1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Ultravisor functions and initialization 4 * 5 * Copyright IBM Corp. 2019, 2024 6 */ 7 #define KMSG_COMPONENT "prot_virt" 8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/sizes.h> 13 #include <linux/bitmap.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/pagewalk.h> 18 #include <linux/backing-dev.h> 19 #include <asm/facility.h> 20 #include <asm/sections.h> 21 #include <asm/uv.h> 22 23 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ 24 int __bootdata_preserved(prot_virt_guest); 25 EXPORT_SYMBOL(prot_virt_guest); 26 27 /* 28 * uv_info contains both host and guest information but it's currently only 29 * expected to be used within modules if it's the KVM module or for 30 * any PV guest module. 31 * 32 * The kernel itself will write these values once in uv_query_info() 33 * and then make some of them readable via a sysfs interface. 34 */ 35 struct uv_info __bootdata_preserved(uv_info); 36 EXPORT_SYMBOL(uv_info); 37 38 int __bootdata_preserved(prot_virt_host); 39 EXPORT_SYMBOL(prot_virt_host); 40 41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len) 42 { 43 struct uv_cb_init uvcb = { 44 .header.cmd = UVC_CMD_INIT_UV, 45 .header.len = sizeof(uvcb), 46 .stor_origin = stor_base, 47 .stor_len = stor_len, 48 }; 49 50 if (uv_call(0, (uint64_t)&uvcb)) { 51 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", 52 uvcb.header.rc, uvcb.header.rrc); 53 return -1; 54 } 55 return 0; 56 } 57 58 void __init setup_uv(void) 59 { 60 void *uv_stor_base; 61 62 if (!is_prot_virt_host()) 63 return; 64 65 uv_stor_base = memblock_alloc_try_nid( 66 uv_info.uv_base_stor_len, SZ_1M, SZ_2G, 67 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 68 if (!uv_stor_base) { 69 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", 70 uv_info.uv_base_stor_len); 71 goto fail; 72 } 73 74 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) { 75 memblock_free(uv_stor_base, uv_info.uv_base_stor_len); 76 goto fail; 77 } 78 79 pr_info("Reserving %luMB as ultravisor base storage\n", 80 uv_info.uv_base_stor_len >> 20); 81 return; 82 fail: 83 pr_info("Disabling support for protected virtualization"); 84 prot_virt_host = 0; 85 } 86 87 /* 88 * Requests the Ultravisor to pin the page in the shared state. This will 89 * cause an intercept when the guest attempts to unshare the pinned page. 90 */ 91 int uv_pin_shared(unsigned long paddr) 92 { 93 struct uv_cb_cfs uvcb = { 94 .header.cmd = UVC_CMD_PIN_PAGE_SHARED, 95 .header.len = sizeof(uvcb), 96 .paddr = paddr, 97 }; 98 99 if (uv_call(0, (u64)&uvcb)) 100 return -EINVAL; 101 return 0; 102 } 103 EXPORT_SYMBOL_GPL(uv_pin_shared); 104 105 /* 106 * Requests the Ultravisor to destroy a guest page and make it 107 * accessible to the host. The destroy clears the page instead of 108 * exporting. 109 * 110 * @paddr: Absolute host address of page to be destroyed 111 */ 112 static int uv_destroy(unsigned long paddr) 113 { 114 struct uv_cb_cfs uvcb = { 115 .header.cmd = UVC_CMD_DESTR_SEC_STOR, 116 .header.len = sizeof(uvcb), 117 .paddr = paddr 118 }; 119 120 if (uv_call(0, (u64)&uvcb)) { 121 /* 122 * Older firmware uses 107/d as an indication of a non secure 123 * page. Let us emulate the newer variant (no-op). 124 */ 125 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) 126 return 0; 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /* 133 * The caller must already hold a reference to the folio 134 */ 135 int uv_destroy_folio(struct folio *folio) 136 { 137 int rc; 138 139 /* Large folios cannot be secure */ 140 if (unlikely(folio_test_large(folio))) 141 return 0; 142 143 folio_get(folio); 144 rc = uv_destroy(folio_to_phys(folio)); 145 if (!rc) 146 clear_bit(PG_arch_1, &folio->flags); 147 folio_put(folio); 148 return rc; 149 } 150 EXPORT_SYMBOL(uv_destroy_folio); 151 152 /* 153 * The present PTE still indirectly holds a folio reference through the mapping. 