xref: /linux/arch/s390/kvm/gaccess.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/mm_types.h>
10 #include <linux/err.h>
11 
12 #include <asm/pgtable.h>
13 #include <asm/gmap.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 #include <asm/switch_to.h>
17 
18 union asce {
19 	unsigned long val;
20 	struct {
21 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
22 		unsigned long	 : 2;
23 		unsigned long g  : 1; /* Subspace Group Control */
24 		unsigned long p  : 1; /* Private Space Control */
25 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
26 		unsigned long x  : 1; /* Space-Switch-Event Control */
27 		unsigned long r  : 1; /* Real-Space Control */
28 		unsigned long	 : 1;
29 		unsigned long dt : 2; /* Designation-Type Control */
30 		unsigned long tl : 2; /* Region- or Segment-Table Length */
31 	};
32 };
33 
34 enum {
35 	ASCE_TYPE_SEGMENT = 0,
36 	ASCE_TYPE_REGION3 = 1,
37 	ASCE_TYPE_REGION2 = 2,
38 	ASCE_TYPE_REGION1 = 3
39 };
40 
41 union region1_table_entry {
42 	unsigned long val;
43 	struct {
44 		unsigned long rto: 52;/* Region-Table Origin */
45 		unsigned long	 : 2;
46 		unsigned long p  : 1; /* DAT-Protection Bit */
47 		unsigned long	 : 1;
48 		unsigned long tf : 2; /* Region-Second-Table Offset */
49 		unsigned long i  : 1; /* Region-Invalid Bit */
50 		unsigned long	 : 1;
51 		unsigned long tt : 2; /* Table-Type Bits */
52 		unsigned long tl : 2; /* Region-Second-Table Length */
53 	};
54 };
55 
56 union region2_table_entry {
57 	unsigned long val;
58 	struct {
59 		unsigned long rto: 52;/* Region-Table Origin */
60 		unsigned long	 : 2;
61 		unsigned long p  : 1; /* DAT-Protection Bit */
62 		unsigned long	 : 1;
63 		unsigned long tf : 2; /* Region-Third-Table Offset */
64 		unsigned long i  : 1; /* Region-Invalid Bit */
65 		unsigned long	 : 1;
66 		unsigned long tt : 2; /* Table-Type Bits */
67 		unsigned long tl : 2; /* Region-Third-Table Length */
68 	};
69 };
70 
71 struct region3_table_entry_fc0 {
72 	unsigned long sto: 52;/* Segment-Table Origin */
73 	unsigned long	 : 1;
74 	unsigned long fc : 1; /* Format-Control */
75 	unsigned long p  : 1; /* DAT-Protection Bit */
76 	unsigned long	 : 1;
77 	unsigned long tf : 2; /* Segment-Table Offset */
78 	unsigned long i  : 1; /* Region-Invalid Bit */
79 	unsigned long cr : 1; /* Common-Region Bit */
80 	unsigned long tt : 2; /* Table-Type Bits */
81 	unsigned long tl : 2; /* Segment-Table Length */
82 };
83 
84 struct region3_table_entry_fc1 {
85 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
86 	unsigned long	 : 14;
87 	unsigned long av : 1; /* ACCF-Validity Control */
88 	unsigned long acc: 4; /* Access-Control Bits */
89 	unsigned long f  : 1; /* Fetch-Protection Bit */
90 	unsigned long fc : 1; /* Format-Control */
91 	unsigned long p  : 1; /* DAT-Protection Bit */
92 	unsigned long co : 1; /* Change-Recording Override */
93 	unsigned long	 : 2;
94 	unsigned long i  : 1; /* Region-Invalid Bit */
95 	unsigned long cr : 1; /* Common-Region Bit */
96 	unsigned long tt : 2; /* Table-Type Bits */
97 	unsigned long	 : 2;
98 };
99 
100 union region3_table_entry {
101 	unsigned long val;
102 	struct region3_table_entry_fc0 fc0;
103 	struct region3_table_entry_fc1 fc1;
104 	struct {
105 		unsigned long	 : 53;
106 		unsigned long fc : 1; /* Format-Control */
107 		unsigned long	 : 4;
108 		unsigned long i  : 1; /* Region-Invalid Bit */
109 		unsigned long cr : 1; /* Common-Region Bit */
110 		unsigned long tt : 2; /* Table-Type Bits */
111 		unsigned long	 : 2;
112 	};
113 };
114 
115 struct segment_entry_fc0 {
116 	unsigned long pto: 53;/* Page-Table Origin */
117 	unsigned long fc : 1; /* Format-Control */
118 	unsigned long p  : 1; /* DAT-Protection Bit */
119 	unsigned long	 : 3;
120 	unsigned long i  : 1; /* Segment-Invalid Bit */
121 	unsigned long cs : 1; /* Common-Segment Bit */
122 	unsigned long tt : 2; /* Table-Type Bits */
123 	unsigned long	 : 2;
124 };
125 
126 struct segment_entry_fc1 {
127 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
128 	unsigned long	 : 3;
129 	unsigned long av : 1; /* ACCF-Validity Control */
130 	unsigned long acc: 4; /* Access-Control Bits */
131 	unsigned long f  : 1; /* Fetch-Protection Bit */
132 	unsigned long fc : 1; /* Format-Control */
133 	unsigned long p  : 1; /* DAT-Protection Bit */
