xref: /linux/arch/s390/kvm/interrupt.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * handling kvm guest interrupts
4  *
5  * Copyright IBM Corp. 2008, 2020
6  *
7  *    Author(s): Carsten Otte <cotte@de.ibm.com>
8  */
9 
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12 
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include "kvm-s390.h"
33 #include "gaccess.h"
34 #include "trace-s390.h"
35 #include "pci.h"
36 
37 #define PFAULT_INIT 0x0600
38 #define PFAULT_DONE 0x0680
39 #define VIRTIO_PARAM 0x0d00
40 
41 static struct kvm_s390_gib *gib;
42 
43 /* handle external calls via sigp interpretation facility */
44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
45 {
46 	int c, scn;
47 
48 	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
49 		return 0;
50 
51 	BUG_ON(!kvm_s390_use_sca_entries());
52 	read_lock(&vcpu->kvm->arch.sca_lock);
53 	if (vcpu->kvm->arch.use_esca) {
54 		struct esca_block *sca = vcpu->kvm->arch.sca;
55 		union esca_sigp_ctrl sigp_ctrl =
56 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
57 
58 		c = sigp_ctrl.c;
59 		scn = sigp_ctrl.scn;
60 	} else {
61 		struct bsca_block *sca = vcpu->kvm->arch.sca;
62 		union bsca_sigp_ctrl sigp_ctrl =
63 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
64 
65 		c = sigp_ctrl.c;
66 		scn = sigp_ctrl.scn;
67 	}
68 	read_unlock(&vcpu->kvm->arch.sca_lock);
69 
70 	if (src_id)
71 		*src_id = scn;
72 
73 	return c;
74 }
75 
76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
77 {
78 	int expect, rc;
79 
80 	BUG_ON(!kvm_s390_use_sca_entries());
81 	read_lock(&vcpu->kvm->arch.sca_lock);
82 	if (vcpu->kvm->arch.use_esca) {
83 		struct esca_block *sca = vcpu->kvm->arch.sca;
84 		union esca_sigp_ctrl *sigp_ctrl =
85 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
86 		union esca_sigp_ctrl new_val = {0}, old_val;
87 
88 		old_val = READ_ONCE(*sigp_ctrl);
89 		new_val.scn = src_id;
90 		new_val.c = 1;
91 		old_val.c = 0;
92 
93 		expect = old_val.value;
94 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
95 	} else {
96 		struct bsca_block *sca = vcpu->kvm->arch.sca;
97 		union bsca_sigp_ctrl *sigp_ctrl =
98 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
99 		union bsca_sigp_ctrl new_val = {0}, old_val;
100 
101 		old_val = READ_ONCE(*sigp_ctrl);
102 		new_val.scn = src_id;
103 		new_val.c = 1;
104 		old_val.c = 0;
105 
106 		expect = old_val.value;
107 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
108 	}
109 	read_unlock(&vcpu->kvm->arch.sca_lock);
110 
111 	if (rc != expect) {
112 		/* another external call is pending */
113 		return -EBUSY;
114 	}
115 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
116 	return 0;
117 }
118 
119 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
120 {
121 	int rc, expect;
122 
123 	if (!kvm_s390_use_sca_entries())
124 		return;
125 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
126 	read_lock(&vcpu->kvm->arch.sca_lock);
127 	if (vcpu->kvm->arch.use_esca) {
128 		struct esca_block *sca = vcpu->kvm->arch.sca;
129 		union esca_sigp_ctrl *sigp_ctrl =
130 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
131 		union esca_sigp_ctrl old;
132 
133 		old = READ_ONCE(*sigp_ctrl);
134 		expect = old.value;
135 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
136 	} else {
137 		struct bsca_block *sca = vcpu->kvm->arch.sca;
138 		union bsca_sigp_ctrl *sigp_ctrl =
139 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
140 		union bsca_sigp_ctrl old;
141 
142 		old = READ_ONCE(*sigp_ctrl);
143 		expect = old.value;
144 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
145 	}
146 	read_unlock(&vcpu->kvm->arch.sca_lock);
147 	WARN_ON(rc != expect); /* cannot clear? */
148 }
149 
150 int psw_extint_disabled(struct kvm_vcpu *vcpu)
151 {
152 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
153 }
154 
155 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
156 {
157 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
158 }
159 
160 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
161 {
162 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
163 }
164 
165 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
166 {
167 	return psw_extint_disabled(vcpu) &&
168 	       psw_ioint_disabled(vcpu) &&
169 	       psw_mchk_disabled(vcpu);
170 }
171 
172 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
173 {
174 	if (psw_extint_disabled(vcpu) ||
175 	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
176 		return 0;
177 	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
178 		/* No timer interrupts when single stepping */
179 		return 0;
180 	return 1;
181 }
182 
183 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
184 {
185 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
186 	const u64 ckc = vcpu->arch.sie_block->ckc;
187 
188 	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
189 		if ((s64)ckc >= (s64)now)
190 			return 0;
191 	} else if (ckc >= now) {
192 		return 0;
193 	}
194 	return ckc_interrupts_enabled(vcpu);
195 }
196 
197 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
198 {
199 	return !psw_extint_disabled(vcpu) &&
200 	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
201 }
202 
203 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
204 {
205 	if (!cpu_timer_interrupts_enabled(vcpu))
206 		return 0;
207 	return kvm_s390_get_cpu_timer(vcpu) >> 63;
208 }
209 
210 static uint64_t isc_to_isc_bits(int isc)
211 {
212 	return (0x80 >> isc) << 24;
213 }
214 
215 static inline u32 isc_to_int_word(u8 isc)
216 {
217 	return ((u32)isc << 27) | 0x80000000;
218 }
219 
220 static inline u8 int_word_to_isc(u32 int_word)
221 {
222 	return (int_word & 0x38000000) >> 27;
223 }
224 
225 /*
226  * To use atomic bitmap functions, we have to provide a bitmap address
227  * that is u64 aligned. However, the ipm might be u32 aligned.
228  * Therefore, we logically start the bitmap at the very beginning of the
229  * struct and fixup the bit number.
230  */
231 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
232 
233 /**
234  * gisa_set_iam - change the GISA interruption alert mask
235  *
236  * @gisa: gisa to operate on
237  * @iam: new IAM value to use
238  *
239  * Change the IAM atomically with the next alert address and the IPM
240  * of the GISA if the GISA is not part of the GIB alert list. All three
241  * fields are located in the first long word of the GISA.
242  *
243  * Returns: 0 on success
244  *          -EBUSY in case the gisa is part of the alert list
245  */
246 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
247 {
248 	u64 word, _word;
249 
250 	do {
251 		word = READ_ONCE(gisa->u64.word[0]);
252 		if ((u64)gisa != word >> 32)
253 			return -EBUSY;
254 		_word = (word & ~0xffUL) | iam;
255 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
256 
257 	return 0;
258 }
259 
260 /**
261  * gisa_clear_ipm - clear the GISA interruption pending mask
262  *
263  * @gisa: gisa to operate on
264  *
265  * Clear the IPM atomically with the next alert address and the IAM
266  * of the GISA unconditionally. All three fields are located in the
267  * first long word of the GISA.
268  */
269 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
270 {
271 	u64 word, _word;
272 
273 	do {
274 		word = READ_ONCE(gisa->u64.word[0]);
275 		_word = word & ~(0xffUL << 24);
276 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
277 }
278 
279 /**
280  * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
281  *
282  * @gi: gisa interrupt struct to work on
283  *
284  * Atomically restores the interruption alert mask if none of the
285  * relevant ISCs are pending and return the IPM.
286  *
287  * Returns: the relevant pending ISCs
288  */
289 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
290 {
291 	u8 pending_mask, alert_mask;
292 	u64 word, _word;
293 
294 	do {
295 		word = READ_ONCE(gi->origin->u64.word[0]);
296 		alert_mask = READ_ONCE(gi->alert.mask);
297 		pending_mask = (u8)(word >> 24) & alert_mask;
298 		if (pending_mask)
299 			return pending_mask;
300 		_word = (word & ~0xffUL) | alert_mask;
301 	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
302 
303 	return 0;
304 }
305 
306 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
307 {
308 	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
309 }
310 
311 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
312 {
313 	return READ_ONCE(gisa->ipm);
314 }
315 
316 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
317 {
318 	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
319 }
320 
321 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
322 {
323 	unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
324 				vcpu->arch.local_int.pending_irqs;
325 
326 	pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
327 	return pending;
328 }
329 
330 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
331 {
332 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
333 	unsigned long pending_mask;
334 
335 	pending_mask = pending_irqs_no_gisa(vcpu);
336 	if (gi->origin)
337 		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
338 	return pending_mask;
339 }
340 
341 static inline int isc_to_irq_type(unsigned long isc)
342 {
343 	return IRQ_PEND_IO_ISC_0 - isc;
344 }
345 
346 static inline int irq_type_to_isc(unsigned long irq_type)
347 {
348 	return IRQ_PEND_IO_ISC_0 - irq_type;
349 }
350 
351 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
352 				   unsigned long active_mask)
353 {
354 	int i;
355 
356 	for (i = 0; i <= MAX_ISC; i++)
357 		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
358 			active_mask &= ~(1UL << (isc_to_irq_type(i)));
359 
360 	return active_mask;
361 }
362 
363 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
364 {
365 	unsigned long active_mask;
366 
367 	active_mask = pending_irqs(vcpu);
368 	if (!active_mask)
369 		return 0;
370 
371 	if (psw_extint_disabled(vcpu))
372 		active_mask &= ~IRQ_PEND_EXT_MASK;
373 	if (psw_ioint_disabled(vcpu))
374 		active_mask &= ~IRQ_PEND_IO_MASK;
375 	else
376 		active_mask = disable_iscs(vcpu, active_mask);
377 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
378 		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
379 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
380 		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
381 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
382 		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
383 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
384 		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
385 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
386 		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
387 		__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
388 	}
389 	if (psw_mchk_disabled(vcpu))
390 		active_mask &= ~IRQ_PEND_MCHK_MASK;
391 	/* PV guest cpus can have a single interruption injected at a time. */
392 	if (kvm_s390_pv_cpu_get_handle(vcpu) &&
393 	    vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
394 		active_mask &= ~(IRQ_PEND_EXT_II_MASK |
395 				 IRQ_PEND_IO_MASK |
396 				 IRQ_PEND_MCHK_MASK);
397 	/*
398 	 * Check both floating and local interrupt's cr14 because
399 	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
400 	 */
401 	if (!(vcpu->arch.sie_block->gcr[14] &
402 	   (vcpu->kvm->arch.float_int.mchk.cr14 |
403 	   vcpu->arch.local_int.irq.mchk.cr14)))
404 		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
405 
406 	/*
407 	 * STOP irqs will never be actively delivered. They are triggered via
408 	 * intercept requests and cleared when the stop intercept is performed.
409 	 */
410 	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
411 
412 	return active_mask;
413 }
414 
415 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
416 {
417 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
418 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
419 }
420 
421 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
422 {
423 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
424 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
425 }
426 
427 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
428 {
429 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
430 				      CPUSTAT_STOP_INT);
431 	vcpu->arch.sie_block->lctl = 0x0000;
432 	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
433 
434 	if (guestdbg_enabled(vcpu)) {
435 		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
436 					       LCTL_CR10 | LCTL_CR11);
437 		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
438 	}
439 }
440 
441 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
442 {
443 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
444 		return;
445 	if (psw_ioint_disabled(vcpu))
446 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
447 	else
448 		vcpu->arch.sie_block->lctl |= LCTL_CR6;
449 }
450 
451 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
452 {
453 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
454 		return;
455 	if (psw_extint_disabled(vcpu))
456 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
457 	else
458 		vcpu->arch.sie_block->lctl |= LCTL_CR0;
459 }
460 
461 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
462 {
463 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
464 		return;
465 	if (psw_mchk_disabled(vcpu))
466 		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
467 	else
468 		vcpu->arch.sie_block->lctl |= LCTL_CR14;
469 }
470 
471 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
472 {
473 	if (kvm_s390_is_stop_irq_pending(vcpu))
474 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
475 }
476 
477 /* Set interception request for non-deliverable interrupts */
478 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
479 {
480 	set_intercept_indicators_io(vcpu);
481 	set_intercept_indicators_ext(vcpu);
482 	set_intercept_indicators_mchk(vcpu);
483 	set_intercept_indicators_stop(vcpu);
484 }
485 
486 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
487 {
488 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
489 	int rc = 0;
490 
491 	vcpu->stat.deliver_cputm++;
492 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
493 					 0, 0);
494 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
495 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
496 		vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
497 	} else {
498 		rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
499 				   (u16 *)__LC_EXT_INT_CODE);
500 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
501 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
502 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
503 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
504 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
505 	}
506 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
507 	return rc ? -EFAULT : 0;
508 }
509 
510 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
511 {
512 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
513 	int rc = 0;
514 
515 	vcpu->stat.deliver_ckc++;
516 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
517 					 0, 0);
518 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
519 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
520 		vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
521 	} else {
522 		rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
523 				   (u16 __user *)__LC_EXT_INT_CODE);
524 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
525 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
526 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
527 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
528 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
529 	}
530 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
531 	return rc ? -EFAULT : 0;
532 }
533 
534 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
535 {
536 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
537 	struct kvm_s390_ext_info ext;
538 	int rc;
539 
540 	spin_lock(&li->lock);
541 	ext = li->irq.ext;
542 	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
543 	li->irq.ext.ext_params2 = 0;
544 	spin_unlock(&li->lock);
545 
546 	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
547 		   ext.ext_params2);
548 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
549 					 KVM_S390_INT_PFAULT_INIT,
550 					 0, ext.ext_params2);
551 
552 	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
553 	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
554 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
555 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
556 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
557 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
558 	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
559 	return rc ? -EFAULT : 0;
560 }
561 
562 static int __write_machine_check(struct kvm_vcpu *vcpu,
563 				 struct kvm_s390_mchk_info *mchk)
564 {
565 	unsigned long ext_sa_addr;
566 	unsigned long lc;
567 	freg_t fprs[NUM_FPRS];
568 	union mci mci;
569 	int rc;
570 
571 	/*
572 	 * All other possible payload for a machine check (e.g. the register
573 	 * contents in the save area) will be handled by the ultravisor, as
574 	 * the hypervisor does not not have the needed information for
575 	 * protected guests.
