EFAULT : 0; 1079 } 1080 1081 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1082 { 1083 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1084 struct kvm_s390_interrupt_info *inti; 1085 int rc = 0; 1086 1087 spin_lock(&fi->lock); 1088 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1089 struct kvm_s390_interrupt_info, 1090 list); 1091 if (inti) { 1092 VCPU_EVENT(vcpu, 4, 1093 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1094 inti->ext.ext_params, inti->ext.ext_params2); 1095 vcpu->stat.deliver_virtio++; 1096 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1097 inti->type, 1098 inti->ext.ext_params, 1099 inti->ext.ext_params2); 1100 list_del(&inti->list); 1101 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1102 } 1103 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1104 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1105 spin_unlock(&fi->lock); 1106 1107 if (inti) { 1108 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1109 (u16 *)__LC_EXT_INT_CODE); 1110 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1111 (u16 *)__LC_EXT_CPU_ADDR); 1112 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1113 &vcpu->arch.sie_block->gpsw, 1114 sizeof(psw_t)); 1115 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1116 &vcpu->arch.sie_block->gpsw, 1117 sizeof(psw_t)); 1118 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1119 (u32 *)__LC_EXT_PARAMS); 1120 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1121 (u64 *)__LC_EXT_PARAMS2); 1122 kfree(inti); 1123 } 1124 return rc ? -EFAULT : 0; 1125 } 1126 1127 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1128 { 1129 int rc; 1130 1131 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1132 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1133 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1134 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1135 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1136 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1137 return 0; 1138 } 1139 1140 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1141 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1142 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1143 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1144 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1145 &vcpu->arch.sie_block->gpsw, 1146 sizeof(psw_t)); 1147 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1148 &vcpu->arch.sie_block->gpsw, 1149 sizeof(psw_t)); 1150 return rc ? -EFAULT : 0; 1151 } 1152 1153 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1154 unsigned long irq_type) 1155 { 1156 struct list_head *isc_list; 1157 struct kvm_s390_float_interrupt *fi; 1158 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1159 struct kvm_s390_interrupt_info *inti = NULL; 1160 struct kvm_s390_io_info io; 1161 u32 isc; 1162 int rc = 0; 1163 1164 fi = &vcpu->kvm->arch.float_int; 1165 1166 spin_lock(&fi->lock); 1167 isc = irq_type_to_isc(irq_type); 1168 isc_list = &fi->lists[isc]; 1169 inti = list_first_entry_or_null(isc_list, 1170 struct kvm_s390_interrupt_info, 1171 list); 1172 if (inti) { 1173 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1174 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1175 else 1176 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1177 inti->io.subchannel_id >> 8, 1178 inti->io.subchannel_id >> 1 & 0x3, 1179 inti->io.subchannel_nr); 1180 1181 vcpu->stat.deliver_io++; 1182 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1183 inti->type, 1184 ((__u32)inti->io.subchannel_id << 16) | 1185 inti->io.subchannel_nr, 1186 ((__u64)inti->io.io_int_parm << 32) | 1187 inti->io.io_int_word); 1188 list_del(&inti->list); 1189 fi->counters[FIRQ_CNTR_IO] -= 1; 1190 } 1191 if (list_empty(isc_list)) 1192 clear_bit(irq_type, &fi->pending_irqs); 1193 spin_unlock(&fi->lock); 1194 1195 if (inti) { 1196 rc = __do_deliver_io(vcpu, &(inti->io)); 1197 kfree(inti); 1198 goto out; 1199 } 1200 1201 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1202 /* 1203 * in case an adapter interrupt was not delivered 1204 * in SIE context KVM will handle the delivery 1205 */ 1206 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1207 memset(&io, 0, sizeof(io)); 1208 io.io_int_word = isc_to_int_word(isc); 1209 vcpu->stat.deliver_io++; 1210 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1211 KVM_S390_INT_IO(1, 0, 0, 0), 1212 ((__u32)io.subchannel_id << 16) | 1213 io.subchannel_nr, 1214 ((__u64)io.io_int_parm << 32) | 1215 io.io_int_word); 1216 rc = __do_deliver_io(vcpu, &io); 1217 } 1218 out: 1219 return rc; 1220 } 1221 1222 /* Check whether an external call is pending (deliverable or not) */ 1223 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1224 { 1225 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1226 1227 if (!sclp.has_sigpif) 1228 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1229 1230 return sca_ext_call_pending(vcpu, NULL); 1231 } 1232 1233 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1234 { 1235 if (deliverable_irqs(vcpu)) 1236 return 1; 1237 1238 if (kvm_cpu_has_pending_timer(vcpu)) 1239 return 1; 1240 1241 /* external call pending and deliverable */ 1242 if (kvm_s390_ext_call_pending(vcpu) && 1243 !psw_extint_disabled(vcpu) && 1244 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1245 return 1; 1246 1247 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1248 return 1; 1249 return 0; 1250 } 1251 1252 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1253 { 1254 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1255 } 1256 1257 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1258 { 1259 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1260 const u64 ckc = vcpu->arch.sie_block->ckc; 1261 u64 cputm, sltime = 0; 1262 1263 if (ckc_interrupts_enabled(vcpu)) { 1264 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1265 if ((s64)now < (s64)ckc) 1266 sltime = tod_to_ns((s64)ckc - (s64)now); 1267 } else if (now < ckc) { 1268 sltime = tod_to_ns(ckc - now); 1269 } 1270 /* already expired */ 1271 if (!sltime) 1272 return 0; 1273 if (cpu_timer_interrupts_enabled(vcpu)) { 1274 cputm = kvm_s390_get_cpu_timer(vcpu); 1275 /* already expired? */ 1276 if (cputm >> 63) 1277 return 0; 1278 return min_t(u64, sltime, tod_to_ns(cputm)); 1279 } 1280 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1281 sltime = kvm_s390_get_cpu_timer(vcpu); 1282 /* already expired? */ 1283 if (sltime >> 63) 1284 return 0; 1285 } 1286 return sltime; 1287 } 1288 1289 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1290 { 1291 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1292 u64 sltime; 1293 1294 vcpu->stat.exit_wait_state++; 1295 1296 /* fast path */ 1297 if (kvm_arch_vcpu_runnable(vcpu)) 1298 return 0; 1299 1300 if (psw_interrupts_disabled(vcpu)) { 1301 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1302 return -EOPNOTSUPP; /* disabled wait */ 1303 } 1304 1305 if (gi->origin && 1306 (gisa_get_ipm_or_restore_iam(gi) & 1307 vcpu->arch.sie_block->gcr[6] >> 24)) 1308 return 0; 1309 1310 if (!ckc_interrupts_enabled(vcpu) && 1311 !cpu_timer_interrupts_enabled(vcpu)) { 1312 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1313 __set_cpu_idle(vcpu); 1314 goto no_timer; 1315 } 1316 1317 sltime = __calculate_sltime(vcpu); 1318 if (!sltime) 1319 return 0; 1320 1321 __set_cpu_idle(vcpu); 1322 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1323 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1324 no_timer: 1325 kvm_vcpu_srcu_read_unlock(vcpu); 1326 kvm_vcpu_halt(vcpu); 1327 vcpu->valid_wakeup = false; 1328 __unset_cpu_idle(vcpu); 1329 kvm_vcpu_srcu_read_lock(vcpu); 1330 1331 hrtimer_cancel(&vcpu->arch.ckc_timer); 1332 return 0; 1333 } 1334 1335 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1336 { 1337 vcpu->valid_wakeup = true; 1338 kvm_vcpu_wake_up(vcpu); 1339 1340 /* 1341 * The VCPU might not be sleeping but rather executing VSIE. Let's 1342 * kick it, so it leaves the SIE to process the request. 1343 */ 1344 kvm_s390_vsie_kick(vcpu); 1345 } 1346 1347 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1348 { 1349 struct kvm_vcpu *vcpu; 1350 u64 sltime; 1351 1352 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1353 sltime = __calculate_sltime(vcpu); 1354 1355 /* 1356 * If the monotonic clock runs faster than the tod clock we might be 1357 * woken up too early and have to go back to sleep to avoid deadlocks. 