134 	unsigned long co : 1; /* Change-Recording Override */
135 	unsigned long	 : 2;
136 	unsigned long i  : 1; /* Segment-Invalid Bit */
137 	unsigned long cs : 1; /* Common-Segment Bit */
138 	unsigned long tt : 2; /* Table-Type Bits */
139 	unsigned long	 : 2;
140 };
141 
142 union segment_table_entry {
143 	unsigned long val;
144 	struct segment_entry_fc0 fc0;
145 	struct segment_entry_fc1 fc1;
146 	struct {
147 		unsigned long	 : 53;
148 		unsigned long fc : 1; /* Format-Control */
149 		unsigned long	 : 4;
150 		unsigned long i  : 1; /* Segment-Invalid Bit */
151 		unsigned long cs : 1; /* Common-Segment Bit */
152 		unsigned long tt : 2; /* Table-Type Bits */
153 		unsigned long	 : 2;
154 	};
155 };
156 
157 enum {
158 	TABLE_TYPE_SEGMENT = 0,
159 	TABLE_TYPE_REGION3 = 1,
160 	TABLE_TYPE_REGION2 = 2,
161 	TABLE_TYPE_REGION1 = 3
162 };
163 
164 union page_table_entry {
165 	unsigned long val;
166 	struct {
167 		unsigned long pfra : 52; /* Page-Frame Real Address */
168 		unsigned long z  : 1; /* Zero Bit */
169 		unsigned long i  : 1; /* Page-Invalid Bit */
170 		unsigned long p  : 1; /* DAT-Protection Bit */
171 		unsigned long	 : 9;
172 	};
173 };
174 
175 /*
176  * vaddress union in order to easily decode a virtual address into its
177  * region first index, region second index etc. parts.
178  */
179 union vaddress {
180 	unsigned long addr;
181 	struct {
182 		unsigned long rfx : 11;
183 		unsigned long rsx : 11;
184 		unsigned long rtx : 11;
185 		unsigned long sx  : 11;
186 		unsigned long px  : 8;
187 		unsigned long bx  : 12;
188 	};
189 	struct {
190 		unsigned long rfx01 : 2;
191 		unsigned long	    : 9;
192 		unsigned long rsx01 : 2;
193 		unsigned long	    : 9;
194 		unsigned long rtx01 : 2;
195 		unsigned long	    : 9;
196 		unsigned long sx01  : 2;
197 		unsigned long	    : 29;
198 	};
199 };
200 
201 /*
202  * raddress union which will contain the result (real or absolute address)
203  * after a page table walk. The rfaa, sfaa and pfra members are used to
204  * simply assign them the value of a region, segment or page table entry.
205  */
206 union raddress {
207 	unsigned long addr;
208 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
209 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
210 	unsigned long pfra : 52; /* Page-Frame Real Address */
211 };
212 
213 union alet {
214 	u32 val;
215 	struct {
216 		u32 reserved : 7;
217 		u32 p        : 1;
218 		u32 alesn    : 8;
219 		u32 alen     : 16;
220 	};
221 };
222 
223 union ald {
224 	u32 val;
225 	struct {
226 		u32     : 1;
227 		u32 alo : 24;
228 		u32 all : 7;
229 	};
230 };
231 
232 struct ale {
233 	unsigned long i      : 1; /* ALEN-Invalid Bit */
234 	unsigned long        : 5;
235 	unsigned long fo     : 1; /* Fetch-Only Bit */
236 	unsigned long p      : 1; /* Private Bit */
237 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
238 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
239 	unsigned long        : 32;
240 	unsigned long        : 1;
241 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
242 	unsigned long        : 6;
243 	unsigned long astesn : 32; /* ASTE Sequence Number */
244 } __packed;
245 
246 struct aste {
247 	unsigned long i      : 1; /* ASX-Invalid Bit */
248 	unsigned long ato    : 29; /* Authority-Table Origin */
249 	unsigned long        : 1;
250 	unsigned long b      : 1; /* Base-Space Bit */
251 	unsigned long ax     : 16; /* Authorization Index */
252 	unsigned long atl    : 12; /* Authority-Table Length */
253 	unsigned long        : 2;
254 	unsigned long ca     : 1; /* Controlled-ASN Bit */
255 	unsigned long ra     : 1; /* Reusable-ASN Bit */
256 	unsigned long asce   : 64; /* Address-Space-Control Element */
257 	unsigned long ald    : 32;
258 	unsigned long astesn : 32;
259 	/* .. more fields there */
260 } __packed;
261 
262 int ipte_lock_held(struct kvm_vcpu *vcpu)
263 {
264 	if (vcpu->arch.sie_block->eca & 1) {
265 		int rc;
266 
267 		read_lock(&vcpu->kvm->arch.sca_lock);
268 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
269 		read_unlock(&vcpu->kvm->arch.sca_lock);
270 		return rc;
271 	}
272 	return vcpu->kvm->arch.ipte_lock_count != 0;
273 }
274 
275 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
276 {
277 	union ipte_control old, new, *ic;
278 
279 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
280 	vcpu->kvm->arch.ipte_lock_count++;
