xref: /linux/arch/s390/kvm/guestdbg.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * kvm guest debug support
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License (version 2 only)
8  * as published by the Free Software Foundation.
9  *
10  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
11  */
12 #include <linux/kvm_host.h>
13 #include <linux/errno.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 
17 /*
18  * Extends the address range given by *start and *stop to include the address
19  * range starting with estart and the length len. Takes care of overflowing
20  * intervals and tries to minimize the overall interval size.
21  */
22 static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len)
23 {
24 	u64 estop;
25 
26 	if (len > 0)
27 		len--;
28 	else
29 		len = 0;
30 
31 	estop = estart + len;
32 
33 	/* 0-0 range represents "not set" */
34 	if ((*start == 0) && (*stop == 0)) {
35 		*start = estart;
36 		*stop = estop;
37 	} else if (*start <= *stop) {
38 		/* increase the existing range */
39 		if (estart < *start)
40 			*start = estart;
41 		if (estop > *stop)
42 			*stop = estop;
43 	} else {
44 		/* "overflowing" interval, whereby *stop > *start */
45 		if (estart <= *stop) {
46 			if (estop > *stop)
47 				*stop = estop;
48 		} else if (estop > *start) {
49 			if (estart < *start)
50 				*start = estart;
51 		}
52 		/* minimize the range */
53 		else if ((estop - *stop) < (*start - estart))
54 			*stop = estop;
55 		else
56 			*start = estart;
57 	}
58 }
59 
60 #define MAX_INST_SIZE 6
61 
62 static void enable_all_hw_bp(struct kvm_vcpu *vcpu)
63 {
64 	unsigned long start, len;
65 	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
66 	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
67 	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
68 	int i;
69 
70 	if (vcpu->arch.guestdbg.nr_hw_bp <= 0 ||
71 	    vcpu->arch.guestdbg.hw_bp_info == NULL)
72 		return;
73 
74 	/*
75 	 * If the guest is not interested in branching events, we can safely
76 	 * limit them to the PER address range.
77 	 */
78 	if (!(*cr9 & PER_EVENT_BRANCH))
79 		*cr9 |= PER_CONTROL_BRANCH_ADDRESS;
80 	*cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH;
81 
82 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
83 		start = vcpu->arch.guestdbg.hw_bp_info[i].addr;
84 		len = vcpu->arch.guestdbg.hw_bp_info[i].len;
85 
86 		/*
87 		 * The instruction in front of the desired bp has to
88 		 * report instruction-fetching events
89 		 */
90 		if (start < MAX_INST_SIZE) {
91 			len += start;
92 			start = 0;
93 		} else {
94 			start -= MAX_INST_SIZE;
95 			len += MAX_INST_SIZE;
96 		}
97 
98 		extend_address_range(cr10, cr11, start, len);
99 	}
100 }
101 
102 static void enable_all_hw_wp(struct kvm_vcpu *vcpu)
103 {
104 	unsigned long start, len;
105 	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
106 	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
107 	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
108 	int i;
109 
110 	if (vcpu->arch.guestdbg.nr_hw_wp <= 0 ||
111 	    vcpu->arch.guestdbg.hw_wp_info == NULL)
112 		return;
113 
114 	/* if host uses storage alternation for special address
115 	 * spaces, enable all events and give all to the guest */
116 	if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) {
117 		*cr9 &= ~PER_CONTROL_ALTERATION;
118 		*cr10 = 0;
119 		*cr11 = -1UL;
120 	} else {
121 		*cr9 &= ~PER_CONTROL_ALTERATION;
122 		*cr9 |= PER_EVENT_STORE;
123 
124 		for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
125 			start = vcpu->arch.guestdbg.hw_wp_info[i].addr;
126 			len = vcpu->arch.guestdbg.hw_wp_info[i].len;
127 
128 			extend_address_range(cr10, cr11, start, len);
129 		}
130 	}
131 }
132 
133 void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu)
134 {
135 	vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0];
136 	vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9];
137 	vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10];
138 	vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11];
139 }
140 
141 void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu)
142 {
143 	vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0;
144 	vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9;
145 	vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10;
146 	vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11;
147 }
148 
149 void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu)
150 {
151 	/*
152 	 * TODO: if guest psw has per enabled, otherwise 0s!
153 	 * This reduces the amount of reported events.
154 	 * Need to intercept all psw changes!
