xref: /linux/arch/s390/kernel/vtime.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7 
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14 
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20 
21 static void virt_timer_expire(void);
22 
23 static LIST_HEAD(virt_timer_list);
24 static DEFINE_SPINLOCK(virt_timer_lock);
25 static atomic64_t virt_timer_current;
26 static atomic64_t virt_timer_elapsed;
27 
28 static DEFINE_PER_CPU(u64, mt_cycles[32]);
29 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
30 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
31 
32 static inline u64 get_vtimer(void)
33 {
34 	u64 timer;
35 
36 	asm volatile("stpt %0" : "=m" (timer));
37 	return timer;
38 }
39 
40 static inline void set_vtimer(u64 expires)
41 {
42 	u64 timer;
43 
44 	asm volatile(
45 		"	stpt	%0\n"	/* Store current cpu timer value */
46 		"	spt	%1"	/* Set new value imm. afterwards */
47 		: "=m" (timer) : "m" (expires));
48 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
49 	S390_lowcore.last_update_timer = expires;
50 }
51 
52 static inline int virt_timer_forward(u64 elapsed)
53 {
54 	BUG_ON(!irqs_disabled());
55 
56 	if (list_empty(&virt_timer_list))
57 		return 0;
58 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
59 	return elapsed >= atomic64_read(&virt_timer_current);
60 }
61 
62 /*
63  * Update process times based on virtual cpu times stored by entry.S
64  * to the lowcore fields user_timer, system_timer & steal_clock.
65  */
66 static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
67 {
68 	struct thread_info *ti = task_thread_info(tsk);
69 	u64 timer, clock, user, system, steal;
70 	u64 user_scaled, system_scaled;
71 	int i;
72 
73 	timer = S390_lowcore.last_update_timer;
74 	clock = S390_lowcore.last_update_clock;
75 	asm volatile(
76 		"	stpt	%0\n"	/* Store current cpu timer value */
77 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
78 		"	stckf	%1"	/* Store current tod clock value */
79 #else
80 		"	stck	%1"	/* Store current tod clock value */
81 #endif
82 		: "=m" (S390_lowcore.last_update_timer),
83 		  "=m" (S390_lowcore.last_update_clock));
84 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
85 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
86 
87 	/* Do MT utilization calculation */
88 	if (smp_cpu_mtid) {
89 		u64 cycles_new[32], *cycles_old;
90 		u64 delta, mult, div;
91 
92 		cycles_old = this_cpu_ptr(mt_cycles);
93 		if (stcctm5(smp_cpu_mtid + 1, cycles_new) < 2) {
94 			mult = div = 0;
95 			for (i = 0; i <= smp_cpu_mtid; i++) {
96 				delta = cycles_new[i] - cycles_old[i];
97 				mult += delta;
98 				div += (i + 1) * delta;
99 			}
100 			if (mult > 0) {
101 				/* Update scaling factor */
102 				__this_cpu_write(mt_scaling_mult, mult);
103 				__this_cpu_write(mt_scaling_div, div);
104 				memcpy(cycles_old, cycles_new,
105 				       sizeof(u64) * (smp_cpu_mtid + 1));
106 			}
107 		}
108 	}
109 
110 	user = S390_lowcore.user_timer - ti->user_timer;
111 	S390_lowcore.steal_timer -= user;
112 	ti->user_timer = S390_lowcore.user_timer;
113 
114 	system = S390_lowcore.system_timer - ti->system_timer;
115 	S390_lowcore.steal_timer -= system;
116 	ti->system_timer = S390_lowcore.system_timer;
117 
118 	user_scaled = user;
119 	system_scaled = system;
120 	/* Do MT utilization scaling */
121 	if (smp_cpu_mtid) {
122 		u64 mult = __this_cpu_read(mt_scaling_mult);
123 		u64 div = __this_cpu_read(mt_scaling_div);
124 
125 		user_scaled = (user_scaled * mult) / div;
126 		system_scaled = (system_scaled * mult) / div;
127 	}
128 	account_user_time(tsk, user, user_scaled);
129 	account_system_time(tsk, hardirq_offset, system, system_scaled);
130 
131 	steal = S390_lowcore.steal_timer;
132 	if ((s64) steal > 0) {
133 		S390_lowcore.steal_timer = 0;
134 		account_steal_time(steal);
135 	}
136 
137 	return virt_timer_forward(user + system);
138 }
139 
140 void vtime_task_switch(struct task_struct *prev)
141 {
142 	struct thread_info *ti;
143 
144 	do_account_vtime(prev, 0);
145 	ti = task_thread_info(prev);
146 	ti->user_timer = S390_lowcore.user_timer;
147 	ti->system_timer = S390_lowcore.system_timer;
148 	ti = task_thread_info(current);
149 	S390_lowcore.user_timer = ti->user_timer;
150 	S390_lowcore.system_timer = ti->system_timer;
151 }
152 
153 /*
154  * In s390, accounting pending user time also implies
155  * accounting system time in order to correctly compute
156  * the stolen time accounting.