576 	 */
577 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
578 		vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
579 		vcpu->arch.sie_block->mcic = mchk->mcic;
580 		vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
581 		vcpu->arch.sie_block->edc = mchk->ext_damage_code;
582 		return 0;
583 	}
584 
585 	mci.val = mchk->mcic;
586 	/* take care of lazy register loading */
587 	save_fpu_regs();
588 	save_access_regs(vcpu->run->s.regs.acrs);
589 	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
590 		save_gs_cb(current->thread.gs_cb);
591 
592 	/* Extended save area */
593 	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
594 			   sizeof(unsigned long));
595 	/* Only bits 0 through 63-LC are used for address formation */
596 	lc = ext_sa_addr & MCESA_LC_MASK;
597 	if (test_kvm_facility(vcpu->kvm, 133)) {
598 		switch (lc) {
599 		case 0:
600 		case 10:
601 			ext_sa_addr &= ~0x3ffUL;
602 			break;
603 		case 11:
604 			ext_sa_addr &= ~0x7ffUL;
605 			break;
606 		case 12:
607 			ext_sa_addr &= ~0xfffUL;
608 			break;
609 		default:
610 			ext_sa_addr = 0;
611 			break;
612 		}
613 	} else {
614 		ext_sa_addr &= ~0x3ffUL;
615 	}
616 
617 	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
618 		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
619 				    512))
620 			mci.vr = 0;
621 	} else {
622 		mci.vr = 0;
623 	}
624 	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
625 	    && (lc == 11 || lc == 12)) {
626 		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
627 				    &vcpu->run->s.regs.gscb, 32))
628 			mci.gs = 0;
629 	} else {
630 		mci.gs = 0;
631 	}
632 
633 	/* General interruption information */
634 	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
635 	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
636 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
637 	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
638 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
639 	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
640 
641 	/* Register-save areas */
642 	if (MACHINE_HAS_VX) {
643 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
644 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
645 	} else {
646 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
647 				     vcpu->run->s.regs.fprs, 128);
648 	}
649 	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
650 			     vcpu->run->s.regs.gprs, 128);
651 	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
652 			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
653 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
654 			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
655 	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
656 			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
657 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
658 			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
659 	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
660 			     &vcpu->run->s.regs.acrs, 64);
661 	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
662 			     &vcpu->arch.sie_block->gcr, 128);
663 
664 	/* Extended interruption information */
665 	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
666 			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
667 	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
668 			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
669 	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
670 			     sizeof(mchk->fixed_logout));
671 	return rc ? -EFAULT : 0;
672 }
673 
674 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
675 {
676 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
677 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
678 	struct kvm_s390_mchk_info mchk = {};
679 	int deliver = 0;
680 	int rc = 0;
681 
682 	spin_lock(&fi->lock);
683 	spin_lock(&li->lock);
684 	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
685 	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
686 		/*
687 		 * If there was an exigent machine check pending, then any
688 		 * repressible machine checks that might have been pending
689 		 * are indicated along with it, so always clear bits for
690 		 * repressible and exigent interrupts
691 		 */
692 		mchk = li->irq.mchk;
693 		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
694 		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
695 		memset(&li->irq.mchk, 0, sizeof(mchk));
696 		deliver = 1;
697 	}
698 	/*
699 	 * We indicate floating repressible conditions along with
700 	 * other pending conditions. Channel Report Pending and Channel
701 	 * Subsystem damage are the only two and are indicated by
702 	 * bits in mcic and masked in cr14.
703 	 */
704 	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
705 		mchk.mcic |= fi->mchk.mcic;
706 		mchk.cr14 |= fi->mchk.cr14;
707 		memset(&fi->mchk, 0, sizeof(mchk));
708 		deliver = 1;
709 	}
710 	spin_unlock(&li->lock);
711 	spin_unlock(&fi->lock);
712 
713 	if (deliver) {
714 		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
715 			   mchk.mcic);
716 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
717 						 KVM_S390_MCHK,
718 						 mchk.cr14, mchk.mcic);
719 		vcpu->stat.deliver_machine_check++;
720 		rc = __write_machine_check(vcpu, &mchk);
721 	}
722 	return rc;
723 }
724 
725 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
726 {
727 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
728 	int rc = 0;
729 
730 	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
731 	vcpu->stat.deliver_restart_signal++;
732 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
733 
734 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
735 		vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
736 	} else {
737 		rc  = write_guest_lc(vcpu,
738 				     offsetof(struct lowcore, restart_old_psw),
739 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
740 		rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
741 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
742 	}
743 	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
744 	return rc ? -EFAULT : 0;
745 }
746 
747 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
748 {
749 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
750 	struct kvm_s390_prefix_info prefix;
751 
752 	spin_lock(&li->lock);
753 	prefix = li->irq.prefix;
754 	li->irq.prefix.address = 0;
755 	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
756 	spin_unlock(&li->lock);
757 
758 	vcpu->stat.deliver_prefix_signal++;
759 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
760 					 KVM_S390_SIGP_SET_PREFIX,
761 					 prefix.address, 0);
762 
763 	kvm_s390_set_prefix(vcpu, prefix.address);
764 	return 0;
765 }
766 
767 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
768 {
769 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
770 	int rc;
771 	int cpu_addr;
772 
773 	spin_lock(&li->lock);
774 	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
775 	clear_bit(cpu_addr, li->sigp_emerg_pending);
776 	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
777 		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
778 	spin_unlock(&li->lock);
779 
780 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
781 	vcpu->stat.deliver_emergency_signal++;
782 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
783 					 cpu_addr, 0);
784 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
785 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
786 		vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
787 		vcpu->arch.sie_block->extcpuaddr = cpu_addr;
788 		return 0;
789 	}
790 
791 	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
792 			   (u16 *)__LC_EXT_INT_CODE);
793 	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
794 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
795 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
796 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
797 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
798 	return rc ? -EFAULT : 0;
799 }
800 
801 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
802 {
803 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
804 	struct kvm_s390_extcall_info extcall;
805 	int rc;
806 
807 	spin_lock(&li->lock);
808 	extcall = li->irq.extcall;
809 	li->irq.extcall.code = 0;
810 	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
811 	spin_unlock(&li->lock);
812 
813 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
814 	vcpu->stat.deliver_external_call++;
815 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
816 					 KVM_S390_INT_EXTERNAL_CALL,
817 					 extcall.code, 0);
818 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
819 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
820 		vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
821 		vcpu->arch.sie_block->extcpuaddr = extcall.code;
822 		return 0;
823 	}
824 
825 	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
826 			   (u16 *)__LC_EXT_INT_CODE);
827 	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
828 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
829 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
830 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
831 			    sizeof(psw_t));
832 	return rc ? -EFAULT : 0;
833 }
834 
835 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
836 {
837 	switch (code) {
838 	case PGM_SPECIFICATION:
839 		vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
840 		break;
841 	case PGM_OPERAND:
842 		vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
843 		break;
844 	default:
845 		return -EINVAL;
846 	}
847 	return 0;
848 }
849 
850 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
851 {
852 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
853 	struct kvm_s390_pgm_info pgm_info;
854 	int rc = 0, nullifying = false;
855 	u16 ilen;
856 
857 	spin_lock(&li->lock);
858 	pgm_info = li->irq.pgm;
859 	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
860 	memset(&li->irq.pgm, 0, sizeof(pgm_info));
861 	spin_unlock(&li->lock);
862 
863 	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
864 	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
865 		   pgm_info.code, ilen);
866 	vcpu->stat.deliver_program++;
867 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
868 					 pgm_info.code, 0);
869 
870 	/* PER is handled by the ultravisor */
871 	if (kvm_s390_pv_cpu_is_protected(vcpu))
872 		return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
873 
874 	switch (pgm_info.code & ~PGM_PER) {
875 	case PGM_AFX_TRANSLATION:
876 	case PGM_ASX_TRANSLATION:
877 	case PGM_EX_TRANSLATION:
878 	case PGM_LFX_TRANSLATION:
879 	case PGM_LSTE_SEQUENCE:
880 	case PGM_LSX_TRANSLATION:
881 	case PGM_LX_TRANSLATION:
882 	case PGM_PRIMARY_AUTHORITY:
883 	case PGM_SECONDARY_AUTHORITY:
884 		nullifying = true;
885 		fallthrough;
886 	case PGM_SPACE_SWITCH:
887 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
888 				  (u64 *)__LC_TRANS_EXC_CODE);
889 		break;
890 	case PGM_ALEN_TRANSLATION:
891 	case PGM_ALE_SEQUENCE:
892 	case PGM_ASTE_INSTANCE:
893 	case PGM_ASTE_SEQUENCE:
894 	case PGM_ASTE_VALIDITY:
895 	case PGM_EXTENDED_AUTHORITY:
896 		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
897 				  (u8 *)__LC_EXC_ACCESS_ID);
898 		nullifying = true;
899 		break;
900 	case PGM_ASCE_TYPE:
901 	case PGM_PAGE_TRANSLATION:
902 	case PGM_REGION_FIRST_TRANS:
903 	case PGM_REGION_SECOND_TRANS:
904 	case PGM_REGION_THIRD_TRANS:
905 	case PGM_SEGMENT_TRANSLATION:
906 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
907 				  (u64 *)__LC_TRANS_EXC_CODE);
908 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
909 				   (u8 *)__LC_EXC_ACCESS_ID);
910 		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
911 				   (u8 *)__LC_OP_ACCESS_ID);
912 		nullifying = true;
913 		break;
914 	case PGM_MONITOR:
915 		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
916 				  (u16 *)__LC_MON_CLASS_NR);
917 		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
918 				   (u64 *)__LC_MON_CODE);
919 		break;
920 	case PGM_VECTOR_PROCESSING:
921 	case PGM_DATA:
922 		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
923 				  (u32 *)__LC_DATA_EXC_CODE);
924 		break;
925 	case PGM_PROTECTION:
926 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
927 				  (u64 *)__LC_TRANS_EXC_CODE);
928 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
929 				   (u8 *)__LC_EXC_ACCESS_ID);
930 		break;
931 	case PGM_STACK_FULL:
932 	case PGM_STACK_EMPTY:
933 	case PGM_STACK_SPECIFICATION:
934 	case PGM_STACK_TYPE:
935 	case PGM_STACK_OPERATION:
936 	case PGM_TRACE_TABEL:
937 	case PGM_CRYPTO_OPERATION:
938 		nullifying = true;
939 		break;
940 	}
941 
942 	if (pgm_info.code & PGM_PER) {
943 		rc |= put_guest_lc(vcpu, pgm_info.per_code,
944 				   (u8 *) __LC_PER_CODE);
945 		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
946 				   (u8 *)__LC_PER_ATMID);
947 		rc |= put_guest_lc(vcpu, pgm_info.per_address,
948 				   (u64 *) __LC_PER_ADDRESS);
949 		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
950 				   (u8 *) __LC_PER_ACCESS_ID);
951 	}
952 
953 	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
954 		kvm_s390_rewind_psw(vcpu, ilen);
955 
956 	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
957 	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