1358 */ 1359 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1360 return HRTIMER_RESTART; 1361 kvm_s390_vcpu_wakeup(vcpu); 1362 return HRTIMER_NORESTART; 1363 } 1364 1365 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1366 { 1367 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1368 1369 spin_lock(&li->lock); 1370 li->pending_irqs = 0; 1371 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1372 memset(&li->irq, 0, sizeof(li->irq)); 1373 spin_unlock(&li->lock); 1374 1375 sca_clear_ext_call(vcpu); 1376 } 1377 1378 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1379 { 1380 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1381 int rc = 0; 1382 bool delivered = false; 1383 unsigned long irq_type; 1384 unsigned long irqs; 1385 1386 __reset_intercept_indicators(vcpu); 1387 1388 /* pending ckc conditions might have been invalidated */ 1389 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1390 if (ckc_irq_pending(vcpu)) 1391 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1392 1393 /* pending cpu timer conditions might have been invalidated */ 1394 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1395 if (cpu_timer_irq_pending(vcpu)) 1396 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1397 1398 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1399 /* bits are in the reverse order of interrupt priority */ 1400 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1401 switch (irq_type) { 1402 case IRQ_PEND_IO_ISC_0: 1403 case IRQ_PEND_IO_ISC_1: 1404 case IRQ_PEND_IO_ISC_2: 1405 case IRQ_PEND_IO_ISC_3: 1406 case IRQ_PEND_IO_ISC_4: 1407 case IRQ_PEND_IO_ISC_5: 1408 case IRQ_PEND_IO_ISC_6: 1409 case IRQ_PEND_IO_ISC_7: 1410 rc = __deliver_io(vcpu, irq_type); 1411 break; 1412 case IRQ_PEND_MCHK_EX: 1413 case IRQ_PEND_MCHK_REP: 1414 rc = __deliver_machine_check(vcpu); 1415 break; 1416 case IRQ_PEND_PROG: 1417 rc = __deliver_prog(vcpu); 1418 break; 1419 case IRQ_PEND_EXT_EMERGENCY: 1420 rc = __deliver_emergency_signal(vcpu); 1421 break; 1422 case IRQ_PEND_EXT_EXTERNAL: 1423 rc = __deliver_external_call(vcpu); 1424 break; 1425 case IRQ_PEND_EXT_CLOCK_COMP: 1426 rc = __deliver_ckc(vcpu); 1427 break; 1428 case IRQ_PEND_EXT_CPU_TIMER: 1429 rc = __deliver_cpu_timer(vcpu); 1430 break; 1431 case IRQ_PEND_RESTART: 1432 rc = __deliver_restart(vcpu); 1433 break; 1434 case IRQ_PEND_SET_PREFIX: 1435 rc = __deliver_set_prefix(vcpu); 1436 break; 1437 case IRQ_PEND_PFAULT_INIT: 1438 rc = __deliver_pfault_init(vcpu); 1439 break; 1440 case IRQ_PEND_EXT_SERVICE: 1441 rc = __deliver_service(vcpu); 1442 break; 1443 case IRQ_PEND_EXT_SERVICE_EV: 1444 rc = __deliver_service_ev(vcpu); 1445 break; 1446 case IRQ_PEND_PFAULT_DONE: 1447 rc = __deliver_pfault_done(vcpu); 1448 break; 1449 case IRQ_PEND_VIRTIO: 1450 rc = __deliver_virtio(vcpu); 1451 break; 1452 default: 1453 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1454 clear_bit(irq_type, &li->pending_irqs); 1455 } 1456 delivered |= !rc; 1457 } 1458 1459 /* 1460 * We delivered at least one interrupt and modified the PC. Force a 1461 * singlestep event now. 1462 */ 1463 if (delivered && guestdbg_sstep_enabled(vcpu)) { 1464 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; 1465 1466 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr; 1467 debug_exit->type = KVM_SINGLESTEP; 1468 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; 1469 } 1470 1471 set_intercept_indicators(vcpu); 1472 1473 return rc; 1474 } 1475 1476 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1477 { 1478 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1479 1480 vcpu->stat.inject_program++; 1481 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1482 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1483 irq->u.pgm.code, 0); 1484 1485 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1486 /* auto detection if no valid ILC was given */ 1487 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1488 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1489 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1490 } 1491 1492 if (irq->u.pgm.code == PGM_PER) { 1493 li->irq.pgm.code |= PGM_PER; 1494 li->irq.pgm.flags = irq->u.pgm.flags; 1495 /* only modify PER related information */ 1496 li->irq.pgm.per_address = irq->u.pgm.per_address; 1497 li->irq.pgm.per_code = irq->u.pgm.per_code; 1498 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1499 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1500 } else if (!(irq->u.pgm.code & PGM_PER)) { 1501 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1502 irq->u.pgm.code; 1503 li->irq.pgm.flags = irq->u.pgm.flags; 1504 /* only modify non-PER information */ 1505 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1506 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1507 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1508 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1509 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1510 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1511 } else { 1512 li->irq.pgm = irq->u.pgm; 1513 } 1514 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1515 return 0; 1516 } 1517 1518 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1519 { 1520 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1521 1522 vcpu->stat.inject_pfault_init++; 1523 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1524 irq->u.ext.ext_params2); 1525 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1526 irq->u.ext.ext_params, 1527 irq->u.ext.ext_params2); 1528 1529 li->irq.ext = irq->u.ext; 1530 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1531 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1532 return 0; 1533 } 1534 1535 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1536 { 1537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1538 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1539 uint16_t src_id = irq->u.extcall.code; 1540 1541 vcpu->stat.inject_external_call++; 1542 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1543 src_id); 1544 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1545 src_id, 0); 1546 1547 /* sending vcpu invalid */ 1548 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1549 return -EINVAL; 1550 1551 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1552 return sca_inject_ext_call(vcpu, src_id); 1553 1554 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1555 return -EBUSY; 1556 *extcall = irq->u.extcall; 1557 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1558 return 0; 1559 } 1560 1561 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1562 { 1563 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1564 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1565 1566 vcpu->stat.inject_set_prefix++; 1567 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1568 irq->u.prefix.address); 1569 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1570 irq->u.prefix.address, 0); 1571 1572 if (!is_vcpu_stopped(vcpu)) 1573 return -EBUSY; 1574 1575 *prefix = irq->u.prefix; 1576 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1577 return 0; 1578 } 1579 1580 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1581 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1582 { 1583 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1584 struct kvm_s390_stop_info *stop = &li->irq.stop; 1585 int rc = 0; 1586 1587 vcpu->stat.inject_stop_signal++; 1588 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1589 1590 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1591 return -EINVAL; 1592 1593 if (is_vcpu_stopped(vcpu)) { 1594 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1595 rc = kvm_s390_store_status_unloaded(vcpu, 1596 KVM_S390_STORE_STATUS_NOADDR); 1597 return rc; 1598 } 1599 1600 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1601 return -EBUSY; 1602 stop->flags = irq->u.stop.flags; 1603 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1604 return 0; 1605 } 1606 1607 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1608 { 1609 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1610 1611 vcpu->stat.inject_restart++; 1612 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1613 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1614 1615 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1616 return 0; 1617 } 1618 1619 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1620 struct kvm_s390_irq *irq) 1621 { 1622 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1623 1624 vcpu->stat.inject_emergency_signal++; 1625 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1626 irq->u.emerg.code); 1627 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1628 irq->u.emerg.code, 0); 1629 1630 /* sending vcpu invalid */ 1631 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1632 return -EINVAL; 1633 1634 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1635 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1636 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1637 return 0; 1638 } 1639 1640 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1641 { 1642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1643 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1644 