1 /* 2 * Virtual cpu timer based timer functions. 3 * 4 * Copyright IBM Corp. 2004, 2012 5 * Author(s): Jan Glauber <jan.glauber@de.ibm.com> 6 */ 7 8 #include <linux/kernel_stat.h> 9 #include <linux/export.h> 10 #include <linux/kernel.h> 11 #include <linux/timex.h> 12 #include <linux/types.h> 13 #include <linux/time.h> 14 15 #include <asm/cputime.h> 16 #include <asm/vtimer.h> 17 #include <asm/vtime.h> 18 #include <asm/cpu_mf.h> 19 #include <asm/smp.h> 20 21 static void virt_timer_expire(void); 22 23 static LIST_HEAD(virt_timer_list); 24 static DEFINE_SPINLOCK(virt_timer_lock); 25 static atomic64_t virt_timer_current; 26 static atomic64_t virt_timer_elapsed; 27 28 static DEFINE_PER_CPU(u64, mt_cycles[32]); 29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 }; 30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 }; 31 static DEFINE_PER_CPU(u64, mt_scaling_jiffies); 32 33 static inline u64 get_vtimer(void) 34 { 35 u64 timer; 36 37 asm volatile("stpt %0" : "=m" (timer)); 38 return timer; 39 } 40 41 static inline void set_vtimer(u64 expires) 42 { 43 u64 timer; 44 45 asm volatile( 46 " stpt %0\n" /* Store current cpu timer value */ 47 " spt %1" /* Set new value imm. afterwards */ 48 : "=m" (timer) : "m" (expires)); 49 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer; 50 S390_lowcore.last_update_timer = expires; 51 } 52 53 static inline int virt_timer_forward(u64 elapsed) 54 { 55 BUG_ON(!irqs_disabled()); 56 57 if (list_empty(&virt_timer_list)) 58 return 0; 59 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed); 60 return elapsed >= atomic64_read(&virt_timer_current); 61 } 62 63 /* 64 * Update process times based on virtual cpu times stored by entry.S 65 * to the lowcore fields user_timer, system_timer & steal_clock. 66 */ 67 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset) 68 { 69 struct thread_info *ti = task_thread_info(tsk); 70 u64 timer, clock, user, system, steal; 71 u64 user_scaled, system_scaled; 72 int i; 73 74 timer = S390_lowcore.last_update_timer; 75 clock = S390_lowcore.last_update_clock; 76 asm volatile( 77 " stpt %0\n" /* Store current cpu timer value */ 78 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES 79 " stckf %1" /* Store current tod clock value */ 80 #else 81 " stck %1" /* Store current tod clock value */ 82 #endif 83 : "=m" (S390_lowcore.last_update_timer), 84 "=m" (S390_lowcore.last_update_clock)); 85 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; 86 S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock; 87 88 /* Do MT utilization calculation */ 89 if (smp_cpu_mtid && 90 time_after64(jiffies_64, __this_cpu_read(mt_scaling_jiffies))) { 91 u64 cycles_new[32], *cycles_old; 92 u64 delta, fac, mult, div; 93 94 cycles_old = this_cpu_ptr(mt_cycles); 95 if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) { 96 fac = 1; 97 mult = div = 0; 98 for (i = 0; i <= smp_cpu_mtid; i++) { 99 delta = cycles_new[i] - cycles_old[i]; 100 div += delta; 101 mult *= i + 1; 102 mult += delta * fac; 103 fac *= i + 1; 104 } 105 div *= fac; 106 if (div > 0) { 107 /* Update scaling factor */ 108 __this_cpu_write(mt_scaling_mult, mult); 109 __this_cpu_write(mt_scaling_div, div); 110 memcpy(cycles_old, cycles_new, 111 sizeof(u64) * (smp_cpu_mtid + 1)); 112 } 113 } 114 __this_cpu_write(mt_scaling_jiffies, jiffies_64); 115 } 116 117 user = S390_lowcore.user_timer - ti->user_timer; 118 S390_lowcore.steal_timer -= user; 119 ti->user_timer = S390_lowcore.user_timer; 120 121 system = S390_lowcore.system_timer - ti->system_timer; 122 S390_lowcore.steal_timer -= system; 123 ti->system_timer = S390_lowcore.system_timer; 124 125 user_scaled = user; 126 system_scaled = system; 127 /* Do MT utilization scaling */ 128 if (smp_cpu_mtid) { 129 u64 mult = __this_cpu_read(mt_scaling_mult); 130 u64 div = __this_cpu_read(mt_scaling_div); 