154 */ 155 int uv_destroy_pte(pte_t pte) 156 { 157 VM_WARN_ON(!pte_present(pte)); 158 return uv_destroy_folio(pfn_folio(pte_pfn(pte))); 159 } 160 161 /* 162 * Requests the Ultravisor to encrypt a guest page and make it 163 * accessible to the host for paging (export). 164 * 165 * @paddr: Absolute host address of page to be exported 166 */ 167 int uv_convert_from_secure(unsigned long paddr) 168 { 169 struct uv_cb_cfs uvcb = { 170 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, 171 .header.len = sizeof(uvcb), 172 .paddr = paddr 173 }; 174 175 if (uv_call(0, (u64)&uvcb)) 176 return -EINVAL; 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(uv_convert_from_secure); 180 181 /* 182 * The caller must already hold a reference to the folio. 183 */ 184 int uv_convert_from_secure_folio(struct folio *folio) 185 { 186 int rc; 187 188 /* Large folios cannot be secure */ 189 if (unlikely(folio_test_large(folio))) 190 return 0; 191 192 folio_get(folio); 193 rc = uv_convert_from_secure(folio_to_phys(folio)); 194 if (!rc) 195 clear_bit(PG_arch_1, &folio->flags); 196 folio_put(folio); 197 return rc; 198 } 199 EXPORT_SYMBOL_GPL(uv_convert_from_secure_folio); 200 201 /* 202 * The present PTE still indirectly holds a folio reference through the mapping. 203 */ 204 int uv_convert_from_secure_pte(pte_t pte) 205 { 206 VM_WARN_ON(!pte_present(pte)); 207 return uv_convert_from_secure_folio(pfn_folio(pte_pfn(pte))); 208 } 209 210 /** 211 * should_export_before_import - Determine whether an export is needed 212 * before an import-like operation 213 * @uvcb: the Ultravisor control block of the UVC to be performed 214 * @mm: the mm of the process 215 * 216 * Returns whether an export is needed before every import-like operation. 217 * This is needed for shared pages, which don't trigger a secure storage 218 * exception when accessed from a different guest. 219 * 220 * Although considered as one, the Unpin Page UVC is not an actual import, 221 * so it is not affected. 222 * 223 * No export is needed also when there is only one protected VM, because the 224 * page cannot belong to the wrong VM in that case (there is no "other VM" 225 * it can belong to). 226 * 227 * Return: true if an export is needed before every import, otherwise false. 228 */ 229 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm) 230 { 231 /* 232 * The misc feature indicates, among other things, that importing a 233 * shared page from a different protected VM will automatically also 234 * transfer its ownership. 235 */ 236 if (uv_has_feature(BIT_UV_FEAT_MISC)) 237 return false; 238 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED) 239 return false; 240 return atomic_read(&mm->context.protected_count) > 1; 241 } 242 243 /* 244 * Calculate the expected ref_count for a folio that would otherwise have no 245 * further pins. This was cribbed from similar functions in other places in 246 * the kernel, but with some slight modifications. We know that a secure 247 * folio can not be a large folio, for example. 