1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * guest access functions 4 * 5 * Copyright IBM Corp. 2014 6 * 7 */ 8 9 #include <linux/vmalloc.h> 10 #include <linux/mm_types.h> 11 #include <linux/err.h> 12 #include <linux/pgtable.h> 13 #include <linux/bitfield.h> 14 #include <asm/access-regs.h> 15 #include <asm/fault.h> 16 #include <asm/gmap.h> 17 #include "kvm-s390.h" 18 #include "gaccess.h" 19 20 union asce { 21 unsigned long val; 22 struct { 23 unsigned long origin : 52; /* Region- or Segment-Table Origin */ 24 unsigned long : 2; 25 unsigned long g : 1; /* Subspace Group Control */ 26 unsigned long p : 1; /* Private Space Control */ 27 unsigned long s : 1; /* Storage-Alteration-Event Control */ 28 unsigned long x : 1; /* Space-Switch-Event Control */ 29 unsigned long r : 1; /* Real-Space Control */ 30 unsigned long : 1; 31 unsigned long dt : 2; /* Designation-Type Control */ 32 unsigned long tl : 2; /* Region- or Segment-Table Length */ 33 }; 34 }; 35 36 enum { 37 ASCE_TYPE_SEGMENT = 0, 38 ASCE_TYPE_REGION3 = 1, 39 ASCE_TYPE_REGION2 = 2, 40 ASCE_TYPE_REGION1 = 3 41 }; 42 43 union region1_table_entry { 44 unsigned long val; 45 struct { 46 unsigned long rto: 52;/* Region-Table Origin */ 47 unsigned long : 2; 48 unsigned long p : 1; /* DAT-Protection Bit */ 49 unsigned long : 1; 50 unsigned long tf : 2; /* Region-Second-Table Offset */ 51 unsigned long i : 1; /* Region-Invalid Bit */ 52 unsigned long : 1; 53 unsigned long tt : 2; /* Table-Type Bits */ 54 unsigned long tl : 2; /* Region-Second-Table Length */ 55 }; 56 }; 57 58 union region2_table_entry { 59 unsigned long val; 60 struct { 61 unsigned long rto: 52;/* Region-Table Origin */ 62 unsigned long : 2; 63 unsigned long p : 1; /* DAT-Protection Bit */ 64 unsigned long : 1; 65 unsigned long tf : 2; /* Region-Third-Table Offset */ 66 unsigned long i : 1; /* Region-Invalid Bit */ 67 unsigned long : 1; 68 unsigned long tt : 2; /* Table-Type Bits */ 69 unsigned long tl : 2; /* Region-Third-Table Length */ 70 }; 71 }; 72 73 struct region3_table_entry_fc0 { 74 unsigned long sto: 52;/* Segment-Table Origin */ 75 unsigned long : 1; 76 unsigned long fc : 1; /* Format-Control */ 77 unsigned long p : 1; /* DAT-Protection Bit */ 78 unsigned long : 1; 79 unsigned long tf : 2; /* Segment-Table Offset */ 80 unsigned long i : 1; /* Region-Invalid Bit */ 81 unsigned long cr : 1; /* Common-Region Bit */ 82 unsigned long tt : 2; /* Table-Type Bits */ 83 unsigned long tl : 2; /* Segment-Table Length */ 84 }; 85 86 struct region3_table_entry_fc1 { 87 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 88 unsigned long : 14; 89 unsigned long av : 1; /* ACCF-Validity Control */ 90 unsigned long acc: 4; /* Access-Control Bits */ 91 unsigned long f : 1; /* Fetch-Protection Bit */ 92 unsigned long fc : 1; /* Format-Control */ 93 unsigned long p : 1; /* DAT-Protection Bit */ 94 unsigned long iep: 1; /* Instruction-Execution-Protection */ 95 unsigned long : 2; 96 unsigned long i : 1; /* Region-Invalid Bit */ 97 unsigned long cr : 1; /* Common-Region Bit */ 98 unsigned long tt : 2; /* Table-Type Bits */ 99 unsigned long : 2; 100 }; 101 102 union region3_table_entry { 103 unsigned long val; 104 struct region3_table_entry_fc0 fc0; 105 struct region3_table_entry_fc1 fc1; 106 struct { 107 unsigned long : 53; 108 unsigned long fc : 1; /* Format-Control */ 109 unsigned long : 4; 110 unsigned long i : 1; /* Region-Invalid Bit */ 111 unsigned long cr : 1; /* Common-Region Bit */ 112 unsigned long tt : 2; /* Table-Type Bits */ 113 unsigned long : 2; 114 }; 115 }; 116 117 struct segment_entry_fc0 { 118 unsigned long pto: 53;/* Page-Table Origin */ 119 unsigned long fc : 1; /* Format-Control */ 120 unsigned long p : 1; /* DAT-Protection Bit */ 121 unsigned long : 3; 122 unsigned long i : 1; /* Segment-Invalid Bit */ 123 unsigned long cs : 1; /* Common-Segment Bit */ 124 unsigned long tt : 2; /* Table-Type Bits */ 125 unsigned long : 2; 126 }; 127 128 struct segment_entry_fc1 { 129 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 130 unsigned long : 3; 131 unsigned long av : 1; /* ACCF-Validity Control */ 132 unsigned long acc: 4; /* Access-Control Bits */ 133 unsigned long f : 1; /* Fetch-Protection Bit */ 134 unsigned long fc : 1; /* Format-Control */ 135 unsigned long p : 1; /* DAT-Protection Bit */ 136 unsigned long iep: 1; /* Instruction-Execution-Protection */ 137 unsigned long : 2; 138 unsigned long i : 1; /* Segment-Invalid Bit */ 139 unsigned long cs : 1; /* Common-Segment Bit */ 140 unsigned long tt : 2; /* Table-Type Bits */ 141 unsigned long : 2; 142 }; 143 144 union segment_table_entry { 145 unsigned long val; 146 struct segment_entry_fc0 fc0; 147 struct segment_entry_fc1 fc1; 148 struct { 149 unsigned long : 53; 150 unsigned long fc : 1; /* Format-Control */ 151 unsigned long : 4; 152 unsigned long i : 1; /* Segment-Invalid Bit */ 153 unsigned long cs : 1; /* Common-Segment Bit */ 154 unsigned long tt : 2; /* Table-Type Bits */ 155 unsigned long : 2; 156 }; 157 }; 158 159 enum { 160 TABLE_TYPE_SEGMENT = 0, 161 TABLE_TYPE_REGION3 = 1, 162 TABLE_TYPE_REGION2 = 2, 163 TABLE_TYPE_REGION1 = 3 164 }; 165 166 union page_table_entry { 167 unsigned long val; 168 struct { 169 unsigned long pfra : 52; /* Page-Frame Real Address */ 170 unsigned long z : 1; /* Zero Bit */ 171 unsigned long i : 1; /* Page-Invalid Bit */ 172 unsigned long p : 1; /* DAT-Protection Bit */ 173 unsigned long iep: 1; /* Instruction-Execution-Protection */ 174 unsigned long : 8; 175 }; 176 }; 177 178 /* 179 * vaddress union in order to easily decode a virtual address into its 180 * region first index, region second index etc. parts. 