958 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
959 				 (u64 *) __LC_PGM_LAST_BREAK);
960 	rc |= put_guest_lc(vcpu, pgm_info.code,
961 			   (u16 *)__LC_PGM_INT_CODE);
962 	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
963 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
964 	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
965 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
966 	return rc ? -EFAULT : 0;
967 }
968 
969 #define SCCB_MASK 0xFFFFFFF8
970 #define SCCB_EVENT_PENDING 0x3
971 
972 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
973 {
974 	int rc;
975 
976 	if (kvm_s390_pv_cpu_get_handle(vcpu)) {
977 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
978 		vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
979 		vcpu->arch.sie_block->eiparams = parm;
980 		return 0;
981 	}
982 
983 	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
984 	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
985 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
986 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
987 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
988 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
989 	rc |= put_guest_lc(vcpu, parm,
990 			   (u32 *)__LC_EXT_PARAMS);
991 
992 	return rc ? -EFAULT : 0;
993 }
994 
995 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
996 {
997 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
998 	struct kvm_s390_ext_info ext;
999 
1000 	spin_lock(&fi->lock);
1001 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1002 	    !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1003 		spin_unlock(&fi->lock);
1004 		return 0;
1005 	}
1006 	ext = fi->srv_signal;
1007 	memset(&fi->srv_signal, 0, sizeof(ext));
1008 	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1009 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1010 	if (kvm_s390_pv_cpu_is_protected(vcpu))
1011 		set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1012 	spin_unlock(&fi->lock);
1013 
1014 	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1015 		   ext.ext_params);
1016 	vcpu->stat.deliver_service_signal++;
1017 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1018 					 ext.ext_params, 0);
1019 
1020 	return write_sclp(vcpu, ext.ext_params);
1021 }
1022 
1023 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1024 {
1025 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1026 	struct kvm_s390_ext_info ext;
1027 
1028 	spin_lock(&fi->lock);
1029 	if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1030 		spin_unlock(&fi->lock);
1031 		return 0;
1032 	}
1033 	ext = fi->srv_signal;
1034 	/* only clear the event bit */
1035 	fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1036 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1037 	spin_unlock(&fi->lock);
1038 
1039 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1040 	vcpu->stat.deliver_service_signal++;
1041 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1042 					 ext.ext_params, 0);
1043 
1044 	return write_sclp(vcpu, SCCB_EVENT_PENDING);
1045 }
1046 
1047 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1048 {
1049 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1050 	struct kvm_s390_interrupt_info *inti;
1051 	int rc = 0;
1052 
1053 	spin_lock(&fi->lock);
1054 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1055 					struct kvm_s390_interrupt_info,
1056 					list);
1057 	if (inti) {
1058 		list_del(&inti->list);
1059 		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1060 	}
1061 	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1062 		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1063 	spin_unlock(&fi->lock);
1064 
1065 	if (inti) {
1066 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1067 						 KVM_S390_INT_PFAULT_DONE, 0,
1068 						 inti->ext.ext_params2);
1069 		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1070 			   inti->ext.ext_params2);
1071 
1072 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1073 				(u16 *)__LC_EXT_INT_CODE);
1074 		rc |= put_guest_lc(vcpu, PFAULT_DONE,
1075 				(u16 *)__LC_EXT_CPU_ADDR);
1076 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1077 				&vcpu->arch.sie_block->gpsw,
1078 				sizeof(psw_t));
1079 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1080 				&vcpu->arch.sie_block->gpsw,
1081 				sizeof(psw_t));
1082 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1083 				(u64 *)__LC_EXT_PARAMS2);
1084 		kfree(inti);
1085 	}
1086 	return rc ? -EFAULT : 0;
1087 }
1088 
1089 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1090 {
1091 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1092 	struct kvm_s390_interrupt_info *inti;
1093 	int rc = 0;
1094 
1095 	spin_lock(&fi->lock);
1096 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1097 					struct kvm_s390_interrupt_info,
1098 					list);
1099 	if (inti) {
1100 		VCPU_EVENT(vcpu, 4,
1101 			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1102 			   inti->ext.ext_params, inti->ext.ext_params2);
1103 		vcpu->stat.deliver_virtio++;
1104 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1105 				inti->type,
1106 				inti->ext.ext_params,
1107 				inti->ext.ext_params2);
1108 		list_del(&inti->list);
1109 		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1110 	}
1111 	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1112 		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1113 	spin_unlock(&fi->lock);
1114 
1115 	if (inti) {
1116 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1117 				(u16 *)__LC_EXT_INT_CODE);
1118 		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1119 				(u16 *)__LC_EXT_CPU_ADDR);
1120 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1121 				&vcpu->arch.sie_block->gpsw,
1122 				sizeof(psw_t));
1123 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1124 				&vcpu->arch.sie_block->gpsw,
1125 				sizeof(psw_t));
1126 		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1127 				(u32 *)__LC_EXT_PARAMS);
1128 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1129 				(u64 *)__LC_EXT_PARAMS2);
1130 		kfree(inti);
1131 	}
1132 	return rc ? -EFAULT : 0;
1133 }
1134 
1135 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1136 {
1137 	int rc;
1138 
1139 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1140 		vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1141 		vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1142 		vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1143 		vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1144 		vcpu->arch.sie_block->io_int_word = io->io_int_word;
1145 		return 0;
1146 	}
1147 
1148 	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1149 	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1150 	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1151 	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1152 	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1153 			     &vcpu->arch.sie_block->gpsw,
1154 			     sizeof(psw_t));
1155 	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1156 			    &vcpu->arch.sie_block->gpsw,
1157 			    sizeof(psw_t));
1158 	return rc ? -EFAULT : 0;
1159 }
1160 
1161 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1162 				     unsigned long irq_type)
1163 {
1164 	struct list_head *isc_list;
1165 	struct kvm_s390_float_interrupt *fi;
1166 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1167 	struct kvm_s390_interrupt_info *inti = NULL;
1168 	struct kvm_s390_io_info io;
1169 	u32 isc;
1170 	int rc = 0;
1171 
1172 	fi = &vcpu->kvm->arch.float_int;
1173 
1174 	spin_lock(&fi->lock);
1175 	isc = irq_type_to_isc(irq_type);
1176 	isc_list = &fi->lists[isc];
1177 	inti = list_first_entry_or_null(isc_list,
1178 					struct kvm_s390_interrupt_info,
1179 					list);
1180 	if (inti) {
1181 		if (inti->type & KVM_S390_INT_IO_AI_MASK)
1182 			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1183 		else
1184 			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1185 			inti->io.subchannel_id >> 8,
1186 			inti->io.subchannel_id >> 1 & 0x3,
1187 			inti->io.subchannel_nr);
1188 
1189 		vcpu->stat.deliver_io++;
1190 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1191 				inti->type,
1192 				((__u32)inti->io.subchannel_id << 16) |
1193 				inti->io.subchannel_nr,
1194 				((__u64)inti->io.io_int_parm << 32) |
1195 				inti->io.io_int_word);
1196 		list_del(&inti->list);
1197 		fi->counters[FIRQ_CNTR_IO] -= 1;
1198 	}
1199 	if (list_empty(isc_list))
1200 		clear_bit(irq_type, &fi->pending_irqs);
1201 	spin_unlock(&fi->lock);
1202 
1203 	if (inti) {
1204 		rc = __do_deliver_io(vcpu, &(inti->io));
1205 		kfree(inti);
1206 		goto out;
1207 	}
1208 
1209 	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1210 		/*
1211 		 * in case an adapter interrupt was not delivered
1212 		 * in SIE context KVM will handle the delivery
1213 		 */
1214 		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1215 		memset(&io, 0, sizeof(io));
1216 		io.io_int_word = isc_to_int_word(isc);
1217 		vcpu->stat.deliver_io++;
1218 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1219 			KVM_S390_INT_IO(1, 0, 0, 0),
1220 			((__u32)io.subchannel_id << 16) |
1221 			io.subchannel_nr,
1222 			((__u64)io.io_int_parm << 32) |
1223 			io.io_int_word);
1224 		rc = __do_deliver_io(vcpu, &io);
1225 	}
1226 out:
1227 	return rc;
1228 }
1229 
1230 /* Check whether an external call is pending (deliverable or not) */
1231 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1232 {
1233 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1234 
1235 	if (!sclp.has_sigpif)
1236 		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1237 
1238 	return sca_ext_call_pending(vcpu, NULL);
1239 }
1240 
1241 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1242 {
1243 	if (deliverable_irqs(vcpu))
1244 		return 1;
1245 
1246 	if (kvm_cpu_has_pending_timer(vcpu))
1247 		return 1;
1248 
1249 	/* external call pending and deliverable */
1250 	if (kvm_s390_ext_call_pending(vcpu) &&
1251 	    !psw_extint_disabled(vcpu) &&
1252 	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1253 		return 1;
1254 
1255 	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1256 		return 1;
1257 	return 0;
1258 }
1259 
1260 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1261 {
1262 	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1263 }
1264 
1265 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1266 {
1267 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1268 	const u64 ckc = vcpu->arch.sie_block->ckc;
1269 	u64 cputm, sltime = 0;
1270 
1271 	if (ckc_interrupts_enabled(vcpu)) {
1272 		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1273 			if ((s64)now < (s64)ckc)
1274 				sltime = tod_to_ns((s64)ckc - (s64)now);
1275 		} else if (now < ckc) {
1276 			sltime = tod_to_ns(ckc - now);
1277 		}
1278 		/* already expired */
1279 		if (!sltime)
1280 			return 0;
1281 		if (cpu_timer_interrupts_enabled(vcpu)) {
1282 			cputm = kvm_s390_get_cpu_timer(vcpu);
1283 			/* already expired? */
1284 			if (cputm >> 63)
1285 				return 0;
1286 			return min_t(u64, sltime, tod_to_ns(cputm));
1287 		}
1288 	} else if (cpu_timer_interrupts_enabled(vcpu)) {
1289 		sltime = kvm_s390_get_cpu_timer(vcpu);
1290 		/* already expired? */
1291 		if (sltime >> 63)
1292 			return 0;
1293 	}
1294 	return sltime;
1295 }
1296 
1297 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1298 {
1299 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1300 	u64 sltime;
1301 
1302 	vcpu->stat.exit_wait_state++;
1303 
1304 	/* fast path */
1305 	if (kvm_arch_vcpu_runnable(vcpu))
1306 		return 0;
1307 
1308 	if (psw_interrupts_disabled(vcpu)) {
1309 		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1310 		return -EOPNOTSUPP; /* disabled wait */
1311 	}
1312 
1313 	if (gi->origin &&
1314 	    (gisa_get_ipm_or_restore_iam(gi) &
1315 	     vcpu->arch.sie_block->gcr[6] >> 24))
1316 		return 0;
1317 
1318 	if (!ckc_interrupts_enabled(vcpu) &&
1319 	    !cpu_timer_interrupts_enabled(vcpu)) {
1320 		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1321 		__set_cpu_idle(vcpu);
1322 		goto no_timer;
1323 	}
1324 
1325 	sltime = __calculate_sltime(vcpu);
1326 	if (!sltime)
1327 		return 0;
1328 
1329 	__set_cpu_idle(vcpu);
1330 	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1331 	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1332 no_timer:
1333 	kvm_vcpu_srcu_read_unlock(vcpu);
1334 	kvm_vcpu_halt(vcpu);
1335 	vcpu->valid_wakeup = false;
1336 	__unset_cpu_idle(vcpu);
1337 	kvm_vcpu_srcu_read_lock(vcpu);
1338 
1339 	hrtimer_cancel(&vcpu->arch.ckc_timer);
1340 	return 0;
1341 }
1342 
1343 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1344 {
1345 	vcpu->valid_wakeup = true;
1346 	kvm_vcpu_wake_up(vcpu);
1347 
1348 	/*
1349 	 * The VCPU might not be sleeping but rather executing VSIE. Let's
1350 	 * kick it, so it leaves the SIE to process the request.
1351 	 */
1352 	kvm_s390_vsie_kick(vcpu);
1353 }
1354 
1355 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1356 {
1357 	struct kvm_vcpu *vcpu;
1358 	u64 sltime;
1359 
1360 	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1361 	sltime = __calculate_sltime(vcpu);
1362 
1363 	/*
1364 	 * If the monotonic clock runs faster than the tod clock we might be
1365 	 * woken up too early and have to go back to sleep to avoid deadlocks.