1645 vcpu->stat.inject_mchk++; 1646 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1647 irq->u.mchk.mcic); 1648 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1649 irq->u.mchk.mcic); 1650 1651 /* 1652 * Because repressible machine checks can be indicated along with 1653 * exigent machine checks (PoP, Chapter 11, Interruption action) 1654 * we need to combine cr14, mcic and external damage code. 1655 * Failing storage address and the logout area should not be or'ed 1656 * together, we just indicate the last occurrence of the corresponding 1657 * machine check 1658 */ 1659 mchk->cr14 |= irq->u.mchk.cr14; 1660 mchk->mcic |= irq->u.mchk.mcic; 1661 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1662 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1663 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1664 sizeof(mchk->fixed_logout)); 1665 if (mchk->mcic & MCHK_EX_MASK) 1666 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1667 else if (mchk->mcic & MCHK_REP_MASK) 1668 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1669 return 0; 1670 } 1671 1672 static int __inject_ckc(struct kvm_vcpu *vcpu) 1673 { 1674 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1675 1676 vcpu->stat.inject_ckc++; 1677 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1678 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1679 0, 0); 1680 1681 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1682 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1683 return 0; 1684 } 1685 1686 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1687 { 1688 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1689 1690 vcpu->stat.inject_cputm++; 1691 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1692 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1693 0, 0); 1694 1695 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1696 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1697 return 0; 1698 } 1699 1700 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1701 int isc, u32 schid) 1702 { 1703 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1704 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1705 struct kvm_s390_interrupt_info *iter; 1706 u16 id = (schid & 0xffff0000U) >> 16; 1707 u16 nr = schid & 0x0000ffffU; 1708 1709 spin_lock(&fi->lock); 1710 list_for_each_entry(iter, isc_list, list) { 1711 if (schid && (id != iter->io.subchannel_id || 1712 nr != iter->io.subchannel_nr)) 1713 continue; 1714 /* found an appropriate entry */ 1715 list_del_init(&iter->list); 1716 fi->counters[FIRQ_CNTR_IO] -= 1; 1717 if (list_empty(isc_list)) 1718 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1719 spin_unlock(&fi->lock); 1720 return iter; 1721 } 1722 spin_unlock(&fi->lock); 1723 return NULL; 1724 } 1725 1726 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1727 u64 isc_mask, u32 schid) 1728 { 1729 struct kvm_s390_interrupt_info *inti = NULL; 1730 int isc; 1731 1732 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1733 if (isc_mask & isc_to_isc_bits(isc)) 1734 inti = get_io_int(kvm, isc, schid); 1735 } 1736 return inti; 1737 } 1738 1739 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1740 { 1741 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1742 unsigned long active_mask; 1743 int isc; 1744 1745 if (schid) 1746 goto out; 1747 if (!gi->origin) 1748 goto out; 1749 1750 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1751 while (active_mask) { 1752 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1753 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1754 return isc; 1755 clear_bit_inv(isc, &active_mask); 1756 } 1757 out: 1758 return -EINVAL; 1759 } 1760 1761 /* 1762 * Dequeue and return an I/O interrupt matching any of the interruption 1763 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1764 * Take into account the interrupts pending in the interrupt list and in GISA. 1765 * 1766 * Note that for a guest that does not enable I/O interrupts 1767 * but relies on TPI, a flood of classic interrupts may starve 1768 * out adapter interrupts on the same isc. Linux does not do 1769 * that, and it is possible to work around the issue by configuring 1770 * different iscs for classic and adapter interrupts in the guest, 1771 * but we may want to revisit this in the future. 1772 */ 1773 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1774 u64 isc_mask, u32 schid) 1775 { 1776 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1777 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1778 int isc; 1779 1780 inti = get_top_io_int(kvm, isc_mask, schid); 1781 1782 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1783 if (isc < 0) 1784 /* no AI in GISA */ 1785 goto out; 1786 1787 if (!inti) 1788 /* AI in GISA but no classical IO int */ 1789 goto gisa_out; 1790 1791 /* both types of interrupts present */ 1792 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1793 /* classical IO int with higher priority */ 1794 gisa_set_ipm_gisc(gi->origin, isc); 1795 goto out; 1796 } 1797 gisa_out: 1798 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1799 if (tmp_inti) { 1800 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1801 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1802 if (inti) 1803 kvm_s390_reinject_io_int(kvm, inti); 1804 inti = tmp_inti; 1805 } else 1806 gisa_set_ipm_gisc(gi->origin, isc); 1807 out: 1808 return inti; 1809 } 1810 1811 static int __inject_service(struct kvm *kvm, 1812 struct kvm_s390_interrupt_info *inti) 1813 { 1814 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1815 1816 kvm->stat.inject_service_signal++; 1817 spin_lock(&fi->lock); 1818 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1819 1820 /* We always allow events, track them separately from the sccb ints */ 1821 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1822 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1823 1824 /* 1825 * Early versions of the QEMU s390 bios will inject several 1826 * service interrupts after another without handling a 1827 * condition code indicating busy. 1828 * We will silently ignore those superfluous sccb values. 1829 * A future version of QEMU will take care of serialization 1830 * of servc requests 1831 */ 1832 if (fi->srv_signal.ext_params & SCCB_MASK) 1833 goto out; 1834 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1835 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1836 out: 1837 spin_unlock(&fi->lock); 1838 kfree(inti); 1839 return 0; 1840 } 1841 1842 static int __inject_virtio(struct kvm *kvm, 1843 struct kvm_s390_interrupt_info *inti) 1844 { 1845 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1846 1847 kvm->stat.inject_virtio++; 1848 spin_lock(&fi->lock); 1849 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1850 spin_unlock(&fi->lock); 1851 return -EBUSY; 1852 } 1853 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1854 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1855 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1856 spin_unlock(&fi->lock); 1857 return 0; 1858 } 1859 1860 static int __inject_pfault_done(struct kvm *kvm, 1861 struct kvm_s390_interrupt_info *inti) 1862 { 1863 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1864 1865 kvm->stat.inject_pfault_done++; 1866 spin_lock(&fi->lock); 1867 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1868 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1869 spin_unlock(&fi->lock); 1870 return -EBUSY; 1871 } 1872 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1873 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1874 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1875 spin_unlock(&fi->lock); 1876 return 0; 1877 } 1878 1879 #define CR_PENDING_SUBCLASS 28 1880 static int __inject_float_mchk(struct kvm *kvm, 1881 struct kvm_s390_interrupt_info *inti) 1882 { 1883 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1884 1885 kvm->stat.inject_float_mchk++; 1886 spin_lock(&fi->lock); 1887 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1888 fi->mchk.mcic |= inti->mchk.mcic; 1889 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1890 spin_unlock(&fi->lock); 1891 kfree(inti); 1892 return 0; 1893 } 1894 1895 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1896 { 1897 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1898 struct kvm_s390_float_interrupt *fi; 1899 struct list_head *list; 1900 int isc; 1901 1902 kvm->stat.inject_io++; 1903 isc = int_word_to_isc(inti->io.io_int_word); 1904 1905 /* 1906 * We do not use the lock checking variant as this is just a 1907 * performance optimization and we do not hold the lock here. 1908 * This is ok as the code will pick interrupts from both "lists" 1909 * for delivery. 