181 */ 182 union vaddress { 183 unsigned long addr; 184 struct { 185 unsigned long rfx : 11; 186 unsigned long rsx : 11; 187 unsigned long rtx : 11; 188 unsigned long sx : 11; 189 unsigned long px : 8; 190 unsigned long bx : 12; 191 }; 192 struct { 193 unsigned long rfx01 : 2; 194 unsigned long : 9; 195 unsigned long rsx01 : 2; 196 unsigned long : 9; 197 unsigned long rtx01 : 2; 198 unsigned long : 9; 199 unsigned long sx01 : 2; 200 unsigned long : 29; 201 }; 202 }; 203 204 /* 205 * raddress union which will contain the result (real or absolute address) 206 * after a page table walk. The rfaa, sfaa and pfra members are used to 207 * simply assign them the value of a region, segment or page table entry. 208 */ 209 union raddress { 210 unsigned long addr; 211 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 212 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 213 unsigned long pfra : 52; /* Page-Frame Real Address */ 214 }; 215 216 union alet { 217 u32 val; 218 struct { 219 u32 reserved : 7; 220 u32 p : 1; 221 u32 alesn : 8; 222 u32 alen : 16; 223 }; 224 }; 225 226 union ald { 227 u32 val; 228 struct { 229 u32 : 1; 230 u32 alo : 24; 231 u32 all : 7; 232 }; 233 }; 234 235 struct ale { 236 unsigned long i : 1; /* ALEN-Invalid Bit */ 237 unsigned long : 5; 238 unsigned long fo : 1; /* Fetch-Only Bit */ 239 unsigned long p : 1; /* Private Bit */ 240 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ 241 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ 242 unsigned long : 32; 243 unsigned long : 1; 244 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ 245 unsigned long : 6; 246 unsigned long astesn : 32; /* ASTE Sequence Number */ 247 }; 248 249 struct aste { 250 unsigned long i : 1; /* ASX-Invalid Bit */ 251 unsigned long ato : 29; /* Authority-Table Origin */ 252 unsigned long : 1; 253 unsigned long b : 1; /* Base-Space Bit */ 254 unsigned long ax : 16; /* Authorization Index */ 255 unsigned long atl : 12; /* Authority-Table Length */ 256 unsigned long : 2; 257 unsigned long ca : 1; /* Controlled-ASN Bit */ 258 unsigned long ra : 1; /* Reusable-ASN Bit */ 259 unsigned long asce : 64; /* Address-Space-Control Element */ 260 unsigned long ald : 32; 261 unsigned long astesn : 32; 262 /* .. more fields there */ 263 }; 264 265 int ipte_lock_held(struct kvm *kvm) 266 { 267 if (sclp.has_siif) { 268 int rc; 269 270 read_lock(&kvm->arch.sca_lock); 271 rc = kvm_s390_get_ipte_control(kvm)->kh != 0; 272 read_unlock(&kvm->arch.sca_lock); 273 return rc; 274 } 275 return kvm->arch.ipte_lock_count != 0; 276 } 277 278 static void ipte_lock_simple(struct kvm *kvm) 279 { 280 union ipte_control old, new, *ic; 281 282 mutex_lock(&kvm->arch.ipte_mutex); 283 kvm->arch.ipte_lock_count++; 284 if (kvm->arch.ipte_lock_count > 1) 285 goto out; 286 retry: 287 read_lock(&kvm->arch.sca_lock); 288 ic = kvm_s390_get_ipte_control(kvm); 289 do { 290 old = READ_ONCE(*ic); 291 if (old.k) { 292 read_unlock(&kvm->arch.sca_lock); 293 cond_resched(); 294 goto retry; 295 } 296 new = old; 297 new.k = 1; 298 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 299 read_unlock(&kvm->arch.sca_lock); 300 out: 301 mutex_unlock(&kvm->arch.ipte_mutex); 302 } 303 304 static void ipte_unlock_simple(struct kvm *kvm) 305 { 306 union ipte_control old, new, *ic; 307 308 mutex_lock(&kvm->arch.ipte_mutex); 309 kvm->arch.ipte_lock_count--; 310 if (kvm->arch.ipte_lock_count) 311 goto out; 312 read_lock(&kvm->arch.sca_lock); 313 ic = kvm_s390_get_ipte_control(kvm); 314 do { 315 old = READ_ONCE(*ic); 316 new = old; 317 new.k = 0; 318 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 319 read_unlock(&kvm->arch.sca_lock); 320 wake_up(&kvm->arch.ipte_wq); 321 out: 322 mutex_unlock(&kvm->arch.ipte_mutex); 323 } 324 325 static void ipte_lock_siif(struct kvm *kvm) 326 { 327 union ipte_control old, new, *ic; 328 329 retry: 330 read_lock(&kvm->arch.sca_lock); 331 ic = kvm_s390_get_ipte_control(kvm); 332 do { 333 old = READ_ONCE(*ic); 334 if (old.kg) { 335 read_unlock(&kvm->arch.sca_lock); 336 cond_resched(); 337 goto retry; 338 } 339 new = old; 340 new.k = 1; 341 new.kh++; 342 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 343 read_unlock(&kvm->arch.sca_lock); 344 } 345 346 static void ipte_unlock_siif(struct kvm *kvm) 347 { 348 union ipte_control old, new, *ic; 349 350 read_lock(&kvm->arch.sca_lock); 351 ic = kvm_s390_get_ipte_control(kvm); 352 do { 353 old = READ_ONCE(*ic); 354 new = old; 355 new.kh--; 356 if (!new.kh) 357 new.k = 0; 358 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 359 read_unlock(&kvm->arch.sca_lock); 360 if (!new.kh) 361 wake_up(&kvm->arch.ipte_wq); 362 } 363 364 void ipte_lock(struct kvm *kvm) 365 { 366 if (sclp.has_siif) 367 ipte_lock_siif(kvm); 368 else 369 ipte_lock_simple(kvm); 370 } 371 372 void ipte_unlock(struct kvm *kvm) 373 { 374 if (sclp.has_siif) 375 ipte_unlock_siif(kvm); 376 else 377 ipte_unlock_simple(kvm); 378 } 379 380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar, 381 enum gacc_mode mode) 382 { 383 union alet alet; 384 struct ale ale; 385 struct aste aste; 386 unsigned long ald_addr, authority_table_addr; 387 union ald ald; 388 int eax, rc; 389 u8 authority_table; 390 391 if (ar >= NUM_ACRS) 392 return -EINVAL; 393 394 if (vcpu->arch.acrs_loaded) 395 save_access_regs(vcpu->run->s.regs.acrs); 396 alet.val = vcpu->run->s.regs.acrs[ar]; 397 398 if (ar == 0 || alet.val == 0) { 399 asce->val = vcpu->arch.sie_block->gcr[1]; 400 return 0; 401 } else if (alet.val == 1) { 402 asce->val = vcpu->arch.sie_block->gcr[7]; 403 return 0; 404 } 405 406 if (alet.reserved) 407 return PGM_ALET_SPECIFICATION; 408 409 if (alet.p) 410 ald_addr = vcpu->arch.sie_block->gcr[5]; 411 else 412 ald_addr = vcpu->arch.sie_block->gcr[2]; 413 ald_addr &= 0x7fffffc0; 414 415 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); 416 if (rc) 417 return rc; 418 419 if (alet.alen / 8 > ald.all) 420 return PGM_ALEN_TRANSLATION; 421 422 if (0x7fffffff - ald.alo * 128 < alet.alen * 16) 423 return PGM_ADDRESSING; 424 425 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, 426 sizeof(struct ale)); 427 if (rc) 428 return rc; 429 430 if (ale.i == 1) 431 return PGM_ALEN_TRANSLATION; 432 if (ale.alesn != alet.alesn) 433 return PGM_ALE_SEQUENCE; 434 435 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); 436 if (rc) 437 return rc; 438 439 if (aste.i) 440 