1366 	 */
1367 	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1368 		return HRTIMER_RESTART;
1369 	kvm_s390_vcpu_wakeup(vcpu);
1370 	return HRTIMER_NORESTART;
1371 }
1372 
1373 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1374 {
1375 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1376 
1377 	spin_lock(&li->lock);
1378 	li->pending_irqs = 0;
1379 	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1380 	memset(&li->irq, 0, sizeof(li->irq));
1381 	spin_unlock(&li->lock);
1382 
1383 	sca_clear_ext_call(vcpu);
1384 }
1385 
1386 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1387 {
1388 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1389 	int rc = 0;
1390 	bool delivered = false;
1391 	unsigned long irq_type;
1392 	unsigned long irqs;
1393 
1394 	__reset_intercept_indicators(vcpu);
1395 
1396 	/* pending ckc conditions might have been invalidated */
1397 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1398 	if (ckc_irq_pending(vcpu))
1399 		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1400 
1401 	/* pending cpu timer conditions might have been invalidated */
1402 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1403 	if (cpu_timer_irq_pending(vcpu))
1404 		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1405 
1406 	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1407 		/* bits are in the reverse order of interrupt priority */
1408 		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1409 		switch (irq_type) {
1410 		case IRQ_PEND_IO_ISC_0:
1411 		case IRQ_PEND_IO_ISC_1:
1412 		case IRQ_PEND_IO_ISC_2:
1413 		case IRQ_PEND_IO_ISC_3:
1414 		case IRQ_PEND_IO_ISC_4:
1415 		case IRQ_PEND_IO_ISC_5:
1416 		case IRQ_PEND_IO_ISC_6:
1417 		case IRQ_PEND_IO_ISC_7:
1418 			rc = __deliver_io(vcpu, irq_type);
1419 			break;
1420 		case IRQ_PEND_MCHK_EX:
1421 		case IRQ_PEND_MCHK_REP:
1422 			rc = __deliver_machine_check(vcpu);
1423 			break;
1424 		case IRQ_PEND_PROG:
1425 			rc = __deliver_prog(vcpu);
1426 			break;
1427 		case IRQ_PEND_EXT_EMERGENCY:
1428 			rc = __deliver_emergency_signal(vcpu);
1429 			break;
1430 		case IRQ_PEND_EXT_EXTERNAL:
1431 			rc = __deliver_external_call(vcpu);
1432 			break;
1433 		case IRQ_PEND_EXT_CLOCK_COMP:
1434 			rc = __deliver_ckc(vcpu);
1435 			break;
1436 		case IRQ_PEND_EXT_CPU_TIMER:
1437 			rc = __deliver_cpu_timer(vcpu);
1438 			break;
1439 		case IRQ_PEND_RESTART:
1440 			rc = __deliver_restart(vcpu);
1441 			break;
1442 		case IRQ_PEND_SET_PREFIX:
1443 			rc = __deliver_set_prefix(vcpu);
1444 			break;
1445 		case IRQ_PEND_PFAULT_INIT:
1446 			rc = __deliver_pfault_init(vcpu);
1447 			break;
1448 		case IRQ_PEND_EXT_SERVICE:
1449 			rc = __deliver_service(vcpu);
1450 			break;
1451 		case IRQ_PEND_EXT_SERVICE_EV:
1452 			rc = __deliver_service_ev(vcpu);
1453 			break;
1454 		case IRQ_PEND_PFAULT_DONE:
1455 			rc = __deliver_pfault_done(vcpu);
1456 			break;
1457 		case IRQ_PEND_VIRTIO:
1458 			rc = __deliver_virtio(vcpu);
1459 			break;
1460 		default:
1461 			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1462 			clear_bit(irq_type, &li->pending_irqs);
1463 		}
1464 		delivered |= !rc;
1465 	}
1466 
1467 	/*
1468 	 * We delivered at least one interrupt and modified the PC. Force a
1469 	 * singlestep event now.
1470 	 */
1471 	if (delivered && guestdbg_sstep_enabled(vcpu)) {
1472 		struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1473 
1474 		debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1475 		debug_exit->type = KVM_SINGLESTEP;
1476 		vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1477 	}
1478 
1479 	set_intercept_indicators(vcpu);
1480 
1481 	return rc;
1482 }
1483 
1484 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1485 {
1486 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1487 
1488 	vcpu->stat.inject_program++;
1489 	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1490 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1491 				   irq->u.pgm.code, 0);
1492 
1493 	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1494 		/* auto detection if no valid ILC was given */
1495 		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1496 		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1497 		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1498 	}
1499 
1500 	if (irq->u.pgm.code == PGM_PER) {
1501 		li->irq.pgm.code |= PGM_PER;
1502 		li->irq.pgm.flags = irq->u.pgm.flags;
1503 		/* only modify PER related information */
1504 		li->irq.pgm.per_address = irq->u.pgm.per_address;
1505 		li->irq.pgm.per_code = irq->u.pgm.per_code;
1506 		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1507 		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1508 	} else if (!(irq->u.pgm.code & PGM_PER)) {
1509 		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1510 				   irq->u.pgm.code;
1511 		li->irq.pgm.flags = irq->u.pgm.flags;
1512 		/* only modify non-PER information */
1513 		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1514 		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1515 		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1516 		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1517 		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1518 		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1519 	} else {
1520 		li->irq.pgm = irq->u.pgm;
1521 	}
1522 	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1523 	return 0;
1524 }
1525 
1526 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1527 {
1528 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1529 
1530 	vcpu->stat.inject_pfault_init++;
1531 	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1532 		   irq->u.ext.ext_params2);
1533 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1534 				   irq->u.ext.ext_params,
1535 				   irq->u.ext.ext_params2);
1536 
1537 	li->irq.ext = irq->u.ext;
1538 	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1539 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1540 	return 0;
1541 }
1542 
1543 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1544 {
1545 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1546 	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1547 	uint16_t src_id = irq->u.extcall.code;
1548 
1549 	vcpu->stat.inject_external_call++;
1550 	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1551 		   src_id);
1552 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1553 				   src_id, 0);
1554 
1555 	/* sending vcpu invalid */
1556 	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1557 		return -EINVAL;
1558 
1559 	if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1560 		return sca_inject_ext_call(vcpu, src_id);
1561 
1562 	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1563 		return -EBUSY;
1564 	*extcall = irq->u.extcall;
1565 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1566 	return 0;
1567 }
1568 
1569 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1570 {
1571 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1572 	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1573 
1574 	vcpu->stat.inject_set_prefix++;
1575 	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1576 		   irq->u.prefix.address);
1577 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1578 				   irq->u.prefix.address, 0);
1579 
1580 	if (!is_vcpu_stopped(vcpu))
1581 		return -EBUSY;
1582 
1583 	*prefix = irq->u.prefix;
1584 	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1585 	return 0;
1586 }
1587 
1588 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1589 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1590 {
1591 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1592 	struct kvm_s390_stop_info *stop = &li->irq.stop;
1593 	int rc = 0;
1594 
1595 	vcpu->stat.inject_stop_signal++;
1596 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1597 
1598 	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1599 		return -EINVAL;
1600 
1601 	if (is_vcpu_stopped(vcpu)) {
1602 		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1603 			rc = kvm_s390_store_status_unloaded(vcpu,
1604 						KVM_S390_STORE_STATUS_NOADDR);
1605 		return rc;
1606 	}
1607 
1608 	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1609 		return -EBUSY;
1610 	stop->flags = irq->u.stop.flags;
1611 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1612 	return 0;
1613 }
1614 
1615 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1616 {
1617 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1618 
1619 	vcpu->stat.inject_restart++;
1620 	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1621 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1622 
1623 	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1624 	return 0;
1625 }
1626 
1627 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1628 				   struct kvm_s390_irq *irq)
1629 {
1630 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1631 
1632 	vcpu->stat.inject_emergency_signal++;
1633 	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1634 		   irq->u.emerg.code);
1635 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1636 				   irq->u.emerg.code, 0);
1637 
1638 	/* sending vcpu invalid */
1639 	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1640 		return -EINVAL;
1641 
1642 	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1643 	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1644 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1645 	return 0;
1646 }
1647 
1648 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1649 {
1650 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1651 	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1652 
1653 	vcpu->stat.inject_mchk++;
1654 	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1655 		   irq->u.mchk.mcic);
1656 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1657 				   irq->u.mchk.mcic);
1658 
1659 	/*
1660 	 * Because repressible machine checks can be indicated along with
1661 	 * exigent machine checks (PoP, Chapter 11, Interruption action)
1662 	 * we need to combine cr14, mcic and external damage code.
1663 	 * Failing storage address and the logout area should not be or'ed
1664 	 * together, we just indicate the last occurrence of the corresponding
1665 	 * machine check
1666 	 */
1667 	mchk->cr14 |= irq->u.mchk.cr14;
1668 	mchk->mcic |= irq->u.mchk.mcic;
1669 	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1670 	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1671 	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1672 	       sizeof(mchk->fixed_logout));
1673 	if (mchk->mcic & MCHK_EX_MASK)
1674 		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1675 	else if (mchk->mcic & MCHK_REP_MASK)
1676 		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1677 	return 0;
1678 }
1679 
1680 static int __inject_ckc(struct kvm_vcpu *vcpu)
1681 {
1682 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1683 
1684 	vcpu->stat.inject_ckc++;
1685 	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1686 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1687 				   0, 0);
1688 
1689 	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1690 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1691 	return 0;
1692 }
1693 
1694 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1695 {
1696 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1697 
1698 	vcpu->stat.inject_cputm++;
1699 	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1700 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1701 				   0, 0);
1702 
1703 	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1704 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1705 	return 0;
1706 }
1707 
1708 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1709 						  int isc, u32 schid)
1710 {
1711 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1712 	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1713 	struct kvm_s390_interrupt_info *iter;
1714 	u16 id = (schid & 0xffff0000U) >> 16;
1715 	u16 nr = schid & 0x0000ffffU;
1716 
1717 	spin_lock(&fi->lock);
1718 	list_for_each_entry(iter, isc_list, list) {
1719 		if (schid && (id != iter->io.subchannel_id ||
1720 			      nr != iter->io.subchannel_nr))
1721 			continue;
1722 		/* found an appropriate entry */
1723 		list_del_init(&iter->list);
1724 		fi->counters[FIRQ_CNTR_IO] -= 1;
1725 		if (list_empty(isc_list))
1726 			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1727 		spin_unlock(&fi->lock);
1728 		return iter;
1729 	}
1730 	spin_unlock(&fi->lock);
1731 	return NULL;
1732 }
1733 
1734 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1735 						      u64 isc_mask, u32 schid)
1736 {
1737 	struct kvm_s390_interrupt_info *inti = NULL;
1738 	int isc;
1739 
1740 	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1741 		if (isc_mask & isc_to_isc_bits(isc))
1742 			inti = get_io_int(kvm, isc, schid);
1743 	}
1744 	return inti;
1745 }
1746 
1747 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1748 {
1749 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1750 	unsigned long active_mask;
1751 	int isc;
1752 
1753 	if (schid)
1754 		goto out;
1755 	if (!gi->origin)
1756 		goto out;
1757 
1758 	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1759 	while (active_mask) {
1760 		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1761 		if (gisa_tac_ipm_gisc(gi->origin, isc))
1762 			return isc;
1763 		clear_bit_inv(isc, &active_mask);
1764 	}
1765 out:
1766 	return -EINVAL;
1767 }
1768 
1769 /*
1770  * Dequeue and return an I/O interrupt matching any of the interruption
1771  * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1772  * Take into account the interrupts pending in the interrupt list and in GISA.
1773  *
1774  * Note that for a guest that does not enable I/O interrupts
1775  * but relies on TPI, a flood of classic interrupts may starve
1776  * out adapter interrupts on the same isc. Linux does not do
1777  * that, and it is possible to work around the issue by configuring
1778  * different iscs for classic and adapter interrupts in the guest,
1779  * but we may want to revisit this in the future.
1780  */
1781 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1782 						    u64 isc_mask, u32 schid)
1783 {
1784 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1785 	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1786 	int isc;
1787 
1788 	inti = get_top_io_int(kvm, isc_mask, schid);
1789 
1790 	isc = get_top_gisa_isc(kvm, isc_mask, schid);
1791 	if (isc < 0)
1792 		/* no AI in GISA */
1793 		goto out;
1794 
1795 	if (!inti)
1796 		/* AI in GISA but no classical IO int */
1797 		goto gisa_out;
1798 
1799 	/* both types of interrupts present */
1800 	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1801 		/* classical IO int with higher priority */
1802 		gisa_set_ipm_gisc(gi->origin, isc);
1803 		goto out;
1804 	}
1805 gisa_out:
1806 	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1807 	if (tmp_inti) {
1808 		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1809 		tmp_inti->io.io_int_word = isc_to_int_word(isc);
1810 		if (inti)
1811 			kvm_s390_reinject_io_int(kvm, inti);
1812 		inti = tmp_inti;
1813 	} else
1814 		gisa_set_ipm_gisc(gi->origin, isc);
1815 out:
1816 	return inti;
1817 }
1818 
1819 static int __inject_service(struct kvm *kvm,
1820 			     struct kvm_s390_interrupt_info *inti)
1821 {
1822 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1823 
1824 	kvm->stat.inject_service_signal++;
1825 	spin_lock(&fi->lock);
1826 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1827 
1828 	/* We always allow events, track them separately from the sccb ints */
1829 	if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1830 		set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1831 
1832 	/*
1833 	 * Early versions of the QEMU s390 bios will inject several
1834 	 * service interrupts after another without handling a
1835 	 * condition code indicating busy.
1836 	 * We will silently ignore those superfluous sccb values.
1837 	 * A future version of QEMU will take care of serialization
1838 	 * of servc requests
1839 	 */
1840 	if (fi->srv_signal.ext_params & SCCB_MASK)
1841 		goto out;
1842 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1843 	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1844 out:
1845 	spin_unlock(&fi->lock);
1846 	kfree(inti);
1847 	return 0;
1848 }
1849 
1850 static int __inject_virtio(struct kvm *kvm,
1851 			    struct kvm_s390_interrupt_info *inti)
1852 {
1853 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1854 
1855 	kvm->stat.inject_virtio++;
1856 	spin_lock(&fi->lock);
1857 	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1858 		spin_unlock(&fi->lock);
1859 		return -EBUSY;
1860 	}
1861 	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1862 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1863 	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1864 	spin_unlock(&fi->lock);
1865 	return 0;
1866 }
1867 
1868 static int __inject_pfault_done(struct kvm *kvm,
1869 				 struct kvm_s390_interrupt_info *inti)
1870 {
1871 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1872 
1873 	kvm->stat.inject_pfault_done++;
1874 	spin_lock(&fi->lock);
1875 	if (fi->counters[FIRQ_CNTR_PFAULT] >=
1876 		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1877 		spin_unlock(&fi->lock);
1878 		return -EBUSY;
1879 	}
1880 	fi->counters[FIRQ_CNTR_PFAULT] += 1;
1881 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1882 	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1883 	spin_unlock(&fi->lock);
1884 	return 0;
1885 }
1886 
1887 #define CR_PENDING_SUBCLASS 28
1888 static int __inject_float_mchk(struct kvm *kvm,
1889 				struct kvm_s390_interrupt_info *inti)
1890 {
1891 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1892 
1893 	kvm->stat.inject_float_mchk++;
1894 	spin_lock(&fi->lock);
1895 	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1896 	fi->mchk.mcic |= inti->mchk.mcic;
1897 	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1898 	spin_unlock(&fi->lock);
1899 	kfree(inti);
1900 	return 0;
1901 }
1902 
1903 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1904 {
1905 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1906 	struct kvm_s390_float_interrupt *fi;
1907 	struct list_head *list;
1908 	int isc;
1909 
1910 	kvm->stat.inject_io++;
1911 	isc = int_word_to_isc(inti->io.io_int_word);
1912 
1913 	/*
1914 	 * We do not use the lock checking variant as this is just a
1915 	 * performance optimization and we do not hold the lock here.