281 	if (vcpu->kvm->arch.ipte_lock_count > 1)
282 		goto out;
283 retry:
284 	read_lock(&vcpu->kvm->arch.sca_lock);
285 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
286 	do {
287 		old = READ_ONCE(*ic);
288 		if (old.k) {
289 			read_unlock(&vcpu->kvm->arch.sca_lock);
290 			cond_resched();
291 			goto retry;
292 		}
293 		new = old;
294 		new.k = 1;
295 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
296 	read_unlock(&vcpu->kvm->arch.sca_lock);
297 out:
298 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
299 }
300 
301 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
302 {
303 	union ipte_control old, new, *ic;
304 
305 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
306 	vcpu->kvm->arch.ipte_lock_count--;
307 	if (vcpu->kvm->arch.ipte_lock_count)
308 		goto out;
309 	read_lock(&vcpu->kvm->arch.sca_lock);
310 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
311 	do {
312 		old = READ_ONCE(*ic);
313 		new = old;
314 		new.k = 0;
315 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
316 	read_unlock(&vcpu->kvm->arch.sca_lock);
317 	wake_up(&vcpu->kvm->arch.ipte_wq);
318 out:
319 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
320 }
321 
322 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
323 {
324 	union ipte_control old, new, *ic;
325 
326 retry:
327 	read_lock(&vcpu->kvm->arch.sca_lock);
328 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
329 	do {
330 		old = READ_ONCE(*ic);
331 		if (old.kg) {
332 			read_unlock(&vcpu->kvm->arch.sca_lock);
333 			cond_resched();
334 			goto retry;
335 		}
336 		new = old;
337 		new.k = 1;
338 		new.kh++;
339 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
340 	read_unlock(&vcpu->kvm->arch.sca_lock);
341 }
342 
343 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
344 {
345 	union ipte_control old, new, *ic;
346 
347 	read_lock(&vcpu->kvm->arch.sca_lock);
348 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
349 	do {
350 		old = READ_ONCE(*ic);
351 		new = old;
352 		new.kh--;
353 		if (!new.kh)
354 			new.k = 0;
355 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
356 	read_unlock(&vcpu->kvm->arch.sca_lock);
357 	if (!new.kh)
358 		wake_up(&vcpu->kvm->arch.ipte_wq);
359 }
360 
361 void ipte_lock(struct kvm_vcpu *vcpu)
362 {
363 	if (vcpu->arch.sie_block->eca & 1)
364 		ipte_lock_siif(vcpu);
365 	else
366 		ipte_lock_simple(vcpu);
367 }
368 
369 void ipte_unlock(struct kvm_vcpu *vcpu)
370 {
371 	if (vcpu->arch.sie_block->eca & 1)
372 		ipte_unlock_siif(vcpu);
373 	else
374 		ipte_unlock_simple(vcpu);
375 }
376 
377 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
378 			  enum gacc_mode mode)
379 {
380 	union alet alet;
381 	struct ale ale;
382 	struct aste aste;
383 	unsigned long ald_addr, authority_table_addr;
384 	union ald ald;
385 	int eax, rc;
386 	u8 authority_table;
387 
388 	if (ar >= NUM_ACRS)
389 		return -EINVAL;
390 
391 	save_access_regs(vcpu->run->s.regs.acrs);
392 	alet.val = vcpu->run->s.regs.acrs[ar];
393 
394 	if (ar == 0 || alet.val == 0) {
395 		asce->val = vcpu->arch.sie_block->gcr[1];
396 		return 0;
397 	} else if (alet.val == 1) {
398 		asce->val = vcpu->arch.sie_block->gcr[7];
399 		return 0;
400 	}
401 
402 	if (alet.reserved)
403 		return PGM_ALET_SPECIFICATION;
404 
405 	if (alet.p)
406 		ald_addr = vcpu->arch.sie_block->gcr[5];
407 	else
408 		ald_addr = vcpu->arch.sie_block->gcr[2];
409 	ald_addr &= 0x7fffffc0;
410 
411 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
412 	if (rc)
413 		return rc;
414 
415 	if (alet.alen / 8 > ald.all)
416 		return PGM_ALEN_TRANSLATION;
417 
418 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
419 		return PGM_ADDRESSING;
420 
421 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
422 			     sizeof(struct ale));
423 	if (rc)
424 		return rc;
425 
426 	if (ale.i == 1)
427 		return PGM_ALEN_TRANSLATION;
428 	if (ale.alesn != alet.alesn)
429 		return PGM_ALE_SEQUENCE;
430 
431 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
432 	if (rc)
433 		return rc;
434 
435 	if (aste.i)
436 		return PGM_ASTE_VALIDITY;
437 	if (aste.astesn != ale.astesn)
438 		return PGM_ASTE_SEQUENCE;
439 
440 	if (ale.p == 1) {
441 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
442 		if (ale.aleax != eax) {
443 			if (eax / 16 > aste.atl)
444 				return PGM_EXTENDED_AUTHORITY;