1910 */ 1911 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1912 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1913 gisa_set_ipm_gisc(gi->origin, isc); 1914 kfree(inti); 1915 return 0; 1916 } 1917 1918 fi = &kvm->arch.float_int; 1919 spin_lock(&fi->lock); 1920 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1921 spin_unlock(&fi->lock); 1922 return -EBUSY; 1923 } 1924 fi->counters[FIRQ_CNTR_IO] += 1; 1925 1926 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1927 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1928 else 1929 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1930 inti->io.subchannel_id >> 8, 1931 inti->io.subchannel_id >> 1 & 0x3, 1932 inti->io.subchannel_nr); 1933 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1934 list_add_tail(&inti->list, list); 1935 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1936 spin_unlock(&fi->lock); 1937 return 0; 1938 } 1939 1940 /* 1941 * Find a destination VCPU for a floating irq and kick it. 1942 */ 1943 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1944 { 1945 struct kvm_vcpu *dst_vcpu; 1946 int sigcpu, online_vcpus, nr_tries = 0; 1947 1948 online_vcpus = atomic_read(&kvm->online_vcpus); 1949 if (!online_vcpus) 1950 return; 1951 1952 /* find idle VCPUs first, then round robin */ 1953 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1954 if (sigcpu == online_vcpus) { 1955 do { 1956 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1957 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1958 /* avoid endless loops if all vcpus are stopped */ 1959 if (nr_tries++ >= online_vcpus) 1960 return; 1961 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1962 } 1963 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1964 1965 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1966 switch (type) { 1967 case KVM_S390_MCHK: 1968 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1969 break; 1970 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1971 if (!(type & KVM_S390_INT_IO_AI_MASK && 1972 kvm->arch.gisa_int.origin) || 1973 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1974 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1975 break; 1976 default: 1977 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1978 break; 1979 } 1980 kvm_s390_vcpu_wakeup(dst_vcpu); 1981 } 1982 1983 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1984 { 1985 u64 type = READ_ONCE(inti->type); 1986 int rc; 1987 1988 switch (type) { 1989 case KVM_S390_MCHK: 1990 rc = __inject_float_mchk(kvm, inti); 1991 break; 1992 case KVM_S390_INT_VIRTIO: 1993 rc = __inject_virtio(kvm, inti); 1994 break; 1995 case KVM_S390_INT_SERVICE: 1996 rc = __inject_service(kvm, inti); 1997 break; 1998 case KVM_S390_INT_PFAULT_DONE: 1999 rc = __inject_pfault_done(kvm, inti); 2000 break; 2001 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2002 rc = __inject_io(kvm, inti); 2003 break; 2004 default: 2005 rc = -EINVAL; 2006 } 2007 if (rc) 2008 return rc; 2009 2010 __floating_irq_kick(kvm, type); 2011 return 0; 2012 } 2013 2014 int kvm_s390_inject_vm(struct kvm *kvm, 2015 struct kvm_s390_interrupt *s390int) 2016 { 2017 struct kvm_s390_interrupt_info *inti; 2018 int rc; 2019 2020 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2021 if (!inti) 2022 return -ENOMEM; 2023 2024 inti->type = s390int->type; 2025 switch (inti->type) { 2026 case KVM_S390_INT_VIRTIO: 2027 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2028 s390int->parm, s390int->parm64); 2029 inti->ext.ext_params = s390int->parm; 2030 inti->ext.ext_params2 = s390int->parm64; 2031 break; 2032 case KVM_S390_INT_SERVICE: 2033 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2034 inti->ext.ext_params = s390int->parm; 2035 break; 2036 case KVM_S390_INT_PFAULT_DONE: 2037 inti->ext.ext_params2 = s390int->parm64; 2038 break; 2039 case KVM_S390_MCHK: 2040 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2041 s390int->parm64); 2042 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2043 inti->mchk.mcic = s390int->parm64; 2044 break; 2045 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2046 inti->io.subchannel_id = s390int->parm >> 16; 2047 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2048 inti->io.io_int_parm = s390int->parm64 >> 32; 2049 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2050 break; 2051 default: 2052 kfree(inti); 2053 return -EINVAL; 2054 } 2055 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2056 2); 2057 2058 rc = __inject_vm(kvm, inti); 2059 if (rc) 2060 kfree(inti); 2061 return rc; 2062 } 2063 2064 int kvm_s390_reinject_io_int(struct kvm *kvm, 2065 struct kvm_s390_interrupt_info *inti) 2066 { 2067 return __inject_vm(kvm, inti); 2068 } 2069 2070 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2071 struct kvm_s390_irq *irq) 2072 { 2073 irq->type = s390int->type; 2074 switch (irq->type) { 2075 case KVM_S390_PROGRAM_INT: 2076 if (s390int->parm & 0xffff0000) 2077 return -EINVAL; 2078 irq->u.pgm.code = s390int->parm; 2079 break; 2080 case KVM_S390_SIGP_SET_PREFIX: 2081 irq->u.prefix.address = s390int->parm; 2082 break; 2083 case KVM_S390_SIGP_STOP: 2084 irq->u.stop.flags = s390int->parm; 2085 break; 2086 case KVM_S390_INT_EXTERNAL_CALL: 2087 if (s390int->parm & 0xffff0000) 2088 return -EINVAL; 2089 irq->u.extcall.code = s390int->parm; 2090 break; 2091 case KVM_S390_INT_EMERGENCY: 2092 if (s390int->parm & 0xffff0000) 2093 return -EINVAL; 2094 irq->u.emerg.code = s390int->parm; 2095 break; 2096 case KVM_S390_MCHK: 2097 irq->u.mchk.mcic = s390int->parm64; 2098 break; 2099 case KVM_S390_INT_PFAULT_INIT: 2100 irq->u.ext.ext_params = s390int->parm; 2101 irq->u.ext.ext_params2 = s390int->parm64; 2102 break; 2103 case KVM_S390_RESTART: 2104 case KVM_S390_INT_CLOCK_COMP: 2105 case KVM_S390_INT_CPU_TIMER: 2106 break; 2107 default: 2108 return -EINVAL; 2109 } 2110 return 0; 2111 } 2112 2113 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2114 { 2115 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2116 2117 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2118 } 2119 2120 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2121 { 2122 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2123 2124 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2125 } 2126 2127 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2128 { 2129 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2130 2131 spin_lock(&li->lock); 2132 li->irq.stop.flags = 0; 2133 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2134 spin_unlock(&li->lock); 2135 } 2136 2137 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2138 { 2139 int rc; 2140 2141 switch (irq->type) { 2142 case KVM_S390_PROGRAM_INT: 2143 rc = __inject_prog(vcpu, irq); 2144 break; 2145 case KVM_S390_SIGP_SET_PREFIX: 2146 rc = __inject_set_prefix(vcpu, irq); 2147 break; 2148 case KVM_S390_SIGP_STOP: 2149 rc = __inject_sigp_stop(vcpu, irq); 2150 break; 2151 case KVM_S390_RESTART: 2152 rc = __inject_sigp_restart(vcpu); 2153 break; 2154 case KVM_S390_INT_CLOCK_COMP: 2155 rc = __inject_ckc(vcpu); 2156 break; 2157 case KVM_S390_INT_CPU_TIMER: 2158 rc = __inject_cpu_timer(vcpu); 2159 break; 2160 case KVM_S390_INT_EXTERNAL_CALL: 2161 rc = __inject_extcall(vcpu, irq); 2162 break; 2163 case KVM_S390_INT_EMERGENCY: 2164 rc = __inject_sigp_emergency(vcpu, irq); 2165 break; 2166 case KVM_S390_MCHK: 2167 rc = __inject_mchk(vcpu, irq); 2168 break; 2169 case KVM_S390_INT_PFAULT_INIT: 2170 rc = __inject_pfault_init(vcpu, irq); 2171 break; 2172 case KVM_S390_INT_VIRTIO: 2173 case KVM_S390_INT_SERVICE: 2174 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2175 default: 2176 rc = -EINVAL; 2177 } 2178 2179 return rc; 2180 } 2181 2182 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2183 { 2184 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2185 int rc; 2186 2187 spin_lock(&li->lock); 2188 rc = do_inject_vcpu(vcpu, irq); 2189 spin_unlock(&li->lock); 2190 if (!rc) 2191 kvm_s390_vcpu_wakeup(vcpu); 2192 return rc; 2193 } 2194 2195 static inline void clear_irq_list(struct list_head *_list) 2196 { 2197 struct kvm_s390_interrupt_info *inti, *n; 2198 2199 list_for_each_entry_safe(inti, n, _list, list) { 2200 list_del(&inti->list); 2201 kfree(inti); 2202 } 2203 } 2204 2205 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2206 struct kvm_s390_irq *irq) 2207 { 2208 irq->type = inti->type; 2209 switch (inti->type) { 2210 case KVM_S390_INT_PFAULT_INIT: 2211 case KVM_S390_INT_PFAULT_DONE: 2212 case KVM_S390_INT_VIRTIO: 2213 irq->u.ext = inti->ext; 2214 break; 2215 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2216 irq->u.io = inti->io; 2217 break; 2218 } 2219 } 2220 2221 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2222 { 2223 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2224 int i; 2225 2226 mutex_lock(&kvm->lock); 2227 if (!kvm_s390_pv_is_protected(kvm)) 2228 fi->masked_irqs = 0; 2229 mutex_unlock(&kvm->lock); 2230 