248 */ 249 static int expected_folio_refs(struct folio *folio) 250 { 251 int res; 252 253 res = folio_mapcount(folio); 254 if (folio_test_swapcache(folio)) { 255 res++; 256 } else if (folio_mapping(folio)) { 257 res++; 258 if (folio->private) 259 res++; 260 } 261 return res; 262 } 263 264 /** 265 * __make_folio_secure() - make a folio secure 266 * @folio: the folio to make secure 267 * @uvcb: the uvcb that describes the UVC to be used 268 * 269 * The folio @folio will be made secure if possible, @uvcb will be passed 270 * as-is to the UVC. 271 * 272 * Return: 0 on success; 273 * -EBUSY if the folio is in writeback or has too many references; 274 * -EAGAIN if the UVC needs to be attempted again; 275 * -ENXIO if the address is not mapped; 276 * -EINVAL if the UVC failed for other reasons. 277 * 278 * Context: The caller must hold exactly one extra reference on the folio 279 * (it's the same logic as split_folio()), and the folio must be 280 * locked. 281 */ 282 static int __make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb) 283 { 284 int expected, cc = 0; 285 286 if (folio_test_writeback(folio)) 287 return -EBUSY; 288 expected = expected_folio_refs(folio) + 1; 289 if (!folio_ref_freeze(folio, expected)) 290 return -EBUSY; 291 set_bit(PG_arch_1, &folio->flags); 292 /* 293 * If the UVC does not succeed or fail immediately, we don't want to 294 * loop for long, or we might get stall notifications. 295 * On the other hand, this is a complex scenario and we are holding a lot of 296 * locks, so we can't easily sleep and reschedule. We try only once, 297 * and if the UVC returned busy or partial completion, we return 298 * -EAGAIN and we let the callers deal with it. 299 */ 300 cc = __uv_call(0, (u64)uvcb); 301 folio_ref_unfreeze(folio, expected); 302 /* 303 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors. 304 * If busy or partially completed, return -EAGAIN. 305 */ 306 if (cc == UVC_CC_OK) 307 return 0; 308 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL) 309 return -EAGAIN; 310 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL; 311 } 312 313 static int make_folio_secure(struct mm_struct *mm, struct folio *folio, struct uv_cb_header *uvcb) 314 { 315 int rc; 316 317 if (!folio_trylock(folio)) 318 return -EAGAIN; 319 if (should_export_before_import(uvcb, mm)) 320 uv_convert_from_secure(folio_to_phys(folio)); 321 rc = __make_folio_secure(folio, uvcb); 322 folio_unlock(folio); 323 324 return rc; 325 } 326 327 /** 328 * s390_wiggle_split_folio() - try to drain extra references to a folio and 329 * split the folio if it is large. 330 * @mm: the mm containing the folio to work on 331 * @folio: the folio 332 * 333 * Context: Must be called while holding an extra reference to the folio; 334 * the mm lock should not be held. 335 * Return: 0 if the operation was successful; 336 * -EAGAIN if splitting the large folio was not successful, 337 * but another attempt can be made; 338 * -EINVAL in case of other folio splitting errors. See split_folio(). 339 */ 340 static int s390_wiggle_split_folio(struct mm_struct *mm, struct folio *folio) 341 { 342 int rc, tried_splits; 343 344 lockdep_assert_not_held(&mm->mmap_lock); 345 folio_wait_writeback(folio); 346 lru_add_drain_all(); 347 348 if (!folio_test_large(folio)) 349 return 0; 350 351 for (tried_splits = 0; tried_splits < 2; tried_splits++) { 352 struct address_space *mapping; 353 loff_t lstart, lend; 354 struct inode *inode; 355 356 folio_lock(folio); 357 rc = split_folio(folio); 358 if (rc != -EBUSY) { 359 folio_unlock(folio); 360 return rc; 361 } 362 363 /* 364 * Splitting with -EBUSY can fail for various reasons, but we 365 * have to handle one case explicitly for now: some mappings 366 * don't allow for splitting dirty folios; writeback will 367 * mark them clean again, including marking all page table 368 * entries mapping the folio read-only, to catch future write 369 * attempts. 