1916 	 * This is ok as the code will pick interrupts from both "lists"
1917 	 * for delivery.
1918 	 */
1919 	if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1920 		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1921 		gisa_set_ipm_gisc(gi->origin, isc);
1922 		kfree(inti);
1923 		return 0;
1924 	}
1925 
1926 	fi = &kvm->arch.float_int;
1927 	spin_lock(&fi->lock);
1928 	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1929 		spin_unlock(&fi->lock);
1930 		return -EBUSY;
1931 	}
1932 	fi->counters[FIRQ_CNTR_IO] += 1;
1933 
1934 	if (inti->type & KVM_S390_INT_IO_AI_MASK)
1935 		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1936 	else
1937 		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1938 			inti->io.subchannel_id >> 8,
1939 			inti->io.subchannel_id >> 1 & 0x3,
1940 			inti->io.subchannel_nr);
1941 	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1942 	list_add_tail(&inti->list, list);
1943 	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1944 	spin_unlock(&fi->lock);
1945 	return 0;
1946 }
1947 
1948 /*
1949  * Find a destination VCPU for a floating irq and kick it.
1950  */
1951 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1952 {
1953 	struct kvm_vcpu *dst_vcpu;
1954 	int sigcpu, online_vcpus, nr_tries = 0;
1955 
1956 	online_vcpus = atomic_read(&kvm->online_vcpus);
1957 	if (!online_vcpus)
1958 		return;
1959 
1960 	/* find idle VCPUs first, then round robin */
1961 	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1962 	if (sigcpu == online_vcpus) {
1963 		do {
1964 			sigcpu = kvm->arch.float_int.next_rr_cpu++;
1965 			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1966 			/* avoid endless loops if all vcpus are stopped */
1967 			if (nr_tries++ >= online_vcpus)
1968 				return;
1969 		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1970 	}
1971 	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1972 
1973 	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1974 	switch (type) {
1975 	case KVM_S390_MCHK:
1976 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1977 		break;
1978 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1979 		if (!(type & KVM_S390_INT_IO_AI_MASK &&
1980 		      kvm->arch.gisa_int.origin) ||
1981 		      kvm_s390_pv_cpu_get_handle(dst_vcpu))
1982 			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1983 		break;
1984 	default:
1985 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1986 		break;
1987 	}
1988 	kvm_s390_vcpu_wakeup(dst_vcpu);
1989 }
1990 
1991 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1992 {
1993 	u64 type = READ_ONCE(inti->type);
1994 	int rc;
1995 
1996 	switch (type) {
1997 	case KVM_S390_MCHK:
1998 		rc = __inject_float_mchk(kvm, inti);
1999 		break;
2000 	case KVM_S390_INT_VIRTIO:
2001 		rc = __inject_virtio(kvm, inti);
2002 		break;
2003 	case KVM_S390_INT_SERVICE:
2004 		rc = __inject_service(kvm, inti);
2005 		break;
2006 	case KVM_S390_INT_PFAULT_DONE:
2007 		rc = __inject_pfault_done(kvm, inti);
2008 		break;
2009 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2010 		rc = __inject_io(kvm, inti);
2011 		break;
2012 	default:
2013 		rc = -EINVAL;
2014 	}
2015 	if (rc)
2016 		return rc;
2017 
2018 	__floating_irq_kick(kvm, type);
2019 	return 0;
2020 }
2021 
2022 int kvm_s390_inject_vm(struct kvm *kvm,
2023 		       struct kvm_s390_interrupt *s390int)
2024 {
2025 	struct kvm_s390_interrupt_info *inti;
2026 	int rc;
2027 
2028 	inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2029 	if (!inti)
2030 		return -ENOMEM;
2031 
2032 	inti->type = s390int->type;
2033 	switch (inti->type) {
2034 	case KVM_S390_INT_VIRTIO:
2035 		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2036 			 s390int->parm, s390int->parm64);
2037 		inti->ext.ext_params = s390int->parm;
2038 		inti->ext.ext_params2 = s390int->parm64;
2039 		break;
2040 	case KVM_S390_INT_SERVICE:
2041 		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2042 		inti->ext.ext_params = s390int->parm;
2043 		break;
2044 	case KVM_S390_INT_PFAULT_DONE:
2045 		inti->ext.ext_params2 = s390int->parm64;
2046 		break;
2047 	case KVM_S390_MCHK:
2048 		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2049 			 s390int->parm64);
2050 		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2051 		inti->mchk.mcic = s390int->parm64;
2052 		break;
2053 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2054 		inti->io.subchannel_id = s390int->parm >> 16;
2055 		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2056 		inti->io.io_int_parm = s390int->parm64 >> 32;
2057 		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2058 		break;
2059 	default:
2060 		kfree(inti);
2061 		return -EINVAL;
2062 	}
2063 	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2064 				 2);
2065 
2066 	rc = __inject_vm(kvm, inti);
2067 	if (rc)
2068 		kfree(inti);
2069 	return rc;
2070 }
2071 
2072 int kvm_s390_reinject_io_int(struct kvm *kvm,
2073 			      struct kvm_s390_interrupt_info *inti)
2074 {
2075 	return __inject_vm(kvm, inti);
2076 }
2077 
2078 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2079 		       struct kvm_s390_irq *irq)
2080 {
2081 	irq->type = s390int->type;
2082 	switch (irq->type) {
2083 	case KVM_S390_PROGRAM_INT:
2084 		if (s390int->parm & 0xffff0000)
2085 			return -EINVAL;
2086 		irq->u.pgm.code = s390int->parm;
2087 		break;
2088 	case KVM_S390_SIGP_SET_PREFIX:
2089 		irq->u.prefix.address = s390int->parm;
2090 		break;
2091 	case KVM_S390_SIGP_STOP:
2092 		irq->u.stop.flags = s390int->parm;
2093 		break;
2094 	case KVM_S390_INT_EXTERNAL_CALL:
2095 		if (s390int->parm & 0xffff0000)
2096 			return -EINVAL;
2097 		irq->u.extcall.code = s390int->parm;
2098 		break;
2099 	case KVM_S390_INT_EMERGENCY:
2100 		if (s390int->parm & 0xffff0000)
2101 			return -EINVAL;
2102 		irq->u.emerg.code = s390int->parm;
2103 		break;
2104 	case KVM_S390_MCHK:
2105 		irq->u.mchk.mcic = s390int->parm64;
2106 		break;
2107 	case KVM_S390_INT_PFAULT_INIT:
2108 		irq->u.ext.ext_params = s390int->parm;
2109 		irq->u.ext.ext_params2 = s390int->parm64;
2110 		break;
2111 	case KVM_S390_RESTART:
2112 	case KVM_S390_INT_CLOCK_COMP:
2113 	case KVM_S390_INT_CPU_TIMER:
2114 		break;
2115 	default:
2116 		return -EINVAL;
2117 	}
2118 	return 0;
2119 }
2120 
2121 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2122 {
2123 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2124 
2125 	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2126 }
2127 
2128 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2129 {
2130 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2131 
2132 	return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2133 }
2134 
2135 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2136 {
2137 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2138 
2139 	spin_lock(&li->lock);
2140 	li->irq.stop.flags = 0;
2141 	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2142 	spin_unlock(&li->lock);
2143 }
2144 
2145 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2146 {
2147 	int rc;
2148 
2149 	switch (irq->type) {
2150 	case KVM_S390_PROGRAM_INT:
2151 		rc = __inject_prog(vcpu, irq);
2152 		break;
2153 	case KVM_S390_SIGP_SET_PREFIX:
2154 		rc = __inject_set_prefix(vcpu, irq);
2155 		break;
2156 	case KVM_S390_SIGP_STOP:
2157 		rc = __inject_sigp_stop(vcpu, irq);
2158 		break;
2159 	case KVM_S390_RESTART:
2160 		rc = __inject_sigp_restart(vcpu);
2161 		break;
2162 	case KVM_S390_INT_CLOCK_COMP:
2163 		rc = __inject_ckc(vcpu);
2164 		break;
2165 	case KVM_S390_INT_CPU_TIMER:
2166 		rc = __inject_cpu_timer(vcpu);
2167 		break;
2168 	case KVM_S390_INT_EXTERNAL_CALL:
2169 		rc = __inject_extcall(vcpu, irq);
2170 		break;
2171 	case KVM_S390_INT_EMERGENCY:
2172 		rc = __inject_sigp_emergency(vcpu, irq);
2173 		break;
2174 	case KVM_S390_MCHK:
2175 		rc = __inject_mchk(vcpu, irq);
2176 		break;
2177 	case KVM_S390_INT_PFAULT_INIT:
2178 		rc = __inject_pfault_init(vcpu, irq);
2179 		break;
2180 	case KVM_S390_INT_VIRTIO:
2181 	case KVM_S390_INT_SERVICE:
2182 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2183 	default:
2184 		rc = -EINVAL;
2185 	}
2186 
2187 	return rc;
2188 }
2189 
2190 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2191 {
2192 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2193 	int rc;
2194 
2195 	spin_lock(&li->lock);
2196 	rc = do_inject_vcpu(vcpu, irq);
2197 	spin_unlock(&li->lock);
2198 	if (!rc)
2199 		kvm_s390_vcpu_wakeup(vcpu);
2200 	return rc;
2201 }
2202 
2203 static inline void clear_irq_list(struct list_head *_list)
2204 {
2205 	struct kvm_s390_interrupt_info *inti, *n;
2206 
2207 	list_for_each_entry_safe(inti, n, _list, list) {
2208 		list_del(&inti->list);
2209 		kfree(inti);
2210 	}
2211 }
2212 
2213 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2214 		       struct kvm_s390_irq *irq)
2215 {
2216 	irq->type = inti->type;
2217 	switch (inti->type) {
2218 	case KVM_S390_INT_PFAULT_INIT:
2219 	case KVM_S390_INT_PFAULT_DONE:
2220 	case KVM_S390_INT_VIRTIO:
2221 		irq->u.ext = inti->ext;
2222 		break;
2223 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2224 		irq->u.io = inti->io;
2225 		break;
2226 	}
2227 }
2228 
2229 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2230 {
2231 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2232 	int i;
2233 
2234 	mutex_lock(&kvm->lock);
2235 	if (!kvm_s390_pv_is_protected(kvm))
2236 		fi->masked_irqs = 0;
2237 	mutex_unlock(&kvm->lock);
2238 	spin_lock(&fi->lock);
2239 	fi->pending_irqs = 0;
2240 	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2241 	memset(&fi->mchk, 0, sizeof(fi->mchk));
2242 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
2243 		clear_irq_list(&fi->lists[i]);
2244 	for (i = 0; i < FIRQ_MAX_COUNT; i++)
2245 		fi->counters[i] = 0;
2246 	spin_unlock(&fi->lock);
2247 	kvm_s390_gisa_clear(kvm);
2248 };
2249 
2250 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2251 {
2252 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2253 	struct kvm_s390_interrupt_info *inti;
2254 	struct kvm_s390_float_interrupt *fi;
2255 	struct kvm_s390_irq *buf;
2256 	struct kvm_s390_irq *irq;
2257 	int max_irqs;
2258 	int ret = 0;
2259 	int n = 0;
2260 	int i;
2261 
2262 	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2263 		return -EINVAL;
2264 
2265 	/*
2266 	 * We are already using -ENOMEM to signal
2267 	 * userspace it may retry with a bigger buffer,
2268 	 * so we need to use something else for this case
2269 	 */
2270 	buf = vzalloc(len);
2271 	if (!buf)
2272 		return -ENOBUFS;
2273 
2274 	max_irqs = len / sizeof(struct kvm_s390_irq);
2275 
2276 	if (gi->origin && gisa_get_ipm(gi->origin)) {
2277 		for (i = 0; i <= MAX_ISC; i++) {
2278 			if (n == max_irqs) {
2279 				/* signal userspace to try again */
2280 				ret = -ENOMEM;
2281 				goto out_nolock;
2282 			}
2283 			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2284 				irq = (struct kvm_s390_irq *) &buf[n];
2285 				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2286 				irq->u.io.io_int_word = isc_to_int_word(i);
2287 				n++;
2288 			}
2289 		}
2290 	}
2291 	fi = &kvm->arch.float_int;
2292 	spin_lock(&fi->lock);
2293 	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2294 		list_for_each_entry(inti, &fi->lists[i], list) {