445 
446 			authority_table_addr = aste.ato * 4 + eax / 4;
447 
448 			rc = read_guest_real(vcpu, authority_table_addr,
449 					     &authority_table,
450 					     sizeof(u8));
451 			if (rc)
452 				return rc;
453 
454 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
455 				return PGM_EXTENDED_AUTHORITY;
456 		}
457 	}
458 
459 	if (ale.fo == 1 && mode == GACC_STORE)
460 		return PGM_PROTECTION;
461 
462 	asce->val = aste.asce;
463 	return 0;
464 }
465 
466 struct trans_exc_code_bits {
467 	unsigned long addr : 52; /* Translation-exception Address */
468 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
469 	unsigned long	   : 2;
470 	unsigned long b56  : 1;
471 	unsigned long	   : 3;
472 	unsigned long b60  : 1;
473 	unsigned long b61  : 1;
474 	unsigned long as   : 2;  /* ASCE Identifier */
475 };
476 
477 enum {
478 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
479 	FSI_STORE   = 1, /* Exception was due to store operation */
480 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
481 };
482 
483 enum prot_type {
484 	PROT_TYPE_LA   = 0,
485 	PROT_TYPE_KEYC = 1,
486 	PROT_TYPE_ALC  = 2,
487 	PROT_TYPE_DAT  = 3,
488 };
489 
490 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
491 		     u8 ar, enum gacc_mode mode, enum prot_type prot)
492 {
493 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
494 	struct trans_exc_code_bits *tec;
495 
496 	memset(pgm, 0, sizeof(*pgm));
497 	pgm->code = code;
498 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
499 
500 	switch (code) {
501 	case PGM_PROTECTION:
502 		switch (prot) {
503 		case PROT_TYPE_LA:
504 			tec->b56 = 1;
505 			break;
506 		case PROT_TYPE_KEYC:
507 			tec->b60 = 1;
508 			break;
509 		case PROT_TYPE_ALC:
510 			tec->b60 = 1;
511 			/* FALL THROUGH */
512 		case PROT_TYPE_DAT:
513 			tec->b61 = 1;
514 			break;
515 		}
516 		/* FALL THROUGH */
517 	case PGM_ASCE_TYPE:
518 	case PGM_PAGE_TRANSLATION:
519 	case PGM_REGION_FIRST_TRANS:
520 	case PGM_REGION_SECOND_TRANS:
521 	case PGM_REGION_THIRD_TRANS:
522 	case PGM_SEGMENT_TRANSLATION:
523 		/*
524 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
525 		 * exc_access_id has to be set to 0 for some instructions. Both
526 		 * cases have to be handled by the caller.
527 		 */
528 		tec->addr = gva >> PAGE_SHIFT;
529 		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
530 		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
531 		/* FALL THROUGH */
532 	case PGM_ALEN_TRANSLATION:
533 	case PGM_ALE_SEQUENCE:
534 	case PGM_ASTE_VALIDITY:
535 	case PGM_ASTE_SEQUENCE:
536 	case PGM_EXTENDED_AUTHORITY:
537 		/*
538 		 * We can always store exc_access_id, as it is
539 		 * undefined for non-ar cases. It is undefined for
540 		 * most DAT protection exceptions.
541 		 */
542 		pgm->exc_access_id = ar;
543 		break;
544 	}
545 	return code;
546 }
547 
548 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
549 			 unsigned long ga, u8 ar, enum gacc_mode mode)
550 {
551 	int rc;
552 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
553 
554 	if (!psw.t) {
555 		asce->val = 0;
556 		asce->r = 1;
557 		return 0;
558 	}
559 
560 	if (mode == GACC_IFETCH)
561 		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
562 
563 	switch (psw.as) {
564 	case PSW_AS_PRIMARY:
565 		asce->val = vcpu->arch.sie_block->gcr[1];
566 		return 0;
567 	case PSW_AS_SECONDARY:
568 		asce->val = vcpu->arch.sie_block->gcr[7];
569 		return 0;
570 	case PSW_AS_HOME:
571 		asce->val = vcpu->arch.sie_block->gcr[13];
572 		return 0;
573 	case PSW_AS_ACCREG:
574 		rc = ar_translation(vcpu, asce, ar, mode);
575 		if (rc > 0)
576 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
577 		return rc;
578 	}
579 	return 0;
580 }
581 
582 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
583 {
584 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
585 }
586 
587 /**
588  * guest_translate - translate a guest virtual into a guest absolute address
589  * @vcpu: virtual cpu
590  * @gva: guest virtual address
591  * @gpa: points to where guest physical (absolute) address should be stored
592  * @asce: effective asce
593  * @mode: indicates the access mode to be used
594  *
595  * Translate a guest virtual address into a guest absolute address by means
596  * of dynamic address translation as specified by the architecture.
