xref: /linux/arch/s390/kernel/vtime.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7 
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14 
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20 
21 static void virt_timer_expire(void);
22 
23 static LIST_HEAD(virt_timer_list);
24 static DEFINE_SPINLOCK(virt_timer_lock);
25 static atomic64_t virt_timer_current;
26 static atomic64_t virt_timer_elapsed;
27 
28 static DEFINE_PER_CPU(u64, mt_cycles[32]);
29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
31 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
32 
33 static inline u64 get_vtimer(void)
34 {
35 	u64 timer;
36 
37 	asm volatile("stpt %0" : "=m" (timer));
38 	return timer;
39 }
40 
41 static inline void set_vtimer(u64 expires)
42 {
43 	u64 timer;
44 
45 	asm volatile(
46 		"	stpt	%0\n"	/* Store current cpu timer value */
47 		"	spt	%1"	/* Set new value imm. afterwards */
48 		: "=m" (timer) : "m" (expires));
49 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
50 	S390_lowcore.last_update_timer = expires;
51 }
52 
53 static inline int virt_timer_forward(u64 elapsed)
54 {
55 	BUG_ON(!irqs_disabled());
56 
57 	if (list_empty(&virt_timer_list))
58 		return 0;
59 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
60 	return elapsed >= atomic64_read(&virt_timer_current);
61 }
62 
63 /*
64  * Update process times based on virtual cpu times stored by entry.S
65  * to the lowcore fields user_timer, system_timer & steal_clock.
66  */
67 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
68 {
69 	struct thread_info *ti = task_thread_info(tsk);
70 	u64 timer, clock, user, system, steal;
71 	u64 user_scaled, system_scaled;
72 	int i;
73 
74 	timer = S390_lowcore.last_update_timer;
75 	clock = S390_lowcore.last_update_clock;
76 	asm volatile(
77 		"	stpt	%0\n"	/* Store current cpu timer value */
78 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
79 		"	stckf	%1"	/* Store current tod clock value */
80 #else
81 		"	stck	%1"	/* Store current tod clock value */
82 #endif
83 		: "=m" (S390_lowcore.last_update_timer),
84 		  "=m" (S390_lowcore.last_update_clock));
85 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
86 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
87 
88 	/* Do MT utilization calculation */
89 	if (smp_cpu_mtid &&
90 	    time_after64(jiffies_64, __this_cpu_read(mt_scaling_jiffies))) {
91 		u64 cycles_new[32], *cycles_old;
92 		u64 delta, mult, div;
93 
94 		cycles_old = this_cpu_ptr(mt_cycles);
95 		if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) {
96 			mult = div = 0;
97 			for (i = 0; i <= smp_cpu_mtid; i++) {
98 				delta = cycles_new[i] - cycles_old[i];
99 				mult += delta;
100 				div += (i + 1) * delta;
101 			}
102 			if (mult > 0) {
103 				/* Update scaling factor */
104 				__this_cpu_write(mt_scaling_mult, mult);
105 				__this_cpu_write(mt_scaling_div, div);
106 				memcpy(cycles_old, cycles_new,
107 				       sizeof(u64) * (smp_cpu_mtid + 1));
108 			}
109 		}
110 		__this_cpu_write(mt_scaling_jiffies, jiffies_64);
111 	}
112 
113 	user = S390_lowcore.user_timer - ti->user_timer;
114 	S390_lowcore.steal_timer -= user;
115 	ti->user_timer = S390_lowcore.user_timer;
116 
117 	system = S390_lowcore.system_timer - ti->system_timer;
118 	S390_lowcore.steal_timer -= system;
119 	ti->system_timer = S390_lowcore.system_timer;
120 
121 	user_scaled = user;
122 	system_scaled = system;
123 	/* Do MT utilization scaling */
124 	if (smp_cpu_mtid) {
125 		u64 mult = __this_cpu_read(mt_scaling_mult);
126 		u64 div = __this_cpu_read(mt_scaling_div);
127 
128 		user_scaled = (user_scaled * mult) / div;
129 		system_scaled = (system_scaled * mult) / div;
130 	}
131 	account_user_time(tsk, user, user_scaled);
132 	account_system_time(tsk, hardirq_offset, system, system_scaled);
133 
134 	steal = S390_lowcore.steal_timer;
135 	if ((s64) steal > 0) {
136 		S390_lowcore.steal_timer = 0;
137 		account_steal_time(steal);
138 	}
139 
140 	return virt_timer_forward(user + system);
141 }
142 
143 void vtime_task_switch(struct task_struct *prev)
144 {
145 	struct thread_info *ti;
146 
147 	do_account_vtime(prev, 0);
148 	ti = task_thread_info(prev);
149 	ti->user_timer = S390_lowcore.user_timer;
150 	ti->system_timer = S390_lowcore.system_timer;
151 	ti = task_thread_info(current);
152 	S390_lowcore.user_timer = ti->user_timer;
153 	S390_lowcore.system_timer = ti->system_timer;
154 }
155 
156 /*
157  * In s390, accounting pending user time also implies
158  * accounting system time in order to correctly compute
159  * the stolen time accounting.
