xref: /linux/arch/s390/kernel/vtime.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7 
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14 
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20 
21 static void virt_timer_expire(void);
22 
23 static LIST_HEAD(virt_timer_list);
24 static DEFINE_SPINLOCK(virt_timer_lock);
25 static atomic64_t virt_timer_current;
26 static atomic64_t virt_timer_elapsed;
27 
28 DEFINE_PER_CPU(u64, mt_cycles[8]);
29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
31 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
32 
33 static inline u64 get_vtimer(void)
34 {
35 	u64 timer;
36 
37 	asm volatile("stpt %0" : "=m" (timer));
38 	return timer;
39 }
40 
41 static inline void set_vtimer(u64 expires)
42 {
43 	u64 timer;
44 
45 	asm volatile(
46 		"	stpt	%0\n"	/* Store current cpu timer value */
47 		"	spt	%1"	/* Set new value imm. afterwards */
48 		: "=m" (timer) : "m" (expires));
49 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
50 	S390_lowcore.last_update_timer = expires;
51 }
52 
53 static inline int virt_timer_forward(u64 elapsed)
54 {
55 	BUG_ON(!irqs_disabled());
56 
57 	if (list_empty(&virt_timer_list))
58 		return 0;
59 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
60 	return elapsed >= atomic64_read(&virt_timer_current);
61 }
62 
63 static void update_mt_scaling(void)
64 {
65 	u64 cycles_new[8], *cycles_old;
66 	u64 delta, fac, mult, div;
67 	int i;
68 
69 	stcctm5(smp_cpu_mtid + 1, cycles_new);
70 	cycles_old = this_cpu_ptr(mt_cycles);
71 	fac = 1;
72 	mult = div = 0;
73 	for (i = 0; i <= smp_cpu_mtid; i++) {
74 		delta = cycles_new[i] - cycles_old[i];
75 		div += delta;
76 		mult *= i + 1;
77 		mult += delta * fac;
78 		fac *= i + 1;
79 	}
80 	div *= fac;
81 	if (div > 0) {
82 		/* Update scaling factor */
83 		__this_cpu_write(mt_scaling_mult, mult);
84 		__this_cpu_write(mt_scaling_div, div);
85 		memcpy(cycles_old, cycles_new,
86 		       sizeof(u64) * (smp_cpu_mtid + 1));
87 	}
88 	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
89 }
90 
91 /*
92  * Update process times based on virtual cpu times stored by entry.S
93  * to the lowcore fields user_timer, system_timer & steal_clock.
94  */
95 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
96 {
97 	struct thread_info *ti = task_thread_info(tsk);
98 	u64 timer, clock, user, system, steal;
99 	u64 user_scaled, system_scaled;
100 
101 	timer = S390_lowcore.last_update_timer;
102 	clock = S390_lowcore.last_update_clock;
103 	asm volatile(
104 		"	stpt	%0\n"	/* Store current cpu timer value */
105 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
106 		"	stckf	%1"	/* Store current tod clock value */
107 #else
108 		"	stck	%1"	/* Store current tod clock value */
109 #endif
110 		: "=m" (S390_lowcore.last_update_timer),
111 		  "=m" (S390_lowcore.last_update_clock));
112 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
113 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
114 
115 	/* Update MT utilization calculation */
116 	if (smp_cpu_mtid &&
117 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
118 		update_mt_scaling();
119 
120 	user = S390_lowcore.user_timer - ti->user_timer;
121 	S390_lowcore.steal_timer -= user;
122 	ti->user_timer = S390_lowcore.user_timer;
123 
124 	system = S390_lowcore.system_timer - ti->system_timer;
125 	S390_lowcore.steal_timer -= system;
126 	ti->system_timer = S390_lowcore.system_timer;
127 
128 	user_scaled = user;
129 	system_scaled = system;
130 	/* Do MT utilization scaling */
131 	if (smp_cpu_mtid) {
132 		u64 mult = __this_cpu_read(mt_scaling_mult);
133 		u64 div = __this_cpu_read(mt_scaling_div);
134 
135 		user_scaled = (user_scaled * mult) / div;
136 		system_scaled = (system_scaled * mult) / div;
137 	}
138 	account_user_time(tsk, user, user_scaled);
139 	account_system_time(tsk, hardirq_offset, system, system_scaled);
140 
141 	steal = S390_lowcore.steal_timer;
142 	if ((s64) steal > 0) {
143 		S390_lowcore.steal_timer = 0;
144 		account_steal_time(steal);
145 	}
146 
147 	return virt_timer_forward(user + system);
148 }
149 
150 void vtime_task_switch(struct task_struct *prev)
151 {
152 	struct thread_info *ti;
153 
154 	do_account_vtime(prev, 0);
155 	ti = task_thread_info(prev);
156 	ti->user_timer = S390_lowcore.user_timer;
157 	ti->system_timer = S390_lowcore.system_timer;
158 	ti = task_thread_info(current);
159 	S390_lowcore.user_timer = ti->user_timer;
160 	S390_lowcore.system_timer = ti->system_timer;
161 }
162 
163 /*
164  * In s390, accounting pending user time also implies
165  * accounting system time in order to correctly compute
166  * the stolen time accounting.