597  * If the resulting absolute address is not available in the configuration
598  * an addressing exception is indicated and @gpa will not be changed.
599  *
600  * Returns: - zero on success; @gpa contains the resulting absolute address
601  *	    - a negative value if guest access failed due to e.g. broken
602  *	      guest mapping
603  *	    - a positve value if an access exception happened. In this case
604  *	      the returned value is the program interruption code as defined
605  *	      by the architecture
606  */
607 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
608 				     unsigned long *gpa, const union asce asce,
609 				     enum gacc_mode mode)
610 {
611 	union vaddress vaddr = {.addr = gva};
612 	union raddress raddr = {.addr = gva};
613 	union page_table_entry pte;
614 	int dat_protection = 0;
615 	union ctlreg0 ctlreg0;
616 	unsigned long ptr;
617 	int edat1, edat2;
618 
619 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
620 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
621 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
622 	if (asce.r)
623 		goto real_address;
624 	ptr = asce.origin * 4096;
625 	switch (asce.dt) {
626 	case ASCE_TYPE_REGION1:
627 		if (vaddr.rfx01 > asce.tl)
628 			return PGM_REGION_FIRST_TRANS;
629 		ptr += vaddr.rfx * 8;
630 		break;
631 	case ASCE_TYPE_REGION2:
632 		if (vaddr.rfx)
633 			return PGM_ASCE_TYPE;
634 		if (vaddr.rsx01 > asce.tl)
635 			return PGM_REGION_SECOND_TRANS;
636 		ptr += vaddr.rsx * 8;
637 		break;
638 	case ASCE_TYPE_REGION3:
639 		if (vaddr.rfx || vaddr.rsx)
640 			return PGM_ASCE_TYPE;
641 		if (vaddr.rtx01 > asce.tl)
642 			return PGM_REGION_THIRD_TRANS;
643 		ptr += vaddr.rtx * 8;
644 		break;
645 	case ASCE_TYPE_SEGMENT:
646 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
647 			return PGM_ASCE_TYPE;
648 		if (vaddr.sx01 > asce.tl)
649 			return PGM_SEGMENT_TRANSLATION;
650 		ptr += vaddr.sx * 8;
651 		break;
652 	}
653 	switch (asce.dt) {
654 	case ASCE_TYPE_REGION1:	{
655 		union region1_table_entry rfte;
656 
657 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
658 			return PGM_ADDRESSING;
659 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
660 			return -EFAULT;
661 		if (rfte.i)
662 			return PGM_REGION_FIRST_TRANS;
663 		if (rfte.tt != TABLE_TYPE_REGION1)
664 			return PGM_TRANSLATION_SPEC;
665 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
666 			return PGM_REGION_SECOND_TRANS;
667 		if (edat1)
668 			dat_protection |= rfte.p;
669 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
670 	}
671 		/* fallthrough */
672 	case ASCE_TYPE_REGION2: {
673 		union region2_table_entry rste;
674 
675 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
676 			return PGM_ADDRESSING;
677 		if (deref_table(vcpu->kvm, ptr, &rste.val))
678 			return -EFAULT;
679 		if (rste.i)
680 			return PGM_REGION_SECOND_TRANS;
681 		if (rste.tt != TABLE_TYPE_REGION2)
682 			return PGM_TRANSLATION_SPEC;
683 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
684 			return PGM_REGION_THIRD_TRANS;
685 		if (edat1)
686 			dat_protection |= rste.p;
687 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
688 	}
689 		/* fallthrough */
690 	case ASCE_TYPE_REGION3: {
691 		union region3_table_entry rtte;
692 
693 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
694 			return PGM_ADDRESSING;
695 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
696 			return -EFAULT;
697 		if (rtte.i)
698 			return PGM_REGION_THIRD_TRANS;
699 		if (rtte.tt != TABLE_TYPE_REGION3)
700 			return PGM_TRANSLATION_SPEC;
701 		if (rtte.cr && asce.p && edat2)
702 			return PGM_TRANSLATION_SPEC;
703 		if (rtte.fc && edat2) {
704 			dat_protection |= rtte.fc1.p;
705 			raddr.rfaa = rtte.fc1.rfaa;
706 			goto absolute_address;
707 		}
708 		if (vaddr.sx01 < rtte.fc0.tf)
709 			return PGM_SEGMENT_TRANSLATION;
710 		if (vaddr.sx01 > rtte.fc0.tl)
711 			return PGM_SEGMENT_TRANSLATION;
712 		if (edat1)
713 			dat_protection |= rtte.fc0.p;
714 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
715 	}
716 		/* fallthrough */
717 	case ASCE_TYPE_SEGMENT: {
718 		union segment_table_entry ste;
719 
720 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
721 			return PGM_ADDRESSING;
722 		if (deref_table(vcpu->kvm, ptr, &ste.val))
723 			return -EFAULT;
724 		if (ste.i)
725 			return PGM_SEGMENT_TRANSLATION;
726 		if (ste.tt != TABLE_TYPE_SEGMENT)
727 			return PGM_TRANSLATION_SPEC;
728 		if (ste.cs && asce.p)
729 			return PGM_TRANSLATION_SPEC;
730 		if (ste.fc && edat1) {
731 			dat_protection |= ste.fc1.p;
732 			raddr.sfaa = ste.fc1.sfaa;