160  */
161 void vtime_account_user(struct task_struct *tsk)
162 {
163 	if (do_account_vtime(tsk, HARDIRQ_OFFSET))
164 		virt_timer_expire();
165 }
166 
167 /*
168  * Update process times based on virtual cpu times stored by entry.S
169  * to the lowcore fields user_timer, system_timer & steal_clock.
170  */
171 void vtime_account_irq_enter(struct task_struct *tsk)
172 {
173 	struct thread_info *ti = task_thread_info(tsk);
174 	u64 timer, system, system_scaled;
175 
176 	timer = S390_lowcore.last_update_timer;
177 	S390_lowcore.last_update_timer = get_vtimer();
178 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
179 
180 	system = S390_lowcore.system_timer - ti->system_timer;
181 	S390_lowcore.steal_timer -= system;
182 	ti->system_timer = S390_lowcore.system_timer;
183 	system_scaled = system;
184 	/* Do MT utilization scaling */
185 	if (smp_cpu_mtid) {
186 		u64 mult = __this_cpu_read(mt_scaling_mult);
187 		u64 div = __this_cpu_read(mt_scaling_div);
188 
189 		system_scaled = (system_scaled * mult) / div;
190 	}
191 	account_system_time(tsk, 0, system, system_scaled);
192 
193 	virt_timer_forward(system);
194 }
195 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
196 
197 void vtime_account_system(struct task_struct *tsk)
198 __attribute__((alias("vtime_account_irq_enter")));
199 EXPORT_SYMBOL_GPL(vtime_account_system);
200 
201 /*
202  * Sorted add to a list. List is linear searched until first bigger
203  * element is found.
204  */
205 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
206 {
207 	struct vtimer_list *tmp;
208 
209 	list_for_each_entry(tmp, head, entry) {
210 		if (tmp->expires > timer->expires) {
211 			list_add_tail(&timer->entry, &tmp->entry);
212 			return;
213 		}
214 	}
215 	list_add_tail(&timer->entry, head);
216 }
217 
218 /*
219  * Handler for expired virtual CPU timer.
220  */
221 static void virt_timer_expire(void)
222 {
223 	struct vtimer_list *timer, *tmp;
224 	unsigned long elapsed;
225 	LIST_HEAD(cb_list);
226 
227 	/* walk timer list, fire all expired timers */
228 	spin_lock(&virt_timer_lock);
229 	elapsed = atomic64_read(&virt_timer_elapsed);
230 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
231 		if (timer->expires < elapsed)
232 			/* move expired timer to the callback queue */
233 			list_move_tail(&timer->entry, &cb_list);
234 		else
235 			timer->expires -= elapsed;
236 	}
237 	if (!list_empty(&virt_timer_list)) {
238 		timer = list_first_entry(&virt_timer_list,
239 					 struct vtimer_list, entry);
240 		atomic64_set(&virt_timer_current, timer->expires);
241 	}
242 	atomic64_sub(elapsed, &virt_timer_elapsed);
243 	spin_unlock(&virt_timer_lock);
244 
245 	/* Do callbacks and recharge periodic timers */
246 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
247 		list_del_init(&timer->entry);
248 		timer->function(timer->data);
249 		if (timer->interval) {
250 			/* Recharge interval timer */
251 			timer->expires = timer->interval +
252 				atomic64_read(&virt_timer_elapsed);
253 			spin_lock(&virt_timer_lock);
254 			list_add_sorted(timer, &virt_timer_list);
255 			spin_unlock(&virt_timer_lock);
256 		}
257 	}
258 }
259 
260 void init_virt_timer(struct vtimer_list *timer)
261 {
262 	timer->function = NULL;
263 	INIT_LIST_HEAD(&timer->entry);
264 }
265 EXPORT_SYMBOL(init_virt_timer);
266 
267 static inline int vtimer_pending(struct vtimer_list *timer)
268 {
269 	return !list_empty(&timer->entry);
270 }