155 	 */
156 
157 	if (guestdbg_sstep_enabled(vcpu)) {
158 		/* disable timer (clock-comparator) interrupts */
159 		vcpu->arch.sie_block->gcr[0] &= ~0x800ul;
160 		vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH;
161 		vcpu->arch.sie_block->gcr[10] = 0;
162 		vcpu->arch.sie_block->gcr[11] = -1UL;
163 	}
164 
165 	if (guestdbg_hw_bp_enabled(vcpu)) {
166 		enable_all_hw_bp(vcpu);
167 		enable_all_hw_wp(vcpu);
168 	}
169 
170 	/* TODO: Instruction-fetching-nullification not allowed for now */
171 	if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION)
172 		vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION;
173 }
174 
175 #define MAX_WP_SIZE 100
176 
177 static int __import_wp_info(struct kvm_vcpu *vcpu,
178 			    struct kvm_hw_breakpoint *bp_data,
179 			    struct kvm_hw_wp_info_arch *wp_info)
180 {
181 	int ret = 0;
182 	wp_info->len = bp_data->len;
183 	wp_info->addr = bp_data->addr;
184 	wp_info->phys_addr = bp_data->phys_addr;
185 	wp_info->old_data = NULL;
186 
187 	if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE)
188 		return -EINVAL;
189 
190 	wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL);
191 	if (!wp_info->old_data)
192 		return -ENOMEM;
193 	/* try to backup the original value */
194 	ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data,
195 			     wp_info->len);
196 	if (ret) {
197 		kfree(wp_info->old_data);
198 		wp_info->old_data = NULL;
199 	}
200 
201 	return ret;
202 }
203 
204 #define MAX_BP_COUNT 50
205 
206 int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu,
207 			    struct kvm_guest_debug *dbg)
208 {
209 	int ret = 0, nr_wp = 0, nr_bp = 0, i;
210 	struct kvm_hw_breakpoint *bp_data = NULL;
211 	struct kvm_hw_wp_info_arch *wp_info = NULL;
212 	struct kvm_hw_bp_info_arch *bp_info = NULL;
213 
214 	if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp)
215 		return 0;
216 	else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT)
217 		return -EINVAL;
218 
219 	bp_data = memdup_user(dbg->arch.hw_bp,
220 			      sizeof(*bp_data) * dbg->arch.nr_hw_bp);
221 	if (IS_ERR(bp_data))
222 		return PTR_ERR(bp_data);
223 
224 	for (i = 0; i < dbg->arch.nr_hw_bp; i++) {
225 		switch (bp_data[i].type) {
226 		case KVM_HW_WP_WRITE:
227 			nr_wp++;
228 			break;
229 		case KVM_HW_BP:
230 			nr_bp++;
231 			break;
232 		default:
233 			break;
234 		}
235 	}
236 
237 	if (nr_wp > 0) {
238 		wp_info = kmalloc_array(nr_wp,
239 					sizeof(*wp_info),
240 					GFP_KERNEL);
241 		if (!wp_info) {
242 			ret = -ENOMEM;
243 			goto error;
244 		}
245 	}
246 	if (nr_bp > 0) {
247 		bp_info = kmalloc_array(nr_bp,
248 					sizeof(*bp_info),
249 					GFP_KERNEL);
250 		if (!bp_info) {
251 			ret = -ENOMEM;
252 			goto error;
253 		}
254 	}
255 
256 	for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) {
257 		switch (bp_data[i].type) {
258 		case KVM_HW_WP_WRITE:
259 			ret = __import_wp_info(vcpu, &bp_data[i],
260 					       &wp_info[nr_wp]);
261 			if (ret)
262 				goto error;
263 			nr_wp++;
264 			break;
265 		case KVM_HW_BP:
266 			bp_info[nr_bp].len = bp_data[i].len;
267 			bp_info[nr_bp].addr = bp_data[i].addr;
268 			nr_bp++;
269 			break;
270 		}
271 	}
272 
273 	vcpu->arch.guestdbg.nr_hw_bp = nr_bp;
274 	vcpu->arch.guestdbg.hw_bp_info = bp_info;
275 	vcpu->arch.guestdbg.nr_hw_wp = nr_wp;
276 	vcpu->arch.guestdbg.hw_wp_info = wp_info;
277 	return 0;
278 error:
279 	kfree(bp_data);
280 	kfree(wp_info);
281 	kfree(bp_info);
282 	return ret;
283 }
284 
285 void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu)
286 {
287 	int i;
288 	struct kvm_hw_wp_info_arch *hw_wp_info = NULL;
289 
290 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
291 		hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
292 		kfree(hw_wp_info->old_data);
293 		hw_wp_info->old_data = NULL;
294 	}
295 	kfree(vcpu->arch.guestdbg.hw_wp_info);
296 	vcpu->arch.guestdbg.hw_wp_info = NULL;