return PGM_ASTE_VALIDITY; 441 if (aste.astesn != ale.astesn) 442 return PGM_ASTE_SEQUENCE; 443 444 if (ale.p == 1) { 445 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; 446 if (ale.aleax != eax) { 447 if (eax / 16 > aste.atl) 448 return PGM_EXTENDED_AUTHORITY; 449 450 authority_table_addr = aste.ato * 4 + eax / 4; 451 452 rc = read_guest_real(vcpu, authority_table_addr, 453 &authority_table, 454 sizeof(u8)); 455 if (rc) 456 return rc; 457 458 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) 459 return PGM_EXTENDED_AUTHORITY; 460 } 461 } 462 463 if (ale.fo == 1 && mode == GACC_STORE) 464 return PGM_PROTECTION; 465 466 asce->val = aste.asce; 467 return 0; 468 } 469 470 enum prot_type { 471 PROT_TYPE_LA = 0, 472 PROT_TYPE_KEYC = 1, 473 PROT_TYPE_ALC = 2, 474 PROT_TYPE_DAT = 3, 475 PROT_TYPE_IEP = 4, 476 /* Dummy value for passing an initialized value when code != PGM_PROTECTION */ 477 PROT_NONE, 478 }; 479 480 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 481 enum gacc_mode mode, enum prot_type prot, bool terminate) 482 { 483 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 484 union teid *teid; 485 486 memset(pgm, 0, sizeof(*pgm)); 487 pgm->code = code; 488 teid = (union teid *)&pgm->trans_exc_code; 489 490 switch (code) { 491 case PGM_PROTECTION: 492 switch (prot) { 493 case PROT_NONE: 494 /* We should never get here, acts like termination */ 495 WARN_ON_ONCE(1); 496 break; 497 case PROT_TYPE_IEP: 498 teid->b61 = 1; 499 fallthrough; 500 case PROT_TYPE_LA: 501 teid->b56 = 1; 502 break; 503 case PROT_TYPE_KEYC: 504 teid->b60 = 1; 505 break; 506 case PROT_TYPE_ALC: 507 teid->b60 = 1; 508 fallthrough; 509 case PROT_TYPE_DAT: 510 teid->b61 = 1; 511 break; 512 } 513 if (terminate) { 514 teid->b56 = 0; 515 teid->b60 = 0; 516 teid->b61 = 0; 517 } 518 fallthrough; 519 case PGM_ASCE_TYPE: 520 case PGM_PAGE_TRANSLATION: 521 case PGM_REGION_FIRST_TRANS: 522 case PGM_REGION_SECOND_TRANS: 523 case PGM_REGION_THIRD_TRANS: 524 case PGM_SEGMENT_TRANSLATION: 525 /* 526 * op_access_id only applies to MOVE_PAGE -> set bit 61 527 * exc_access_id has to be set to 0 for some instructions. Both 528 * cases have to be handled by the caller. 529 */ 530 teid->addr = gva >> PAGE_SHIFT; 531 teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH; 532 teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as; 533 fallthrough; 534 case PGM_ALEN_TRANSLATION: 535 case PGM_ALE_SEQUENCE: 536 case PGM_ASTE_VALIDITY: 537 case PGM_ASTE_SEQUENCE: 538 case PGM_EXTENDED_AUTHORITY: 539 /* 540 * We can always store exc_access_id, as it is 541 * undefined for non-ar cases. It is undefined for 542 * most DAT protection exceptions. 543 */ 544 pgm->exc_access_id = ar; 545 break; 546 } 547 return code; 548 } 549 550 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 551 enum gacc_mode mode, enum prot_type prot) 552 { 553 return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false); 554 } 555 556 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, 557 unsigned long ga, u8 ar, enum gacc_mode mode) 558 { 559 int rc; 560 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw); 561 562 if (!psw.dat) { 563 asce->val = 0; 564 asce->r = 1; 565 return 0; 566 } 567 568 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME)) 569 psw.as = PSW_BITS_AS_PRIMARY; 570 571 switch (psw.as) { 572 case PSW_BITS_AS_PRIMARY: 573 asce->val = vcpu->arch.sie_block->gcr[1]; 574 return 0; 575 case PSW_BITS_AS_SECONDARY: 576 asce->val = vcpu->arch.sie_block->gcr[7]; 577 return 0; 578 case PSW_BITS_AS_HOME: 579 asce->val = vcpu->arch.sie_block->gcr[13]; 580 return 0; 581 case PSW_BITS_AS_ACCREG: 582 rc = ar_translation(vcpu, asce, ar, mode); 583 if (rc > 0) 584 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC); 585 return rc; 586 } 587 return 0; 588 } 589 590 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) 591 { 592 return kvm_read_guest(kvm, gpa, val, sizeof(*val)); 593 } 594 595 /** 596 * guest_translate - translate a guest virtual into a guest absolute address 597 * @vcpu: virtual cpu 598 * @gva: guest virtual address 599 * @gpa: points to where guest physical (absolute) address should be stored 600 * @asce: effective asce 601 * @mode: indicates the access mode to be used 602 * @prot: returns the type for protection exceptions 603 * 604 * Translate a guest virtual address into a guest absolute address by means 605 * of dynamic address translation as specified by the architecture. 606 * If the resulting absolute address is not available in the configuration 607 * an addressing exception is indicated and @gpa will not be changed. 608 * 609 * Returns: - zero on success; @gpa contains the resulting absolute address 610 * - a negative value if guest access failed due to e.g. broken 611 * guest mapping 612 * - a positive value if an access exception happened. In this case 613 * the returned value is the program interruption code as defined 614 * by the architecture 615 */ 616 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, 617 unsigned long *gpa, const union asce asce, 618 enum gacc_mode mode, enum prot_type *prot) 619 { 620 union vaddress vaddr = {.addr = gva}; 621 union raddress raddr = {.addr = gva}; 622 union page_table_entry pte; 623 int dat_protection = 0; 624 int iep_protection = 0; 625 union ctlreg0 ctlreg0; 626 unsigned long ptr; 627 int edat1, edat2, iep; 628 629 ctlreg0.val = vcpu->arch.sie_block->gcr[0]; 630 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); 631 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); 632 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130); 633 if (asce.r) 634 goto real_address; 635 ptr = asce.origin * PAGE_SIZE; 636 switch (asce.dt) { 637 case ASCE_TYPE_REGION1: 638 if (vaddr.rfx01 > asce.tl) 639 return PGM_REGION_FIRST_TRANS; 640 ptr += vaddr.rfx * 8; 641 break; 642 case ASCE_TYPE_REGION2: 643 if (vaddr.rfx) 644 return PGM_ASCE_TYPE; 645 if (vaddr.rsx01 > asce.tl) 646 return PGM_REGION_SECOND_TRANS; 647 ptr += vaddr.rsx * 8; 648 break; 649 case