xref: /linux/arch/s390/kvm/gaccess.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * guest access functions
4  *
5  * Copyright IBM Corp. 2014
6  *
7  */
8 
9 #include <linux/vmalloc.h>
10 #include <linux/mm_types.h>
11 #include <linux/err.h>
12 #include <linux/pgtable.h>
13 #include <linux/bitfield.h>
14 #include <asm/access-regs.h>
15 #include <asm/fault.h>
16 #include <asm/gmap.h>
17 #include "kvm-s390.h"
18 #include "gaccess.h"
19 
20 union asce {
21 	unsigned long val;
22 	struct {
23 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
24 		unsigned long	 : 2;
25 		unsigned long g  : 1; /* Subspace Group Control */
26 		unsigned long p  : 1; /* Private Space Control */
27 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
28 		unsigned long x  : 1; /* Space-Switch-Event Control */
29 		unsigned long r  : 1; /* Real-Space Control */
30 		unsigned long	 : 1;
31 		unsigned long dt : 2; /* Designation-Type Control */
32 		unsigned long tl : 2; /* Region- or Segment-Table Length */
33 	};
34 };
35 
36 enum {
37 	ASCE_TYPE_SEGMENT = 0,
38 	ASCE_TYPE_REGION3 = 1,
39 	ASCE_TYPE_REGION2 = 2,
40 	ASCE_TYPE_REGION1 = 3
41 };
42 
43 union region1_table_entry {
44 	unsigned long val;
45 	struct {
46 		unsigned long rto: 52;/* Region-Table Origin */
47 		unsigned long	 : 2;
48 		unsigned long p  : 1; /* DAT-Protection Bit */
49 		unsigned long	 : 1;
50 		unsigned long tf : 2; /* Region-Second-Table Offset */
51 		unsigned long i  : 1; /* Region-Invalid Bit */
52 		unsigned long	 : 1;
53 		unsigned long tt : 2; /* Table-Type Bits */
54 		unsigned long tl : 2; /* Region-Second-Table Length */
55 	};
56 };
57 
58 union region2_table_entry {
59 	unsigned long val;
60 	struct {
61 		unsigned long rto: 52;/* Region-Table Origin */
62 		unsigned long	 : 2;
63 		unsigned long p  : 1; /* DAT-Protection Bit */
64 		unsigned long	 : 1;
65 		unsigned long tf : 2; /* Region-Third-Table Offset */
66 		unsigned long i  : 1; /* Region-Invalid Bit */
67 		unsigned long	 : 1;
68 		unsigned long tt : 2; /* Table-Type Bits */
69 		unsigned long tl : 2; /* Region-Third-Table Length */
70 	};
71 };
72 
73 struct region3_table_entry_fc0 {
74 	unsigned long sto: 52;/* Segment-Table Origin */
75 	unsigned long	 : 1;
76 	unsigned long fc : 1; /* Format-Control */
77 	unsigned long p  : 1; /* DAT-Protection Bit */
78 	unsigned long	 : 1;
79 	unsigned long tf : 2; /* Segment-Table Offset */
80 	unsigned long i  : 1; /* Region-Invalid Bit */
81 	unsigned long cr : 1; /* Common-Region Bit */
82 	unsigned long tt : 2; /* Table-Type Bits */
83 	unsigned long tl : 2; /* Segment-Table Length */
84 };
85 
86 struct region3_table_entry_fc1 {
87 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
88 	unsigned long	 : 14;
89 	unsigned long av : 1; /* ACCF-Validity Control */
90 	unsigned long acc: 4; /* Access-Control Bits */
91 	unsigned long f  : 1; /* Fetch-Protection Bit */
92 	unsigned long fc : 1; /* Format-Control */
93 	unsigned long p  : 1; /* DAT-Protection Bit */
94 	unsigned long iep: 1; /* Instruction-Execution-Protection */
95 	unsigned long	 : 2;
96 	unsigned long i  : 1; /* Region-Invalid Bit */
97 	unsigned long cr : 1; /* Common-Region Bit */
98 	unsigned long tt : 2; /* Table-Type Bits */
99 	unsigned long	 : 2;
100 };
101 
102 union region3_table_entry {
103 	unsigned long val;
104 	struct region3_table_entry_fc0 fc0;
105 	struct region3_table_entry_fc1 fc1;
106 	struct {
107 		unsigned long	 : 53;
108 		unsigned long fc : 1; /* Format-Control */
109 		unsigned long	 : 4;
110 		unsigned long i  : 1; /* Region-Invalid Bit */
111 		unsigned long cr : 1; /* Common-Region Bit */
112 		unsigned long tt : 2; /* Table-Type Bits */
113 		unsigned long	 : 2;
114 	};
115 };
116 
117 struct segment_entry_fc0 {
118 	unsigned long pto: 53;/* Page-Table Origin */
119 	unsigned long fc : 1; /* Format-Control */
120 	unsigned long p  : 1; /* DAT-Protection Bit */
121 	unsigned long	 : 3;
122 	unsigned long i  : 1; /* Segment-Invalid Bit */
123 	unsigned long cs : 1; /* Common-Segment Bit */
124 	unsigned long tt : 2; /* Table-Type Bits */
125 	unsigned long	 : 2;
126 };
127 
128 struct segment_entry_fc1 {
129 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
130 	unsigned long	 : 3;
131 	unsigned long av : 1; /* ACCF-Validity Control */
132 	unsigned long acc: 4; /* Access-Control Bits */
133 	unsigned long f  : 1; /* Fetch-Protection Bit */
134 	unsigned long fc : 1; /* Format-Control */
135 	unsigned long p  : 1; /* DAT-Protection Bit */
136 	unsigned long iep: 1; /* Instruction-Execution-Protection */
137 	unsigned long	 : 2;
138 	unsigned long i  : 1; /* Segment-Invalid Bit */
139 	unsigned long cs : 1; /* Common-Segment Bit */
140 	unsigned long tt : 2; /* Table-Type Bits */
141 	unsigned long	 : 2;
142 };
143 
144 union segment_table_entry {
145 	unsigned long val;
146 	struct segment_entry_fc0 fc0;
147 	struct segment_entry_fc1 fc1;
148 	struct {
149 		unsigned long	 : 53;
150 		unsigned long fc : 1; /* Format-Control */
151 		unsigned long	 : 4;
152 		unsigned long i  : 1; /* Segment-Invalid Bit */
153 		unsigned long cs : 1; /* Common-Segment Bit */
154 		unsigned long tt : 2; /* Table-Type Bits */
155 		unsigned long	 : 2;
156 	};
157 };
158 
159 enum {
160 	TABLE_TYPE_SEGMENT = 0,
161 	TABLE_TYPE_REGION3 = 1,
162 	TABLE_TYPE_REGION2 = 2,
163 	TABLE_TYPE_REGION1 = 3
164 };
165 
166 union page_table_entry {
167 	unsigned long val;
168 	struct {
169 		unsigned long pfra : 52; /* Page-Frame Real Address */
170 		unsigned long z  : 1; /* Zero Bit */
171 		unsigned long i  : 1; /* Page-Invalid Bit */
172 		unsigned long p  : 1; /* DAT-Protection Bit */
173 		unsigned long iep: 1; /* Instruction-Execution-Protection */
174 		unsigned long	 : 8;
175 	};
176 };
177 
178 /*
179  * vaddress union in order to easily decode a virtual address into its
180  * region first index, region second index etc. parts.