297 
298 	kfree(vcpu->arch.guestdbg.hw_bp_info);
299 	vcpu->arch.guestdbg.hw_bp_info = NULL;
300 
301 	vcpu->arch.guestdbg.nr_hw_wp = 0;
302 	vcpu->arch.guestdbg.nr_hw_bp = 0;
303 }
304 
305 static inline int in_addr_range(u64 addr, u64 a, u64 b)
306 {
307 	if (a <= b)
308 		return (addr >= a) && (addr <= b);
309 	else
310 		/* "overflowing" interval */
311 		return (addr <= a) && (addr >= b);
312 }
313 
314 #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1)
315 
316 static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu,
317 					      unsigned long addr)
318 {
319 	struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info;
320 	int i;
321 
322 	if (vcpu->arch.guestdbg.nr_hw_bp == 0)
323 		return NULL;
324 
325 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
326 		/* addr is directly the start or in the range of a bp */
327 		if (addr == bp_info->addr)
328 			goto found;
329 		if (bp_info->len > 0 &&
330 		    in_addr_range(addr, bp_info->addr, end_of_range(bp_info)))
331 			goto found;
332 
333 		bp_info++;
334 	}
335 
336 	return NULL;
337 found:
338 	return bp_info;
339 }
340 
341 static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu)
342 {
343 	int i;
344 	struct kvm_hw_wp_info_arch *wp_info = NULL;
345 	void *temp = NULL;
346 
347 	if (vcpu->arch.guestdbg.nr_hw_wp == 0)
348 		return NULL;
349 
350 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
351 		wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
352 		if (!wp_info || !wp_info->old_data || wp_info->len <= 0)
353 			continue;
354 
355 		temp = kmalloc(wp_info->len, GFP_KERNEL);
356 		if (!temp)
357 			continue;
358 
359 		/* refetch the wp data and compare it to the old value */
360 		if (!read_guest_abs(vcpu, wp_info->phys_addr, temp,
361 				    wp_info->len)) {
362 			if (memcmp(temp, wp_info->old_data, wp_info->len)) {
363 				kfree(temp);
364 				return wp_info;
365 			}
366 		}
367 		kfree(temp);
368 		temp = NULL;
369 	}
370 
371 	return NULL;
372 }
373 
374 void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu)
375 {
376 	vcpu->run->exit_reason = KVM_EXIT_DEBUG;
377 	vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
378 }
379 
380 #define PER_CODE_MASK		(PER_EVENT_MASK >> 24)
381 #define PER_CODE_BRANCH		(PER_EVENT_BRANCH >> 24)
382 #define PER_CODE_IFETCH		(PER_EVENT_IFETCH >> 24)
383 #define PER_CODE_STORE		(PER_EVENT_STORE >> 24)
384 #define PER_CODE_STORE_REAL	(PER_EVENT_STORE_REAL >> 24)
385 
386 #define per_bp_event(code) \
387 			(code & (PER_CODE_IFETCH | PER_CODE_BRANCH))
388 #define per_write_wp_event(code) \
389 			(code & (PER_CODE_STORE | PER_CODE_STORE_REAL))
390 
391 static int debug_exit_required(struct kvm_vcpu *vcpu)
392 {
393 	u8 perc = vcpu->arch.sie_block->perc;
394 	struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
395 	struct kvm_hw_wp_info_arch *wp_info = NULL;
396 	struct kvm_hw_bp_info_arch *bp_info = NULL;
397 	unsigned long addr = vcpu->arch.sie_block->gpsw.addr;
398 	unsigned long peraddr = vcpu->arch.sie_block->peraddr;
399 
400 	if (guestdbg_hw_bp_enabled(vcpu)) {
401 		if (per_write_wp_event(perc) &&
402 		    vcpu->arch.guestdbg.nr_hw_wp > 0) {
403 			wp_info = any_wp_changed(vcpu);
404 			if (wp_info) {
405 				debug_exit->addr = wp_info->addr;
406 				debug_exit->type = KVM_HW_WP_WRITE;
407 				goto exit_required;
408 			}
409 		}
410 		if (per_bp_event(perc) &&
411 			 vcpu->arch.guestdbg.nr_hw_bp > 0) {
412 			bp_info = find_hw_bp(vcpu, addr);
413 			/* remove duplicate events if PC==PER address */
414 			if (bp_info && (addr != peraddr)) {
415 				debug_exit->addr = addr;
416 				debug_exit->type = KVM_HW_BP;
417 				vcpu->arch.guestdbg.last_bp = addr;
418 				goto exit_required;
419 			}
420 			/* breakpoint missed */
421 			bp_info = find_hw_bp(vcpu, peraddr);
422 			if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) {
423 				debug_exit->addr = peraddr;