370 * 371 * While the system should be writing back dirty folios in the 372 * background, we obtained this folio by looking up a writable 373 * page table entry. On these problematic mappings, writable 374 * page table entries imply dirty folios, preventing the 375 * split in the first place. 376 * 377 * To prevent a livelock when trigger writeback manually and 378 * letting the caller look up the folio again in the page 379 * table (turning it dirty), immediately try to split again. 380 * 381 * This is only a problem for some mappings (e.g., XFS); 382 * mappings that do not support writeback (e.g., shmem) do not 383 * apply. 384 */ 385 if (!folio_test_dirty(folio) || folio_test_anon(folio) || 386 !folio->mapping || !mapping_can_writeback(folio->mapping)) { 387 folio_unlock(folio); 388 break; 389 } 390 391 /* 392 * Ideally, we'd only trigger writeback on this exact folio. But 393 * there is no easy way to do that, so we'll stabilize the 394 * mapping while we still hold the folio lock, so we can drop 395 * the folio lock to trigger writeback on the range currently 396 * covered by the folio instead. 397 */ 398 mapping = folio->mapping; 399 lstart = folio_pos(folio); 400 lend = lstart + folio_size(folio) - 1; 401 inode = igrab(mapping->host); 402 folio_unlock(folio); 403 404 if (unlikely(!inode)) 405 break; 406 407 filemap_write_and_wait_range(mapping, lstart, lend); 408 iput(mapping->host); 409 } 410 return -EAGAIN; 411 } 412 413 int make_hva_secure(struct mm_struct *mm, unsigned long hva, struct uv_cb_header *uvcb) 414 { 415 struct vm_area_struct *vma; 416 struct folio_walk fw; 417 struct folio *folio; 418 int rc; 419 420 mmap_read_lock(mm); 421 vma = vma_lookup(mm, hva); 422 if (!vma) { 423 mmap_read_unlock(mm); 424 return -EFAULT; 425 } 426 folio = folio_walk_start(&fw, vma, hva, 0); 427 if (!folio) { 428 mmap_read_unlock(mm); 429 return -ENXIO; 430 } 431 432 folio_get(folio); 433 /* 434 * Secure pages cannot be huge and userspace should not combine both. 435 * In case userspace does it anyway this will result in an -EFAULT for 436 * the unpack. The guest is thus never reaching secure mode. 437 * If userspace plays dirty tricks and decides to map huge pages at a 438 * later point in time, it will receive a segmentation fault or 439 * KVM_RUN will return -EFAULT. 440 */ 441 if (folio_test_hugetlb(folio)) 442 rc = -EFAULT; 443 else if (folio_test_large(folio)) 444 rc = -E2BIG; 445 else if (!pte_write(fw.pte) || (pte_val(fw.pte) & _PAGE_INVALID)) 446 rc = -ENXIO; 447 else 448 rc = make_folio_secure(mm, folio, uvcb); 449 folio_walk_end(&fw, vma); 450 mmap_read_unlock(mm); 451 452 if (rc == -E2BIG || rc == -EBUSY) { 453 rc = s390_wiggle_split_folio(mm, folio); 454 if (!rc) 455 rc = -EAGAIN; 456 } 457 folio_put(folio); 458 459 return rc; 460 } 461 EXPORT_SYMBOL_GPL(make_hva_secure); 462 463 /* 464 * To be called with the folio locked or with an extra reference! This will 465 * prevent kvm_s390_pv_make_secure() from touching the folio concurrently. 466 * Having 2 parallel arch_make_folio_accessible is fine, as the UV calls will 467 * become a no-op if the folio is already exported. 468 */ 469 int arch_make_folio_accessible(struct folio *folio) 470 { 471 int rc = 0; 472 473 /* Large folios cannot be secure */ 474 if (unlikely(folio_test_large(folio))) 475 return 0; 476 477 /* 478 * PG_arch_1 is used in 2 places: 479 * 1. for storage keys of hugetlb folios and KVM 480 * 2. As an indication that this small folio might be secure. This can 481 * overindicate, e.g. we set the bit before calling 482 * convert_to_secure. 