ASCE_TYPE_REGION3: 650 if (vaddr.rfx || vaddr.rsx) 651 return PGM_ASCE_TYPE; 652 if (vaddr.rtx01 > asce.tl) 653 return PGM_REGION_THIRD_TRANS; 654 ptr += vaddr.rtx * 8; 655 break; 656 case ASCE_TYPE_SEGMENT: 657 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 658 return PGM_ASCE_TYPE; 659 if (vaddr.sx01 > asce.tl) 660 return PGM_SEGMENT_TRANSLATION; 661 ptr += vaddr.sx * 8; 662 break; 663 } 664 switch (asce.dt) { 665 case ASCE_TYPE_REGION1: { 666 union region1_table_entry rfte; 667 668 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) 669 return PGM_ADDRESSING; 670 if (deref_table(vcpu->kvm, ptr, &rfte.val)) 671 return -EFAULT; 672 if (rfte.i) 673 return PGM_REGION_FIRST_TRANS; 674 if (rfte.tt != TABLE_TYPE_REGION1) 675 return PGM_TRANSLATION_SPEC; 676 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 677 return PGM_REGION_SECOND_TRANS; 678 if (edat1) 679 dat_protection |= rfte.p; 680 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8; 681 } 682 fallthrough; 683 case ASCE_TYPE_REGION2: { 684 union region2_table_entry rste; 685 686 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) 687 return PGM_ADDRESSING; 688 if (deref_table(vcpu->kvm, ptr, &rste.val)) 689 return -EFAULT; 690 if (rste.i) 691 return PGM_REGION_SECOND_TRANS; 692 if (rste.tt != TABLE_TYPE_REGION2) 693 return PGM_TRANSLATION_SPEC; 694 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 695 return PGM_REGION_THIRD_TRANS; 696 if (edat1) 697 dat_protection |= rste.p; 698 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8; 699 } 700 fallthrough; 701 case ASCE_TYPE_REGION3: { 702 union region3_table_entry rtte; 703 704 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) 705 return PGM_ADDRESSING; 706 if (deref_table(vcpu->kvm, ptr, &rtte.val)) 707 return -EFAULT; 708 if (rtte.i) 709 return PGM_REGION_THIRD_TRANS; 710 if (rtte.tt != TABLE_TYPE_REGION3) 711 return PGM_TRANSLATION_SPEC; 712 if (rtte.cr && asce.p && edat2) 713 return PGM_TRANSLATION_SPEC; 714 if (rtte.fc && edat2) { 715 dat_protection |= rtte.fc1.p; 716 iep_protection = rtte.fc1.iep; 717 raddr.rfaa = rtte.fc1.rfaa; 718 goto absolute_address; 719 } 720 if (vaddr.sx01 < rtte.fc0.tf) 721 return PGM_SEGMENT_TRANSLATION; 722 if (vaddr.sx01 > rtte.fc0.tl) 723 return PGM_SEGMENT_TRANSLATION; 724 if (edat1) 725 dat_protection |= rtte.fc0.p; 726 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8; 727 } 728 fallthrough; 729 case ASCE_TYPE_SEGMENT: { 730 union segment_table_entry ste; 731 732 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) 733 return PGM_ADDRESSING; 734 if (deref_table(vcpu->kvm, ptr, &ste.val)) 735 return -EFAULT; 736 if (ste.i) 737 return PGM_SEGMENT_TRANSLATION; 738 if (ste.tt != TABLE_TYPE_SEGMENT) 739 return PGM_TRANSLATION_SPEC; 740 if (ste.cs && asce.p) 741 return PGM_TRANSLATION_SPEC; 742 if (ste.fc && edat1) { 743 dat_protection |= ste.fc1.p; 744 iep_protection = ste.fc1.iep; 745 raddr.sfaa = ste.fc1.sfaa; 746 goto absolute_address; 747 } 748 dat_protection |= ste.fc0.p; 749 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8; 750 } 751 } 752 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr)) 753 return PGM_ADDRESSING; 754 if (deref_table(vcpu->kvm, ptr, &pte.val)) 755 return -EFAULT; 756 if (pte.i) 757 return PGM_PAGE_TRANSLATION; 758 if (pte.z) 759 return PGM_TRANSLATION_SPEC; 760 dat_protection |= pte.p; 761 iep_protection = pte.iep; 762 raddr.pfra = pte.pfra; 763 real_address: 764 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); 765 absolute_address: 766 if (mode == GACC_STORE && dat_protection) { 767 *prot = PROT_TYPE_DAT; 768 return PGM_PROTECTION; 769 } 770 if (mode == GACC_IFETCH && iep_protection && iep) { 771 *prot = PROT_TYPE_IEP; 772 return PGM_PROTECTION; 773 } 774 if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr)) 775 return PGM_ADDRESSING; 776 *gpa = raddr.addr; 777 return 0; 778 } 779 780 static inline int is_low_address(unsigned long ga) 781 { 782 /* Check for address ranges 0..511 and 4096..4607 */ 783 return (ga & ~0x11fful) == 0; 784 } 785 786 static int low_address_protection_enabled(struct kvm_vcpu *vcpu, 787 const union asce asce) 788 { 789 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 790 psw_t *psw = &vcpu->arch.sie_block->gpsw; 791 792 if (!ctlreg0.lap) 793 return 0; 794 if (psw_bits(*psw).dat && asce.p) 795 return 0; 796 return 1; 797 } 798 799 static int vm_check_access_key(struct kvm *kvm, u8 access_key, 800 enum gacc_mode mode, gpa_t gpa) 801 { 802 u8 storage_key, access_control; 803 bool fetch_protected; 804 unsigned long hva; 805 int r; 806 807 if (access_key == 0) 808 return 0; 809 810 hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 811 if (kvm_is_error_hva(hva)) 812 return PGM_ADDRESSING; 813 814 mmap_read_lock(current->mm); 815 r = get_guest_storage_key(current->mm, hva, &storage_key); 816 mmap_read_unlock(current->mm); 817 if (r) 818 return r; 819 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 820 if (access_control == access_key) 821 return 0; 822 fetch_protected = storage_key & _PAGE_FP_BIT; 823 if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected) 824 return 0; 825 return PGM_PROTECTION; 826 } 827 828 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode, 829 union asce asce) 830 { 831 psw_t *psw = &vcpu->arch.sie_block->gpsw; 832 unsigned long override; 833 834 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 835 /* check if fetch protection override enabled */ 836 override = vcpu->arch.sie_block->gcr[0]; 837 override &= CR0_FETCH_PROTECTION_OVERRIDE; 838 /* not applicable if subject to DAT && private space */ 839 override = override && !