181  */
182 union vaddress {
183 	unsigned long addr;
184 	struct {
185 		unsigned long rfx : 11;
186 		unsigned long rsx : 11;
187 		unsigned long rtx : 11;
188 		unsigned long sx  : 11;
189 		unsigned long px  : 8;
190 		unsigned long bx  : 12;
191 	};
192 	struct {
193 		unsigned long rfx01 : 2;
194 		unsigned long	    : 9;
195 		unsigned long rsx01 : 2;
196 		unsigned long	    : 9;
197 		unsigned long rtx01 : 2;
198 		unsigned long	    : 9;
199 		unsigned long sx01  : 2;
200 		unsigned long	    : 29;
201 	};
202 };
203 
204 /*
205  * raddress union which will contain the result (real or absolute address)
206  * after a page table walk. The rfaa, sfaa and pfra members are used to
207  * simply assign them the value of a region, segment or page table entry.
208  */
209 union raddress {
210 	unsigned long addr;
211 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
212 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
213 	unsigned long pfra : 52; /* Page-Frame Real Address */
214 };
215 
216 union alet {
217 	u32 val;
218 	struct {
219 		u32 reserved : 7;
220 		u32 p        : 1;
221 		u32 alesn    : 8;
222 		u32 alen     : 16;
223 	};
224 };
225 
226 union ald {
227 	u32 val;
228 	struct {
229 		u32     : 1;
230 		u32 alo : 24;
231 		u32 all : 7;
232 	};
233 };
234 
235 struct ale {
236 	unsigned long i      : 1; /* ALEN-Invalid Bit */
237 	unsigned long        : 5;
238 	unsigned long fo     : 1; /* Fetch-Only Bit */
239 	unsigned long p      : 1; /* Private Bit */
240 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
241 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
242 	unsigned long        : 32;
243 	unsigned long        : 1;
244 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
245 	unsigned long        : 6;
246 	unsigned long astesn : 32; /* ASTE Sequence Number */
247 };
248 
249 struct aste {
250 	unsigned long i      : 1; /* ASX-Invalid Bit */
251 	unsigned long ato    : 29; /* Authority-Table Origin */
252 	unsigned long        : 1;
253 	unsigned long b      : 1; /* Base-Space Bit */
254 	unsigned long ax     : 16; /* Authorization Index */
255 	unsigned long atl    : 12; /* Authority-Table Length */
256 	unsigned long        : 2;
257 	unsigned long ca     : 1; /* Controlled-ASN Bit */
258 	unsigned long ra     : 1; /* Reusable-ASN Bit */
259 	unsigned long asce   : 64; /* Address-Space-Control Element */
260 	unsigned long ald    : 32;
261 	unsigned long astesn : 32;
262 	/* .. more fields there */
263 };
264 
265 int ipte_lock_held(struct kvm *kvm)
266 {
267 	if (sclp.has_siif) {
268 		int rc;
269 
270 		read_lock(&kvm->arch.sca_lock);
271 		rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
272 		read_unlock(&kvm->arch.sca_lock);
273 		return rc;
274 	}
275 	return kvm->arch.ipte_lock_count != 0;
276 }
277 
278 static void ipte_lock_simple(struct kvm *kvm)
279 {
280 	union ipte_control old, new, *ic;
281 
282 	mutex_lock(&kvm->arch.ipte_mutex);
283 	kvm->arch.ipte_lock_count++;
284 	if (kvm->arch.ipte_lock_count > 1)
285 		goto out;
286 retry:
287 	read_lock(&kvm->arch.sca_lock);
288 	ic = kvm_s390_get_ipte_control(kvm);
289 	do {
290 		old = READ_ONCE(*ic);
291 		if (old.k) {
292 			read_unlock(&kvm->arch.sca_lock);
293 			cond_resched();
294 			goto retry;
295 		}
296 		new = old;
297 		new.k = 1;
298 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
299 	read_unlock(&kvm->arch.sca_lock);
300 out:
301 	mutex_unlock(&kvm->arch.ipte_mutex);
302 }
303 
304 static void ipte_unlock_simple(struct kvm *kvm)
305 {
306 	union ipte_control old, new, *ic;
307 
308 	mutex_lock(&kvm->arch.ipte_mutex);
309 	kvm->arch.ipte_lock_count--;
310 	if (kvm->arch.ipte_lock_count)
311 		goto out;
312 	read_lock(&kvm->arch.sca_lock);
313 	ic = kvm_s390_get_ipte_control(kvm);
314 	do {
315 		old = READ_ONCE(*ic);
316 		new = old;
317 		new.k = 0;
318 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
319 	read_unlock(&kvm->arch.sca_lock);
320 	wake_up(&kvm->arch.ipte_wq);
321 out:
322 	mutex_unlock(&kvm->arch.ipte_mutex);
323 }
324 
325 static void ipte_lock_siif(struct kvm *kvm)
326 {
327 	union ipte_control old, new, *ic;
328 
329 retry:
330 	read_lock(&kvm->arch.sca_lock);
331 	ic = kvm_s390_get_ipte_control(kvm);
332 	do {
333 		old = READ_ONCE(*ic);
334 		if (old.kg) {
335 			read_unlock(&kvm->arch.sca_lock);
336 			cond_resched();
337 			goto retry;
338 		}
339 		new = old;
340 		new.k = 1;
341 		new.kh++;
342 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
343 	read_unlock(&kvm->arch.sca_lock);
344 }
345 
346 static void ipte_unlock_siif(struct kvm *kvm)
347 {
348 	union ipte_control old, new, *ic;
349 
350 	read_lock(&kvm->arch.sca_lock);
351 	ic = kvm_s390_get_ipte_control(kvm);
352 	do {
353 		old = READ_ONCE(*ic);
354 		new = old;
355 		new.kh--;
356 		if (!new.kh)
357 			new.k = 0;
358 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
359 	read_unlock(&kvm->arch.sca_lock);
360 	if (!new.kh)
361 		wake_up(&kvm->arch.ipte_wq);
362 }
363 
364 void ipte_lock(struct kvm *kvm)
365 {
366 	if (sclp.has_siif)
367 		ipte_lock_siif(kvm);
368 	else
369 		ipte_lock_simple(kvm);
370 }
371 
372 void ipte_unlock(struct kvm *kvm)
373 {
374 	if (sclp.has_siif)
375 		ipte_unlock_siif(kvm);
376 	else
377 		ipte_unlock_simple(kvm);
378 }
379 
380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
381 			  enum gacc_mode mode)
382 {
383 	union alet alet;
384 	struct ale ale;
385 	struct aste aste;
386 	unsigned long ald_addr, authority_table_addr;
387 	union ald ald;
388 	int eax, rc;
389 	u8 authority_table;
390 
391 	if (ar >= NUM_ACRS)
392 		return -EINVAL;
393 
394 	if (vcpu->arch.acrs_loaded)
395 		save_access_regs(vcpu->run->s.regs.acrs);
396 	alet.val = vcpu->run->s.regs.acrs[ar];
397 