733 			goto absolute_address;
734 		}
735 		dat_protection |= ste.fc0.p;
736 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
737 	}
738 	}
739 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
740 		return PGM_ADDRESSING;
741 	if (deref_table(vcpu->kvm, ptr, &pte.val))
742 		return -EFAULT;
743 	if (pte.i)
744 		return PGM_PAGE_TRANSLATION;
745 	if (pte.z)
746 		return PGM_TRANSLATION_SPEC;
747 	dat_protection |= pte.p;
748 	raddr.pfra = pte.pfra;
749 real_address:
750 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
751 absolute_address:
752 	if (mode == GACC_STORE && dat_protection)
753 		return PGM_PROTECTION;
754 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
755 		return PGM_ADDRESSING;
756 	*gpa = raddr.addr;
757 	return 0;
758 }
759 
760 static inline int is_low_address(unsigned long ga)
761 {
762 	/* Check for address ranges 0..511 and 4096..4607 */
763 	return (ga & ~0x11fful) == 0;
764 }
765 
766 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
767 					  const union asce asce)
768 {
769 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
770 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
771 
772 	if (!ctlreg0.lap)
773 		return 0;
774 	if (psw_bits(*psw).t && asce.p)
775 		return 0;
776 	return 1;
777 }
778 
779 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
780 			    unsigned long *pages, unsigned long nr_pages,
781 			    const union asce asce, enum gacc_mode mode)
782 {
783 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
784 	int lap_enabled, rc = 0;
785 
786 	lap_enabled = low_address_protection_enabled(vcpu, asce);
787 	while (nr_pages) {
788 		ga = kvm_s390_logical_to_effective(vcpu, ga);
789 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
790 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
791 					 PROT_TYPE_LA);
792 		ga &= PAGE_MASK;
793 		if (psw_bits(*psw).t) {
794 			rc = guest_translate(vcpu, ga, pages, asce, mode);
795 			if (rc < 0)
796 				return rc;
797 		} else {
798 			*pages = kvm_s390_real_to_abs(vcpu, ga);
799 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
800 				rc = PGM_ADDRESSING;
801 		}
802 		if (rc)
803 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
804 		ga += PAGE_SIZE;
805 		pages++;
806 		nr_pages--;
807 	}
808 	return 0;
809 }
810 
811 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
812 		 unsigned long len, enum gacc_mode mode)
813 {
814 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
815 	unsigned long _len, nr_pages, gpa, idx;
816 	unsigned long pages_array[2];
817 	unsigned long *pages;
818 	int need_ipte_lock;
819 	union asce asce;
820 	int rc;
821 
822 	if (!len)
823 		return 0;
824 	ga = kvm_s390_logical_to_effective(vcpu, ga);
825 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
826 	if (rc)
827 		return rc;
828 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
829 	pages = pages_array;
830 	if (nr_pages > ARRAY_SIZE(pages_array))
831 		pages = vmalloc(nr_pages * sizeof(unsigned long));
832 	if (!pages)
833 		return -ENOMEM;
834 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
835 	if (need_ipte_lock)
836 		ipte_lock(vcpu);
837 	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
838 	for (idx = 0; idx < nr_pages && !rc; idx++) {
839 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
840 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
841 		if (mode == GACC_STORE)
842 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
843 		else
844 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
845 		len -= _len;
846 		ga += _len;
847 		data += _len;
848 	}
849 	if (need_ipte_lock)
850 		ipte_unlock(vcpu);
851 	if (nr_pages > ARRAY_SIZE(pages_array))
852 		vfree(pages);
853 	return rc;
854 }
855 
856 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
857 		      void *data, unsigned long len, enum gacc_mode mode)
858 {
859 	unsigned long _len, gpa;
860 	int rc = 0;
861 
862 	while (len && !rc) {
863 		gpa = kvm_s390_real_to_abs(vcpu, gra);
864 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
865 		if (mode)
866 			rc = write_guest_abs(vcpu, gpa, data, _len);
867 		else
868 			rc = read_guest_abs(vcpu, gpa, data, _len);
869 		len -= _len;
870 		gra += _len;
871 		data += _len;
872 	}
873 	return rc;
874 }
875 
876 /**
877  * guest_translate_address - translate guest logical into guest absolute address
878  *
879  * Parameter semantics are the same as the ones from guest_translate.
880  * The memory contents at the guest address are not changed.
881  *
882  * Note: The IPTE lock is not taken during this function, so the caller
883  * has to take care of this.