(psw_bits(*psw).dat && asce.p); 840 return override; 841 } 842 return false; 843 } 844 845 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len) 846 { 847 return ga < 2048 && ga + len <= 2048; 848 } 849 850 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu) 851 { 852 /* check if storage protection override enabled */ 853 return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE; 854 } 855 856 static bool storage_prot_override_applies(u8 access_control) 857 { 858 /* matches special storage protection override key (9) -> allow */ 859 return access_control == PAGE_SPO_ACC; 860 } 861 862 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key, 863 enum gacc_mode mode, union asce asce, gpa_t gpa, 864 unsigned long ga, unsigned int len) 865 { 866 u8 storage_key, access_control; 867 unsigned long hva; 868 int r; 869 870 /* access key 0 matches any storage key -> allow */ 871 if (access_key == 0) 872 return 0; 873 /* 874 * caller needs to ensure that gfn is accessible, so we can 875 * assume that this cannot fail 876 */ 877 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa)); 878 mmap_read_lock(current->mm); 879 r = get_guest_storage_key(current->mm, hva, &storage_key); 880 mmap_read_unlock(current->mm); 881 if (r) 882 return r; 883 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 884 /* access key matches storage key -> allow */ 885 if (access_control == access_key) 886 return 0; 887 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 888 /* it is a fetch and fetch protection is off -> allow */ 889 if (!(storage_key & _PAGE_FP_BIT)) 890 return 0; 891 if (fetch_prot_override_applicable(vcpu, mode, asce) && 892 fetch_prot_override_applies(ga, len)) 893 return 0; 894 } 895 if (storage_prot_override_applicable(vcpu) && 896 storage_prot_override_applies(access_control)) 897 return 0; 898 return PGM_PROTECTION; 899 } 900 901 /** 902 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments 903 * covering a logical range 904 * @vcpu: virtual cpu 905 * @ga: guest address, start of range 906 * @ar: access register 907 * @gpas: output argument, may be NULL 908 * @len: length of range in bytes 909 * @asce: address-space-control element to use for translation 910 * @mode: access mode 911 * @access_key: access key to mach the range's storage keys against 912 * 913 * Translate a logical range to a series of guest absolute addresses, 914 * such that the concatenation of page fragments starting at each gpa make up 915 * the whole range. 916 * The translation is performed as if done by the cpu for the given @asce, @ar, 917 * @mode and state of the @vcpu. 918 * If the translation causes an exception, its program interruption code is 919 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified 920 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject 921 * a correct exception into the guest. 922 * The resulting gpas are stored into @gpas, unless it is NULL. 923 * 924 * Note: All fragments except the first one start at the beginning of a page. 925 * When deriving the boundaries of a fragment from a gpa, all but the last 926 * fragment end at the end of the page. 927 * 928 * Return: 929 * * 0 - success 930 * * <0 - translation could not be performed, for example if guest 931 * memory could not be accessed 932 * * >0 - an access exception occurred. In this case the returned value 933 * is the program interruption code and the contents of pgm may 934 * be used to inject an exception into the guest. 935 */ 936 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 937 unsigned long *gpas, unsigned long len, 938 const union asce asce, enum gacc_mode mode, 939 u8 access_key) 940 { 941 psw_t *psw = &vcpu->arch.sie_block->gpsw; 942 unsigned int offset = offset_in_page(ga); 943 unsigned int fragment_len; 944 int lap_enabled, rc = 0; 945 enum prot_type prot; 946 unsigned long gpa; 947 948 lap_enabled = low_address_protection_enabled(vcpu, asce); 949 while (min(PAGE_SIZE - offset, len) > 0) { 950 fragment_len = min(PAGE_SIZE - offset, len); 951 ga = kvm_s390_logical_to_effective(vcpu, ga); 952 if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) 953 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode, 954 PROT_TYPE_LA); 955 if (psw_bits(*psw).dat) { 956 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot); 957 if (rc < 0) 958 return rc; 959 } else { 960 gpa = kvm_s390_real_to_abs(vcpu, ga); 961 if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) { 962 rc = PGM_ADDRESSING; 963 prot = PROT_NONE; 964 } 965 } 966 if (rc) 967 return trans_exc(vcpu, rc, ga, ar, mode, prot); 968 rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga, 969 fragment_len); 970 if (rc) 971 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC); 972 if (gpas) 973 *gpas++ = gpa; 974 offset = 0; 975 ga += fragment_len; 976 len -= fragment_len; 977 } 978 return 0; 979 } 980 981 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 982 void *data, unsigned int len) 983 { 984 const unsigned int offset = offset_in_page(gpa); 985 const gfn_t gfn = gpa_to_gfn(gpa); 986 int rc; 987 988 if (mode == GACC_STORE) 989 rc = kvm_write_guest_page(kvm, gfn, data, offset, len); 990 else 991 rc = kvm_read_guest_page(kvm, gfn, data, offset, len); 992 return rc; 993 } 994 995 static int 996 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 997 void *data, unsigned int len, u8 access_key) 998 { 999 struct kvm_memory_slot *slot; 1000 bool writable; 1001 gfn_t gfn; 1002 hva_t hva; 1003 int rc; 1004 1005 gfn = gpa >> PAGE_SHIFT; 1006 slot = gfn_to_memslot(kvm, gfn); 1007 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); 1008 1009 if (kvm_is_error_hva(hva)) 1010 return PGM_ADDRESSING; 1011 /* 1012 * Check if it's a ro memslot, even tho that can't occur (they're unsupported). 