spin_lock(&fi->lock); 2231 fi->pending_irqs = 0; 2232 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2233 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2234 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2235 clear_irq_list(&fi->lists[i]); 2236 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2237 fi->counters[i] = 0; 2238 spin_unlock(&fi->lock); 2239 kvm_s390_gisa_clear(kvm); 2240 }; 2241 2242 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2243 { 2244 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2245 struct kvm_s390_interrupt_info *inti; 2246 struct kvm_s390_float_interrupt *fi; 2247 struct kvm_s390_irq *buf; 2248 struct kvm_s390_irq *irq; 2249 int max_irqs; 2250 int ret = 0; 2251 int n = 0; 2252 int i; 2253 2254 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2255 return -EINVAL; 2256 2257 /* 2258 * We are already using -ENOMEM to signal 2259 * userspace it may retry with a bigger buffer, 2260 * so we need to use something else for this case 2261 */ 2262 buf = vzalloc(len); 2263 if (!buf) 2264 return -ENOBUFS; 2265 2266 max_irqs = len / sizeof(struct kvm_s390_irq); 2267 2268 if (gi->origin && gisa_get_ipm(gi->origin)) { 2269 for (i = 0; i <= MAX_ISC; i++) { 2270 if (n == max_irqs) { 2271 /* signal userspace to try again */ 2272 ret = -ENOMEM; 2273 goto out_nolock; 2274 } 2275 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2276 irq = (struct kvm_s390_irq *) &buf[n]; 2277 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2278 irq->u.io.io_int_word = isc_to_int_word(i); 2279 n++; 2280 } 2281 } 2282 } 2283 fi = &kvm->arch.float_int; 2284 spin_lock(&fi->lock); 2285 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2286 list_for_each_entry(inti, &fi->lists[i], list) { 2287 if (n == max_irqs) { 2288 /* signal userspace to try again */ 2289 ret = -ENOMEM; 2290 goto out; 2291 } 2292 inti_to_irq(inti, &buf[n]); 2293 n++; 2294 } 2295 } 2296 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2297 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2298 if (n == max_irqs) { 2299 /* signal userspace to try again */ 2300 ret = -ENOMEM; 2301 goto out; 2302 } 2303 irq = (struct kvm_s390_irq *) &buf[n]; 2304 irq->type = KVM_S390_INT_SERVICE; 2305 irq->u.ext = fi->srv_signal; 2306 n++; 2307 } 2308 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2309 if (n == max_irqs) { 2310 /* signal userspace to try again */ 2311 ret = -ENOMEM; 2312 goto out; 2313 } 2314 irq = (struct kvm_s390_irq *) &buf[n]; 2315 irq->type = KVM_S390_MCHK; 2316 irq->u.mchk = fi->mchk; 2317 n++; 2318 } 2319 2320 out: 2321 spin_unlock(&fi->lock); 2322 out_nolock: 2323 if (!ret && n > 0) { 2324 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2325 ret = -EFAULT; 2326 } 2327 vfree(buf); 2328 2329 return ret < 0 ? ret : n; 2330 } 2331 2332 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2333 { 2334 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2335 struct kvm_s390_ais_all ais; 2336 2337 if (attr->attr < sizeof(ais)) 2338 return -EINVAL; 2339 2340 if (!test_kvm_facility(kvm, 72)) 2341 return -EOPNOTSUPP; 2342 2343 mutex_lock(&fi->ais_lock); 2344 ais.simm = fi->simm; 2345 ais.nimm = fi->nimm; 2346 mutex_unlock(&fi->ais_lock); 2347 2348 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2349 return -EFAULT; 2350 2351 return 0; 2352 } 2353 2354 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2355 { 2356 int r; 2357 2358 switch (attr->group) { 2359 case KVM_DEV_FLIC_GET_ALL_IRQS: 2360 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2361 attr->attr); 2362 break; 2363 case KVM_DEV_FLIC_AISM_ALL: 2364 r = flic_ais_mode_get_all(dev->kvm, attr); 2365 break; 2366 default: 2367 r = -EINVAL; 2368 } 2369 2370 return r; 2371 } 2372 2373 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2374 u64 addr) 2375 { 2376 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2377 void *target = NULL; 2378 void __user *source; 2379 u64 size; 2380 2381 if (get_user(inti->type, (u64 __user *)addr)) 2382 return -EFAULT; 2383 2384 switch (inti->type) { 2385 case KVM_S390_INT_PFAULT_INIT: 2386 case KVM_S390_INT_PFAULT_DONE: 2387 case KVM_S390_INT_VIRTIO: 2388 case KVM_S390_INT_SERVICE: 2389 target = (void *) &inti->ext; 2390 source = &uptr->u.ext; 2391 size = sizeof(inti->ext); 2392 break; 2393 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2394 target = (void *) &inti->io; 2395 source = &uptr->u.io; 2396 size = sizeof(inti->io); 2397 break; 2398 case KVM_S390_MCHK: 2399 target = (void *) &inti->mchk; 2400 source = &uptr->u.mchk; 2401 size = sizeof(inti->mchk); 2402 break; 2403 default: 2404 return -EINVAL; 2405 } 2406 2407 if (copy_from_user(target, source, size)) 2408 return -EFAULT; 2409 2410 return 0; 2411 } 2412 2413 static int enqueue_floating_irq(struct kvm_device *dev, 2414 struct kvm_device_attr *attr) 2415 { 2416 struct kvm_s390_interrupt_info *inti = NULL; 2417 int r = 0; 2418 int len = attr->attr; 2419 2420 if (len % sizeof(struct kvm_s390_irq) != 0) 2421 return -EINVAL; 2422 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2423 return -EINVAL; 2424 2425 while (len >= sizeof(struct kvm_s390_irq)) { 2426 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2427 if (!inti) 2428 return -ENOMEM; 2429 2430 r = copy_irq_from_user(inti, attr->addr); 2431 if (r) { 2432 kfree(inti); 2433 return r; 2434 } 2435 r = __inject_vm(dev->kvm, inti); 2436 if (r) { 2437 kfree(inti); 2438 return r; 2439 } 2440 len -= sizeof(struct kvm_s390_irq); 2441 attr->addr += sizeof(struct kvm_s390_irq); 2442 } 2443 2444 return r; 2445 } 2446 2447 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2448 { 2449 if (id >= MAX_S390_IO_ADAPTERS) 2450 return NULL; 2451 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2452 return kvm->arch.adapters[id]; 2453 } 2454 2455 static int register_io_adapter(struct kvm_device *dev, 2456 struct kvm_device_attr *attr) 2457 { 2458 struct s390_io_adapter *adapter; 2459 struct kvm_s390_io_adapter adapter_info; 2460 2461 if (copy_from_user(&adapter_info, 2462 (void __user *)attr->addr, sizeof(adapter_info))) 2463 return -EFAULT; 2464 2465 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2466 return -EINVAL; 2467 2468 adapter_info.id = array_index_nospec(adapter_info.id, 2469 MAX_S390_IO_ADAPTERS); 2470 2471 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2472 return -EINVAL; 2473 2474 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2475 if (!adapter) 2476 return -ENOMEM; 2477 2478 adapter->id = adapter_info.id; 2479 adapter->isc = adapter_info.isc; 2480 adapter->maskable = adapter_info.maskable; 2481 adapter->masked = false; 2482 adapter->swap = adapter_info.swap; 2483 adapter->suppressible = (adapter_info.flags) & 2484 KVM_S390_ADAPTER_SUPPRESSIBLE; 2485 dev->kvm->arch.adapters[adapter->id] = adapter; 2486 2487 return 0; 2488 } 2489 2490 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2491 { 2492 int ret; 2493 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2494 2495 if (!adapter || !adapter->maskable) 2496 return -EINVAL; 2497 ret = adapter->masked; 2498 adapter->masked = masked; 2499 return ret; 2500 } 2501 2502 void kvm_s390_destroy_adapters(struct kvm *kvm) 2503 { 2504 int i; 2505 2506 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2507 kfree(kvm->arch.adapters[i]); 2508 } 2509 2510 static int modify_io_adapter(struct kvm_device *dev, 2511 struct kvm_device_attr *attr) 2512 { 2513 struct kvm_s390_io_adapter_req req; 2514 struct s390_io_adapter *adapter; 2515 int ret; 2516 2517 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2518 return -EFAULT; 2519 2520 adapter = get_io_adapter(dev->kvm, req.id); 2521 if (!adapter) 2522 return -EINVAL; 2523 switch (req.type) { 2524 case KVM_S390_IO_ADAPTER_MASK: 2525 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2526 if (ret > 0) 2527 ret = 0; 2528 break; 2529 /* 2530 * The following operations are no longer needed and therefore no-ops. 2531 * The gpa to hva translation is done when an IRQ route is set up. The 2532 * set_irq code uses get_user_pages_remote() to do the actual write. 