483 * As secure pages are never large folios, both variants can co-exists. 484 */ 485 if (!test_bit(PG_arch_1, &folio->flags)) 486 return 0; 487 488 rc = uv_pin_shared(folio_to_phys(folio)); 489 if (!rc) { 490 clear_bit(PG_arch_1, &folio->flags); 491 return 0; 492 } 493 494 rc = uv_convert_from_secure(folio_to_phys(folio)); 495 if (!rc) { 496 clear_bit(PG_arch_1, &folio->flags); 497 return 0; 498 } 499 500 return rc; 501 } 502 EXPORT_SYMBOL_GPL(arch_make_folio_accessible); 503 504 static ssize_t uv_query_facilities(struct kobject *kobj, 505 struct kobj_attribute *attr, char *buf) 506 { 507 return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n", 508 uv_info.inst_calls_list[0], 509 uv_info.inst_calls_list[1], 510 uv_info.inst_calls_list[2], 511 uv_info.inst_calls_list[3]); 512 } 513 514 static struct kobj_attribute uv_query_facilities_attr = 515 __ATTR(facilities, 0444, uv_query_facilities, NULL); 516 517 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj, 518 struct kobj_attribute *attr, char *buf) 519 { 520 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver); 521 } 522 523 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr = 524 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL); 525 526 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj, 527 struct kobj_attribute *attr, char *buf) 528 { 529 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf); 530 } 531 532 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr = 533 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL); 534 535 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj, 536 struct kobj_attribute *attr, char *buf) 537 { 538 return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len); 539 } 540 541 static struct kobj_attribute uv_query_dump_cpu_len_attr = 542 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL); 543 544 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj, 545 struct kobj_attribute *attr, char *buf) 546 { 547 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len); 548 } 549 550 static struct kobj_attribute uv_query_dump_storage_state_len_attr = 551 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL); 552 553 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj, 554 struct kobj_attribute *attr, char *buf) 555 { 556 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len); 557 } 558 559 static struct kobj_attribute uv_query_dump_finalize_len_attr = 560 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL); 561 562 static ssize_t uv_query_feature_indications(struct kobject *kobj, 563 struct kobj_attribute *attr, char *buf) 564 { 565 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); 566 } 567 568 static struct kobj_attribute uv_query_feature_indications_attr = 569 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); 570 571 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, 572 struct kobj_attribute *attr, char *buf) 573 { 574 return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1); 575 } 576 577 static struct kobj_attribute uv_query_max_guest_cpus_attr = 578 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); 579 580 static ssize_t uv_query_max_guest_vms(struct kobject *kobj, 581 struct kobj_attribute *attr, char *buf) 582 { 583 return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf); 584 } 585 586 static struct kobj_attribute uv_query_max_guest_vms_attr = 587 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); 588 589 static ssize_t uv_query_max_guest_addr(struct kobject *kobj, 590 struct kobj_attribute *attr, char *buf) 591 { 592 return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr); 