1013 * Don't try to actually handle that case. 1014 */ 1015 if (!writable && mode == GACC_STORE) 1016 return -EOPNOTSUPP; 1017 hva += offset_in_page(gpa); 1018 if (mode == GACC_STORE) 1019 rc = copy_to_user_key((void __user *)hva, data, len, access_key); 1020 else 1021 rc = copy_from_user_key(data, (void __user *)hva, len, access_key); 1022 if (rc) 1023 return PGM_PROTECTION; 1024 if (mode == GACC_STORE) 1025 mark_page_dirty_in_slot(kvm, slot, gfn); 1026 return 0; 1027 } 1028 1029 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data, 1030 unsigned long len, enum gacc_mode mode, u8 access_key) 1031 { 1032 int offset = offset_in_page(gpa); 1033 int fragment_len; 1034 int rc; 1035 1036 while (min(PAGE_SIZE - offset, len) > 0) { 1037 fragment_len = min(PAGE_SIZE - offset, len); 1038 rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key); 1039 if (rc) 1040 return rc; 1041 offset = 0; 1042 len -= fragment_len; 1043 data += fragment_len; 1044 gpa += fragment_len; 1045 } 1046 return 0; 1047 } 1048 1049 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 1050 void *data, unsigned long len, enum gacc_mode mode, 1051 u8 access_key) 1052 { 1053 psw_t *psw = &vcpu->arch.sie_block->gpsw; 1054 unsigned long nr_pages, idx; 1055 unsigned long gpa_array[2]; 1056 unsigned int fragment_len; 1057 unsigned long *gpas; 1058 enum prot_type prot; 1059 int need_ipte_lock; 1060 union asce asce; 1061 bool try_storage_prot_override; 1062 bool try_fetch_prot_override; 1063 int rc; 1064 1065 if (!len) 1066 return 0; 1067 ga = kvm_s390_logical_to_effective(vcpu, ga); 1068 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode); 1069 if (rc) 1070 return rc; 1071 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; 1072 gpas = gpa_array; 1073 if (nr_pages > ARRAY_SIZE(gpa_array)) 1074 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long))); 1075 if (!gpas) 1076 return -ENOMEM; 1077 try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce); 1078 try_storage_prot_override = storage_prot_override_applicable(vcpu); 1079 need_ipte_lock = psw_bits(*psw).dat && !asce.r; 1080 if (need_ipte_lock) 1081 ipte_lock(vcpu->kvm); 1082 /* 1083 * Since we do the access further down ultimately via a move instruction 1084 * that does key checking and returns an error in case of a protection 1085 * violation, we don't need to do the check during address translation. 1086 * Skip it by passing access key 0, which matches any storage key, 1087 * obviating the need for any further checks. As a result the check is 1088 * handled entirely in hardware on access, we only need to take care to 1089 * forego key protection checking if fetch protection override applies or 1090 * retry with the special key 9 in case of storage protection override. 1091 */ 1092 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0); 1093 if (rc) 1094 goto out_unlock; 1095 for (idx = 0; idx < nr_pages; idx++) { 1096 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len); 1097 if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) { 1098 rc = access_guest_page(vcpu->kvm, mode, gpas[idx], 1099 data, fragment_len); 1100 } else { 1101 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1102 data, fragment_len, access_key); 1103 } 1104 if (rc == PGM_PROTECTION && try_storage_prot_override) 1105 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1106 data, fragment_len, PAGE_SPO_ACC); 1107 if (rc) 1108 break; 1109 len -= fragment_len; 1110 data += fragment_len; 1111 ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len); 1112 } 1113 if (rc > 0) { 1114 bool terminate = (mode == GACC_STORE) && (idx > 0); 1115 1116 if (rc == PGM_PROTECTION) 1117 prot = PROT_TYPE_KEYC; 1118 else 1119 prot = PROT_NONE; 1120 rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate); 1121 } 1122 out_unlock: 1123 if (need_ipte_lock) 1124 ipte_unlock(vcpu->kvm); 1125 if (nr_pages > ARRAY_SIZE(gpa_array)) 1126 vfree(gpas); 1127 return rc; 1128 } 1129 1130 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, 1131 void *data, unsigned long len, enum gacc_mode mode) 1132 { 1133 unsigned int fragment_len; 1134 unsigned long gpa; 1135 int rc = 0; 1136 1137 while (len && !rc) { 1138 gpa = kvm_s390_real_to_abs(vcpu, gra); 1139 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len); 1140 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len); 1141 len -= fragment_len; 1142 gra += fragment_len; 1143 data += fragment_len; 1144 } 1145 return rc; 1146 } 1147 1148 /** 1149 * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address. 1150 * @kvm: Virtual machine instance. 1151 * @gpa: Absolute guest address of the location to be changed. 1152 * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a 1153 * non power of two will result in failure. 1154 * @old_addr: Pointer to old value. If the location at @gpa contains this value, 1155 * the exchange will succeed. After calling cmpxchg_guest_abs_with_key() 1156 * *@old_addr contains the value at @gpa before the attempt to 1157 * exchange the value. 1158 * @new: The value to place at @gpa. 1159 * @access_key: The access key to use for the guest access. 1160 * @success: output value indicating if an exchange occurred. 1161 * 1162 * Atomically exchange the value at @gpa by @new, if it contains *@old. 1163 * Honors storage keys. 1164 * 1165 * Return: * 0: successful exchange 1166 * * >0: a program interruption code indicating the reason cmpxchg could 1167 * not be attempted 1168 * * -EINVAL: address misaligned or len not power of two 1169 * * -EAGAIN: transient failure (len 1 or 2) 1170 * * -EOPNOTSUPP: read-only memslot (should never occur) 1171 */ 1172 int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len, 1173 __uint128_t *old_addr, __uint128_t new, 1174 u8 access_key, bool *success) 1175 { 1176 gfn_t gfn = gpa_to_gfn(gpa); 1177 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1178 bool writable; 1179 hva_t hva; 1180 int ret; 1181 1182 if (!IS_ALIGNED(gpa, len)) 1183 return -EINVAL; 1184 1185 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); 1186 if (kvm_is_error_hva(hva)) 1187 return PGM_ADDRESSING; 1188 /* 1189 * Check if it's a read-only memslot, even though that cannot occur 1190 * since those are unsupported. 1191 * Don't try to actually handle that case. 1192 */ 1193 if (!writable) 1194 return -EOPNOTSUPP; 1195 1196 hva += offset_in_page(gpa); 1197 /* 1198 * The cmpxchg_user_key macro depends on the type of "old", so we need 1199 * a case for each valid length and get some code duplication as long 1200 * as we don't introduce a new macro. 