2533 */ 2534 case KVM_S390_IO_ADAPTER_MAP: 2535 case KVM_S390_IO_ADAPTER_UNMAP: 2536 ret = 0; 2537 break; 2538 default: 2539 ret = -EINVAL; 2540 } 2541 2542 return ret; 2543 } 2544 2545 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2546 2547 { 2548 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2549 u32 schid; 2550 2551 if (attr->flags) 2552 return -EINVAL; 2553 if (attr->attr != sizeof(schid)) 2554 return -EINVAL; 2555 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2556 return -EFAULT; 2557 if (!schid) 2558 return -EINVAL; 2559 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2560 /* 2561 * If userspace is conforming to the architecture, we can have at most 2562 * one pending I/O interrupt per subchannel, so this is effectively a 2563 * clear all. 2564 */ 2565 return 0; 2566 } 2567 2568 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2569 { 2570 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2571 struct kvm_s390_ais_req req; 2572 int ret = 0; 2573 2574 if (!test_kvm_facility(kvm, 72)) 2575 return -EOPNOTSUPP; 2576 2577 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2578 return -EFAULT; 2579 2580 if (req.isc > MAX_ISC) 2581 return -EINVAL; 2582 2583 trace_kvm_s390_modify_ais_mode(req.isc, 2584 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2585 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2586 2 : KVM_S390_AIS_MODE_SINGLE : 2587 KVM_S390_AIS_MODE_ALL, req.mode); 2588 2589 mutex_lock(&fi->ais_lock); 2590 switch (req.mode) { 2591 case KVM_S390_AIS_MODE_ALL: 2592 fi->simm &= ~AIS_MODE_MASK(req.isc); 2593 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2594 break; 2595 case KVM_S390_AIS_MODE_SINGLE: 2596 fi->simm |= AIS_MODE_MASK(req.isc); 2597 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2598 break; 2599 default: 2600 ret = -EINVAL; 2601 } 2602 mutex_unlock(&fi->ais_lock); 2603 2604 return ret; 2605 } 2606 2607 static int kvm_s390_inject_airq(struct kvm *kvm, 2608 struct s390_io_adapter *adapter) 2609 { 2610 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2611 struct kvm_s390_interrupt s390int = { 2612 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2613 .parm = 0, 2614 .parm64 = isc_to_int_word(adapter->isc), 2615 }; 2616 int ret = 0; 2617 2618 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2619 return kvm_s390_inject_vm(kvm, &s390int); 2620 2621 mutex_lock(&fi->ais_lock); 2622 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2623 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2624 goto out; 2625 } 2626 2627 ret = kvm_s390_inject_vm(kvm, &s390int); 2628 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2629 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2630 trace_kvm_s390_modify_ais_mode(adapter->isc, 2631 KVM_S390_AIS_MODE_SINGLE, 2); 2632 } 2633 out: 2634 mutex_unlock(&fi->ais_lock); 2635 return ret; 2636 } 2637 2638 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2639 { 2640 unsigned int id = attr->attr; 2641 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2642 2643 if (!adapter) 2644 return -EINVAL; 2645 2646 return kvm_s390_inject_airq(kvm, adapter); 2647 } 2648 2649 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2650 { 2651 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2652 struct kvm_s390_ais_all ais; 2653 2654 if (!test_kvm_facility(kvm, 72)) 2655 return -EOPNOTSUPP; 2656 2657 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2658 return -EFAULT; 2659 2660 mutex_lock(&fi->ais_lock); 2661 fi->simm = ais.simm; 2662 fi->nimm = ais.nimm; 2663 mutex_unlock(&fi->ais_lock); 2664 2665 return 0; 2666 } 2667 2668 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2669 { 2670 int r = 0; 2671 unsigned long i; 2672 struct kvm_vcpu *vcpu; 2673 2674 switch (attr->group) { 2675 case KVM_DEV_FLIC_ENQUEUE: 2676 r = enqueue_floating_irq(dev, attr); 2677 break; 2678 case KVM_DEV_FLIC_CLEAR_IRQS: 2679 kvm_s390_clear_float_irqs(dev->kvm); 2680 break; 2681 case KVM_DEV_FLIC_APF_ENABLE: 2682 if (kvm_is_ucontrol(dev->kvm)) 2683 return -EINVAL; 2684 dev->kvm->arch.gmap->pfault_enabled = 1; 2685 break; 2686 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2687 if (kvm_is_ucontrol(dev->kvm)) 2688 return -EINVAL; 2689 dev->kvm->arch.gmap->pfault_enabled = 0; 2690 /* 2691 * Make sure no async faults are in transition when 2692 * clearing the queues. So we don't need to worry 2693 * about late coming workers. 2694 */ 2695 synchronize_srcu(&dev->kvm->srcu); 2696 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2697 kvm_clear_async_pf_completion_queue(vcpu); 2698 break; 2699 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2700 r = register_io_adapter(dev, attr); 2701 break; 2702 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2703 r = modify_io_adapter(dev, attr); 2704 break; 2705 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2706 r = clear_io_irq(dev->kvm, attr); 2707 break; 2708 case KVM_DEV_FLIC_AISM: 2709 r = modify_ais_mode(dev->kvm, attr); 2710 break; 2711 case KVM_DEV_FLIC_AIRQ_INJECT: 2712 r = flic_inject_airq(dev->kvm, attr); 2713 break; 2714 case KVM_DEV_FLIC_AISM_ALL: 2715 r = flic_ais_mode_set_all(dev->kvm, attr); 2716 break; 2717 default: 2718 r = -EINVAL; 2719 } 2720 2721 return r; 2722 } 2723 2724 static int flic_has_attr(struct kvm_device *dev, 2725 struct kvm_device_attr *attr) 2726 { 2727 switch (attr->group) { 2728 case KVM_DEV_FLIC_GET_ALL_IRQS: 2729 case KVM_DEV_FLIC_ENQUEUE: 2730 case KVM_DEV_FLIC_CLEAR_IRQS: 2731 case KVM_DEV_FLIC_APF_ENABLE: 2732 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2733 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2734 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2735 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2736 case KVM_DEV_FLIC_AISM: 2737 case KVM_DEV_FLIC_AIRQ_INJECT: 2738 case KVM_DEV_FLIC_AISM_ALL: 2739 return 0; 2740 } 2741 return -ENXIO; 2742 } 2743 2744 static int flic_create(struct kvm_device *dev, u32 type) 2745 { 2746 if (!dev) 2747 return -EINVAL; 2748 if (dev->kvm->arch.flic) 2749 return -EINVAL; 2750 dev->kvm->arch.flic = dev; 2751 return 0; 2752 } 2753 2754 static void flic_destroy(struct kvm_device *dev) 2755 { 2756 dev->kvm->arch.flic = NULL; 2757 kfree(dev); 2758 } 2759 2760 /* s390 floating irq controller (flic) */ 2761 struct kvm_device_ops kvm_flic_ops = { 2762 .name = "kvm-flic", 2763 .get_attr = flic_get_attr, 2764 .set_attr = flic_set_attr, 2765 .has_attr = flic_has_attr, 2766 .create = flic_create, 2767 .destroy = flic_destroy, 2768 }; 2769 2770 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2771 { 2772 unsigned long bit; 2773 2774 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2775 2776 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2777 } 2778 2779 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2780 { 2781 struct page *page = NULL; 2782 2783 mmap_read_lock(kvm->mm); 2784 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2785 &page, NULL); 2786 mmap_read_unlock(kvm->mm); 2787 return page; 2788 } 2789 2790 static int adapter_indicators_set(struct kvm *kvm, 2791 struct s390_io_adapter *adapter, 2792 struct kvm_s390_adapter_int *adapter_int) 2793 { 2794 unsigned long bit; 2795 int summary_set, idx; 2796 struct page *ind_page, *summary_page; 2797 void *map; 2798 2799 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2800 if (!ind_page) 2801 return -1; 2802 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2803 if (!summary_page) { 2804 put_page(ind_page); 2805 return -1; 2806 } 2807 2808 idx = srcu_read_lock(&kvm->srcu); 2809 map = page_address(ind_page); 2810 bit = get_ind_bit(adapter_int->ind_addr, 2811 adapter_int->ind_offset, adapter->swap); 2812 set_bit(bit, map); 2813 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2814 set_page_dirty_lock(ind_page); 2815 map = page_address(summary_page); 2816 bit = get_ind_bit(adapter_int->summary_addr, 2817 adapter_int->summary_offset, adapter->swap); 2818 summary_set = test_and_set_bit(bit, map); 2819 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2820 set_page_dirty_lock(summary_page); 2821 srcu_read_unlock(&kvm->srcu, idx); 2822 2823 put_page(ind_page); 2824 put_page(summary_page); 2825 return summary_set ? 0 : 1; 2826 } 2827 2828 /* 2829 * < 0 - not injected due to error 2830 * = 0 - coalesced, summary indicator already active 2831 * > 0 - injected interrupt 2832 */ 2833 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2834 struct kvm *kvm, int irq_source_id, int level, 2835 bool line_status) 2836 { 2837 int ret; 2838 struct s390_io_adapter *adapter; 2839 2840 /* We're only interested in the 0->1 transition. */ 2841 if (!level) 2842 return 0; 2843 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2844 if (!adapter) 2845 return -1; 2846 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2847 if ((ret > 0) && !adapter->masked) { 2848 ret = kvm_s390_inject_airq(kvm, adapter); 2849 if (ret == 0) 2850 ret = 1; 2851 } 2852 return ret; 2853 } 2854 2855 /* 2856 * Inject the machine check to the guest. 