2295 			if (n == max_irqs) {
2296 				/* signal userspace to try again */
2297 				ret = -ENOMEM;
2298 				goto out;
2299 			}
2300 			inti_to_irq(inti, &buf[n]);
2301 			n++;
2302 		}
2303 	}
2304 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2305 	    test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2306 		if (n == max_irqs) {
2307 			/* signal userspace to try again */
2308 			ret = -ENOMEM;
2309 			goto out;
2310 		}
2311 		irq = (struct kvm_s390_irq *) &buf[n];
2312 		irq->type = KVM_S390_INT_SERVICE;
2313 		irq->u.ext = fi->srv_signal;
2314 		n++;
2315 	}
2316 	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2317 		if (n == max_irqs) {
2318 				/* signal userspace to try again */
2319 				ret = -ENOMEM;
2320 				goto out;
2321 		}
2322 		irq = (struct kvm_s390_irq *) &buf[n];
2323 		irq->type = KVM_S390_MCHK;
2324 		irq->u.mchk = fi->mchk;
2325 		n++;
2326 }
2327 
2328 out:
2329 	spin_unlock(&fi->lock);
2330 out_nolock:
2331 	if (!ret && n > 0) {
2332 		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2333 			ret = -EFAULT;
2334 	}
2335 	vfree(buf);
2336 
2337 	return ret < 0 ? ret : n;
2338 }
2339 
2340 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2341 {
2342 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2343 	struct kvm_s390_ais_all ais;
2344 
2345 	if (attr->attr < sizeof(ais))
2346 		return -EINVAL;
2347 
2348 	if (!test_kvm_facility(kvm, 72))
2349 		return -EOPNOTSUPP;
2350 
2351 	mutex_lock(&fi->ais_lock);
2352 	ais.simm = fi->simm;
2353 	ais.nimm = fi->nimm;
2354 	mutex_unlock(&fi->ais_lock);
2355 
2356 	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2357 		return -EFAULT;
2358 
2359 	return 0;
2360 }
2361 
2362 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2363 {
2364 	int r;
2365 
2366 	switch (attr->group) {
2367 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2368 		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2369 					  attr->attr);
2370 		break;
2371 	case KVM_DEV_FLIC_AISM_ALL:
2372 		r = flic_ais_mode_get_all(dev->kvm, attr);
2373 		break;
2374 	default:
2375 		r = -EINVAL;
2376 	}
2377 
2378 	return r;
2379 }
2380 
2381 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2382 				     u64 addr)
2383 {
2384 	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2385 	void *target = NULL;
2386 	void __user *source;
2387 	u64 size;
2388 
2389 	if (get_user(inti->type, (u64 __user *)addr))
2390 		return -EFAULT;
2391 
2392 	switch (inti->type) {
2393 	case KVM_S390_INT_PFAULT_INIT:
2394 	case KVM_S390_INT_PFAULT_DONE:
2395 	case KVM_S390_INT_VIRTIO:
2396 	case KVM_S390_INT_SERVICE:
2397 		target = (void *) &inti->ext;
2398 		source = &uptr->u.ext;
2399 		size = sizeof(inti->ext);
2400 		break;
2401 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2402 		target = (void *) &inti->io;
2403 		source = &uptr->u.io;
2404 		size = sizeof(inti->io);
2405 		break;
2406 	case KVM_S390_MCHK:
2407 		target = (void *) &inti->mchk;
2408 		source = &uptr->u.mchk;
2409 		size = sizeof(inti->mchk);
2410 		break;
2411 	default:
2412 		return -EINVAL;
2413 	}
2414 
2415 	if (copy_from_user(target, source, size))
2416 		return -EFAULT;
2417 
2418 	return 0;
2419 }
2420 
2421 static int enqueue_floating_irq(struct kvm_device *dev,
2422 				struct kvm_device_attr *attr)
2423 {
2424 	struct kvm_s390_interrupt_info *inti = NULL;
2425 	int r = 0;
2426 	int len = attr->attr;
2427 
2428 	if (len % sizeof(struct kvm_s390_irq) != 0)
2429 		return -EINVAL;
2430 	else if (len > KVM_S390_FLIC_MAX_BUFFER)
2431 		return -EINVAL;
2432 
2433 	while (len >= sizeof(struct kvm_s390_irq)) {
2434 		inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2435 		if (!inti)
2436 			return -ENOMEM;
2437 
2438 		r = copy_irq_from_user(inti, attr->addr);
2439 		if (r) {
2440 			kfree(inti);
2441 			return r;
2442 		}
2443 		r = __inject_vm(dev->kvm, inti);
2444 		if (r) {
2445 			kfree(inti);
2446 			return r;
2447 		}
2448 		len -= sizeof(struct kvm_s390_irq);
2449 		attr->addr += sizeof(struct kvm_s390_irq);
2450 	}
2451 
2452 	return r;
2453 }
2454 
2455 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2456 {
2457 	if (id >= MAX_S390_IO_ADAPTERS)
2458 		return NULL;
2459 	id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2460 	return kvm->arch.adapters[id];
2461 }
2462 
2463 static int register_io_adapter(struct kvm_device *dev,
2464 			       struct kvm_device_attr *attr)
2465 {
2466 	struct s390_io_adapter *adapter;
2467 	struct kvm_s390_io_adapter adapter_info;
2468 
2469 	if (copy_from_user(&adapter_info,
2470 			   (void __user *)attr->addr, sizeof(adapter_info)))
2471 		return -EFAULT;
2472 
2473 	if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2474 		return -EINVAL;
2475 
2476 	adapter_info.id = array_index_nospec(adapter_info.id,
2477 					     MAX_S390_IO_ADAPTERS);
2478 
2479 	if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2480 		return -EINVAL;
2481 
2482 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2483 	if (!adapter)
2484 		return -ENOMEM;
2485 
2486 	adapter->id = adapter_info.id;
2487 	adapter->isc = adapter_info.isc;
2488 	adapter->maskable = adapter_info.maskable;
2489 	adapter->masked = false;
2490 	adapter->swap = adapter_info.swap;
2491 	adapter->suppressible = (adapter_info.flags) &
2492 				KVM_S390_ADAPTER_SUPPRESSIBLE;
2493 	dev->kvm->arch.adapters[adapter->id] = adapter;
2494 
2495 	return 0;
2496 }
2497 
2498 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2499 {
2500 	int ret;
2501 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2502 
2503 	if (!adapter || !adapter->maskable)
2504 		return -EINVAL;
2505 	ret = adapter->masked;
2506 	adapter->masked = masked;
2507 	return ret;
2508 }
2509 
2510 void kvm_s390_destroy_adapters(struct kvm *kvm)
2511 {
2512 	int i;
2513 
2514 	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2515 		kfree(kvm->arch.adapters[i]);
2516 }
2517 
2518 static int modify_io_adapter(struct kvm_device *dev,
2519 			     struct kvm_device_attr *attr)
2520 {
2521 	struct kvm_s390_io_adapter_req req;
2522 	struct s390_io_adapter *adapter;
2523 	int ret;
2524 
2525 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2526 		return -EFAULT;
2527 
2528 	adapter = get_io_adapter(dev->kvm, req.id);
2529 	if (!adapter)
2530 		return -EINVAL;
2531 	switch (req.type) {
2532 	case KVM_S390_IO_ADAPTER_MASK:
2533 		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2534 		if (ret > 0)
2535 			ret = 0;
2536 		break;
2537 	/*
2538 	 * The following operations are no longer needed and therefore no-ops.
2539 	 * The gpa to hva translation is done when an IRQ route is set up. The
2540 	 * set_irq code uses get_user_pages_remote() to do the actual write.
2541 	 */
2542 	case KVM_S390_IO_ADAPTER_MAP:
2543 	case KVM_S390_IO_ADAPTER_UNMAP:
2544 		ret = 0;
2545 		break;
2546 	default:
2547 		ret = -EINVAL;
2548 	}
2549 
2550 	return ret;
2551 }
2552 
2553 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2554 
2555 {
2556 	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2557 	u32 schid;
2558 
2559 	if (attr->flags)
2560 		return -EINVAL;
2561 	if (attr->attr != sizeof(schid))
2562 		return -EINVAL;
2563 	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2564 		return -EFAULT;
2565 	if (!schid)
2566 		return -EINVAL;
2567 	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2568 	/*
2569 	 * If userspace is conforming to the architecture, we can have at most
2570 	 * one pending I/O interrupt per subchannel, so this is effectively a
2571 	 * clear all.
2572 	 */
2573 	return 0;
2574 }
2575 
2576 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2577 {
2578 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2579 	struct kvm_s390_ais_req req;
2580 	int ret = 0;
2581 
2582 	if (!test_kvm_facility(kvm, 72))
2583 		return -EOPNOTSUPP;
2584 
2585 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2586 		return -EFAULT;
2587 
2588 	if (req.isc > MAX_ISC)
2589 		return -EINVAL;
2590 
2591 	trace_kvm_s390_modify_ais_mode(req.isc,
2592 				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
2593 				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2594 				       2 : KVM_S390_AIS_MODE_SINGLE :
2595 				       KVM_S390_AIS_MODE_ALL, req.mode);
2596 
2597 	mutex_lock(&fi->ais_lock);
2598 	switch (req.mode) {
2599 	case KVM_S390_AIS_MODE_ALL:
2600 		fi->simm &= ~AIS_MODE_MASK(req.isc);
2601 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2602 		break;
2603 	case KVM_S390_AIS_MODE_SINGLE:
2604 		fi->simm |= AIS_MODE_MASK(req.isc);
2605 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2606 		break;
2607 	default:
2608 		ret = -EINVAL;
2609 	}
2610 	mutex_unlock(&fi->ais_lock);
2611 
2612 	return ret;
2613 }
2614 
2615 static int kvm_s390_inject_airq(struct kvm *kvm,
2616 				struct s390_io_adapter *adapter)
2617 {
2618 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2619 	struct kvm_s390_interrupt s390int = {
2620 		.type = KVM_S390_INT_IO(1, 0, 0, 0),
2621 		.parm = 0,
2622 		.parm64 = isc_to_int_word(adapter->isc),
2623 	};
2624 	int ret = 0;
2625 
2626 	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2627 		return kvm_s390_inject_vm(kvm, &s390int);
2628 
2629 	mutex_lock(&fi->ais_lock);
2630 	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2631 		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2632 		goto out;
2633 	}
2634 
2635 	ret = kvm_s390_inject_vm(kvm, &s390int);
2636 	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2637 		fi->nimm |= AIS_MODE_MASK(adapter->isc);
2638 		trace_kvm_s390_modify_ais_mode(adapter->isc,
2639 					       KVM_S390_AIS_MODE_SINGLE, 2);
2640 	}
2641 out:
2642 	mutex_unlock(&fi->ais_lock);
2643 	return ret;
2644 }
2645 
2646 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2647 {
2648 	unsigned int id = attr->attr;
2649 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2650 
2651 	if (!adapter)
2652 		return -EINVAL;
2653 
2654 	return kvm_s390_inject_airq(kvm, adapter);
2655 }
2656 
2657 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2658 {
2659 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2660 	struct kvm_s390_ais_all ais;
2661 
2662 	if (!test_kvm_facility(kvm, 72))
2663 		return -EOPNOTSUPP;
2664 
2665 	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2666 		return -EFAULT;
2667 
2668 	mutex_lock(&fi->ais_lock);
2669 	fi->simm = ais.simm;
2670 	fi->nimm = ais.nimm;
2671 	mutex_unlock(&fi->ais_lock);
2672 
2673 	return 0;
2674 }
2675 
2676 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2677 {
2678 	int r = 0;
2679 	unsigned long i;
2680 	struct kvm_vcpu *vcpu;
2681 
2682 	switch (attr->group) {
2683 	case KVM_DEV_FLIC_ENQUEUE:
2684 		r = enqueue_floating_irq(dev, attr);
2685 		break;
2686 	case KVM_DEV_FLIC_CLEAR_IRQS:
2687 		kvm_s390_clear_float_irqs(dev->kvm);
2688 		break;
2689 	case KVM_DEV_FLIC_APF_ENABLE:
2690 		dev->kvm->arch.gmap->pfault_enabled = 1;
2691 		break;
2692 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2693 		dev->kvm->arch.gmap->pfault_enabled = 0;
2694 		/*
2695 		 * Make sure no async faults are in transition when
2696 		 * clearing the queues. So we don't need to worry
2697 		 * about late coming workers.