1201 */ 1202 switch (len) { 1203 case 1: { 1204 u8 old; 1205 1206 ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key); 1207 *success = !ret && old == *old_addr; 1208 *old_addr = old; 1209 break; 1210 } 1211 case 2: { 1212 u16 old; 1213 1214 ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key); 1215 *success = !ret && old == *old_addr; 1216 *old_addr = old; 1217 break; 1218 } 1219 case 4: { 1220 u32 old; 1221 1222 ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key); 1223 *success = !ret && old == *old_addr; 1224 *old_addr = old; 1225 break; 1226 } 1227 case 8: { 1228 u64 old; 1229 1230 ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key); 1231 *success = !ret && old == *old_addr; 1232 *old_addr = old; 1233 break; 1234 } 1235 case 16: { 1236 __uint128_t old; 1237 1238 ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key); 1239 *success = !ret && old == *old_addr; 1240 *old_addr = old; 1241 break; 1242 } 1243 default: 1244 return -EINVAL; 1245 } 1246 if (*success) 1247 mark_page_dirty_in_slot(kvm, slot, gfn); 1248 /* 1249 * Assume that the fault is caused by protection, either key protection 1250 * or user page write protection. 1251 */ 1252 if (ret == -EFAULT) 1253 ret = PGM_PROTECTION; 1254 return ret; 1255 } 1256 1257 /** 1258 * guest_translate_address_with_key - translate guest logical into guest absolute address 1259 * @vcpu: virtual cpu 1260 * @gva: Guest virtual address 1261 * @ar: Access register 1262 * @gpa: Guest physical address 1263 * @mode: Translation access mode 1264 * @access_key: access key to mach the storage key with 1265 * 1266 * Parameter semantics are the same as the ones from guest_translate. 1267 * The memory contents at the guest address are not changed. 1268 * 1269 * Note: The IPTE lock is not taken during this function, so the caller 1270 * has to take care of this. 1271 */ 1272 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1273 unsigned long *gpa, enum gacc_mode mode, 1274 u8 access_key) 1275 { 1276 union asce asce; 1277 int rc; 1278 1279 gva = kvm_s390_logical_to_effective(vcpu, gva); 1280 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1281 if (rc) 1282 return rc; 1283 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode, 1284 access_key); 1285 } 1286 1287 /** 1288 * check_gva_range - test a range of guest virtual addresses for accessibility 1289 * @vcpu: virtual cpu 1290 * @gva: Guest virtual address 1291 * @ar: Access register 1292 * @length: Length of test range 1293 * @mode: Translation access mode 1294 * @access_key: access key to mach the storage keys with 1295 */ 1296 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1297 unsigned long length, enum gacc_mode mode, u8 access_key) 1298 { 1299 union asce asce; 1300 int rc = 0; 1301 1302 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1303 if (rc) 1304 return rc; 1305 ipte_lock(vcpu->kvm); 1306 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode, 1307 access_key); 1308 ipte_unlock(vcpu->kvm); 1309 1310 return rc; 1311 } 1312 1313 /** 1314 * check_gpa_range - test a range of guest physical addresses for accessibility 1315 * @kvm: virtual machine instance 1316 * @gpa: guest physical address 1317 * @length: length of test range 1318 * @mode: access mode to test, relevant for storage keys 1319 * @access_key: access key to mach the storage keys with 1320 */ 1321 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length, 1322 enum gacc_mode mode, u8 access_key) 1323 { 1324 unsigned int fragment_len; 1325 int rc = 0; 1326 1327 while (length && !rc) { 1328 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length); 1329 rc = vm_check_access_key(kvm, access_key, mode, gpa); 1330 length -= fragment_len; 1331 gpa += fragment_len; 1332 } 1333 return rc; 1334 } 1335 1336 /** 1337 * kvm_s390_check_low_addr_prot_real - check for low-address protection 1338 * @vcpu: virtual cpu 1339 * @gra: Guest real address 1340 * 1341 * Checks whether an address is subject to low-address protection and set 1342 * up vcpu->arch.pgm accordingly if necessary. 1343 * 1344 * Return: 0 if no protection exception, or PGM_PROTECTION if protected. 1345 */ 1346 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) 1347 { 1348 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 1349 1350 if (!ctlreg0.lap || !is_low_address(gra)) 1351 return 0; 1352 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); 1353 } 1354 1355 /** 1356 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables 1357 * @sg: pointer to the shadow guest address space structure 1358 * @saddr: faulting address in the shadow gmap 1359 * @pgt: pointer to the beginning of the page table for the given address if 1360 * successful (return value 0), or to the first invalid DAT entry in 1361 * case of exceptions (return value > 0) 1362 * @dat_protection: referenced memory is write protected 1363 * @fake: pgt references contiguous guest memory block, not a pgtable 1364 */ 1365 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr, 1366 unsigned long *pgt, int *dat_protection, 1367 int *fake) 1368 { 1369 struct kvm *kvm; 1370 struct gmap *parent; 1371 union asce asce; 1372 union vaddress vaddr; 1373 unsigned long ptr; 1374 int rc; 1375 1376 *fake = 0; 1377 *dat_protection = 0; 1378 kvm = sg->private; 1379 parent = sg->parent; 1380 vaddr.addr = saddr; 1381 asce.val = sg->orig_asce; 1382 ptr = asce.origin * PAGE_SIZE; 1383 if (asce.r) { 1384 *fake = 1; 1385 ptr = 0; 1386 asce.dt = ASCE_TYPE_REGION1; 1387 } 1388 switch (asce.dt) { 1389 case ASCE_TYPE_REGION1: 1390 if (vaddr.rfx01 > asce.tl && !