2857 */ 2858 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2859 struct mcck_volatile_info *mcck_info) 2860 { 2861 struct kvm_s390_interrupt_info inti; 2862 struct kvm_s390_irq irq; 2863 struct kvm_s390_mchk_info *mchk; 2864 union mci mci; 2865 __u64 cr14 = 0; /* upper bits are not used */ 2866 int rc; 2867 2868 mci.val = mcck_info->mcic; 2869 if (mci.sr) 2870 cr14 |= CR14_RECOVERY_SUBMASK; 2871 if (mci.dg) 2872 cr14 |= CR14_DEGRADATION_SUBMASK; 2873 if (mci.w) 2874 cr14 |= CR14_WARNING_SUBMASK; 2875 2876 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2877 mchk->cr14 = cr14; 2878 mchk->mcic = mcck_info->mcic; 2879 mchk->ext_damage_code = mcck_info->ext_damage_code; 2880 mchk->failing_storage_address = mcck_info->failing_storage_address; 2881 if (mci.ck) { 2882 /* Inject the floating machine check */ 2883 inti.type = KVM_S390_MCHK; 2884 rc = __inject_vm(vcpu->kvm, &inti); 2885 } else { 2886 /* Inject the machine check to specified vcpu */ 2887 irq.type = KVM_S390_MCHK; 2888 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2889 } 2890 WARN_ON_ONCE(rc); 2891 } 2892 2893 int kvm_set_routing_entry(struct kvm *kvm, 2894 struct kvm_kernel_irq_routing_entry *e, 2895 const struct kvm_irq_routing_entry *ue) 2896 { 2897 u64 uaddr_s, uaddr_i; 2898 int idx; 2899 2900 switch (ue->type) { 2901 /* we store the userspace addresses instead of the guest addresses */ 2902 case KVM_IRQ_ROUTING_S390_ADAPTER: 2903 if (kvm_is_ucontrol(kvm)) 2904 return -EINVAL; 2905 e->set = set_adapter_int; 2906 2907 idx = srcu_read_lock(&kvm->srcu); 2908 uaddr_s = gpa_to_hva(kvm, ue->u.adapter.summary_addr); 2909 uaddr_i = gpa_to_hva(kvm, ue->u.adapter.ind_addr); 2910 srcu_read_unlock(&kvm->srcu, idx); 2911 2912 if (kvm_is_error_hva(uaddr_s) || kvm_is_error_hva(uaddr_i)) 2913 return -EFAULT; 2914 e->adapter.summary_addr = uaddr_s; 2915 e->adapter.ind_addr = uaddr_i; 2916 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2917 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2918 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2919 return 0; 2920 default: 2921 return -EINVAL; 2922 } 2923 } 2924 2925 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2926 int irq_source_id, int level, bool line_status) 2927 { 2928 return -EINVAL; 2929 } 2930 2931 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2932 { 2933 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2934 struct kvm_s390_irq *buf; 2935 int r = 0; 2936 int n; 2937 2938 buf = vmalloc(len); 2939 if (!buf) 2940 return -ENOMEM; 2941 2942 if (copy_from_user((void *) buf, irqstate, len)) { 2943 r = -EFAULT; 2944 goto out_free; 2945 } 2946 2947 /* 2948 * Don't allow setting the interrupt state 2949 * when there are already interrupts pending 2950 */ 2951 spin_lock(&li->lock); 2952 if (li->pending_irqs) { 2953 r = -EBUSY; 2954 goto out_unlock; 2955 } 2956 2957 for (n = 0; n < len / sizeof(*buf); n++) { 2958 r = do_inject_vcpu(vcpu, &buf[n]); 2959 if (r) 2960 break; 2961 } 2962 2963 out_unlock: 2964 spin_unlock(&li->lock); 2965 out_free: 2966 vfree(buf); 2967 2968 return r; 2969 } 2970 2971 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2972 struct kvm_s390_irq *irq, 2973 unsigned long irq_type) 2974 { 2975 switch (irq_type) { 2976 case IRQ_PEND_MCHK_EX: 2977 case IRQ_PEND_MCHK_REP: 2978 irq->type = KVM_S390_MCHK; 2979 irq->u.mchk = li->irq.mchk; 2980 break; 2981 case IRQ_PEND_PROG: 2982 irq->type = KVM_S390_PROGRAM_INT; 2983 irq->u.pgm = li->irq.pgm; 2984 break; 2985 case IRQ_PEND_PFAULT_INIT: 2986 irq->type = KVM_S390_INT_PFAULT_INIT; 2987 irq->u.ext = li->irq.ext; 2988 break; 2989 case IRQ_PEND_EXT_EXTERNAL: 2990 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2991 irq->u.extcall = li->irq.extcall; 2992 break; 2993 case IRQ_PEND_EXT_CLOCK_COMP: 2994 irq->type = KVM_S390_INT_CLOCK_COMP; 2995 break; 2996 case IRQ_PEND_EXT_CPU_TIMER: 2997 irq->type = KVM_S390_INT_CPU_TIMER; 2998 break; 2999 case IRQ_PEND_SIGP_STOP: 3000 irq->type = KVM_S390_SIGP_STOP; 3001 irq->u.stop = li->irq.stop; 3002 break; 3003 case IRQ_PEND_RESTART: 3004 irq->type = KVM_S390_RESTART; 3005 break; 3006 case IRQ_PEND_SET_PREFIX: 3007 irq->type = KVM_S390_SIGP_SET_PREFIX; 3008 irq->u.prefix = li->irq.prefix; 3009 break; 3010 } 3011 } 3012 3013 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3014 { 3015 int scn; 3016 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3017 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3018 unsigned long pending_irqs; 3019 struct kvm_s390_irq irq; 3020 unsigned long irq_type; 3021 int cpuaddr; 3022 int n = 0; 3023 3024 spin_lock(&li->lock); 3025 pending_irqs = li->pending_irqs; 3026 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3027 sizeof(sigp_emerg_pending)); 3028 spin_unlock(&li->lock); 3029 3030 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3031 memset(&irq, 0, sizeof(irq)); 3032 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3033 continue; 3034 if (n + sizeof(irq) > len) 3035 return -ENOBUFS; 3036 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3037 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3038 return -EFAULT; 3039 n += sizeof(irq); 3040 } 3041 3042 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3043 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3044 memset(&irq, 0, sizeof(irq)); 3045 if (n + sizeof(irq) > len) 3046 return -ENOBUFS; 3047 irq.type = KVM_S390_INT_EMERGENCY; 3048 irq.u.emerg.code = cpuaddr; 3049 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3050 return -EFAULT; 3051 n += sizeof(irq); 3052 } 3053 } 3054 3055 if (sca_ext_call_pending(vcpu, &scn)) { 3056 if (n + sizeof(irq) > len) 3057 return -ENOBUFS; 3058 memset(&irq, 0, sizeof(irq)); 3059 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3060 irq.u.extcall.code = scn; 3061 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3062 return -EFAULT; 3063 n += sizeof(irq); 3064 } 3065 3066 return n; 3067 } 3068 3069 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3070 { 3071 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3072 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3073 struct kvm_vcpu *vcpu; 3074 u8 vcpu_isc_mask; 3075 3076 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3077 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3078 if (psw_ioint_disabled(vcpu)) 3079 continue; 3080 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3081 if (deliverable_mask & vcpu_isc_mask) { 3082 /* lately kicked but not yet running */ 3083 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3084 return; 3085 kvm_s390_vcpu_wakeup(vcpu); 3086 return; 3087 } 3088 } 3089 } 3090 3091 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3092 { 3093 struct kvm_s390_gisa_interrupt *gi = 3094 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3095 struct kvm *kvm = 3096 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3097 u8 pending_mask; 3098 3099 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3100 if (pending_mask) { 3101 __airqs_kick_single_vcpu(kvm, pending_mask); 3102 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3103 return HRTIMER_RESTART; 3104 } 3105 3106 return HRTIMER_NORESTART; 3107 } 3108 3109 #define NULL_GISA_ADDR 0x00000000UL 3110 #define NONE_GISA_ADDR 0x00000001UL 3111 #define GISA_ADDR_MASK 0xfffff000UL 3112 3113 static void process_gib_alert_list(void) 3114 { 3115 struct kvm_s390_gisa_interrupt *gi; 3116 u32 final, gisa_phys, origin = 0UL; 3117 struct kvm_s390_gisa *gisa; 3118 struct kvm *kvm; 3119 3120 do { 3121 /* 3122 * If the NONE_GISA_ADDR is still stored in the alert list 3123 * origin, we will leave the outer loop. No further GISA has 3124 * been added to the alert list by millicode while processing 3125 * the current alert list. 3126 */ 3127 final = (origin & NONE_GISA_ADDR); 3128 /* 3129 * Cut off the alert list and store the NONE_GISA_ADDR in the 3130 * alert list origin to avoid further GAL interruptions. 3131 * A new alert list can be build up by millicode in parallel 3132 * for guests not in the yet cut-off alert list. When in the 3133 * final loop, store the NULL_GISA_ADDR instead. This will re- 3134 * enable GAL interruptions on the host again. 