xref: /linux/arch/s390/kernel/vtime.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7 
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14 
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20 
21 static void virt_timer_expire(void);
22 
23 static LIST_HEAD(virt_timer_list);
24 static DEFINE_SPINLOCK(virt_timer_lock);
25 static atomic64_t virt_timer_current;
26 static atomic64_t virt_timer_elapsed;
27 
28 static DEFINE_PER_CPU(u64, mt_cycles[32]);
29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
31 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
32 
33 static inline u64 get_vtimer(void)
34 {
35 	u64 timer;
36 
37 	asm volatile("stpt %0" : "=m" (timer));
38 	return timer;
39 }
40 
41 static inline void set_vtimer(u64 expires)
42 {
43 	u64 timer;
44 
45 	asm volatile(
46 		"	stpt	%0\n"	/* Store current cpu timer value */
47 		"	spt	%1"	/* Set new value imm. afterwards */
48 		: "=m" (timer) : "m" (expires));
49 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
50 	S390_lowcore.last_update_timer = expires;
51 }
52 
53 static inline int virt_timer_forward(u64 elapsed)
54 {
55 	BUG_ON(!irqs_disabled());
56 
57 	if (list_empty(&virt_timer_list))
58 		return 0;
59 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
60 	return elapsed >= atomic64_read(&virt_timer_current);
61 }
62 
63 /*
64  * Update process times based on virtual cpu times stored by entry.S
65  * to the lowcore fields user_timer, system_timer & steal_clock.
66  */
67 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
68 {
69 	struct thread_info *ti = task_thread_info(tsk);
70 	u64 timer, clock, user, system, steal;
71 	u64 user_scaled, system_scaled;
72 	int i;
73 
74 	timer = S390_lowcore.last_update_timer;
75 	clock = S390_lowcore.last_update_clock;
76 	asm volatile(
77 		"	stpt	%0\n"	/* Store current cpu timer value */
78 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
79 		"	stckf	%1"	/* Store current tod clock value */
80 #else
81 		"	stck	%1"	/* Store current tod clock value */
82 #endif
83 		: "=m" (S390_lowcore.last_update_timer),
84 		  "=m" (S390_lowcore.last_update_clock));
85 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
86 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
87 
88 	/* Do MT utilization calculation */
89 	if (smp_cpu_mtid &&
90 	    time_after64(jiffies_64, __this_cpu_read(mt_scaling_jiffies))) {
91 		u64 cycles_new[32], *cycles_old;
92 		u64 delta, fac, mult, div;
93 
94 		cycles_old = this_cpu_ptr(mt_cycles);
95 		if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) {
96 			fac = 1;
97 			mult = div = 0;
98 			for (i = 0; i <= smp_cpu_mtid; i++) {
99 				delta = cycles_new[i] - cycles_old[i];
100 				div += delta;
101 				mult *= i + 1;
102 				mult += delta * fac;
103 				fac *= i + 1;
104 			}
105 			div *= fac;
106 			if (div > 0) {
107 				/* Update scaling factor */
108 				__this_cpu_write(mt_scaling_mult, mult);
109 				__this_cpu_write(mt_scaling_div, div);
110 				memcpy(cycles_old, cycles_new,
111 				       sizeof(u64) * (smp_cpu_mtid + 1));
112 			}
113 		}
114 		__this_cpu_write(mt_scaling_jiffies, jiffies_64);
115 	}
116 
117 	user = S390_lowcore.user_timer - ti->user_timer;
118 	S390_lowcore.steal_timer -= user;
119 	ti->user_timer = S390_lowcore.user_timer;
120 
121 	system = S390_lowcore.system_timer - ti->system_timer;
122 	S390_lowcore.steal_timer -= system;
123 	ti->system_timer = S390_lowcore.system_timer;
124 
125 	user_scaled = user;
126 	system_scaled = system;
127 	/* Do MT utilization scaling */
128 	if (smp_cpu_mtid) {
129 		u64 mult = __this_cpu_read(mt_scaling_mult);
130 		u64 div = __this_cpu_read(mt_scaling_div);
131 
132 		user_scaled = (user_scaled * mult) / div;
133 		system_scaled = (system_scaled * mult) / div;
134 	}
135 	account_user_time(tsk, user, user_scaled);
136 	account_system_time(tsk, hardirq_offset, system, system_scaled);
137 
138 	steal = S390_lowcore.steal_timer;
139 	if ((s64) steal > 0) {
140 		S390_lowcore.steal_timer = 0;
141 		account_steal_time(steal);
142 	}
143 
144 	return virt_timer_forward(user + system);
145 }
146 
147 void vtime_task_switch(struct task_struct *prev)
148 {
149 	struct thread_info *ti;
150 
151 	do_account_vtime(prev, 0);
152 	ti = task_thread_info(prev);
153 	ti->user_timer = S390_lowcore.user_timer;
154 	ti->system_timer = S390_lowcore.system_timer;
155 	ti = task_thread_info(current);
156 	S390_lowcore.user_timer = ti->user_timer;
157 	S390_lowcore.system_timer = ti->system_timer;
158 }
159 
160 /*
161  * In s390, accounting pending user time also implies
162  * accounting system time in order to correctly compute
163  * the stolen time accounting.