398 	if (ar == 0 || alet.val == 0) {
399 		asce->val = vcpu->arch.sie_block->gcr[1];
400 		return 0;
401 	} else if (alet.val == 1) {
402 		asce->val = vcpu->arch.sie_block->gcr[7];
403 		return 0;
404 	}
405 
406 	if (alet.reserved)
407 		return PGM_ALET_SPECIFICATION;
408 
409 	if (alet.p)
410 		ald_addr = vcpu->arch.sie_block->gcr[5];
411 	else
412 		ald_addr = vcpu->arch.sie_block->gcr[2];
413 	ald_addr &= 0x7fffffc0;
414 
415 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
416 	if (rc)
417 		return rc;
418 
419 	if (alet.alen / 8 > ald.all)
420 		return PGM_ALEN_TRANSLATION;
421 
422 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
423 		return PGM_ADDRESSING;
424 
425 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
426 			     sizeof(struct ale));
427 	if (rc)
428 		return rc;
429 
430 	if (ale.i == 1)
431 		return PGM_ALEN_TRANSLATION;
432 	if (ale.alesn != alet.alesn)
433 		return PGM_ALE_SEQUENCE;
434 
435 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
436 	if (rc)
437 		return rc;
438 
439 	if (aste.i)
440 		return PGM_ASTE_VALIDITY;
441 	if (aste.astesn != ale.astesn)
442 		return PGM_ASTE_SEQUENCE;
443 
444 	if (ale.p == 1) {
445 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
446 		if (ale.aleax != eax) {
447 			if (eax / 16 > aste.atl)
448 				return PGM_EXTENDED_AUTHORITY;
449 
450 			authority_table_addr = aste.ato * 4 + eax / 4;
451 
452 			rc = read_guest_real(vcpu, authority_table_addr,
453 					     &authority_table,
454 					     sizeof(u8));
455 			if (rc)
456 				return rc;
457 
458 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
459 				return PGM_EXTENDED_AUTHORITY;
460 		}
461 	}
462 
463 	if (ale.fo == 1 && mode == GACC_STORE)
464 		return PGM_PROTECTION;
465 
466 	asce->val = aste.asce;
467 	return 0;
468 }
469 
470 enum prot_type {
471 	PROT_TYPE_LA   = 0,
472 	PROT_TYPE_KEYC = 1,
473 	PROT_TYPE_ALC  = 2,
474 	PROT_TYPE_DAT  = 3,
475 	PROT_TYPE_IEP  = 4,
476 	/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
477 	PROT_NONE,
478 };
479 
480 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
481 			    enum gacc_mode mode, enum prot_type prot, bool terminate)
482 {
483 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
484 	union teid *teid;
485 
486 	memset(pgm, 0, sizeof(*pgm));
487 	pgm->code = code;
488 	teid = (union teid *)&pgm->trans_exc_code;
489 
490 	switch (code) {
491 	case PGM_PROTECTION:
492 		switch (prot) {
493 		case PROT_NONE:
494 			/* We should never get here, acts like termination */
495 			WARN_ON_ONCE(1);
496 			break;
497 		case PROT_TYPE_IEP:
498 			teid->b61 = 1;
499 			fallthrough;
500 		case PROT_TYPE_LA:
501 			teid->b56 = 1;
502 			break;
503 		case PROT_TYPE_KEYC:
504 			teid->b60 = 1;
505 			break;
506 		case PROT_TYPE_ALC:
507 			teid->b60 = 1;
508 			fallthrough;
509 		case PROT_TYPE_DAT:
510 			teid->b61 = 1;
511 			break;
512 		}
513 		if (terminate) {
514 			teid->b56 = 0;
515 			teid->b60 = 0;
516 			teid->b61 = 0;
517 		}
518 		fallthrough;
519 	case PGM_ASCE_TYPE:
520 	case PGM_PAGE_TRANSLATION:
521 	case PGM_REGION_FIRST_TRANS:
522 	case PGM_REGION_SECOND_TRANS:
523 	case PGM_REGION_THIRD_TRANS:
524 	case PGM_SEGMENT_TRANSLATION:
525 		/*
526 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
527 		 * exc_access_id has to be set to 0 for some instructions. Both
528 		 * cases have to be handled by the caller.
529 		 */
530 		teid->addr = gva >> PAGE_SHIFT;
531 		teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH;
532 		teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
533 		fallthrough;
534 	case PGM_ALEN_TRANSLATION:
535 	case PGM_ALE_SEQUENCE:
536 	case PGM_ASTE_VALIDITY:
537 	case PGM_ASTE_SEQUENCE:
538 	case PGM_EXTENDED_AUTHORITY:
539 		/*
540 		 * We can always store exc_access_id, as it is
541 		 * undefined for non-ar cases. It is undefined for
542 		 * most DAT protection exceptions.
543 		 */
544 		pgm->exc_access_id = ar;
545 		break;
546 	}
547 	return code;
548 }
549 
550 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
551 		     enum gacc_mode mode, enum prot_type prot)
552 {
553 	return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
554 }
555 
556 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
557 			 unsigned long ga, u8 ar, enum gacc_mode mode)
558 {
559 	int rc;
560 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
561 
562 	if (!psw.dat) {
563 		asce->val = 0;
564 		asce->r = 1;
565 		return 0;
566 	}
567 
568 	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
569 		psw.as = PSW_BITS_AS_PRIMARY;
570 
571 	switch (psw.as) {
572 	case PSW_BITS_AS_PRIMARY:
573 		asce->val = vcpu->arch.sie_block->gcr[1];
574 		return 0;
575 	case PSW_BITS_AS_SECONDARY:
576 		asce->val = vcpu->arch.sie_block->gcr[7];
577 		return 0;
578 	case PSW_BITS_AS_HOME:
579 		asce->val = vcpu->arch.sie_block->gcr[13];
580 		return 0;
581 	case PSW_BITS_AS_ACCREG:
582 		rc = ar_translation(vcpu, asce, ar, mode);
583 		if (rc > 0)
584 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
585 		return rc;
586 	}
587 	return 0;
588 }
589 
590 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
591 {
592 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
593 }
594 
595 /**
596  * guest_translate - translate a guest virtual into a guest absolute address
597  * @vcpu: virtual cpu
598  * @gva: guest virtual address
599  * @gpa: points to where guest physical (absolute) address should be stored
600  * @asce: effective asce
601  * @mode: indicates the access mode to be used
602  * @prot: returns the type for protection exceptions
603  *
604  * Translate a guest virtual address into a guest absolute address by means
605  * of dynamic address translation as specified by the architecture.