157  */
158 void vtime_account_user(struct task_struct *tsk)
159 {
160 	if (do_account_vtime(tsk, HARDIRQ_OFFSET))
161 		virt_timer_expire();
162 }
163 
164 /*
165  * Update process times based on virtual cpu times stored by entry.S
166  * to the lowcore fields user_timer, system_timer & steal_clock.
167  */
168 void vtime_account_irq_enter(struct task_struct *tsk)
169 {
170 	struct thread_info *ti = task_thread_info(tsk);
171 	u64 timer, system, system_scaled;
172 
173 	timer = S390_lowcore.last_update_timer;
174 	S390_lowcore.last_update_timer = get_vtimer();
175 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
176 
177 	system = S390_lowcore.system_timer - ti->system_timer;
178 	S390_lowcore.steal_timer -= system;
179 	ti->system_timer = S390_lowcore.system_timer;
180 	system_scaled = system;
181 	/* Do MT utilization scaling */
182 	if (smp_cpu_mtid) {
183 		u64 mult = __this_cpu_read(mt_scaling_mult);
184 		u64 div = __this_cpu_read(mt_scaling_div);
185 
186 		system_scaled = (system_scaled * mult) / div;
187 	}
188 	account_system_time(tsk, 0, system, system_scaled);
189 
190 	virt_timer_forward(system);
191 }
192 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
193 
194 void vtime_account_system(struct task_struct *tsk)
195 __attribute__((alias("vtime_account_irq_enter")));
196 EXPORT_SYMBOL_GPL(vtime_account_system);
197 
198 /*
199  * Sorted add to a list. List is linear searched until first bigger
200  * element is found.
201  */
202 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
203 {
204 	struct vtimer_list *tmp;
205 
206 	list_for_each_entry(tmp, head, entry) {
207 		if (tmp->expires > timer->expires) {
208 			list_add_tail(&timer->entry, &tmp->entry);
209 			return;
210 		}
211 	}
212 	list_add_tail(&timer->entry, head);
213 }
214 
215 /*
216  * Handler for expired virtual CPU timer.
217  */
218 static void virt_timer_expire(void)
219 {
220 	struct vtimer_list *timer, *tmp;
221 	unsigned long elapsed;
222 	LIST_HEAD(cb_list);
223 
224 	/* walk timer list, fire all expired timers */
225 	spin_lock(&virt_timer_lock);
226 	elapsed = atomic64_read(&virt_timer_elapsed);
227 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
228 		if (timer->expires < elapsed)
229 			/* move expired timer to the callback queue */
230 			list_move_tail(&timer->entry, &cb_list);
231 		else
232 			timer->expires -= elapsed;
233 	}
234 	if (!list_empty(&virt_timer_list)) {
235 		timer = list_first_entry(&virt_timer_list,
236 					 struct vtimer_list, entry);
237 		atomic64_set(&virt_timer_current, timer->expires);
238 	}
239 	atomic64_sub(elapsed, &virt_timer_elapsed);
240 	spin_unlock(&virt_timer_lock);
241 
242 	/* Do callbacks and recharge periodic timers */
243 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
244 		list_del_init(&timer->entry);
245 		timer->function(timer->data);
246 		if (timer->interval) {
247 			/* Recharge interval timer */
248 			timer->expires = timer->interval +
249 				atomic64_read(&virt_timer_elapsed);
250 			spin_lock(&virt_timer_lock);
251 			list_add_sorted(timer, &virt_timer_list);
252 			spin_unlock(&virt_timer_lock);
253 		}
254 	}
255 }
256 
257 void init_virt_timer(struct vtimer_list *timer)
258 {
259 	timer->function = NULL;
260 	INIT_LIST_HEAD(&timer->entry);
261 }
262 EXPORT_SYMBOL(init_virt_timer);