884  */
885 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
886 			    unsigned long *gpa, enum gacc_mode mode)
887 {
888 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
889 	union asce asce;
890 	int rc;
891 
892 	gva = kvm_s390_logical_to_effective(vcpu, gva);
893 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
894 	if (rc)
895 		return rc;
896 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
897 		if (mode == GACC_STORE)
898 			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
899 					 mode, PROT_TYPE_LA);
900 	}
901 
902 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
903 		rc = guest_translate(vcpu, gva, gpa, asce, mode);
904 		if (rc > 0)
905 			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
906 	} else {
907 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
908 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
909 			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
910 	}
911 
912 	return rc;
913 }
914 
915 /**
916  * check_gva_range - test a range of guest virtual addresses for accessibility
917  */
918 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
919 		    unsigned long length, enum gacc_mode mode)
920 {
921 	unsigned long gpa;
922 	unsigned long currlen;
923 	int rc = 0;
924 
925 	ipte_lock(vcpu);
926 	while (length > 0 && !rc) {
927 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
928 		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
929 		gva += currlen;
930 		length -= currlen;
931 	}
932 	ipte_unlock(vcpu);
933 
934 	return rc;
935 }
936 
937 /**
938  * kvm_s390_check_low_addr_prot_real - check for low-address protection
939  * @gra: Guest real address
940  *
941  * Checks whether an address is subject to low-address protection and set
942  * up vcpu->arch.pgm accordingly if necessary.
943  *
944  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
945  */
946 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
947 {
948 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
949 
950 	if (!ctlreg0.lap || !is_low_address(gra))
951 		return 0;
952 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
953 }
954 
955 /**
956  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
957  * @sg: pointer to the shadow guest address space structure
958  * @saddr: faulting address in the shadow gmap
959  * @pgt: pointer to the page table address result
960  * @fake: pgt references contiguous guest memory block, not a pgtable
961  */
962 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
963 				  unsigned long *pgt, int *dat_protection,
964 				  int *fake)
965 {
966 	struct gmap *parent;
967 	union asce asce;
968 	union vaddress vaddr;
969 	unsigned long ptr;
970 	int rc;
971 
972 	*fake = 0;
973 	*dat_protection = 0;
974 	parent = sg->parent;
975 	vaddr.addr = saddr;
976 	asce.val = sg->orig_asce;
977 	ptr = asce.origin * 4096;
978 	if (asce.r) {
979 		*fake = 1;
980 		asce.dt = ASCE_TYPE_REGION1;
981 	}
982 	switch (asce.dt) {
983 	case ASCE_TYPE_REGION1:
984 		if (vaddr.rfx01 > asce.tl && !asce.r)
985 			return PGM_REGION_FIRST_TRANS;
986 		break;
987 	case ASCE_TYPE_REGION2:
988 		if (vaddr.rfx)
989 			return PGM_ASCE_TYPE;
990 		if (vaddr.rsx01 > asce.tl)
991 			return PGM_REGION_SECOND_TRANS;
992 		break;
993 	case ASCE_TYPE_REGION3:
994 		if (vaddr.rfx || vaddr.rsx)
995 			return PGM_ASCE_TYPE;
996 		if (vaddr.rtx01 > asce.tl)
997 			return PGM_REGION_THIRD_TRANS;
998 		break;
999 	case ASCE_TYPE_SEGMENT:
1000 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1001 			return PGM_ASCE_TYPE;
1002 		if (vaddr.sx01 > asce.tl)
1003 			return PGM_SEGMENT_TRANSLATION;
1004 		break;
1005 	}
1006 
1007 	switch (asce.dt) {
1008 	case ASCE_TYPE_REGION1: {
1009 		union region1_table_entry rfte;
1010 
1011 		if (*fake) {
1012 			/* offset in 16EB guest memory block */
1013 			ptr = ptr + ((unsigned long) vaddr.rsx << 53UL);
1014 			rfte.val = ptr;
1015 			goto shadow_r2t;
1016 		}
1017 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1018 		if (rc)
1019 			return rc;
1020 		if (rfte.i)
1021 			return PGM_REGION_FIRST_TRANS;
1022 		if (rfte.tt != TABLE_TYPE_REGION1)
1023 			return PGM_TRANSLATION_SPEC;
1024 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1025 			return PGM_REGION_SECOND_TRANS;
1026 		if (sg->edat_level >= 1)
1027 			*dat_protection |= rfte.p;
1028 		ptr = rfte.rto << 12UL;
1029 shadow_r2t:
1030 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1031 		if (rc)
1032 			return rc;
1033 		/* fallthrough */
1034 	}
1035 	case ASCE_TYPE_REGION2: {
1036 		union region2_table_entry rste;
1037 
1038 		if (*fake) {
1039 			/* offset in 8PB guest memory block */
1040 			ptr = ptr + ((unsigned long) vaddr.rtx << 42UL);