606  * If the resulting absolute address is not available in the configuration
607  * an addressing exception is indicated and @gpa will not be changed.
608  *
609  * Returns: - zero on success; @gpa contains the resulting absolute address
610  *	    - a negative value if guest access failed due to e.g. broken
611  *	      guest mapping
612  *	    - a positive value if an access exception happened. In this case
613  *	      the returned value is the program interruption code as defined
614  *	      by the architecture
615  */
616 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
617 				     unsigned long *gpa, const union asce asce,
618 				     enum gacc_mode mode, enum prot_type *prot)
619 {
620 	union vaddress vaddr = {.addr = gva};
621 	union raddress raddr = {.addr = gva};
622 	union page_table_entry pte;
623 	int dat_protection = 0;
624 	int iep_protection = 0;
625 	union ctlreg0 ctlreg0;
626 	unsigned long ptr;
627 	int edat1, edat2, iep;
628 
629 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
630 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
631 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
632 	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
633 	if (asce.r)
634 		goto real_address;
635 	ptr = asce.origin * PAGE_SIZE;
636 	switch (asce.dt) {
637 	case ASCE_TYPE_REGION1:
638 		if (vaddr.rfx01 > asce.tl)
639 			return PGM_REGION_FIRST_TRANS;
640 		ptr += vaddr.rfx * 8;
641 		break;
642 	case ASCE_TYPE_REGION2:
643 		if (vaddr.rfx)
644 			return PGM_ASCE_TYPE;
645 		if (vaddr.rsx01 > asce.tl)
646 			return PGM_REGION_SECOND_TRANS;
647 		ptr += vaddr.rsx * 8;
648 		break;
649 	case ASCE_TYPE_REGION3:
650 		if (vaddr.rfx || vaddr.rsx)
651 			return PGM_ASCE_TYPE;
652 		if (vaddr.rtx01 > asce.tl)
653 			return PGM_REGION_THIRD_TRANS;
654 		ptr += vaddr.rtx * 8;
655 		break;
656 	case ASCE_TYPE_SEGMENT:
657 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
658 			return PGM_ASCE_TYPE;
659 		if (vaddr.sx01 > asce.tl)
660 			return PGM_SEGMENT_TRANSLATION;
661 		ptr += vaddr.sx * 8;
662 		break;
663 	}
664 	switch (asce.dt) {
665 	case ASCE_TYPE_REGION1:	{
666 		union region1_table_entry rfte;
667 
668 		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
669 			return PGM_ADDRESSING;
670 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
671 			return -EFAULT;
672 		if (rfte.i)
673 			return PGM_REGION_FIRST_TRANS;
674 		if (rfte.tt != TABLE_TYPE_REGION1)
675 			return PGM_TRANSLATION_SPEC;
676 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
677 			return PGM_REGION_SECOND_TRANS;
678 		if (edat1)
679 			dat_protection |= rfte.p;
680 		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
681 	}
682 		fallthrough;
683 	case ASCE_TYPE_REGION2: {
684 		union region2_table_entry rste;
685 
686 		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
687 			return PGM_ADDRESSING;
688 		if (deref_table(vcpu->kvm, ptr, &rste.val))
689 			return -EFAULT;
690 		if (rste.i)
691 			return PGM_REGION_SECOND_TRANS;
692 		if (rste.tt != TABLE_TYPE_REGION2)
693 			return PGM_TRANSLATION_SPEC;
694 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
695 			return PGM_REGION_THIRD_TRANS;
696 		if (edat1)
697 			dat_protection |= rste.p;
698 		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
699 	}
700 		fallthrough;
701 	case ASCE_TYPE_REGION3: {
702 		union region3_table_entry rtte;
703 
704 		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
705 			return PGM_ADDRESSING;
706 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
707 			return -EFAULT;
708 		if (rtte.i)
709 			return PGM_REGION_THIRD_TRANS;
710 		if (rtte.tt != TABLE_TYPE_REGION3)
711 			return PGM_TRANSLATION_SPEC;
712 		if (rtte.cr && asce.p && edat2)
713 			return PGM_TRANSLATION_SPEC;
714 		if (rtte.fc && edat2) {
715 			dat_protection |= rtte.fc1.p;
716 			iep_protection = rtte.fc1.iep;
717 			raddr.rfaa = rtte.fc1.rfaa;
718 			goto absolute_address;
719 		}
720 		if (vaddr.sx01 < rtte.fc0.tf)
721 			return PGM_SEGMENT_TRANSLATION;
722 		if (vaddr.sx01 > rtte.fc0.tl)
723 			return PGM_SEGMENT_TRANSLATION;
724 		if (edat1)
725 			dat_protection |= rtte.fc0.p;
726 		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
727 	}
728 		fallthrough;
729 	case ASCE_TYPE_SEGMENT: {
730 		union segment_table_entry ste;
731 
732 		if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
733 			return PGM_ADDRESSING;
734 		if (deref_table(vcpu->kvm, ptr, &ste.val))
735 			return -EFAULT;
736 		if (ste.i)
737 			return PGM_SEGMENT_TRANSLATION;
738 		if (ste.tt != TABLE_TYPE_SEGMENT)
739 			return PGM_TRANSLATION_SPEC;
740 		if (ste.cs && asce.p)
741 			return PGM_TRANSLATION_SPEC;
742 		if (ste.fc && edat1) {
743 			dat_protection |= ste.fc1.p;
744 			iep_protection = ste.fc1.iep;
745 			raddr.sfaa = ste.fc1.sfaa;
746 			goto absolute_address;
747 		}
748 		dat_protection |= ste.fc0.p;
749 		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
750 	}
751 	}
752 	if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
753 		return PGM_ADDRESSING;
754 	if (deref_table(vcpu->kvm, ptr, &pte.val))
755 		return -EFAULT;
756 	if (pte.i)
757 		return PGM_PAGE_TRANSLATION;
758 	if (pte.z)
759 		return PGM_TRANSLATION_SPEC;
760 	dat_protection |= pte.p;
761 	iep_protection = pte.iep;
762 	raddr.pfra = pte.pfra;
763 real_address:
764 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
765 absolute_address:
766 	if (mode == GACC_STORE && dat_protection) {
767 		*prot = PROT_TYPE_DAT;
768 		return PGM_PROTECTION;
769 	}
770 	if (mode == GACC_IFETCH && iep_protection && iep) {
771 		*prot = PROT_TYPE_IEP;
772 		return PGM_PROTECTION;
773 	}
774 	if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr))
775 		return PGM_ADDRESSING;
776 	*gpa = raddr.addr;
777 	return 0;
778 }
779 
780 static inline int is_low_address(unsigned long ga)
781 {
782 	/* Check for address ranges 0..511 and 4096..4607 */
783 	return (ga & ~0x11fful) == 0;
784 }
785 
786 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
787 					  const union asce asce)
788 {
789 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
790 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
791 
792 	if (!ctlreg0.lap)
793 		return 0;
794 	if (psw_bits(*psw).dat && asce.p)
795 		return 0;
796 	return 1;
797 }
798 
799 static int vm_check_access_key(struct kvm *kvm, u8 access_key,
800 			       enum gacc_mode mode, gpa_t gpa)
801 {
802 	u8 storage_key, access_control;
803 	bool fetch_protected;
804 	unsigned long hva;
805 	int r;
806 
807 	if (access_key == 0)
808 		return 0;
809 
810 	hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
811 	if (kvm_is_error_hva(hva))
812 		return PGM_ADDRESSING;
813 
814 	mmap_read_lock(current->mm);
815 	r = get_guest_storage_key(current->mm, hva, &storage_key);
816 	mmap_read_unlock(current->mm);