271 
272 static void internal_add_vtimer(struct vtimer_list *timer)
273 {
274 	if (list_empty(&virt_timer_list)) {
275 		/* First timer, just program it. */
276 		atomic64_set(&virt_timer_current, timer->expires);
277 		atomic64_set(&virt_timer_elapsed, 0);
278 		list_add(&timer->entry, &virt_timer_list);
279 	} else {
280 		/* Update timer against current base. */
281 		timer->expires += atomic64_read(&virt_timer_elapsed);
282 		if (likely((s64) timer->expires <
283 			   (s64) atomic64_read(&virt_timer_current)))
284 			/* The new timer expires before the current timer. */
285 			atomic64_set(&virt_timer_current, timer->expires);
286 		/* Insert new timer into the list. */
287 		list_add_sorted(timer, &virt_timer_list);
288 	}
289 }
290 
291 static void __add_vtimer(struct vtimer_list *timer, int periodic)
292 {
293 	unsigned long flags;
294 
295 	timer->interval = periodic ? timer->expires : 0;
296 	spin_lock_irqsave(&virt_timer_lock, flags);
297 	internal_add_vtimer(timer);
298 	spin_unlock_irqrestore(&virt_timer_lock, flags);
299 }
300 
301 /*
302  * add_virt_timer - add an oneshot virtual CPU timer
303  */
304 void add_virt_timer(struct vtimer_list *timer)
305 {
306 	__add_vtimer(timer, 0);
307 }
308 EXPORT_SYMBOL(add_virt_timer);
309 
310 /*
311  * add_virt_timer_int - add an interval virtual CPU timer
312  */
313 void add_virt_timer_periodic(struct vtimer_list *timer)
314 {
315 	__add_vtimer(timer, 1);
316 }
317 EXPORT_SYMBOL(add_virt_timer_periodic);
318 
319 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
320 {
321 	unsigned long flags;
322 	int rc;
323 
324 	BUG_ON(!timer->function);
325 
326 	if (timer->expires == expires && vtimer_pending(timer))
327 		return 1;
328 	spin_lock_irqsave(&virt_timer_lock, flags);
329 	rc = vtimer_pending(timer);
330 	if (rc)
331 		list_del_init(&timer->entry);
332 	timer->interval = periodic ? expires : 0;
333 	timer->expires = expires;
334 	internal_add_vtimer(timer);
335 	spin_unlock_irqrestore(&virt_timer_lock, flags);
336 	return rc;
337 }
338 
339 /*
340  * returns whether it has modified a pending timer (1) or not (0)
341  */
342 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
343 {
344 	return __mod_vtimer(timer, expires, 0);
345 }
346 EXPORT_SYMBOL(mod_virt_timer);
347 
348 /*
349  * returns whether it has modified a pending timer (1) or not (0)
350  */
351 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
352 {
353 	return __mod_vtimer(timer, expires, 1);
354 }
355 EXPORT_SYMBOL(mod_virt_timer_periodic);
356 
357 /*
358  * Delete a virtual timer.
359  *
360  * returns whether the deleted timer was pending (1) or not (0)
361  */
362 int del_virt_timer(struct vtimer_list *timer)
363 {
364 	unsigned long flags;
365 
366 	if (!vtimer_pending(timer))
367 		return 0;
368 	spin_lock_irqsave(&virt_timer_lock, flags);
369 	list_del_init(&timer->entry);
370 	spin_unlock_irqrestore(&virt_timer_lock, flags);
371 	return 1;
372 }
373 EXPORT_SYMBOL(del_virt_timer);
374 
375 /*
376  * Start the virtual CPU timer on the current CPU.
377  */
378 void vtime_init(void)
379 {
380 	/* set initial cpu timer */
381 	set_vtimer(VTIMER_MAX_SLICE);
382 	/* Setup initial MT scaling values */
383 	if (smp_cpu_mtid) {
384 		__this_cpu_write(mt_scaling_jiffies, jiffies);
385 		__this_cpu_write(mt_scaling_mult, 1);
386 		__this_cpu_write(mt_scaling_div, 1);
387 		stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
388 	}
389 }
390