2698 		 */
2699 		synchronize_srcu(&dev->kvm->srcu);
2700 		kvm_for_each_vcpu(i, vcpu, dev->kvm)
2701 			kvm_clear_async_pf_completion_queue(vcpu);
2702 		break;
2703 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2704 		r = register_io_adapter(dev, attr);
2705 		break;
2706 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2707 		r = modify_io_adapter(dev, attr);
2708 		break;
2709 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2710 		r = clear_io_irq(dev->kvm, attr);
2711 		break;
2712 	case KVM_DEV_FLIC_AISM:
2713 		r = modify_ais_mode(dev->kvm, attr);
2714 		break;
2715 	case KVM_DEV_FLIC_AIRQ_INJECT:
2716 		r = flic_inject_airq(dev->kvm, attr);
2717 		break;
2718 	case KVM_DEV_FLIC_AISM_ALL:
2719 		r = flic_ais_mode_set_all(dev->kvm, attr);
2720 		break;
2721 	default:
2722 		r = -EINVAL;
2723 	}
2724 
2725 	return r;
2726 }
2727 
2728 static int flic_has_attr(struct kvm_device *dev,
2729 			     struct kvm_device_attr *attr)
2730 {
2731 	switch (attr->group) {
2732 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2733 	case KVM_DEV_FLIC_ENQUEUE:
2734 	case KVM_DEV_FLIC_CLEAR_IRQS:
2735 	case KVM_DEV_FLIC_APF_ENABLE:
2736 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2737 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2738 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2739 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2740 	case KVM_DEV_FLIC_AISM:
2741 	case KVM_DEV_FLIC_AIRQ_INJECT:
2742 	case KVM_DEV_FLIC_AISM_ALL:
2743 		return 0;
2744 	}
2745 	return -ENXIO;
2746 }
2747 
2748 static int flic_create(struct kvm_device *dev, u32 type)
2749 {
2750 	if (!dev)
2751 		return -EINVAL;
2752 	if (dev->kvm->arch.flic)
2753 		return -EINVAL;
2754 	dev->kvm->arch.flic = dev;
2755 	return 0;
2756 }
2757 
2758 static void flic_destroy(struct kvm_device *dev)
2759 {
2760 	dev->kvm->arch.flic = NULL;
2761 	kfree(dev);
2762 }
2763 
2764 /* s390 floating irq controller (flic) */
2765 struct kvm_device_ops kvm_flic_ops = {
2766 	.name = "kvm-flic",
2767 	.get_attr = flic_get_attr,
2768 	.set_attr = flic_set_attr,
2769 	.has_attr = flic_has_attr,
2770 	.create = flic_create,
2771 	.destroy = flic_destroy,
2772 };
2773 
2774 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2775 {
2776 	unsigned long bit;
2777 
2778 	bit = bit_nr + (addr % PAGE_SIZE) * 8;
2779 
2780 	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2781 }
2782 
2783 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2784 {
2785 	struct page *page = NULL;
2786 
2787 	mmap_read_lock(kvm->mm);
2788 	get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2789 			      &page, NULL);
2790 	mmap_read_unlock(kvm->mm);
2791 	return page;
2792 }
2793 
2794 static int adapter_indicators_set(struct kvm *kvm,
2795 				  struct s390_io_adapter *adapter,
2796 				  struct kvm_s390_adapter_int *adapter_int)
2797 {
2798 	unsigned long bit;
2799 	int summary_set, idx;
2800 	struct page *ind_page, *summary_page;
2801 	void *map;
2802 
2803 	ind_page = get_map_page(kvm, adapter_int->ind_addr);
2804 	if (!ind_page)
2805 		return -1;
2806 	summary_page = get_map_page(kvm, adapter_int->summary_addr);
2807 	if (!summary_page) {
2808 		put_page(ind_page);
2809 		return -1;
2810 	}
2811 
2812 	idx = srcu_read_lock(&kvm->srcu);
2813 	map = page_address(ind_page);
2814 	bit = get_ind_bit(adapter_int->ind_addr,
2815 			  adapter_int->ind_offset, adapter->swap);
2816 	set_bit(bit, map);
2817 	mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2818 	set_page_dirty_lock(ind_page);
2819 	map = page_address(summary_page);
2820 	bit = get_ind_bit(adapter_int->summary_addr,
2821 			  adapter_int->summary_offset, adapter->swap);
2822 	summary_set = test_and_set_bit(bit, map);
2823 	mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2824 	set_page_dirty_lock(summary_page);
2825 	srcu_read_unlock(&kvm->srcu, idx);
2826 
2827 	put_page(ind_page);
2828 	put_page(summary_page);
2829 	return summary_set ? 0 : 1;
2830 }
2831 
2832 /*
2833  * < 0 - not injected due to error
2834  * = 0 - coalesced, summary indicator already active
2835  * > 0 - injected interrupt
2836  */
2837 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2838 			   struct kvm *kvm, int irq_source_id, int level,
2839 			   bool line_status)
2840 {
2841 	int ret;
2842 	struct s390_io_adapter *adapter;
2843 
2844 	/* We're only interested in the 0->1 transition. */
2845 	if (!level)
2846 		return 0;
2847 	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2848 	if (!adapter)
2849 		return -1;
2850 	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2851 	if ((ret > 0) && !adapter->masked) {
2852 		ret = kvm_s390_inject_airq(kvm, adapter);
2853 		if (ret == 0)
2854 			ret = 1;
2855 	}
2856 	return ret;
2857 }
2858 
2859 /*
2860  * Inject the machine check to the guest.
2861  */
2862 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2863 				     struct mcck_volatile_info *mcck_info)
2864 {
2865 	struct kvm_s390_interrupt_info inti;
2866 	struct kvm_s390_irq irq;
2867 	struct kvm_s390_mchk_info *mchk;
2868 	union mci mci;
2869 	__u64 cr14 = 0;         /* upper bits are not used */
2870 	int rc;
2871 
2872 	mci.val = mcck_info->mcic;
2873 	if (mci.sr)
2874 		cr14 |= CR14_RECOVERY_SUBMASK;
2875 	if (mci.dg)
2876 		cr14 |= CR14_DEGRADATION_SUBMASK;
2877 	if (mci.w)
2878 		cr14 |= CR14_WARNING_SUBMASK;
2879 
2880 	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2881 	mchk->cr14 = cr14;
2882 	mchk->mcic = mcck_info->mcic;
2883 	mchk->ext_damage_code = mcck_info->ext_damage_code;
2884 	mchk->failing_storage_address = mcck_info->failing_storage_address;
2885 	if (mci.ck) {
2886 		/* Inject the floating machine check */
2887 		inti.type = KVM_S390_MCHK;
2888 		rc = __inject_vm(vcpu->kvm, &inti);
2889 	} else {
2890 		/* Inject the machine check to specified vcpu */
2891 		irq.type = KVM_S390_MCHK;
2892 		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2893 	}
2894 	WARN_ON_ONCE(rc);
2895 }
2896 
2897 int kvm_set_routing_entry(struct kvm *kvm,
2898 			  struct kvm_kernel_irq_routing_entry *e,
2899 			  const struct kvm_irq_routing_entry *ue)
2900 {
2901 	u64 uaddr;
2902 
2903 	switch (ue->type) {
2904 	/* we store the userspace addresses instead of the guest addresses */
2905 	case KVM_IRQ_ROUTING_S390_ADAPTER:
2906 		e->set = set_adapter_int;
2907 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2908 		if (uaddr == -EFAULT)
2909 			return -EFAULT;
2910 		e->adapter.summary_addr = uaddr;
2911 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2912 		if (uaddr == -EFAULT)
2913 			return -EFAULT;
2914 		e->adapter.ind_addr = uaddr;
2915 		e->adapter.summary_offset = ue->u.adapter.summary_offset;
2916 		e->adapter.ind_offset = ue->u.adapter.ind_offset;
2917 		e->adapter.adapter_id = ue->u.adapter.adapter_id;
2918 		return 0;
2919 	default:
2920 		return -EINVAL;
2921 	}
2922 }
2923 
2924 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2925 		int irq_source_id, int level, bool line_status)
2926 {
2927 	return -EINVAL;
2928 }
2929 
2930 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2931 {
2932 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2933 	struct kvm_s390_irq *buf;
2934 	int r = 0;
2935 	int n;
2936 
2937 	buf = vmalloc(len);
2938 	if (!buf)
2939 		return -ENOMEM;
2940 
2941 	if (copy_from_user((void *) buf, irqstate, len)) {
2942 		r = -EFAULT;
2943 		goto out_free;
2944 	}
2945 
2946 	/*
2947 	 * Don't allow setting the interrupt state
2948 	 * when there are already interrupts pending
2949 	 */
2950 	spin_lock(&li->lock);
2951 	if (li->pending_irqs) {
2952 		r = -EBUSY;
2953 		goto out_unlock;
2954 	}
2955 
2956 	for (n = 0; n < len / sizeof(*buf); n++) {
2957 		r = do_inject_vcpu(vcpu, &buf[n]);
2958 		if (r)
2959 			break;
2960 	}
2961 
2962 out_unlock:
2963 	spin_unlock(&li->lock);
2964 out_free:
2965 	vfree(buf);
2966 
2967 	return r;
2968 }
2969 
2970 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2971 			    struct kvm_s390_irq *irq,
2972 			    unsigned long irq_type)
2973 {
2974 	switch (irq_type) {
2975 	case IRQ_PEND_MCHK_EX:
2976 	case IRQ_PEND_MCHK_REP:
2977 		irq->type = KVM_S390_MCHK;
2978 		irq->u.mchk = li->irq.mchk;
2979 		break;
2980 	case IRQ_PEND_PROG:
2981 		irq->type = KVM_S390_PROGRAM_INT;
2982 		irq->u.pgm = li->irq.pgm;
2983 		break;
2984 	case IRQ_PEND_PFAULT_INIT:
2985 		irq->type = KVM_S390_INT_PFAULT_INIT;
2986 		irq->u.ext = li->irq.ext;
2987 		break;
2988 	case IRQ_PEND_EXT_EXTERNAL:
2989 		irq->type = KVM_S390_INT_EXTERNAL_CALL;
2990 		irq->u.extcall = li->irq.extcall;
2991 		break;
2992 	case IRQ_PEND_EXT_CLOCK_COMP:
2993 		irq->type = KVM_S390_INT_CLOCK_COMP;
2994 		break;
2995 	case IRQ_PEND_EXT_CPU_TIMER:
2996 		irq->type = KVM_S390_INT_CPU_TIMER;
2997 		break;
2998 	case IRQ_PEND_SIGP_STOP:
2999 		irq->type = KVM_S390_SIGP_STOP;
3000 		irq->u.stop = li->irq.stop;
3001 		break;
3002 	case IRQ_PEND_RESTART:
3003 		irq->type = KVM_S390_RESTART;
3004 		break;
3005 	case IRQ_PEND_SET_PREFIX:
3006 		irq->type = KVM_S390_SIGP_SET_PREFIX;
3007 		irq->u.prefix = li->irq.prefix;
3008 		break;
3009 	}
3010 }
3011 
3012 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3013 {
3014 	int scn;
3015 	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3016 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3017 	unsigned long pending_irqs;
3018 	struct kvm_s390_irq irq;
3019 	unsigned long irq_type;
3020 	int cpuaddr;
3021 	int n = 0;
3022 
3023 	spin_lock(&li->lock);
3024 	pending_irqs = li->pending_irqs;
3025 	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3026 	       sizeof(sigp_emerg_pending));
3027 	spin_unlock(&li->lock);
3028 
3029 	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3030 		memset(&irq, 0, sizeof(irq));
3031 		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3032 			continue;
3033 		if (n + sizeof(irq) > len)
3034 			return -ENOBUFS;
3035 		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3036 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3037 			return -EFAULT;
3038 		n += sizeof(irq);
3039 	}
3040 
3041 	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3042 		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3043 			memset(&irq, 0, sizeof(irq));
3044 			if (n + sizeof(irq) > len)
3045 				return -ENOBUFS;
3046 			irq.type = KVM_S390_INT_EMERGENCY;
3047 			irq.u.emerg.code = cpuaddr;
3048 			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3049 				return -EFAULT;
3050 			n += sizeof(irq);
3051 		}
3052 	}
3053 
3054 	if (sca_ext_call_pending(vcpu, &scn)) {
3055 		if (n + sizeof(irq) > len)
3056 			return -ENOBUFS;
3057 		memset(&irq, 0, sizeof(irq));
3058 		irq.type = KVM_S390_INT_EXTERNAL_CALL;
3059 		irq.u.extcall.code = scn;
3060 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3061 			return -EFAULT;
3062 		n += sizeof(irq);
3063 	}
3064 
3065 	return n;
3066 }
3067 
3068 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3069 {
3070 	int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3071 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3072 	struct kvm_vcpu *vcpu;
3073 	u8 vcpu_isc_mask;
3074 
3075 	for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3076 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3077 		if (psw_ioint_disabled(vcpu))
3078 			continue;
3079 		vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3080 		if (deliverable_mask & vcpu_isc_mask) {
3081 			/* lately kicked but not yet running */
3082 			if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3083 				return;
3084 			kvm_s390_vcpu_wakeup(vcpu);
3085 			return;
3086 		}
3087 	}
3088 }
3089 
3090 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3091 {
3092 	struct kvm_s390_gisa_interrupt *gi =
3093 		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3094 	struct kvm *kvm =
3095 		container_of(gi->origin, struct sie_page2, gisa)->kvm;
3096 	u8 pending_mask;
3097 
3098 	pending_mask = gisa_get_ipm_or_restore_iam(gi);
3099 	if (pending_mask) {
3100 		__airqs_kick_single_vcpu(kvm, pending_mask);
3101 		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3102 		return HRTIMER_RESTART;
3103 	}
3104 
3105 	return HRTIMER_NORESTART;
3106 }
3107 
3108 #define NULL_GISA_ADDR 0x00000000UL
3109 #define NONE_GISA_ADDR 0x00000001UL
3110 #define GISA_ADDR_MASK 0xfffff000UL
3111 
3112 static void process_gib_alert_list(void)
3113 {
3114 	struct kvm_s390_gisa_interrupt *gi;
3115 	u32 final, gisa_phys, origin = 0UL;
3116 	struct kvm_s390_gisa *gisa;
3117 	struct kvm *kvm;
3118 
3119 	do {
3120 		/*
3121 		 * If the NONE_GISA_ADDR is still stored in the alert list
3122 		 * origin, we will leave the outer loop. No further GISA has
3123 		 * been added to the alert list by millicode while processing
3124 		 * the current alert list.