*fake) 1391 return PGM_REGION_FIRST_TRANS; 1392 break; 1393 case ASCE_TYPE_REGION2: 1394 if (vaddr.rfx) 1395 return PGM_ASCE_TYPE; 1396 if (vaddr.rsx01 > asce.tl) 1397 return PGM_REGION_SECOND_TRANS; 1398 break; 1399 case ASCE_TYPE_REGION3: 1400 if (vaddr.rfx || vaddr.rsx) 1401 return PGM_ASCE_TYPE; 1402 if (vaddr.rtx01 > asce.tl) 1403 return PGM_REGION_THIRD_TRANS; 1404 break; 1405 case ASCE_TYPE_SEGMENT: 1406 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 1407 return PGM_ASCE_TYPE; 1408 if (vaddr.sx01 > asce.tl) 1409 return PGM_SEGMENT_TRANSLATION; 1410 break; 1411 } 1412 1413 switch (asce.dt) { 1414 case ASCE_TYPE_REGION1: { 1415 union region1_table_entry rfte; 1416 1417 if (*fake) { 1418 ptr += vaddr.rfx * _REGION1_SIZE; 1419 rfte.val = ptr; 1420 goto shadow_r2t; 1421 } 1422 *pgt = ptr + vaddr.rfx * 8; 1423 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val); 1424 if (rc) 1425 return rc; 1426 if (rfte.i) 1427 return PGM_REGION_FIRST_TRANS; 1428 if (rfte.tt != TABLE_TYPE_REGION1) 1429 return PGM_TRANSLATION_SPEC; 1430 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 1431 return PGM_REGION_SECOND_TRANS; 1432 if (sg->edat_level >= 1) 1433 *dat_protection |= rfte.p; 1434 ptr = rfte.rto * PAGE_SIZE; 1435 shadow_r2t: 1436 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake); 1437 if (rc) 1438 return rc; 1439 kvm->stat.gmap_shadow_r1_entry++; 1440 } 1441 fallthrough; 1442 case ASCE_TYPE_REGION2: { 1443 union region2_table_entry rste; 1444 1445 if (*fake) { 1446 ptr += vaddr.rsx * _REGION2_SIZE; 1447 rste.val = ptr; 1448 goto shadow_r3t; 1449 } 1450 *pgt = ptr + vaddr.rsx * 8; 1451 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val); 1452 if (rc) 1453 return rc; 1454 if (rste.i) 1455 return PGM_REGION_SECOND_TRANS; 1456 if (rste.tt != TABLE_TYPE_REGION2) 1457 return PGM_TRANSLATION_SPEC; 1458 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 1459 return PGM_REGION_THIRD_TRANS; 1460 if (sg->edat_level >= 1) 1461 *dat_protection |= rste.p; 1462 ptr = rste.rto * PAGE_SIZE; 1463 shadow_r3t: 1464 rste.p |= *dat_protection; 1465 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake); 1466 if (rc) 1467 return rc; 1468 kvm->stat.gmap_shadow_r2_entry++; 1469 } 1470 fallthrough; 1471 case ASCE_TYPE_REGION3: { 1472 union region3_table_entry rtte; 1473 1474 if (*fake) { 1475 ptr += vaddr.rtx * _REGION3_SIZE; 1476 rtte.val = ptr; 1477 goto shadow_sgt; 1478 } 1479 *pgt = ptr + vaddr.rtx * 8; 1480 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val); 1481 if (rc) 1482 return rc; 1483 if (rtte.i) 1484 return PGM_REGION_THIRD_TRANS; 1485 if (rtte.tt != TABLE_TYPE_REGION3) 1486 return PGM_TRANSLATION_SPEC; 1487 if (rtte.cr && asce.p && sg->edat_level >= 2) 1488 return PGM_TRANSLATION_SPEC; 1489 if (rtte.fc && sg->edat_level >= 2) { 1490 *dat_protection |= rtte.fc0.p; 1491 *fake = 1; 1492 ptr = rtte.fc1.rfaa * _REGION3_SIZE; 1493 rtte.val = ptr; 1494 goto shadow_sgt; 1495 } 1496 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl) 1497 return PGM_SEGMENT_TRANSLATION; 1498 if (sg->edat_level >= 1) 1499 *dat_protection |= rtte.fc0.p; 1500 ptr = rtte.fc0.sto * PAGE_SIZE; 1501 shadow_sgt: 1502 rtte.fc0.p |= *dat_protection; 1503 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake); 1504 if (rc) 1505 return rc; 1506 kvm->stat.gmap_shadow_r3_entry++; 1507 } 1508 fallthrough; 1509 case ASCE_TYPE_SEGMENT: { 1510 union segment_table_entry ste; 1511 1512 if (*fake) { 1513 ptr += vaddr.sx * _SEGMENT_SIZE; 1514 ste.val = ptr; 1515 goto shadow_pgt; 1516 } 1517 *pgt = ptr + vaddr.sx * 8; 1518 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val); 1519 if (rc) 1520 return rc; 1521 if (ste.i) 1522 return PGM_SEGMENT_TRANSLATION; 1523 if (ste.tt != TABLE_TYPE_SEGMENT) 1524 return PGM_TRANSLATION_SPEC; 1525 if (ste.cs && asce.p) 1526 return PGM_TRANSLATION_SPEC; 1527 *dat_protection |= ste.fc0.p; 1528 if (ste.fc && sg->edat_level >= 1) { 1529 *fake = 1; 1530 ptr = ste.fc1.sfaa * _SEGMENT_SIZE; 1531 ste.val = ptr; 1532 goto shadow_pgt; 1533 } 1534 ptr = ste.fc0.pto * (PAGE_SIZE / 2); 1535 shadow_pgt: 1536 ste.fc0.p |= *dat_protection; 1537 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake); 1538 if (rc) 1539 return rc; 1540 kvm->stat.gmap_shadow_sg_entry++; 1541 } 1542 } 1543 /* Return the parent address of the page table */ 1544 *pgt = ptr; 1545 return 0; 1546 } 1547 1548 /** 1549 * kvm_s390_shadow_fault - handle fault on a shadow page table 1550 * @vcpu: virtual cpu 1551 * @sg: pointer to the shadow guest address space structure 1552 * @saddr: faulting address in the shadow gmap 1553 * @datptr: will contain the address of the faulting DAT table entry, or of 1554 * the valid leaf, plus some flags 1555 * 1556 * Returns: - 0 if the shadow fault was successfully resolved 1557 * - > 0 (pgm exception code) on exceptions while faulting 1558 * - -EAGAIN if the caller can retry immediately 1559 * - -EFAULT when accessing invalid guest addresses 1560 * - -ENOMEM if out of memory 1561 */ 1562 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg, 1563 unsigned long saddr, unsigned long *datptr) 1564 { 1565 union vaddress vaddr; 1566 union page_table_entry pte; 1567 unsigned long pgt = 0; 1568 int dat_protection, fake; 1569 int rc; 1570 1571 mmap_read_lock(sg->mm); 1572 /* 1573 * We don't want any guest-2 tables to change - so the parent 1574 * tables/pointers we read stay valid - unshadowing is however 1575 * always possible - only guest_table_lock protects us. 1576 */ 1577 ipte_lock(vcpu->kvm); 1578 1579 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake); 1580 if (rc) 1581 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection, 1582 &fake); 1583 1584 vaddr.addr = saddr; 1585 if (fake) { 1586 pte.val = pgt + vaddr.px * PAGE_SIZE; 1587 goto shadow_page; 1588 } 1589 1590 switch (rc) { 1591 case PGM_SEGMENT_TRANSLATION: 1592 case PGM_REGION_THIRD_TRANS: 1593 case PGM_REGION_SECOND_TRANS: 1594 case PGM_REGION_FIRST_TRANS: 1595 pgt |= PEI_NOT_PTE; 1596 break; 1597 case 0: 1598 pgt += vaddr.px * 8; 1599 rc = gmap_read_table(sg->parent, pgt, &pte.val); 1600 } 1601 if (datptr) 1602 *datptr = pgt | dat_protection * PEI_DAT_PROT; 1603 if (!rc && pte.i) 1604 rc = PGM_PAGE_TRANSLATION; 1605 if (!rc && pte.z) 1606 rc = PGM_TRANSLATION_SPEC; 1607 shadow_page: 1608 pte.p |= dat_protection; 1609 if (!rc) 1610 rc = gmap_shadow_page(sg, saddr, __pte(pte.val)); 1611 vcpu->kvm->stat.gmap_shadow_pg_entry++; 1612 ipte_unlock(vcpu->kvm); 1613 mmap_read_unlock(sg->mm); 1614 return rc; 1615 } 1616