817 	if (r)
818 		return r;
819 	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
820 	if (access_control == access_key)
821 		return 0;
822 	fetch_protected = storage_key & _PAGE_FP_BIT;
823 	if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
824 		return 0;
825 	return PGM_PROTECTION;
826 }
827 
828 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
829 					   union asce asce)
830 {
831 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
832 	unsigned long override;
833 
834 	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
835 		/* check if fetch protection override enabled */
836 		override = vcpu->arch.sie_block->gcr[0];
837 		override &= CR0_FETCH_PROTECTION_OVERRIDE;
838 		/* not applicable if subject to DAT && private space */
839 		override = override && !(psw_bits(*psw).dat && asce.p);
840 		return override;
841 	}
842 	return false;
843 }
844 
845 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
846 {
847 	return ga < 2048 && ga + len <= 2048;
848 }
849 
850 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
851 {
852 	/* check if storage protection override enabled */
853 	return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
854 }
855 
856 static bool storage_prot_override_applies(u8 access_control)
857 {
858 	/* matches special storage protection override key (9) -> allow */
859 	return access_control == PAGE_SPO_ACC;
860 }
861 
862 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
863 				 enum gacc_mode mode, union asce asce, gpa_t gpa,
864 				 unsigned long ga, unsigned int len)
865 {
866 	u8 storage_key, access_control;
867 	unsigned long hva;
868 	int r;
869 
870 	/* access key 0 matches any storage key -> allow */
871 	if (access_key == 0)
872 		return 0;
873 	/*
874 	 * caller needs to ensure that gfn is accessible, so we can
875 	 * assume that this cannot fail
876 	 */
877 	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
878 	mmap_read_lock(current->mm);
879 	r = get_guest_storage_key(current->mm, hva, &storage_key);
880 	mmap_read_unlock(current->mm);
881 	if (r)
882 		return r;
883 	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
884 	/* access key matches storage key -> allow */
885 	if (access_control == access_key)
886 		return 0;
887 	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
888 		/* it is a fetch and fetch protection is off -> allow */
889 		if (!(storage_key & _PAGE_FP_BIT))
890 			return 0;
891 		if (fetch_prot_override_applicable(vcpu, mode, asce) &&
892 		    fetch_prot_override_applies(ga, len))
893 			return 0;
894 	}
895 	if (storage_prot_override_applicable(vcpu) &&
896 	    storage_prot_override_applies(access_control))
897 		return 0;
898 	return PGM_PROTECTION;
899 }
900 
901 /**
902  * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
903  * covering a logical range
904  * @vcpu: virtual cpu
905  * @ga: guest address, start of range
906  * @ar: access register
907  * @gpas: output argument, may be NULL
908  * @len: length of range in bytes
909  * @asce: address-space-control element to use for translation
910  * @mode: access mode
911  * @access_key: access key to mach the range's storage keys against
912  *
913  * Translate a logical range to a series of guest absolute addresses,
914  * such that the concatenation of page fragments starting at each gpa make up
915  * the whole range.
916  * The translation is performed as if done by the cpu for the given @asce, @ar,
917  * @mode and state of the @vcpu.
918  * If the translation causes an exception, its program interruption code is
919  * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
920  * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
921  * a correct exception into the guest.
922  * The resulting gpas are stored into @gpas, unless it is NULL.
923  *
924  * Note: All fragments except the first one start at the beginning of a page.
925  *	 When deriving the boundaries of a fragment from a gpa, all but the last
926  *	 fragment end at the end of the page.
927  *
928  * Return:
929  * * 0		- success
930  * * <0		- translation could not be performed, for example if  guest
931  *		  memory could not be accessed
932  * * >0		- an access exception occurred. In this case the returned value
933  *		  is the program interruption code and the contents of pgm may
934  *		  be used to inject an exception into the guest.
935  */
936 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
937 			       unsigned long *gpas, unsigned long len,
938 			       const union asce asce, enum gacc_mode mode,
939 			       u8 access_key)
940 {
941 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
942 	unsigned int offset = offset_in_page(ga);
943 	unsigned int fragment_len;
944 	int lap_enabled, rc = 0;
945 	enum prot_type prot;
946 	unsigned long gpa;
947 
948 	lap_enabled = low_address_protection_enabled(vcpu, asce);
949 	while (min(PAGE_SIZE - offset, len) > 0) {
950 		fragment_len = min(PAGE_SIZE - offset, len);
951 		ga = kvm_s390_logical_to_effective(vcpu, ga);
952 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
953 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
954 					 PROT_TYPE_LA);
955 		if (psw_bits(*psw).dat) {
956 			rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
957 			if (rc < 0)
958 				return rc;
959 		} else {
960 			gpa = kvm_s390_real_to_abs(vcpu, ga);
961 			if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) {
962 				rc = PGM_ADDRESSING;
963 				prot = PROT_NONE;
964 			}
965 		}
966 		if (rc)
967 			return trans_exc(vcpu, rc, ga, ar, mode, prot);
968 		rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
969 					   fragment_len);
970 		if (rc)
971 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
972 		if (gpas)
973 			*gpas++ = gpa;
974 		offset = 0;
975 		ga += fragment_len;
976 		len -= fragment_len;
977 	}
978 	return 0;
979 }
980 
981 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
982 			     void *data, unsigned int len)
983 {
984 	const unsigned int offset = offset_in_page(gpa);
985 	const gfn_t gfn = gpa_to_gfn(gpa);
986 	int rc;
987 
988 	if (mode == GACC_STORE)
989 		rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
990 	else
991 		rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
992 	return rc;
993 }
994 
995 static int
996 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
997 			   void *data, unsigned int len, u8 access_key)
998 {
999 	struct kvm_memory_slot *slot;
1000 	bool writable;
1001 	gfn_t gfn;
1002 	hva_t hva;
1003 	int rc;
1004 
1005 	gfn = gpa >> PAGE_SHIFT;
1006 	slot = gfn_to_memslot(kvm, gfn);
1007 	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1008 
1009 	if (kvm_is_error_hva(hva))
1010 		return PGM_ADDRESSING;
1011 	/*
1012 	 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
1013 	 * Don't try to actually handle that case.