3135 */ 3136 origin = xchg(&gib->alert_list_origin, 3137 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3138 /* 3139 * Loop through the just cut-off alert list and start the 3140 * gisa timers to kick idle vcpus to consume the pending 3141 * interruptions asap. 3142 */ 3143 while (origin & GISA_ADDR_MASK) { 3144 gisa_phys = origin; 3145 gisa = phys_to_virt(gisa_phys); 3146 origin = gisa->next_alert; 3147 gisa->next_alert = gisa_phys; 3148 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3149 gi = &kvm->arch.gisa_int; 3150 if (hrtimer_active(&gi->timer)) 3151 hrtimer_cancel(&gi->timer); 3152 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3153 } 3154 } while (!final); 3155 3156 } 3157 3158 void kvm_s390_gisa_clear(struct kvm *kvm) 3159 { 3160 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3161 3162 if (!gi->origin) 3163 return; 3164 gisa_clear_ipm(gi->origin); 3165 VM_EVENT(kvm, 3, "gisa 0x%p cleared", gi->origin); 3166 } 3167 3168 void kvm_s390_gisa_init(struct kvm *kvm) 3169 { 3170 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3171 3172 if (!css_general_characteristics.aiv) 3173 return; 3174 gi->origin = &kvm->arch.sie_page2->gisa; 3175 gi->alert.mask = 0; 3176 spin_lock_init(&gi->alert.ref_lock); 3177 gi->expires = 50 * 1000; /* 50 usec */ 3178 hrtimer_setup(&gi->timer, gisa_vcpu_kicker, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3179 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3180 gi->origin->next_alert = (u32)virt_to_phys(gi->origin); 3181 VM_EVENT(kvm, 3, "gisa 0x%p initialized", gi->origin); 3182 } 3183 3184 void kvm_s390_gisa_enable(struct kvm *kvm) 3185 { 3186 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3187 struct kvm_vcpu *vcpu; 3188 unsigned long i; 3189 u32 gisa_desc; 3190 3191 if (gi->origin) 3192 return; 3193 kvm_s390_gisa_init(kvm); 3194 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3195 if (!gisa_desc) 3196 return; 3197 kvm_for_each_vcpu(i, vcpu, kvm) { 3198 mutex_lock(&vcpu->mutex); 3199 vcpu->arch.sie_block->gd = gisa_desc; 3200 vcpu->arch.sie_block->eca |= ECA_AIV; 3201 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3202 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3203 mutex_unlock(&vcpu->mutex); 3204 } 3205 } 3206 3207 void kvm_s390_gisa_destroy(struct kvm *kvm) 3208 { 3209 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3210 struct kvm_s390_gisa *gisa = gi->origin; 3211 3212 if (!gi->origin) 3213 return; 3214 WARN(gi->alert.mask != 0x00, 3215 "unexpected non zero alert.mask 0x%02x", 3216 gi->alert.mask); 3217 gi->alert.mask = 0x00; 3218 if (gisa_set_iam(gi->origin, gi->alert.mask)) 3219 process_gib_alert_list(); 3220 hrtimer_cancel(&gi->timer); 3221 gi->origin = NULL; 3222 VM_EVENT(kvm, 3, "gisa 0x%p destroyed", gisa); 3223 } 3224 3225 void kvm_s390_gisa_disable(struct kvm *kvm) 3226 { 3227 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3228 struct kvm_vcpu *vcpu; 3229 unsigned long i; 3230 3231 if (!gi->origin) 3232 return; 3233 kvm_for_each_vcpu(i, vcpu, kvm) { 3234 mutex_lock(&vcpu->mutex); 3235 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3236 vcpu->arch.sie_block->gd = 0U; 3237 mutex_unlock(&vcpu->mutex); 3238 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3239 } 3240 kvm_s390_gisa_destroy(kvm); 3241 } 3242 3243 /** 3244 * kvm_s390_gisc_register - register a guest ISC 3245 * 3246 * @kvm: the kernel vm to work with 3247 * @gisc: the guest interruption sub class to register 3248 * 3249 * The function extends the vm specific alert mask to use. 3250 * The effective IAM mask in the GISA is updated as well 3251 * in case the GISA is not part of the GIB alert list. 3252 * It will be updated latest when the IAM gets restored 3253 * by gisa_get_ipm_or_restore_iam(). 3254 * 3255 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3256 * has registered with the channel subsystem. 3257 * -ENODEV in case the vm uses no GISA 3258 * -ERANGE in case the guest ISC is invalid 3259 */ 3260 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3261 { 3262 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3263 3264 if (!gi->origin) 3265 return -ENODEV; 3266 if (gisc > MAX_ISC) 3267 return -ERANGE; 3268 3269 spin_lock(&gi->alert.ref_lock); 3270 gi->alert.ref_count[gisc]++; 3271 if (gi->alert.ref_count[gisc] == 1) { 3272 gi->alert.mask |= 0x80 >> gisc; 3273 gisa_set_iam(gi->origin, gi->alert.mask); 3274 } 3275 spin_unlock(&gi->alert.ref_lock); 3276 3277 return gib->nisc; 3278 } 3279 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3280 3281 /** 3282 * kvm_s390_gisc_unregister - unregister a guest ISC 3283 * 3284 * @kvm: the kernel vm to work with 3285 * @gisc: the guest interruption sub class to register 3286 * 3287 * The function reduces the vm specific alert mask to use. 3288 * The effective IAM mask in the GISA is updated as well 3289 * in case the GISA is not part of the GIB alert list. 3290 * It will be updated latest when the IAM gets restored 3291 * by gisa_get_ipm_or_restore_iam(). 3292 * 3293 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3294 * has registered with the channel subsystem. 3295 * -ENODEV in case the vm uses no GISA 3296 * -ERANGE in case the guest ISC is invalid 3297 * -EINVAL in case the guest ISC is not registered 3298 */ 3299 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3300 { 3301 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3302 int rc = 0; 3303 3304 if (!gi->origin) 3305 return -ENODEV; 3306 if (gisc > MAX_ISC) 3307 return -ERANGE; 3308 3309 spin_lock(&gi->alert.ref_lock); 3310 if (gi->alert.ref_count[gisc] == 0) { 3311 rc = -EINVAL; 3312 goto out; 3313 } 3314 gi->alert.ref_count[gisc]--; 3315 if (gi->alert.ref_count[gisc] == 0) { 3316 gi->alert.mask &= ~(0x80 >> gisc); 3317 gisa_set_iam(gi->origin, gi->alert.mask); 3318 } 3319 out: 3320 spin_unlock(&gi->alert.ref_lock); 3321 3322 return rc; 3323 } 3324 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3325 3326 static void aen_host_forward(unsigned long si) 3327 { 3328 struct kvm_s390_gisa_interrupt *gi; 3329 struct zpci_gaite *gaite; 3330 struct kvm *kvm; 3331 3332 gaite = (struct zpci_gaite *)aift->gait + 3333 (si * sizeof(struct zpci_gaite)); 3334 if (gaite->count == 0) 3335 return; 3336 if (gaite->aisb != 0) 3337 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3338 3339 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3340 if (!kvm) 3341 return; 3342 gi = &kvm->arch.gisa_int; 3343 3344 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3345 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3346 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3347 if (hrtimer_active(&gi->timer)) 3348 hrtimer_cancel(&gi->timer); 3349 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3350 kvm->stat.aen_forward++; 3351 } 3352 } 3353 3354 static void aen_process_gait(u8 isc) 3355 { 3356 bool found = false, first = true; 3357 union zpci_sic_iib iib = {{0}}; 3358 unsigned long si, flags; 3359 3360 spin_lock_irqsave(&aift->gait_lock, flags); 3361 3362 if (!aift->gait) { 3363 spin_unlock_irqrestore(&aift->gait_lock, flags); 3364 return; 3365 } 3366 3367 for (si = 0;;) { 3368 /* Scan adapter summary indicator bit vector */ 3369 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3370 if (si == -1UL) { 3371 if (first || found) { 3372 /* Re-enable interrupts. */ 3373 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3374 &iib); 3375 first = found = false; 3376 } else { 3377 /* Interrupts on and all bits processed */ 3378 break; 3379 } 3380 found = false; 3381 si = 0; 3382 /* Scan again after re-enabling interrupts */ 3383 continue; 3384 } 3385 found = true; 3386 aen_host_forward(si); 3387 } 3388 3389 spin_unlock_irqrestore(&aift->gait_lock, flags); 3390 } 3391 3392 static void gib_alert_irq_handler(struct airq_struct *airq, 3393 struct tpi_info *tpi_info) 3394 { 3395 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3396 3397 inc_irq_stat(IRQIO_GAL); 3398 3399 if ((info->forward || info->error) && 3400 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3401 aen_process_gait(info->isc); 3402 if (info->aism != 0) 3403 process_gib_alert_list(); 3404 } else { 3405 process_gib_alert_list(); 3406 } 3407 } 3408 3409 static struct airq_struct gib_alert_irq = { 3410 .handler = gib_alert_irq_handler, 3411 }; 3412 3413 void kvm_s390_gib_destroy(void) 3414 { 3415 if (!gib) 3416 return; 3417 if (kvm_s390_pci_interp_allowed() && aift) { 3418 mutex_lock(&aift->aift_lock); 3419 kvm_s390_pci_aen_exit(); 3420 mutex_unlock(&aift->aift_lock); 3421 } 3422 chsc_sgib(0); 3423 unregister_adapter_interrupt(&gib_alert_irq); 3424 free_page((unsigned long)gib); 3425 gib = NULL; 3426 } 3427 3428 int __init kvm_s390_gib_init(u8 nisc) 3429 { 3430 u32 gib_origin; 3431 int rc = 0; 3432 3433 if (!css_general_characteristics.aiv) { 3434 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3435 goto out; 3436 } 3437 3438 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3439 if (!gib) { 3440 rc = -ENOMEM; 3441 goto out; 3442 } 3443 3444 gib_alert_irq.isc = nisc; 3445 if (register_adapter_interrupt(&gib_alert_irq)) { 3446 pr_err("Registering the GIB alert interruption handler failed\n"); 3447 rc = -EIO; 3448 goto out_free_gib; 3449 } 3450 /* adapter interrupts used for AP (applicable here) don't use the LSI */ 3451 *gib_alert_irq.lsi_ptr = 0xff; 3452 3453 gib->nisc = nisc; 3454 gib_origin = virt_to_phys(gib); 3455 if (chsc_sgib(gib_origin)) { 3456 pr_err("Associating the GIB with the AIV facility failed\n"); 3457 free_page((unsigned long)gib); 3458 gib = NULL; 3459 rc = -EIO; 3460 goto out_unreg_gal; 3461 } 3462 3463 if (kvm_s390_pci_interp_allowed()) { 3464 if (kvm_s390_pci_aen_init(nisc)) { 3465 pr_err("Initializing AEN for PCI failed\n"); 3466 rc = -EIO; 3467 goto out_unreg_gal; 3468 } 3469 } 3470 3471 KVM_EVENT(3, "gib 0x%p (nisc=%d) initialized", gib, gib->nisc); 3472 goto out; 3473 3474 out_unreg_gal: 3475 unregister_adapter_interrupt(&gib_alert_irq); 3476 out_free_gib: 3477 free_page((unsigned long)gib); 3478 gib = NULL; 3479 out: 3480 return rc; 3481 } 3482