164  */
165 void vtime_account_user(struct task_struct *tsk)
166 {
167 	if (do_account_vtime(tsk, HARDIRQ_OFFSET))
168 		virt_timer_expire();
169 }
170 
171 /*
172  * Update process times based on virtual cpu times stored by entry.S
173  * to the lowcore fields user_timer, system_timer & steal_clock.
174  */
175 void vtime_account_irq_enter(struct task_struct *tsk)
176 {
177 	struct thread_info *ti = task_thread_info(tsk);
178 	u64 timer, system, system_scaled;
179 
180 	timer = S390_lowcore.last_update_timer;
181 	S390_lowcore.last_update_timer = get_vtimer();
182 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
183 
184 	system = S390_lowcore.system_timer - ti->system_timer;
185 	S390_lowcore.steal_timer -= system;
186 	ti->system_timer = S390_lowcore.system_timer;
187 	system_scaled = system;
188 	/* Do MT utilization scaling */
189 	if (smp_cpu_mtid) {
190 		u64 mult = __this_cpu_read(mt_scaling_mult);
191 		u64 div = __this_cpu_read(mt_scaling_div);
192 
193 		system_scaled = (system_scaled * mult) / div;
194 	}
195 	account_system_time(tsk, 0, system, system_scaled);
196 
197 	virt_timer_forward(system);
198 }
199 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
200 
201 void vtime_account_system(struct task_struct *tsk)
202 __attribute__((alias("vtime_account_irq_enter")));
203 EXPORT_SYMBOL_GPL(vtime_account_system);
204 
205 /*
206  * Sorted add to a list. List is linear searched until first bigger
207  * element is found.
208  */
209 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
210 {
211 	struct vtimer_list *tmp;
212 
213 	list_for_each_entry(tmp, head, entry) {
214 		if (tmp->expires > timer->expires) {
215 			list_add_tail(&timer->entry, &tmp->entry);
216 			return;
217 		}
218 	}
219 	list_add_tail(&timer->entry, head);
220 }
221 
222 /*
223  * Handler for expired virtual CPU timer.
224  */
225 static void virt_timer_expire(void)
226 {
227 	struct vtimer_list *timer, *tmp;
228 	unsigned long elapsed;
229 	LIST_HEAD(cb_list);
230 
231 	/* walk timer list, fire all expired timers */
232 	spin_lock(&virt_timer_lock);
233 	elapsed = atomic64_read(&virt_timer_elapsed);
234 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
235 		if (timer->expires < elapsed)
236 			/* move expired timer to the callback queue */
237 			list_move_tail(&timer->entry, &cb_list);
238 		else
239 			timer->expires -= elapsed;
240 	}
241 	if (!list_empty(&virt_timer_list)) {
242 		timer = list_first_entry(&virt_timer_list,
243 					 struct vtimer_list, entry);
244 		atomic64_set(&virt_timer_current, timer->expires);
245 	}
246 	atomic64_sub(elapsed, &virt_timer_elapsed);
247 	spin_unlock(&virt_timer_lock);
248 
249 	/* Do callbacks and recharge periodic timers */
250 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
251 		list_del_init(&timer->entry);
252 		timer->function(timer->data);
253 		if (timer->interval) {
254 			/* Recharge interval timer */
255 			timer->expires = timer->interval +
256 				atomic64_read(&virt_timer_elapsed);
257 			spin_lock(&virt_timer_lock);
258 			list_add_sorted(timer, &virt_timer_list);
259 			spin_unlock(&virt_timer_lock);
260 		}
261 	}
262 }
263 
264 void init_virt_timer(struct vtimer_list *timer)
265 {
266 	timer->function = NULL;
267 	INIT_LIST_HEAD(&timer->entry);
268 }
269 EXPORT_SYMBOL(init_virt_timer);
270 
271 static inline int vtimer_pending(struct vtimer_list *timer)
272 {
273 	return !list_empty(&timer->entry);
274 }