263 
264 static inline int vtimer_pending(struct vtimer_list *timer)
265 {
266 	return !list_empty(&timer->entry);
267 }
268 
269 static void internal_add_vtimer(struct vtimer_list *timer)
270 {
271 	if (list_empty(&virt_timer_list)) {
272 		/* First timer, just program it. */
273 		atomic64_set(&virt_timer_current, timer->expires);
274 		atomic64_set(&virt_timer_elapsed, 0);
275 		list_add(&timer->entry, &virt_timer_list);
276 	} else {
277 		/* Update timer against current base. */
278 		timer->expires += atomic64_read(&virt_timer_elapsed);
279 		if (likely((s64) timer->expires <
280 			   (s64) atomic64_read(&virt_timer_current)))
281 			/* The new timer expires before the current timer. */
282 			atomic64_set(&virt_timer_current, timer->expires);
283 		/* Insert new timer into the list. */
284 		list_add_sorted(timer, &virt_timer_list);
285 	}
286 }
287 
288 static void __add_vtimer(struct vtimer_list *timer, int periodic)
289 {
290 	unsigned long flags;
291 
292 	timer->interval = periodic ? timer->expires : 0;
293 	spin_lock_irqsave(&virt_timer_lock, flags);
294 	internal_add_vtimer(timer);
295 	spin_unlock_irqrestore(&virt_timer_lock, flags);
296 }
297 
298 /*
299  * add_virt_timer - add an oneshot virtual CPU timer
300  */
301 void add_virt_timer(struct vtimer_list *timer)
302 {
303 	__add_vtimer(timer, 0);
304 }
305 EXPORT_SYMBOL(add_virt_timer);
306 
307 /*
308  * add_virt_timer_int - add an interval virtual CPU timer
309  */
310 void add_virt_timer_periodic(struct vtimer_list *timer)
311 {
312 	__add_vtimer(timer, 1);
313 }
314 EXPORT_SYMBOL(add_virt_timer_periodic);
315 
316 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
317 {
318 	unsigned long flags;
319 	int rc;
320 
321 	BUG_ON(!timer->function);
322 
323 	if (timer->expires == expires && vtimer_pending(timer))
324 		return 1;
325 	spin_lock_irqsave(&virt_timer_lock, flags);
326 	rc = vtimer_pending(timer);
327 	if (rc)
328 		list_del_init(&timer->entry);
329 	timer->interval = periodic ? expires : 0;
330 	timer->expires = expires;
331 	internal_add_vtimer(timer);
332 	spin_unlock_irqrestore(&virt_timer_lock, flags);
333 	return rc;
334 }
335 
336 /*
337  * returns whether it has modified a pending timer (1) or not (0)
338  */
339 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
340 {
341 	return __mod_vtimer(timer, expires, 0);
342 }
343 EXPORT_SYMBOL(mod_virt_timer);
344 
345 /*
346  * returns whether it has modified a pending timer (1) or not (0)
347  */
348 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
349 {
350 	return __mod_vtimer(timer, expires, 1);
351 }
352 EXPORT_SYMBOL(mod_virt_timer_periodic);
353 
354 /*
355  * Delete a virtual timer.
356  *
357  * returns whether the deleted timer was pending (1) or not (0)
358  */
359 int del_virt_timer(struct vtimer_list *timer)
360 {
361 	unsigned long flags;
362 
363 	if (!vtimer_pending(timer))
364 		return 0;
365 	spin_lock_irqsave(&virt_timer_lock, flags);
366 	list_del_init(&timer->entry);
367 	spin_unlock_irqrestore(&virt_timer_lock, flags);
368 	return 1;
369 }
370 EXPORT_SYMBOL(del_virt_timer);
371 
372 /*
373  * Start the virtual CPU timer on the current CPU.
374  */
375 void vtime_init(void)
376 {
377 	/* set initial cpu timer */
378 	set_vtimer(VTIMER_MAX_SLICE);
379 }
380