424 				debug_exit->type = KVM_HW_BP;
425 				goto exit_required;
426 			}
427 		}
428 	}
429 	if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) {
430 		debug_exit->addr = addr;
431 		debug_exit->type = KVM_SINGLESTEP;
432 		goto exit_required;
433 	}
434 
435 	return 0;
436 exit_required:
437 	return 1;
438 }
439 
440 #define guest_per_enabled(vcpu) \
441 			     (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER)
442 
443 int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu)
444 {
445 	const u8 ilen = kvm_s390_get_ilen(vcpu);
446 	struct kvm_s390_pgm_info pgm_info = {
447 		.code = PGM_PER,
448 		.per_code = PER_CODE_IFETCH,
449 		.per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen),
450 	};
451 
452 	/*
453 	 * The PSW points to the next instruction, therefore the intercepted
454 	 * instruction generated a PER i-fetch event. PER address therefore
455 	 * points at the previous PSW address (could be an EXECUTE function).
456 	 */
457 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
458 }
459 
460 static void filter_guest_per_event(struct kvm_vcpu *vcpu)
461 {
462 	const u8 perc = vcpu->arch.sie_block->perc;
463 	u64 peraddr = vcpu->arch.sie_block->peraddr;
464 	u64 addr = vcpu->arch.sie_block->gpsw.addr;
465 	u64 cr9 = vcpu->arch.sie_block->gcr[9];
466 	u64 cr10 = vcpu->arch.sie_block->gcr[10];
467 	u64 cr11 = vcpu->arch.sie_block->gcr[11];
468 	/* filter all events, demanded by the guest */
469 	u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK;
470 
471 	if (!guest_per_enabled(vcpu))
472 		guest_perc = 0;
473 
474 	/* filter "successful-branching" events */
475 	if (guest_perc & PER_CODE_BRANCH &&
476 	    cr9 & PER_CONTROL_BRANCH_ADDRESS &&
477 	    !in_addr_range(addr, cr10, cr11))
478 		guest_perc &= ~PER_CODE_BRANCH;
479 
480 	/* filter "instruction-fetching" events */
481 	if (guest_perc & PER_CODE_IFETCH &&
482 	    !in_addr_range(peraddr, cr10, cr11))
483 		guest_perc &= ~PER_CODE_IFETCH;
484 
485 	/* All other PER events will be given to the guest */
486 	/* TODO: Check altered address/address space */
487 
488 	vcpu->arch.sie_block->perc = guest_perc;
489 
490 	if (!guest_perc)
491 		vcpu->arch.sie_block->iprcc &= ~PGM_PER;
492 }
493 
494 #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH)
495 #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH)
496 #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1)
497 #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff)
498 
499 void kvm_s390_handle_per_event(struct kvm_vcpu *vcpu)
500 {
501 	int new_as;
502 
503 	if (debug_exit_required(vcpu))
504 		vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
505 
506 	filter_guest_per_event(vcpu);
507 
508 	/*
509 	 * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger
510 	 * a space-switch event. PER events enforce space-switch events
511 	 * for these instructions. So if no PER event for the guest is left,
512 	 * we might have to filter the space-switch element out, too.
513 	 */
514 	if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) {
515 		vcpu->arch.sie_block->iprcc = 0;
516 		new_as = psw_bits(vcpu->arch.sie_block->gpsw).as;
517 
518 		/*
519 		 * If the AS changed from / to home, we had RP, SAC or SACF
520 		 * instruction. Check primary and home space-switch-event
521 		 * controls. (theoretically home -> home produced no event)
522 		 */
523 		if (((new_as == PSW_AS_HOME) ^ old_as_is_home(vcpu)) &&
524 		     (pssec(vcpu) || hssec(vcpu)))
525 			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
526 
527 		/*
528 		 * PT, PTI, PR, PC instruction operate on primary AS only. Check
529 		 * if the primary-space-switch-event control was or got set.
530 		 */
531 		if (new_as == PSW_AS_PRIMARY && !old_as_is_home(vcpu) &&
532 		    (pssec(vcpu) || old_ssec(vcpu)))
533 			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
534 	}
535 }
536