1014 	 */
1015 	if (!writable && mode == GACC_STORE)
1016 		return -EOPNOTSUPP;
1017 	hva += offset_in_page(gpa);
1018 	if (mode == GACC_STORE)
1019 		rc = copy_to_user_key((void __user *)hva, data, len, access_key);
1020 	else
1021 		rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
1022 	if (rc)
1023 		return PGM_PROTECTION;
1024 	if (mode == GACC_STORE)
1025 		mark_page_dirty_in_slot(kvm, slot, gfn);
1026 	return 0;
1027 }
1028 
1029 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
1030 			      unsigned long len, enum gacc_mode mode, u8 access_key)
1031 {
1032 	int offset = offset_in_page(gpa);
1033 	int fragment_len;
1034 	int rc;
1035 
1036 	while (min(PAGE_SIZE - offset, len) > 0) {
1037 		fragment_len = min(PAGE_SIZE - offset, len);
1038 		rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
1039 		if (rc)
1040 			return rc;
1041 		offset = 0;
1042 		len -= fragment_len;
1043 		data += fragment_len;
1044 		gpa += fragment_len;
1045 	}
1046 	return 0;
1047 }
1048 
1049 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
1050 			  void *data, unsigned long len, enum gacc_mode mode,
1051 			  u8 access_key)
1052 {
1053 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
1054 	unsigned long nr_pages, idx;
1055 	unsigned long gpa_array[2];
1056 	unsigned int fragment_len;
1057 	unsigned long *gpas;
1058 	enum prot_type prot;
1059 	int need_ipte_lock;
1060 	union asce asce;
1061 	bool try_storage_prot_override;
1062 	bool try_fetch_prot_override;
1063 	int rc;
1064 
1065 	if (!len)
1066 		return 0;
1067 	ga = kvm_s390_logical_to_effective(vcpu, ga);
1068 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
1069 	if (rc)
1070 		return rc;
1071 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
1072 	gpas = gpa_array;
1073 	if (nr_pages > ARRAY_SIZE(gpa_array))
1074 		gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
1075 	if (!gpas)
1076 		return -ENOMEM;
1077 	try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
1078 	try_storage_prot_override = storage_prot_override_applicable(vcpu);
1079 	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
1080 	if (need_ipte_lock)
1081 		ipte_lock(vcpu->kvm);
1082 	/*
1083 	 * Since we do the access further down ultimately via a move instruction
1084 	 * that does key checking and returns an error in case of a protection
1085 	 * violation, we don't need to do the check during address translation.
1086 	 * Skip it by passing access key 0, which matches any storage key,
1087 	 * obviating the need for any further checks. As a result the check is
1088 	 * handled entirely in hardware on access, we only need to take care to
1089 	 * forego key protection checking if fetch protection override applies or
1090 	 * retry with the special key 9 in case of storage protection override.
1091 	 */
1092 	rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
1093 	if (rc)
1094 		goto out_unlock;
1095 	for (idx = 0; idx < nr_pages; idx++) {
1096 		fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
1097 		if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
1098 			rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
1099 					       data, fragment_len);
1100 		} else {
1101 			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1102 							data, fragment_len, access_key);
1103 		}
1104 		if (rc == PGM_PROTECTION && try_storage_prot_override)
1105 			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1106 							data, fragment_len, PAGE_SPO_ACC);
1107 		if (rc)
1108 			break;
1109 		len -= fragment_len;
1110 		data += fragment_len;
1111 		ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
1112 	}
1113 	if (rc > 0) {
1114 		bool terminate = (mode == GACC_STORE) && (idx > 0);
1115 
1116 		if (rc == PGM_PROTECTION)
1117 			prot = PROT_TYPE_KEYC;
1118 		else
1119 			prot = PROT_NONE;
1120 		rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
1121 	}
1122 out_unlock:
1123 	if (need_ipte_lock)
1124 		ipte_unlock(vcpu->kvm);
1125 	if (nr_pages > ARRAY_SIZE(gpa_array))
1126 		vfree(gpas);
1127 	return rc;
1128 }
1129 
1130 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
1131 		      void *data, unsigned long len, enum gacc_mode mode)
1132 {
1133 	unsigned int fragment_len;
1134 	unsigned long gpa;
1135 	int rc = 0;
1136 
1137 	while (len && !rc) {
1138 		gpa = kvm_s390_real_to_abs(vcpu, gra);
1139 		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
1140 		rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
1141 		len -= fragment_len;
1142 		gra += fragment_len;
1143 		data += fragment_len;
1144 	}
1145 	return rc;
1146 }
1147 
1148 /**
1149  * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
1150  * @kvm: Virtual machine instance.
1151  * @gpa: Absolute guest address of the location to be changed.
1152  * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
1153  *       non power of two will result in failure.
1154  * @old_addr: Pointer to old value. If the location at @gpa contains this value,
1155  *            the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
1156  *            *@old_addr contains the value at @gpa before the attempt to
1157  *            exchange the value.
1158  * @new: The value to place at @gpa.
1159  * @access_key: The access key to use for the guest access.
1160  * @success: output value indicating if an exchange occurred.
1161  *
1162  * Atomically exchange the value at @gpa by @new, if it contains *@old.
1163  * Honors storage keys.
1164  *
1165  * Return: * 0: successful exchange
1166  *         * >0: a program interruption code indicating the reason cmpxchg could
1167  *               not be attempted
1168  *         * -EINVAL: address misaligned or len not power of two
1169  *         * -EAGAIN: transient failure (len 1 or 2)
1170  *         * -EOPNOTSUPP: read-only memslot (should never occur)
1171  */
1172 int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
1173 			       __uint128_t *old_addr, __uint128_t new,
1174 			       u8 access_key, bool *success)
1175 {
1176 	gfn_t gfn = gpa_to_gfn(gpa);
1177 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1178 	bool writable;
1179 	hva_t hva;
1180 	int ret;
1181 
1182 	if (!IS_ALIGNED(gpa, len))
1183 		return -EINVAL;
1184 
1185 	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1186 	if (kvm_is_error_hva(hva))
1187 		return PGM_ADDRESSING;
1188 	/*
1189 	 * Check if it's a read-only memslot, even though that cannot occur
1190 	 * since those are unsupported.
1191 	 * Don't try to actually handle that case.
1192 	 */
1193 	if (!writable)
1194 		return -EOPNOTSUPP;
1195 
1196 	hva += offset_in_page(gpa);
1197 	/*
1198 	 * The cmpxchg_user_key macro depends on the type of "old", so we need
1199 	 * a case for each valid length and get some code duplication as long
1200 	 * as we don't introduce a new macro.