167  */
168 void vtime_account_user(struct task_struct *tsk)
169 {
170 	if (do_account_vtime(tsk, HARDIRQ_OFFSET))
171 		virt_timer_expire();
172 }
173 
174 /*
175  * Update process times based on virtual cpu times stored by entry.S
176  * to the lowcore fields user_timer, system_timer & steal_clock.
177  */
178 void vtime_account_irq_enter(struct task_struct *tsk)
179 {
180 	struct thread_info *ti = task_thread_info(tsk);
181 	u64 timer, system, system_scaled;
182 
183 	timer = S390_lowcore.last_update_timer;
184 	S390_lowcore.last_update_timer = get_vtimer();
185 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
186 
187 	/* Update MT utilization calculation */
188 	if (smp_cpu_mtid &&
189 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
190 		update_mt_scaling();
191 
192 	system = S390_lowcore.system_timer - ti->system_timer;
193 	S390_lowcore.steal_timer -= system;
194 	ti->system_timer = S390_lowcore.system_timer;
195 	system_scaled = system;
196 	/* Do MT utilization scaling */
197 	if (smp_cpu_mtid) {
198 		u64 mult = __this_cpu_read(mt_scaling_mult);
199 		u64 div = __this_cpu_read(mt_scaling_div);
200 
201 		system_scaled = (system_scaled * mult) / div;
202 	}
203 	account_system_time(tsk, 0, system, system_scaled);
204 
205 	virt_timer_forward(system);
206 }
207 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
208 
209 void vtime_account_system(struct task_struct *tsk)
210 __attribute__((alias("vtime_account_irq_enter")));
211 EXPORT_SYMBOL_GPL(vtime_account_system);
212 
213 /*
214  * Sorted add to a list. List is linear searched until first bigger
215  * element is found.
216  */
217 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
218 {
219 	struct vtimer_list *tmp;
220 
221 	list_for_each_entry(tmp, head, entry) {
222 		if (tmp->expires > timer->expires) {
223 			list_add_tail(&timer->entry, &tmp->entry);
224 			return;
225 		}
226 	}
227 	list_add_tail(&timer->entry, head);
228 }
229 
230 /*
231  * Handler for expired virtual CPU timer.
232  */
233 static void virt_timer_expire(void)
234 {
235 	struct vtimer_list *timer, *tmp;
236 	unsigned long elapsed;
237 	LIST_HEAD(cb_list);
238 
239 	/* walk timer list, fire all expired timers */
240 	spin_lock(&virt_timer_lock);
241 	elapsed = atomic64_read(&virt_timer_elapsed);
242 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
243 		if (timer->expires < elapsed)
244 			/* move expired timer to the callback queue */
245 			list_move_tail(&timer->entry, &cb_list);
246 		else
247 			timer->expires -= elapsed;
248 	}
249 	if (!list_empty(&virt_timer_list)) {
250 		timer = list_first_entry(&virt_timer_list,
251 					 struct vtimer_list, entry);
252 		atomic64_set(&virt_timer_current, timer->expires);
253 	}
254 	atomic64_sub(elapsed, &virt_timer_elapsed);
255 	spin_unlock(&virt_timer_lock);
256 
257 	/* Do callbacks and recharge periodic timers */
258 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
259 		list_del_init(&timer->entry);
260 		timer->function(timer->data);
261 		if (timer->interval) {
262 			/* Recharge interval timer */
263 			timer->expires = timer->interval +
264 				atomic64_read(&virt_timer_elapsed);
265 			spin_lock(&virt_timer_lock);
266 			list_add_sorted(timer, &virt_timer_list);
267 			spin_unlock(&virt_timer_lock);
268 		}
269 	}
270 }
271 
272 void init_virt_timer(struct vtimer_list *timer)
273 {
274 	timer->function = NULL;
275 	INIT_LIST_HEAD(&timer->entry);
276 }
277 EXPORT_SYMBOL(init_virt_timer);
278 
279 static inline int vtimer_pending(struct vtimer_list *timer)