1041 			rste.val = ptr;
1042 			goto shadow_r3t;
1043 		}
1044 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1045 		if (rc)
1046 			return rc;
1047 		if (rste.i)
1048 			return PGM_REGION_SECOND_TRANS;
1049 		if (rste.tt != TABLE_TYPE_REGION2)
1050 			return PGM_TRANSLATION_SPEC;
1051 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1052 			return PGM_REGION_THIRD_TRANS;
1053 		if (sg->edat_level >= 1)
1054 			*dat_protection |= rste.p;
1055 		ptr = rste.rto << 12UL;
1056 shadow_r3t:
1057 		rste.p |= *dat_protection;
1058 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1059 		if (rc)
1060 			return rc;
1061 		/* fallthrough */
1062 	}
1063 	case ASCE_TYPE_REGION3: {
1064 		union region3_table_entry rtte;
1065 
1066 		if (*fake) {
1067 			/* offset in 4TB guest memory block */
1068 			ptr = ptr + ((unsigned long) vaddr.sx << 31UL);
1069 			rtte.val = ptr;
1070 			goto shadow_sgt;
1071 		}
1072 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1073 		if (rc)
1074 			return rc;
1075 		if (rtte.i)
1076 			return PGM_REGION_THIRD_TRANS;
1077 		if (rtte.tt != TABLE_TYPE_REGION3)
1078 			return PGM_TRANSLATION_SPEC;
1079 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1080 			return PGM_TRANSLATION_SPEC;
1081 		if (rtte.fc && sg->edat_level >= 2) {
1082 			*dat_protection |= rtte.fc0.p;
1083 			*fake = 1;
1084 			ptr = rtte.fc1.rfaa << 31UL;
1085 			rtte.val = ptr;
1086 			goto shadow_sgt;
1087 		}
1088 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1089 			return PGM_SEGMENT_TRANSLATION;
1090 		if (sg->edat_level >= 1)
1091 			*dat_protection |= rtte.fc0.p;
1092 		ptr = rtte.fc0.sto << 12UL;
1093 shadow_sgt:
1094 		rtte.fc0.p |= *dat_protection;
1095 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1096 		if (rc)
1097 			return rc;
1098 		/* fallthrough */
1099 	}
1100 	case ASCE_TYPE_SEGMENT: {
1101 		union segment_table_entry ste;
1102 
1103 		if (*fake) {
1104 			/* offset in 2G guest memory block */
1105 			ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
1106 			ste.val = ptr;
1107 			goto shadow_pgt;
1108 		}
1109 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1110 		if (rc)
1111 			return rc;
1112 		if (ste.i)
1113 			return PGM_SEGMENT_TRANSLATION;
1114 		if (ste.tt != TABLE_TYPE_SEGMENT)
1115 			return PGM_TRANSLATION_SPEC;
1116 		if (ste.cs && asce.p)
1117 			return PGM_TRANSLATION_SPEC;
1118 		*dat_protection |= ste.fc0.p;
1119 		if (ste.fc && sg->edat_level >= 1) {
1120 			*fake = 1;
1121 			ptr = ste.fc1.sfaa << 20UL;
1122 			ste.val = ptr;
1123 			goto shadow_pgt;
1124 		}
1125 		ptr = ste.fc0.pto << 11UL;
1126 shadow_pgt:
1127 		ste.fc0.p |= *dat_protection;
1128 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1129 		if (rc)
1130 			return rc;
1131 	}
1132 	}
1133 	/* Return the parent address of the page table */
1134 	*pgt = ptr;
1135 	return 0;
1136 }
1137 
1138 /**
1139  * kvm_s390_shadow_fault - handle fault on a shadow page table
1140  * @vcpu: virtual cpu
1141  * @sg: pointer to the shadow guest address space structure
1142  * @saddr: faulting address in the shadow gmap
1143  *
1144  * Returns: - 0 if the shadow fault was successfully resolved
1145  *	    - > 0 (pgm exception code) on exceptions while faulting
1146  *	    - -EAGAIN if the caller can retry immediately
1147  *	    - -EFAULT when accessing invalid guest addresses
1148  *	    - -ENOMEM if out of memory
1149  */
1150 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1151 			  unsigned long saddr)
1152 {
1153 	union vaddress vaddr;
1154 	union page_table_entry pte;
1155 	unsigned long pgt;
1156 	int dat_protection, fake;
1157 	int rc;
1158 
1159 	down_read(&sg->mm->mmap_sem);
1160 	/*
1161 	 * We don't want any guest-2 tables to change - so the parent
1162 	 * tables/pointers we read stay valid - unshadowing is however
1163 	 * always possible - only guest_table_lock protects us.
1164 	 */
1165 	ipte_lock(vcpu);
1166 
1167 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1168 	if (rc)
1169 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1170 					    &fake);
1171 
1172 	vaddr.addr = saddr;
1173 	if (fake) {
1174 		/* offset in 1MB guest memory block */
1175 		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1176 		goto shadow_page;
1177 	}
1178 	if (!rc)
1179 		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1180 	if (!rc && pte.i)
1181 		rc = PGM_PAGE_TRANSLATION;
1182 	if (!rc && pte.z)
1183 		rc = PGM_TRANSLATION_SPEC;
1184 shadow_page:
1185 	pte.p |= dat_protection;
1186 	if (!rc)
1187 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1188 	ipte_unlock(vcpu);
1189 	up_read(&sg->mm->mmap_sem);
1190 	return rc;
1191 }
1192