131 132 user_scaled = (user_scaled * mult) / div; 133 system_scaled = (system_scaled * mult) / div; 134 } 135 account_user_time(tsk, user, user_scaled); 136 account_system_time(tsk, hardirq_offset, system, system_scaled); 137 138 steal = S390_lowcore.steal_timer; 139 if ((s64) steal > 0) { 140 S390_lowcore.steal_timer = 0; 141 account_steal_time(steal); 142 } 143 144 return virt_timer_forward(user + system); 145 } 146 147 void vtime_task_switch(struct task_struct *prev) 148 { 149 struct thread_info *ti; 150 151 do_account_vtime(prev, 0); 152 ti = task_thread_info(prev); 153 ti->user_timer = S390_lowcore.user_timer; 154 ti->system_timer = S390_lowcore.system_timer; 155 ti = task_thread_info(current); 156 S390_lowcore.user_timer = ti->user_timer; 157 S390_lowcore.system_timer = ti->system_timer; 158 } 159 160 /* 161 * In s390, accounting pending user time also implies 162 * accounting system time in order to correctly compute 163 * the stolen time accounting. 164 */ 165 void vtime_account_user(struct task_struct *tsk) 166 { 167 if (do_account_vtime(tsk, HARDIRQ_OFFSET)) 168 virt_timer_expire(); 169 } 170 171 /* 172 * Update process times based on virtual cpu times stored by entry.S 173 * to the lowcore fields user_timer, system_timer & steal_clock. 174 */ 175 void vtime_account_irq_enter(struct task_struct *tsk) 176 { 177 struct thread_info *ti = task_thread_info(tsk); 178 u64 timer, system, system_scaled; 179 180 timer = S390_lowcore.last_update_timer; 181 S390_lowcore.last_update_timer = get_vtimer(); 182 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; 183 184 system = S390_lowcore.system_timer - ti->system_timer; 185 S390_lowcore.steal_timer -= system; 186 ti->system_timer = S390_lowcore.system_timer; 187 system_scaled = system; 188 /* Do MT utilization scaling */ 189 if (smp_cpu_mtid) { 190 u64 mult = __this_cpu_read(mt_scaling_mult); 191 u64 div = __this_cpu_read(mt_scaling_div); 192 193 system_scaled = (system_scaled * mult) / div; 194 } 195 account_system_time(tsk, 0, system, system_scaled); 196 197 virt_timer_forward(system); 198 } 199 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 200 201 void vtime_account_system(struct task_struct *tsk) 202 __attribute__((alias("vtime_account_irq_enter"))); 203 EXPORT_SYMBOL_GPL(vtime_account_system); 204 205 /* 206 * Sorted add to a list. List is linear searched until first bigger 207 * element is found. 208 */ 209 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head) 210 { 211 struct vtimer_list *tmp; 212 213 list_for_each_entry(tmp, head, entry) { 214 if (tmp->expires > timer->expires) { 215 list_add_tail(&timer->entry, &tmp->entry); 216 return; 217 } 218 } 219 list_add_tail(&timer->entry, head); 220 } 221 222 /* 223 * Handler for expired virtual CPU timer. 224 */ 225 static void virt_timer_expire(void) 226 { 227 struct vtimer_list *timer, *tmp; 228 unsigned long elapsed; 229 LIST_HEAD(cb_list); 230 231 /* walk timer list, fire all expired timers */ 232 spin_lock(&virt_timer_lock); 233 elapsed = atomic64_read(&virt_timer_elapsed); 234 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) { 235 if (timer->expires < elapsed) 236 /* move expired timer to the callback queue */ 237 list_move_tail(&timer->entry, &cb_list); 238 else 239 timer->expires -= elapsed; 240 } 241 if (!list_empty(&virt_timer_list)) { 242 timer = list_first_entry(&virt_timer_list, 243 struct vtimer_list, entry); 244 atomic64_set(&virt_timer_current, timer->expires); 245 } 246 atomic64_sub(elapsed, &virt_timer_elapsed); 247 spin_unlock(&virt_timer_lock); 248 249 /* Do callbacks and recharge periodic timers */ 250 list_for_each_entry_safe(timer, tmp, &cb_list, entry) { 251 list_del_init(&timer->entry); 252 timer->function(timer->data); 253 if (timer->interval) { 254 /* Recharge interval timer */ 255 timer->expires = timer->interval + 256 atomic64_read(&virt_timer_elapsed); 257 spin_lock(&virt_timer_lock); 258 list_add_sorted(timer, &virt_timer_list); 259 spin_unlock(&virt_timer_lock); 260 } 261 } 262 } 263 264 void init_virt_timer(struct vtimer_list *timer) 265 { 266 timer->function = NULL; 267 INIT_LIST_HEAD(&timer->entry); 268 } 269 EXPORT_SYMBOL(init_virt_timer); 270 271 static inline int vtimer_pending(struct vtimer_list *timer) 272 { 273 return !list_empty(&timer->entry); 274 } 275 276 static void internal_add_vtimer(struct vtimer_list *timer) 277 { 278 if (list_empty(&virt_timer_list)) { 279 /* First timer, just program it. */ 280 atomic64_set(&virt_timer_current, timer->expires); 281 atomic64_set(&virt_timer_elapsed, 0); 282 list_add(&timer->entry, &virt_timer_list); 283 } else { 284 /* Update timer against current base. */ 285 timer->expires += atomic64_read(&virt_timer_elapsed); 286 if (likely((s64) timer->expires < 287 (s64) atomic64_read(&virt_timer_current))) 288 /* The new timer expires before the current timer. */ 289 atomic64_set(&virt_timer_current, timer->expires); 290 /* Insert new timer into the list. */ 291 list_add_sorted(timer, &virt_timer_list); 292 } 293 } 294 295 static void __add_vtimer(struct vtimer_list *timer, int periodic) 296 { 297 unsigned long flags; 298 299 timer->interval = periodic ? timer->expires : 0; 300 spin_lock_irqsave(&virt_timer_lock, flags); 301 internal_add_vtimer(timer); 302 spin_unlock_irqrestore(&virt_timer_lock, flags); 303 } 304 305 /* 306 * add_virt_timer - add an oneshot virtual CPU timer 307 */ 308 void add_virt_timer(struct vtimer_list *timer) 309 { 310 __add_vtimer(timer, 0); 311 } 312 EXPORT_SYMBOL(add_virt_timer); 313 314 /* 315 * add_virt_timer_int - add an interval virtual CPU timer 316 */ 317 void add_virt_timer_periodic(struct vtimer_list *timer) 318 { 319 __add_vtimer(timer, 1); 320 } 321 EXPORT_SYMBOL(add_virt_timer_periodic); 322 323 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic) 324 { 325 unsigned long flags; 326 int rc; 327 328 BUG_ON(!timer->function); 329 330 if (timer->expires == expires && vtimer_pending(timer)) 331 return 1; 332 spin_lock_irqsave(&virt_timer_lock, flags); 333 rc = vtimer_pending(timer); 334 if (rc) 335 list_del_init(&timer->entry); 336 timer->interval = periodic ? expires : 0; 337 timer->expires = expires; 338 internal_add_vtimer(timer); 339 spin_unlock_irqrestore(&virt_timer_lock, flags); 340 return rc; 341 } 342 343 /* 344 * returns whether it has modified a pending timer (1) or not (0) 345 */ 346 int mod_virt_timer(struct vtimer_list *timer, u64 expires) 347 { 348 return __mod_vtimer(timer, expires, 0); 349 } 350 EXPORT_SYMBOL(mod_virt_timer); 351 352 /* 353 * returns whether it has modified a pending timer (1) or not (0) 354 */ 355 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires) 356 { 357 return __mod_vtimer(timer, expires, 1); 358 } 359 EXPORT_SYMBOL(mod_virt_timer_periodic); 360 361 /* 362 * Delete a virtual timer. 363 * 364 * returns whether the deleted timer was pending (1) or not (0) 365 */ 366 int del_virt_timer(struct vtimer_list *timer) 367 { 368 unsigned long flags; 369 370 if (!vtimer_pending(timer)) 371 return 0; 372 spin_lock_irqsave(&virt_timer_lock, flags); 373 list_del_init(&timer->entry); 374 spin_unlock_irqrestore(&virt_timer_lock, flags); 375 return 1; 376 } 377 EXPORT_SYMBOL(del_virt_timer); 378 379 /* 380 * Start the virtual CPU timer on the current CPU. 381 */ 382 void vtime_init(void) 383 { 384 /* set initial cpu timer */ 385 set_vtimer(VTIMER_MAX_SLICE); 386 /* Setup initial MT scaling values */ 387 if (smp_cpu_mtid) { 388 __this_cpu_write(mt_scaling_jiffies, jiffies); 389 __this_cpu_write(mt_scaling_mult, 1); 390 __this_cpu_write(mt_scaling_div, 1); 391 stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles)); 392 } 393 } 394