1201 	 */
1202 	switch (len) {
1203 	case 1: {
1204 		u8 old;
1205 
1206 		ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
1207 		*success = !ret && old == *old_addr;
1208 		*old_addr = old;
1209 		break;
1210 	}
1211 	case 2: {
1212 		u16 old;
1213 
1214 		ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
1215 		*success = !ret && old == *old_addr;
1216 		*old_addr = old;
1217 		break;
1218 	}
1219 	case 4: {
1220 		u32 old;
1221 
1222 		ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
1223 		*success = !ret && old == *old_addr;
1224 		*old_addr = old;
1225 		break;
1226 	}
1227 	case 8: {
1228 		u64 old;
1229 
1230 		ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
1231 		*success = !ret && old == *old_addr;
1232 		*old_addr = old;
1233 		break;
1234 	}
1235 	case 16: {
1236 		__uint128_t old;
1237 
1238 		ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
1239 		*success = !ret && old == *old_addr;
1240 		*old_addr = old;
1241 		break;
1242 	}
1243 	default:
1244 		return -EINVAL;
1245 	}
1246 	if (*success)
1247 		mark_page_dirty_in_slot(kvm, slot, gfn);
1248 	/*
1249 	 * Assume that the fault is caused by protection, either key protection
1250 	 * or user page write protection.
1251 	 */
1252 	if (ret == -EFAULT)
1253 		ret = PGM_PROTECTION;
1254 	return ret;
1255 }
1256 
1257 /**
1258  * guest_translate_address_with_key - translate guest logical into guest absolute address
1259  * @vcpu: virtual cpu
1260  * @gva: Guest virtual address
1261  * @ar: Access register
1262  * @gpa: Guest physical address
1263  * @mode: Translation access mode
1264  * @access_key: access key to mach the storage key with
1265  *
1266  * Parameter semantics are the same as the ones from guest_translate.
1267  * The memory contents at the guest address are not changed.
1268  *
1269  * Note: The IPTE lock is not taken during this function, so the caller
1270  * has to take care of this.
1271  */
1272 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1273 				     unsigned long *gpa, enum gacc_mode mode,
1274 				     u8 access_key)
1275 {
1276 	union asce asce;
1277 	int rc;
1278 
1279 	gva = kvm_s390_logical_to_effective(vcpu, gva);
1280 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1281 	if (rc)
1282 		return rc;
1283 	return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1284 				   access_key);
1285 }
1286 
1287 /**
1288  * check_gva_range - test a range of guest virtual addresses for accessibility
1289  * @vcpu: virtual cpu
1290  * @gva: Guest virtual address
1291  * @ar: Access register
1292  * @length: Length of test range
1293  * @mode: Translation access mode
1294  * @access_key: access key to mach the storage keys with
1295  */
1296 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1297 		    unsigned long length, enum gacc_mode mode, u8 access_key)
1298 {
1299 	union asce asce;
1300 	int rc = 0;
1301 
1302 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1303 	if (rc)
1304 		return rc;
1305 	ipte_lock(vcpu->kvm);
1306 	rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1307 				 access_key);
1308 	ipte_unlock(vcpu->kvm);
1309 
1310 	return rc;
1311 }
1312 
1313 /**
1314  * check_gpa_range - test a range of guest physical addresses for accessibility
1315  * @kvm: virtual machine instance
1316  * @gpa: guest physical address
1317  * @length: length of test range
1318  * @mode: access mode to test, relevant for storage keys
1319  * @access_key: access key to mach the storage keys with
1320  */
1321 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1322 		    enum gacc_mode mode, u8 access_key)
1323 {
1324 	unsigned int fragment_len;
1325 	int rc = 0;
1326 
1327 	while (length && !rc) {
1328 		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1329 		rc = vm_check_access_key(kvm, access_key, mode, gpa);
1330 		length -= fragment_len;
1331 		gpa += fragment_len;
1332 	}
1333 	return rc;
1334 }
1335 
1336 /**
1337  * kvm_s390_check_low_addr_prot_real - check for low-address protection
1338  * @vcpu: virtual cpu
1339  * @gra: Guest real address
1340  *
1341  * Checks whether an address is subject to low-address protection and set
1342  * up vcpu->arch.pgm accordingly if necessary.
1343  *
1344  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1345  */
1346 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1347 {
1348 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1349 
1350 	if (!ctlreg0.lap || !is_low_address(gra))
1351 		return 0;
1352 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1353 }
1354 
1355 /**
1356  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1357  * @sg: pointer to the shadow guest address space structure
1358  * @saddr: faulting address in the shadow gmap
1359  * @pgt: pointer to the beginning of the page table for the given address if
1360  *	 successful (return value 0), or to the first invalid DAT entry in
1361  *	 case of exceptions (return value > 0)
1362  * @dat_protection: referenced memory is write protected
1363  * @fake: pgt references contiguous guest memory block, not a pgtable
1364  */
1365 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1366 				  unsigned long *pgt, int *dat_protection,
1367 				  int *fake)
1368 {
1369 	struct kvm *kvm;
1370 	struct gmap *parent;
1371 	union asce asce;
1372 	union vaddress vaddr;
1373 	unsigned long ptr;
1374 	int rc;
1375 
1376 	*fake = 0;
1377 	*dat_protection = 0;
1378 	kvm = sg->private;
1379 	parent = sg->parent;
1380 	vaddr.addr = saddr;
1381 	asce.val = sg->orig_asce;
1382 	ptr = asce.origin * PAGE_SIZE;
1383 	if (asce.r) {
1384 		*fake = 1;
1385 		ptr = 0;
1386 		asce.dt = ASCE_TYPE_REGION1;
1387 	}
1388 	switch (asce.dt) {
1389 	case ASCE_TYPE_REGION1:
1390 		if (vaddr.rfx01 > asce.tl && !*fake)
1391 			return PGM_REGION_FIRST_TRANS;
1392 		break;
1393 	case ASCE_TYPE_REGION2:
1394 		if (vaddr.rfx)
1395 			return PGM_ASCE_TYPE;
1396 		if (vaddr.rsx01 > asce.tl)
1397 			return PGM_REGION_SECOND_TRANS;
1398 		break;
1399 	case ASCE_TYPE_REGION3:
1400 		if (vaddr.rfx || vaddr.rsx)
1401 			return PGM_ASCE_TYPE;
1402 		if (vaddr.rtx01 > asce.tl)
1403 			return PGM_REGION_THIRD_TRANS;
1404 		break;
1405 	case ASCE_TYPE_SEGMENT:
1406 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1407 			return PGM_ASCE_TYPE;
1408 		if (vaddr.sx01 > asce.tl)
1409 			return PGM_SEGMENT_TRANSLATION;