593 } 594 595 static struct kobj_attribute uv_query_max_guest_addr_attr = 596 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); 597 598 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj, 599 struct kobj_attribute *attr, char *buf) 600 { 601 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver); 602 } 603 604 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr = 605 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL); 606 607 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj, 608 struct kobj_attribute *attr, char *buf) 609 { 610 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags); 611 } 612 613 static struct kobj_attribute uv_query_supp_att_pflags_attr = 614 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL); 615 616 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj, 617 struct kobj_attribute *attr, char *buf) 618 { 619 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver); 620 } 621 622 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr = 623 __ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL); 624 625 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj, 626 struct kobj_attribute *attr, char *buf) 627 { 628 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf); 629 } 630 631 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr = 632 __ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL); 633 634 static ssize_t uv_query_supp_secret_types(struct kobject *kobj, 635 struct kobj_attribute *attr, char *buf) 636 { 637 return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types); 638 } 639 640 static struct kobj_attribute uv_query_supp_secret_types_attr = 641 __ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL); 642 643 static ssize_t uv_query_max_secrets(struct kobject *kobj, 644 struct kobj_attribute *attr, char *buf) 645 { 646 return sysfs_emit(buf, "%d\n", 647 uv_info.max_assoc_secrets + uv_info.max_retr_secrets); 648 } 649 650 static struct kobj_attribute uv_query_max_secrets_attr = 651 __ATTR(max_secrets, 0444, uv_query_max_secrets, NULL); 652 653 static ssize_t uv_query_max_retr_secrets(struct kobject *kobj, 654 struct kobj_attribute *attr, char *buf) 655 { 656 return sysfs_emit(buf, "%d\n", uv_info.max_retr_secrets); 657 } 658 659 static struct kobj_attribute uv_query_max_retr_secrets_attr = 660 __ATTR(max_retr_secrets, 0444, uv_query_max_retr_secrets, NULL); 661 662 static ssize_t uv_query_max_assoc_secrets(struct kobject *kobj, 663 struct kobj_attribute *attr, 664 char *buf) 665 { 666 return sysfs_emit(buf, "%d\n", uv_info.max_assoc_secrets); 667 } 668 669 static struct kobj_attribute uv_query_max_assoc_secrets_attr = 670 __ATTR(max_assoc_secrets, 0444, uv_query_max_assoc_secrets, NULL); 671 672 static struct attribute *uv_query_attrs[] = { 673 &uv_query_facilities_attr.attr, 674 &uv_query_feature_indications_attr.attr, 675 &uv_query_max_guest_cpus_attr.attr, 676 &uv_query_max_guest_vms_attr.attr, 677 &uv_query_max_guest_addr_attr.attr, 678 &uv_query_supp_se_hdr_ver_attr.attr, 679 &uv_query_supp_se_hdr_pcf_attr.attr, 680 &uv_query_dump_storage_state_len_attr.attr, 681 &uv_query_dump_finalize_len_attr.attr, 682 &uv_query_dump_cpu_len_attr.attr, 683 &uv_query_supp_att_req_hdr_ver_attr.attr, 684 &uv_query_supp_att_pflags_attr.attr, 685 &uv_query_supp_add_secret_req_ver_attr.attr, 686 &uv_query_supp_add_secret_pcf_attr.attr, 687 &uv_query_supp_secret_types_attr.attr, 688 &uv_query_max_secrets_attr.attr, 689 &uv_query_max_assoc_secrets_attr.attr, 690 &uv_query_max_retr_secrets_attr.attr, 691 NULL, 692 }; 693 694 static inline struct uv_cb_query_keys uv_query_keys(void) 