275 
276 static void internal_add_vtimer(struct vtimer_list *timer)
277 {
278 	if (list_empty(&virt_timer_list)) {
279 		/* First timer, just program it. */
280 		atomic64_set(&virt_timer_current, timer->expires);
281 		atomic64_set(&virt_timer_elapsed, 0);
282 		list_add(&timer->entry, &virt_timer_list);
283 	} else {
284 		/* Update timer against current base. */
285 		timer->expires += atomic64_read(&virt_timer_elapsed);
286 		if (likely((s64) timer->expires <
287 			   (s64) atomic64_read(&virt_timer_current)))
288 			/* The new timer expires before the current timer. */
289 			atomic64_set(&virt_timer_current, timer->expires);
290 		/* Insert new timer into the list. */
291 		list_add_sorted(timer, &virt_timer_list);
292 	}
293 }
294 
295 static void __add_vtimer(struct vtimer_list *timer, int periodic)
296 {
297 	unsigned long flags;
298 
299 	timer->interval = periodic ? timer->expires : 0;
300 	spin_lock_irqsave(&virt_timer_lock, flags);
301 	internal_add_vtimer(timer);
302 	spin_unlock_irqrestore(&virt_timer_lock, flags);
303 }
304 
305 /*
306  * add_virt_timer - add an oneshot virtual CPU timer
307  */
308 void add_virt_timer(struct vtimer_list *timer)
309 {
310 	__add_vtimer(timer, 0);
311 }
312 EXPORT_SYMBOL(add_virt_timer);
313 
314 /*
315  * add_virt_timer_int - add an interval virtual CPU timer
316  */
317 void add_virt_timer_periodic(struct vtimer_list *timer)
318 {
319 	__add_vtimer(timer, 1);
320 }
321 EXPORT_SYMBOL(add_virt_timer_periodic);
322 
323 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
324 {
325 	unsigned long flags;
326 	int rc;
327 
328 	BUG_ON(!timer->function);
329 
330 	if (timer->expires == expires && vtimer_pending(timer))
331 		return 1;
332 	spin_lock_irqsave(&virt_timer_lock, flags);
333 	rc = vtimer_pending(timer);
334 	if (rc)
335 		list_del_init(&timer->entry);
336 	timer->interval = periodic ? expires : 0;
337 	timer->expires = expires;
338 	internal_add_vtimer(timer);
339 	spin_unlock_irqrestore(&virt_timer_lock, flags);
340 	return rc;
341 }
342 
343 /*
344  * returns whether it has modified a pending timer (1) or not (0)
345  */
346 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
347 {
348 	return __mod_vtimer(timer, expires, 0);
349 }
350 EXPORT_SYMBOL(mod_virt_timer);
351 
352 /*
353  * returns whether it has modified a pending timer (1) or not (0)
354  */
355 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
356 {
357 	return __mod_vtimer(timer, expires, 1);
358 }
359 EXPORT_SYMBOL(mod_virt_timer_periodic);
360 
361 /*
362  * Delete a virtual timer.
363  *
364  * returns whether the deleted timer was pending (1) or not (0)
365  */
366 int del_virt_timer(struct vtimer_list *timer)
367 {
368 	unsigned long flags;
369 
370 	if (!vtimer_pending(timer))
371 		return 0;
372 	spin_lock_irqsave(&virt_timer_lock, flags);
373 	list_del_init(&timer->entry);
374 	spin_unlock_irqrestore(&virt_timer_lock, flags);
375 	return 1;
376 }
377 EXPORT_SYMBOL(del_virt_timer);
378 
379 /*
380  * Start the virtual CPU timer on the current CPU.
381  */
382 void vtime_init(void)
383 {
384 	/* set initial cpu timer */
385 	set_vtimer(VTIMER_MAX_SLICE);
386 	/* Setup initial MT scaling values */
387 	if (smp_cpu_mtid) {
388 		__this_cpu_write(mt_scaling_jiffies, jiffies);
389 		__this_cpu_write(mt_scaling_mult, 1);
390 		__this_cpu_write(mt_scaling_div, 1);
391 		stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
392 	}
393 }
394