280 {
281 	return !list_empty(&timer->entry);
282 }
283 
284 static void internal_add_vtimer(struct vtimer_list *timer)
285 {
286 	if (list_empty(&virt_timer_list)) {
287 		/* First timer, just program it. */
288 		atomic64_set(&virt_timer_current, timer->expires);
289 		atomic64_set(&virt_timer_elapsed, 0);
290 		list_add(&timer->entry, &virt_timer_list);
291 	} else {
292 		/* Update timer against current base. */
293 		timer->expires += atomic64_read(&virt_timer_elapsed);
294 		if (likely((s64) timer->expires <
295 			   (s64) atomic64_read(&virt_timer_current)))
296 			/* The new timer expires before the current timer. */
297 			atomic64_set(&virt_timer_current, timer->expires);
298 		/* Insert new timer into the list. */
299 		list_add_sorted(timer, &virt_timer_list);
300 	}
301 }
302 
303 static void __add_vtimer(struct vtimer_list *timer, int periodic)
304 {
305 	unsigned long flags;
306 
307 	timer->interval = periodic ? timer->expires : 0;
308 	spin_lock_irqsave(&virt_timer_lock, flags);
309 	internal_add_vtimer(timer);
310 	spin_unlock_irqrestore(&virt_timer_lock, flags);
311 }
312 
313 /*
314  * add_virt_timer - add an oneshot virtual CPU timer
315  */
316 void add_virt_timer(struct vtimer_list *timer)
317 {
318 	__add_vtimer(timer, 0);
319 }
320 EXPORT_SYMBOL(add_virt_timer);
321 
322 /*
323  * add_virt_timer_int - add an interval virtual CPU timer
324  */
325 void add_virt_timer_periodic(struct vtimer_list *timer)
326 {
327 	__add_vtimer(timer, 1);
328 }
329 EXPORT_SYMBOL(add_virt_timer_periodic);
330 
331 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
332 {
333 	unsigned long flags;
334 	int rc;
335 
336 	BUG_ON(!timer->function);
337 
338 	if (timer->expires == expires && vtimer_pending(timer))
339 		return 1;
340 	spin_lock_irqsave(&virt_timer_lock, flags);
341 	rc = vtimer_pending(timer);
342 	if (rc)
343 		list_del_init(&timer->entry);
344 	timer->interval = periodic ? expires : 0;
345 	timer->expires = expires;
346 	internal_add_vtimer(timer);
347 	spin_unlock_irqrestore(&virt_timer_lock, flags);
348 	return rc;
349 }
350 
351 /*
352  * returns whether it has modified a pending timer (1) or not (0)
353  */
354 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
355 {
356 	return __mod_vtimer(timer, expires, 0);
357 }
358 EXPORT_SYMBOL(mod_virt_timer);
359 
360 /*
361  * returns whether it has modified a pending timer (1) or not (0)
362  */
363 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
364 {
365 	return __mod_vtimer(timer, expires, 1);
366 }
367 EXPORT_SYMBOL(mod_virt_timer_periodic);
368 
369 /*
370  * Delete a virtual timer.
371  *
372  * returns whether the deleted timer was pending (1) or not (0)
373  */
374 int del_virt_timer(struct vtimer_list *timer)
375 {
376 	unsigned long flags;
377 
378 	if (!vtimer_pending(timer))
379 		return 0;
380 	spin_lock_irqsave(&virt_timer_lock, flags);
381 	list_del_init(&timer->entry);
382 	spin_unlock_irqrestore(&virt_timer_lock, flags);
383 	return 1;
384 }
385 EXPORT_SYMBOL(del_virt_timer);
386 
387 /*
388  * Start the virtual CPU timer on the current CPU.
389  */
390 void vtime_init(void)
391 {
392 	/* set initial cpu timer */
393 	set_vtimer(VTIMER_MAX_SLICE);
394 	/* Setup initial MT scaling values */
395 	if (smp_cpu_mtid) {
396 		__this_cpu_write(mt_scaling_jiffies, jiffies);
397 		__this_cpu_write(mt_scaling_mult, 1);
398 		__this_cpu_write(mt_scaling_div, 1);
399 		stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
400 	}
401 }
402