695 { 696 struct uv_cb_query_keys uvcb = { 697 .header.cmd = UVC_CMD_QUERY_KEYS, 698 .header.len = sizeof(uvcb) 699 }; 700 701 uv_call(0, (uint64_t)&uvcb); 702 return uvcb; 703 } 704 705 static inline ssize_t emit_hash(struct uv_key_hash *hash, char *buf, int at) 706 { 707 return sysfs_emit_at(buf, at, "%016llx%016llx%016llx%016llx\n", 708 hash->dword[0], hash->dword[1], hash->dword[2], hash->dword[3]); 709 } 710 711 static ssize_t uv_keys_host_key(struct kobject *kobj, 712 struct kobj_attribute *attr, char *buf) 713 { 714 struct uv_cb_query_keys uvcb = uv_query_keys(); 715 716 return emit_hash(&uvcb.key_hashes[UVC_QUERY_KEYS_IDX_HK], buf, 0); 717 } 718 719 static struct kobj_attribute uv_keys_host_key_attr = 720 __ATTR(host_key, 0444, uv_keys_host_key, NULL); 721 722 static ssize_t uv_keys_backup_host_key(struct kobject *kobj, 723 struct kobj_attribute *attr, char *buf) 724 { 725 struct uv_cb_query_keys uvcb = uv_query_keys(); 726 727 return emit_hash(&uvcb.key_hashes[UVC_QUERY_KEYS_IDX_BACK_HK], buf, 0); 728 } 729 730 static struct kobj_attribute uv_keys_backup_host_key_attr = 731 __ATTR(backup_host_key, 0444, uv_keys_backup_host_key, NULL); 732 733 static ssize_t uv_keys_all(struct kobject *kobj, 734 struct kobj_attribute *attr, char *buf) 735 { 736 struct uv_cb_query_keys uvcb = uv_query_keys(); 737 ssize_t len = 0; 738 int i; 739 740 for (i = 0; i < ARRAY_SIZE(uvcb.key_hashes); i++) 741 len += emit_hash(uvcb.key_hashes + i, buf, len); 742 743 return len; 744 } 745 746 static struct kobj_attribute uv_keys_all_attr = 747 __ATTR(all, 0444, uv_keys_all, NULL); 748 749 static struct attribute_group uv_query_attr_group = { 750 .attrs = uv_query_attrs, 751 }; 752 753 static struct attribute *uv_keys_attrs[] = { 754 &uv_keys_host_key_attr.attr, 755 &uv_keys_backup_host_key_attr.attr, 756 &uv_keys_all_attr.attr, 757 NULL, 758 }; 759 760 static struct attribute_group uv_keys_attr_group = { 761 .attrs = uv_keys_attrs, 762 }; 763 764 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj, 765 struct kobj_attribute *attr, char *buf) 766 { 767 return sysfs_emit(buf, "%d\n", prot_virt_guest); 768 } 769 770 static ssize_t uv_is_prot_virt_host(struct kobject *kobj, 771 struct kobj_attribute *attr, char *buf) 772 { 773 return sysfs_emit(buf, "%d\n", prot_virt_host); 774 } 775 776 static struct kobj_attribute uv_prot_virt_guest = 777 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL); 778 779 static struct kobj_attribute uv_prot_virt_host = 780 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL); 781 782 static const struct attribute *uv_prot_virt_attrs[] = { 783 &uv_prot_virt_guest.attr, 784 &uv_prot_virt_host.attr, 785 NULL, 786 }; 787 788 static struct kset *uv_query_kset; 789 static struct kset *uv_keys_kset; 790 static struct kobject *uv_kobj; 791 792 static int __init uv_sysfs_dir_init(const struct attribute_group *grp, 793 struct kset **uv_dir_kset, const char *name) 794 { 795 struct kset *kset; 796 int rc; 797 798 kset = kset_create_and_add(name, NULL, uv_kobj); 799 if (!kset) 800 return -ENOMEM; 801 *uv_dir_kset = kset; 802 803 rc = sysfs_create_group(&kset->kobj, grp); 804 if (rc) 805 kset_unregister(kset); 806 return rc; 807 } 808 809 static int __init uv_sysfs_init(void) 810 { 811 int rc = -ENOMEM; 812 813 if (!test_facility(158)) 814 return 0; 815 816 uv_kobj = kobject_create_and_add("uv", firmware_kobj); 817 if (!uv_kobj) 818 return -ENOMEM; 819 820 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs); 821 if (rc) 822 goto out_kobj; 823 824 rc = uv_sysfs_dir_init(&uv_query_attr_group, &uv_query_kset, "query"); 825 if (rc) 826 goto out_ind_files; 827 828 /* Get installed key hashes if available, ignore any errors */ 829 if (test_bit_inv(BIT_UVC_CMD_QUERY_KEYS, uv_info.inst_calls_list)) 830 uv_sysfs_dir_init(&uv_keys_attr_group, &uv_keys_kset, "keys"); 831 832 return 0; 833 834 out_ind_files: 835 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs); 836 out_kobj: 837 kobject_del(uv_kobj); 838 kobject_put(uv_kobj); 839 return rc; 840 } 841 device_initcall(uv_sysfs_init); 842 843 /* 844 * Locate a secret in the list by its id. 845 * @secret_id: search pattern. 846 * @list: ephemeral buffer space 847 * @secret: output data, containing the secret's metadata. 848 * 849 * Search for a secret with the given secret_id in the Ultravisor secret store. 850 * 851 * Context: might sleep. 852 */ 853 static int find_secret_in_page(const u8 secret_id[UV_SECRET_ID_LEN], 854 const struct uv_secret_list *list, 855 struct uv_secret_list_item_hdr *secret) 856 { 857 u16 i; 858 859 for (i = 0; i < list->total_num_secrets; i++) { 860 if (memcmp(secret_id, list->secrets[i].id, UV_SECRET_ID_LEN) == 0) { 861 *secret = list->secrets[i].hdr; 862 return 0; 863 } 864 } 865 return -ENOENT; 866 } 867 868 /* 869 * Do the actual search for `uv_get_secret_metadata`. 870 * @secret_id: search pattern. 871 * @list: ephemeral buffer space 872 * @secret: output data, containing the secret's metadata. 873 * 874 * Context: might sleep. 875 */ 876 int uv_find_secret(const u8 secret_id[UV_SECRET_ID_LEN], 877 struct uv_secret_list *list, 878 struct uv_secret_list_item_hdr *secret) 879 { 880 u16 start_idx = 0; 881 u16 list_rc; 882 int ret; 883 884 do { 885 uv_list_secrets(list, start_idx, &list_rc, NULL); 886 if (list_rc != UVC_RC_EXECUTED && list_rc != UVC_RC_MORE_DATA) { 887 if (list_rc == UVC_RC_INV_CMD) 888 return -ENODEV; 889 else 890 return -EIO; 891 } 892 ret = find_secret_in_page(secret_id, list, secret); 893 if (ret == 0) 894 return ret; 895 start_idx = list->next_secret_idx; 896 } while (list_rc == UVC_RC_MORE_DATA && start_idx < list->next_secret_idx); 897 898 return -ENOENT; 899 } 900 EXPORT_SYMBOL_GPL(uv_find_secret); 901 902 /** 903 * uv_retrieve_secret() - get the secret value for the secret index. 904 * @secret_idx: Secret index for which the secret should be retrieved. 905 * @buf: Buffer to store retrieved secret. 906 * @buf_size: Size of the buffer. The correct buffer size is reported as part of 907 * the result from `uv_get_secret_metadata`. 908 * 909 * Calls the Retrieve Secret UVC and translates the UV return code into an errno. 910 * 911 * Context: might sleep. 912 * 913 * Return: 914 * * %0 - Entry found; buffer contains a valid secret. 915 * * %ENOENT: - No entry found or secret at the index is non-retrievable. 916 * * %ENODEV: - Not supported: UV not available or command not available. 917 * * %EINVAL: - Buffer too small for content. 918 * * %EIO: - Other unexpected UV error. 919 */ 920 int uv_retrieve_secret(u16 secret_idx, u8 *buf, size_t buf_size) 921 { 922 struct uv_cb_retr_secr uvcb = { 923 .header.len = sizeof(uvcb), 924 .header.cmd = UVC_CMD_RETR_SECRET, 925 .secret_idx = secret_idx, 926 .buf_addr = (u64)buf, 927 .buf_size = buf_size, 928 }; 929 930 uv_call_sched(0, (u64)&uvcb); 931 932 switch (uvcb.header.rc) { 933 case UVC_RC_EXECUTED: 934 return 0; 935 case UVC_RC_INV_CMD: 936 return -ENODEV; 937 case UVC_RC_RETR_SECR_STORE_EMPTY: 938 case UVC_RC_RETR_SECR_INV_SECRET: 939 case UVC_RC_RETR_SECR_INV_IDX: 940 return -ENOENT; 941 case UVC_RC_RETR_SECR_BUF_SMALL: 942 return -EINVAL; 943 default: 944 return -EIO; 945 } 946 } 947 EXPORT_SYMBOL_GPL(uv_retrieve_secret); 948