3125 		 */
3126 		final = (origin & NONE_GISA_ADDR);
3127 		/*
3128 		 * Cut off the alert list and store the NONE_GISA_ADDR in the
3129 		 * alert list origin to avoid further GAL interruptions.
3130 		 * A new alert list can be build up by millicode in parallel
3131 		 * for guests not in the yet cut-off alert list. When in the
3132 		 * final loop, store the NULL_GISA_ADDR instead. This will re-
3133 		 * enable GAL interruptions on the host again.
3134 		 */
3135 		origin = xchg(&gib->alert_list_origin,
3136 			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3137 		/*
3138 		 * Loop through the just cut-off alert list and start the
3139 		 * gisa timers to kick idle vcpus to consume the pending
3140 		 * interruptions asap.
3141 		 */
3142 		while (origin & GISA_ADDR_MASK) {
3143 			gisa_phys = origin;
3144 			gisa = phys_to_virt(gisa_phys);
3145 			origin = gisa->next_alert;
3146 			gisa->next_alert = gisa_phys;
3147 			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3148 			gi = &kvm->arch.gisa_int;
3149 			if (hrtimer_active(&gi->timer))
3150 				hrtimer_cancel(&gi->timer);
3151 			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3152 		}
3153 	} while (!final);
3154 
3155 }
3156 
3157 void kvm_s390_gisa_clear(struct kvm *kvm)
3158 {
3159 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3160 
3161 	if (!gi->origin)
3162 		return;
3163 	gisa_clear_ipm(gi->origin);
3164 	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3165 }
3166 
3167 void kvm_s390_gisa_init(struct kvm *kvm)
3168 {
3169 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3170 
3171 	if (!css_general_characteristics.aiv)
3172 		return;
3173 	gi->origin = &kvm->arch.sie_page2->gisa;
3174 	gi->alert.mask = 0;
3175 	spin_lock_init(&gi->alert.ref_lock);
3176 	gi->expires = 50 * 1000; /* 50 usec */
3177 	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3178 	gi->timer.function = gisa_vcpu_kicker;
3179 	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3180 	gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3181 	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3182 }
3183 
3184 void kvm_s390_gisa_enable(struct kvm *kvm)
3185 {
3186 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3187 	struct kvm_vcpu *vcpu;
3188 	unsigned long i;
3189 	u32 gisa_desc;
3190 
3191 	if (gi->origin)
3192 		return;
3193 	kvm_s390_gisa_init(kvm);
3194 	gisa_desc = kvm_s390_get_gisa_desc(kvm);
3195 	if (!gisa_desc)
3196 		return;
3197 	kvm_for_each_vcpu(i, vcpu, kvm) {
3198 		mutex_lock(&vcpu->mutex);
3199 		vcpu->arch.sie_block->gd = gisa_desc;
3200 		vcpu->arch.sie_block->eca |= ECA_AIV;
3201 		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3202 			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3203 		mutex_unlock(&vcpu->mutex);
3204 	}
3205 }
3206 
3207 void kvm_s390_gisa_destroy(struct kvm *kvm)
3208 {
3209 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3210 	struct kvm_s390_gisa *gisa = gi->origin;
3211 
3212 	if (!gi->origin)
3213 		return;
3214 	WARN(gi->alert.mask != 0x00,
3215 	     "unexpected non zero alert.mask 0x%02x",
3216 	     gi->alert.mask);
3217 	gi->alert.mask = 0x00;
3218 	if (gisa_set_iam(gi->origin, gi->alert.mask))
3219 		process_gib_alert_list();
3220 	hrtimer_cancel(&gi->timer);
3221 	gi->origin = NULL;
3222 	VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa);
3223 }
3224 
3225 void kvm_s390_gisa_disable(struct kvm *kvm)
3226 {
3227 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3228 	struct kvm_vcpu *vcpu;
3229 	unsigned long i;
3230 
3231 	if (!gi->origin)
3232 		return;
3233 	kvm_for_each_vcpu(i, vcpu, kvm) {
3234 		mutex_lock(&vcpu->mutex);
3235 		vcpu->arch.sie_block->eca &= ~ECA_AIV;
3236 		vcpu->arch.sie_block->gd = 0U;
3237 		mutex_unlock(&vcpu->mutex);
3238 		VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3239 	}
3240 	kvm_s390_gisa_destroy(kvm);
3241 }
3242 
3243 /**
3244  * kvm_s390_gisc_register - register a guest ISC
3245  *
3246  * @kvm:  the kernel vm to work with
3247  * @gisc: the guest interruption sub class to register
3248  *
3249  * The function extends the vm specific alert mask to use.
3250  * The effective IAM mask in the GISA is updated as well
3251  * in case the GISA is not part of the GIB alert list.
3252  * It will be updated latest when the IAM gets restored
3253  * by gisa_get_ipm_or_restore_iam().
3254  *
3255  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3256  *          has registered with the channel subsystem.
3257  *          -ENODEV in case the vm uses no GISA
3258  *          -ERANGE in case the guest ISC is invalid
3259  */
3260 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3261 {
3262 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3263 
3264 	if (!gi->origin)
3265 		return -ENODEV;
3266 	if (gisc > MAX_ISC)
3267 		return -ERANGE;
3268 
3269 	spin_lock(&gi->alert.ref_lock);
3270 	gi->alert.ref_count[gisc]++;
3271 	if (gi->alert.ref_count[gisc] == 1) {
3272 		gi->alert.mask |= 0x80 >> gisc;
3273 		gisa_set_iam(gi->origin, gi->alert.mask);
3274 	}
3275 	spin_unlock(&gi->alert.ref_lock);
3276 
3277 	return gib->nisc;
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3280 
3281 /**
3282  * kvm_s390_gisc_unregister - unregister a guest ISC
3283  *
3284  * @kvm:  the kernel vm to work with
3285  * @gisc: the guest interruption sub class to register
3286  *
3287  * The function reduces the vm specific alert mask to use.
3288  * The effective IAM mask in the GISA is updated as well
3289  * in case the GISA is not part of the GIB alert list.
3290  * It will be updated latest when the IAM gets restored
3291  * by gisa_get_ipm_or_restore_iam().
3292  *
3293  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3294  *          has registered with the channel subsystem.
3295  *          -ENODEV in case the vm uses no GISA
3296  *          -ERANGE in case the guest ISC is invalid
3297  *          -EINVAL in case the guest ISC is not registered
3298  */
3299 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3300 {
3301 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3302 	int rc = 0;
3303 
3304 	if (!gi->origin)
3305 		return -ENODEV;
3306 	if (gisc > MAX_ISC)
3307 		return -ERANGE;
3308 
3309 	spin_lock(&gi->alert.ref_lock);
3310 	if (gi->alert.ref_count[gisc] == 0) {
3311 		rc = -EINVAL;
3312 		goto out;
3313 	}
3314 	gi->alert.ref_count[gisc]--;
3315 	if (gi->alert.ref_count[gisc] == 0) {
3316 		gi->alert.mask &= ~(0x80 >> gisc);
3317 		gisa_set_iam(gi->origin, gi->alert.mask);
3318 	}
3319 out:
3320 	spin_unlock(&gi->alert.ref_lock);
3321 
3322 	return rc;
3323 }
3324 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3325 
3326 static void aen_host_forward(unsigned long si)
3327 {
3328 	struct kvm_s390_gisa_interrupt *gi;
3329 	struct zpci_gaite *gaite;
3330 	struct kvm *kvm;
3331 
3332 	gaite = (struct zpci_gaite *)aift->gait +
3333 		(si * sizeof(struct zpci_gaite));
3334 	if (gaite->count == 0)
3335 		return;
3336 	if (gaite->aisb != 0)
3337 		set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3338 
3339 	kvm = kvm_s390_pci_si_to_kvm(aift, si);
3340 	if (!kvm)
3341 		return;
3342 	gi = &kvm->arch.gisa_int;
3343 
3344 	if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3345 	    !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3346 		gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3347 		if (hrtimer_active(&gi->timer))
3348 			hrtimer_cancel(&gi->timer);
3349 		hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3350 		kvm->stat.aen_forward++;
3351 	}
3352 }
3353 
3354 static void aen_process_gait(u8 isc)
3355 {
3356 	bool found = false, first = true;
3357 	union zpci_sic_iib iib = {{0}};
3358 	unsigned long si, flags;
3359 
3360 	spin_lock_irqsave(&aift->gait_lock, flags);
3361 
3362 	if (!aift->gait) {
3363 		spin_unlock_irqrestore(&aift->gait_lock, flags);
3364 		return;
3365 	}
3366 
3367 	for (si = 0;;) {
3368 		/* Scan adapter summary indicator bit vector */
3369 		si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3370 		if (si == -1UL) {
3371 			if (first || found) {
3372 				/* Re-enable interrupts. */
3373 				zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3374 						  &iib);
3375 				first = found = false;
3376 			} else {
3377 				/* Interrupts on and all bits processed */
3378 				break;
3379 			}
3380 			found = false;
3381 			si = 0;
3382 			/* Scan again after re-enabling interrupts */
3383 			continue;
3384 		}
3385 		found = true;
3386 		aen_host_forward(si);
3387 	}
3388 
3389 	spin_unlock_irqrestore(&aift->gait_lock, flags);
3390 }
3391 
3392 static void gib_alert_irq_handler(struct airq_struct *airq,
3393 				  struct tpi_info *tpi_info)
3394 {
3395 	struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3396 
3397 	inc_irq_stat(IRQIO_GAL);
3398 
3399 	if ((info->forward || info->error) &&
3400 	    IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3401 		aen_process_gait(info->isc);
3402 		if (info->aism != 0)
3403 			process_gib_alert_list();
3404 	} else {
3405 		process_gib_alert_list();
3406 	}
3407 }
3408 
3409 static struct airq_struct gib_alert_irq = {
3410 	.handler = gib_alert_irq_handler,
3411 };
3412 
3413 void kvm_s390_gib_destroy(void)
3414 {
3415 	if (!gib)
3416 		return;
3417 	if (kvm_s390_pci_interp_allowed() && aift) {
3418 		mutex_lock(&aift->aift_lock);
3419 		kvm_s390_pci_aen_exit();
3420 		mutex_unlock(&aift->aift_lock);
3421 	}
3422 	chsc_sgib(0);
3423 	unregister_adapter_interrupt(&gib_alert_irq);
3424 	free_page((unsigned long)gib);
3425 	gib = NULL;
3426 }
3427 
3428 int __init kvm_s390_gib_init(u8 nisc)
3429 {
3430 	u32 gib_origin;
3431 	int rc = 0;
3432 
3433 	if (!css_general_characteristics.aiv) {
3434 		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3435 		goto out;
3436 	}
3437 
3438 	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3439 	if (!gib) {
3440 		rc = -ENOMEM;
3441 		goto out;
3442 	}
3443 
3444 	gib_alert_irq.isc = nisc;
3445 	if (register_adapter_interrupt(&gib_alert_irq)) {
3446 		pr_err("Registering the GIB alert interruption handler failed\n");
3447 		rc = -EIO;
3448 		goto out_free_gib;
3449 	}
3450 	/* adapter interrupts used for AP (applicable here) don't use the LSI */
3451 	*gib_alert_irq.lsi_ptr = 0xff;
3452 
3453 	gib->nisc = nisc;
3454 	gib_origin = virt_to_phys(gib);
3455 	if (chsc_sgib(gib_origin)) {
3456 		pr_err("Associating the GIB with the AIV facility failed\n");
3457 		free_page((unsigned long)gib);
3458 		gib = NULL;
3459 		rc = -EIO;
3460 		goto out_unreg_gal;
3461 	}
3462 
3463 	if (kvm_s390_pci_interp_allowed()) {
3464 		if (kvm_s390_pci_aen_init(nisc)) {
3465 			pr_err("Initializing AEN for PCI failed\n");
3466 			rc = -EIO;
3467 			goto out_unreg_gal;
3468 		}
3469 	}
3470 
3471 	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3472 	goto out;
3473 
3474 out_unreg_gal:
3475 	unregister_adapter_interrupt(&gib_alert_irq);
3476 out_free_gib:
3477 	free_page((unsigned long)gib);
3478 	gib = NULL;
3479 out:
3480 	return rc;
3481 }
3482