1410 		break;
1411 	}
1412 
1413 	switch (asce.dt) {
1414 	case ASCE_TYPE_REGION1: {
1415 		union region1_table_entry rfte;
1416 
1417 		if (*fake) {
1418 			ptr += vaddr.rfx * _REGION1_SIZE;
1419 			rfte.val = ptr;
1420 			goto shadow_r2t;
1421 		}
1422 		*pgt = ptr + vaddr.rfx * 8;
1423 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1424 		if (rc)
1425 			return rc;
1426 		if (rfte.i)
1427 			return PGM_REGION_FIRST_TRANS;
1428 		if (rfte.tt != TABLE_TYPE_REGION1)
1429 			return PGM_TRANSLATION_SPEC;
1430 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1431 			return PGM_REGION_SECOND_TRANS;
1432 		if (sg->edat_level >= 1)
1433 			*dat_protection |= rfte.p;
1434 		ptr = rfte.rto * PAGE_SIZE;
1435 shadow_r2t:
1436 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1437 		if (rc)
1438 			return rc;
1439 		kvm->stat.gmap_shadow_r1_entry++;
1440 	}
1441 		fallthrough;
1442 	case ASCE_TYPE_REGION2: {
1443 		union region2_table_entry rste;
1444 
1445 		if (*fake) {
1446 			ptr += vaddr.rsx * _REGION2_SIZE;
1447 			rste.val = ptr;
1448 			goto shadow_r3t;
1449 		}
1450 		*pgt = ptr + vaddr.rsx * 8;
1451 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1452 		if (rc)
1453 			return rc;
1454 		if (rste.i)
1455 			return PGM_REGION_SECOND_TRANS;
1456 		if (rste.tt != TABLE_TYPE_REGION2)
1457 			return PGM_TRANSLATION_SPEC;
1458 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1459 			return PGM_REGION_THIRD_TRANS;
1460 		if (sg->edat_level >= 1)
1461 			*dat_protection |= rste.p;
1462 		ptr = rste.rto * PAGE_SIZE;
1463 shadow_r3t:
1464 		rste.p |= *dat_protection;
1465 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1466 		if (rc)
1467 			return rc;
1468 		kvm->stat.gmap_shadow_r2_entry++;
1469 	}
1470 		fallthrough;
1471 	case ASCE_TYPE_REGION3: {
1472 		union region3_table_entry rtte;
1473 
1474 		if (*fake) {
1475 			ptr += vaddr.rtx * _REGION3_SIZE;
1476 			rtte.val = ptr;
1477 			goto shadow_sgt;
1478 		}
1479 		*pgt = ptr + vaddr.rtx * 8;
1480 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1481 		if (rc)
1482 			return rc;
1483 		if (rtte.i)
1484 			return PGM_REGION_THIRD_TRANS;
1485 		if (rtte.tt != TABLE_TYPE_REGION3)
1486 			return PGM_TRANSLATION_SPEC;
1487 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1488 			return PGM_TRANSLATION_SPEC;
1489 		if (rtte.fc && sg->edat_level >= 2) {
1490 			*dat_protection |= rtte.fc0.p;
1491 			*fake = 1;
1492 			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1493 			rtte.val = ptr;
1494 			goto shadow_sgt;
1495 		}
1496 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1497 			return PGM_SEGMENT_TRANSLATION;
1498 		if (sg->edat_level >= 1)
1499 			*dat_protection |= rtte.fc0.p;
1500 		ptr = rtte.fc0.sto * PAGE_SIZE;
1501 shadow_sgt:
1502 		rtte.fc0.p |= *dat_protection;
1503 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1504 		if (rc)
1505 			return rc;
1506 		kvm->stat.gmap_shadow_r3_entry++;
1507 	}
1508 		fallthrough;
1509 	case ASCE_TYPE_SEGMENT: {
1510 		union segment_table_entry ste;
1511 
1512 		if (*fake) {
1513 			ptr += vaddr.sx * _SEGMENT_SIZE;
1514 			ste.val = ptr;
1515 			goto shadow_pgt;
1516 		}
1517 		*pgt = ptr + vaddr.sx * 8;
1518 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1519 		if (rc)
1520 			return rc;
1521 		if (ste.i)
1522 			return PGM_SEGMENT_TRANSLATION;
1523 		if (ste.tt != TABLE_TYPE_SEGMENT)
1524 			return PGM_TRANSLATION_SPEC;
1525 		if (ste.cs && asce.p)
1526 			return PGM_TRANSLATION_SPEC;
1527 		*dat_protection |= ste.fc0.p;
1528 		if (ste.fc && sg->edat_level >= 1) {
1529 			*fake = 1;
1530 			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1531 			ste.val = ptr;
1532 			goto shadow_pgt;
1533 		}
1534 		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1535 shadow_pgt:
1536 		ste.fc0.p |= *dat_protection;
1537 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1538 		if (rc)
1539 			return rc;
1540 		kvm->stat.gmap_shadow_sg_entry++;
1541 	}
1542 	}
1543 	/* Return the parent address of the page table */
1544 	*pgt = ptr;
1545 	return 0;
1546 }
1547 
1548 /**
1549  * kvm_s390_shadow_fault - handle fault on a shadow page table
1550  * @vcpu: virtual cpu
1551  * @sg: pointer to the shadow guest address space structure
1552  * @saddr: faulting address in the shadow gmap
1553  * @datptr: will contain the address of the faulting DAT table entry, or of
1554  *	    the valid leaf, plus some flags
1555  *
1556  * Returns: - 0 if the shadow fault was successfully resolved
1557  *	    - > 0 (pgm exception code) on exceptions while faulting
1558  *	    - -EAGAIN if the caller can retry immediately
1559  *	    - -EFAULT when accessing invalid guest addresses
1560  *	    - -ENOMEM if out of memory
1561  */
1562 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1563 			  unsigned long saddr, unsigned long *datptr)
1564 {
1565 	union vaddress vaddr;
1566 	union page_table_entry pte;
1567 	unsigned long pgt = 0;
1568 	int dat_protection, fake;
1569 	int rc;
1570 
1571 	mmap_read_lock(sg->mm);
1572 	/*
1573 	 * We don't want any guest-2 tables to change - so the parent
1574 	 * tables/pointers we read stay valid - unshadowing is however
1575 	 * always possible - only guest_table_lock protects us.
1576 	 */
1577 	ipte_lock(vcpu->kvm);
1578 
1579 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1580 	if (rc)
1581 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1582 					    &fake);
1583 
1584 	vaddr.addr = saddr;
1585 	if (fake) {
1586 		pte.val = pgt + vaddr.px * PAGE_SIZE;
1587 		goto shadow_page;
1588 	}
1589 
1590 	switch (rc) {
1591 	case PGM_SEGMENT_TRANSLATION:
1592 	case PGM_REGION_THIRD_TRANS:
1593 	case PGM_REGION_SECOND_TRANS:
1594 	case PGM_REGION_FIRST_TRANS:
1595 		pgt |= PEI_NOT_PTE;
1596 		break;
1597 	case 0:
1598 		pgt += vaddr.px * 8;
1599 		rc = gmap_read_table(sg->parent, pgt, &pte.val);
1600 	}
1601 	if (datptr)
1602 		*datptr = pgt | dat_protection * PEI_DAT_PROT;
1603 	if (!rc && pte.i)
1604 		rc = PGM_PAGE_TRANSLATION;
1605 	if (!rc && pte.z)
1606 		rc = PGM_TRANSLATION_SPEC;
1607 shadow_page:
1608 	pte.p |= dat_protection;
1609 	if (!rc)
1610 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1611 	vcpu->kvm->stat.gmap_shadow_pg_entry++;
1612 	ipte_unlock(vcpu->kvm);
1613 	mmap_read_unlock(sg->mm);
1614 	return rc;
1615 }
1616