xref: /linux/arch/s390/kernel/uv.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 /*
27  * uv_info contains both host and guest information but it's currently only
28  * expected to be used within modules if it's the KVM module or for
29  * any PV guest module.
30  *
31  * The kernel itself will write these values once in uv_query_info()
32  * and then make some of them readable via a sysfs interface.
33  */
34 struct uv_info __bootdata_preserved(uv_info);
35 EXPORT_SYMBOL(uv_info);
36 
37 #if IS_ENABLED(CONFIG_KVM)
38 int __bootdata_preserved(prot_virt_host);
39 EXPORT_SYMBOL(prot_virt_host);
40 
41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
42 {
43 	struct uv_cb_init uvcb = {
44 		.header.cmd = UVC_CMD_INIT_UV,
45 		.header.len = sizeof(uvcb),
46 		.stor_origin = stor_base,
47 		.stor_len = stor_len,
48 	};
49 
50 	if (uv_call(0, (uint64_t)&uvcb)) {
51 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
52 		       uvcb.header.rc, uvcb.header.rrc);
53 		return -1;
54 	}
55 	return 0;
56 }
57 
58 void __init setup_uv(void)
59 {
60 	void *uv_stor_base;
61 
62 	if (!is_prot_virt_host())
63 		return;
64 
65 	uv_stor_base = memblock_alloc_try_nid(
66 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
67 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
68 	if (!uv_stor_base) {
69 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
70 			uv_info.uv_base_stor_len);
71 		goto fail;
72 	}
73 
74 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
75 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
76 		goto fail;
77 	}
78 
79 	pr_info("Reserving %luMB as ultravisor base storage\n",
80 		uv_info.uv_base_stor_len >> 20);
81 	return;
82 fail:
83 	pr_info("Disabling support for protected virtualization");
84 	prot_virt_host = 0;
85 }
86 
87 /*
88  * Requests the Ultravisor to pin the page in the shared state. This will
89  * cause an intercept when the guest attempts to unshare the pinned page.
90  */
91 int uv_pin_shared(unsigned long paddr)
92 {
93 	struct uv_cb_cfs uvcb = {
94 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
95 		.header.len = sizeof(uvcb),
96 		.paddr = paddr,
97 	};
98 
99 	if (uv_call(0, (u64)&uvcb))
100 		return -EINVAL;
101 	return 0;
102 }
103 EXPORT_SYMBOL_GPL(uv_pin_shared);
104 
105 /*
106  * Requests the Ultravisor to destroy a guest page and make it
107  * accessible to the host. The destroy clears the page instead of
108  * exporting.
109  *
110  * @paddr: Absolute host address of page to be destroyed
111  */
112 static int uv_destroy_page(unsigned long paddr)
113 {
114 	struct uv_cb_cfs uvcb = {
115 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
116 		.header.len = sizeof(uvcb),
117 		.paddr = paddr
118 	};
119 
120 	if (uv_call(0, (u64)&uvcb)) {
121 		/*
122 		 * Older firmware uses 107/d as an indication of a non secure
123 		 * page. Let us emulate the newer variant (no-op).
124 		 */
125 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
126 			return 0;
127 		return -EINVAL;
128 	}
129 	return 0;
130 }
131 
132 /*
133  * The caller must already hold a reference to the page
134  */
135 int uv_destroy_owned_page(unsigned long paddr)
136 {
137 	struct page *page = phys_to_page(paddr);
138 	int rc;
139 
140 	get_page(page);
141 	rc = uv_destroy_page(paddr);
142 	if (!rc)
143 		clear_bit(PG_arch_1, &page->flags);
144 	put_page(page);
145 	return rc;
146 }
147 
148 /*
149  * Requests the Ultravisor to encrypt a guest page and make it
150  * accessible to the host for paging (export).
151  *
152  * @paddr: Absolute host address of page to be exported
153  */
154 int uv_convert_from_secure(unsigned long paddr)
155 {
156 	struct uv_cb_cfs uvcb = {
157 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
158 		.header.len = sizeof(uvcb),
159 		.paddr = paddr
160 	};
161 
162 	if (uv_call(0, (u64)&uvcb))
163 		return -EINVAL;
164 	return 0;
165 }
166 
167 /*
168  * The caller must already hold a reference to the page
169  */
170 int uv_convert_owned_from_secure(unsigned long paddr)
171 {
172 	struct page *page = phys_to_page(paddr);
173 	int rc;
174 
175 	get_page(page);
176 	rc = uv_convert_from_secure(paddr);
177 	if (!rc)
178 		clear_bit(PG_arch_1, &page->flags);
179 	put_page(page);
180 	return rc;
181 }
182 
183 /*
184  * Calculate the expected ref_count for a page that would otherwise have no
185  * further pins. This was cribbed from similar functions in other places in
186  * the kernel, but with some slight modifications. We know that a secure
187  * page can not be a huge page for example.
188  */
189 static int expected_page_refs(struct page *page)
190 {
191 	int res;
192 
193 	res = page_mapcount(page);
194 	if (PageSwapCache(page)) {
195 		res++;
196 	} else if (page_mapping(page)) {
197 		res++;
198 		if (page_has_private(page))
199 			res++;
200 	}
201 	return res;
202 }
203 
204 static int make_page_secure(struct page *page, struct uv_cb_header *uvcb)
205 {
206 	int expected, cc = 0;
207 
208 	if (PageWriteback(page))
209 		return -EAGAIN;
210 	expected = expected_page_refs(page);
211 	if (!page_ref_freeze(page, expected))
212 		return -EBUSY;
213 	set_bit(PG_arch_1, &page->flags);
214 	/*
215 	 * If the UVC does not succeed or fail immediately, we don't want to
216 	 * loop for long, or we might get stall notifications.
217 	 * On the other hand, this is a complex scenario and we are holding a lot of
218 	 * locks, so we can't easily sleep and reschedule. We try only once,
219 	 * and if the UVC returned busy or partial completion, we return
220 	 * -EAGAIN and we let the callers deal with it.
221 	 */
222 	cc = __uv_call(0, (u64)uvcb);
223 	page_ref_unfreeze(page, expected);
224 	/*
225 	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
226 	 * If busy or partially completed, return -EAGAIN.
227 	 */
228 	if (cc == UVC_CC_OK)
229 		return 0;
230 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
231 		return -EAGAIN;
232 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
233 }
234 
235 /**
236  * should_export_before_import - Determine whether an export is needed
237  * before an import-like operation
238  * @uvcb: the Ultravisor control block of the UVC to be performed
239  * @mm: the mm of the process
240  *
241  * Returns whether an export is needed before every import-like operation.
242  * This is needed for shared pages, which don't trigger a secure storage
243  * exception when accessed from a different guest.
244  *
245  * Although considered as one, the Unpin Page UVC is not an actual import,
246  * so it is not affected.
247  *
248  * No export is needed also when there is only one protected VM, because the
249  * page cannot belong to the wrong VM in that case (there is no "other VM"
250  * it can belong to).
251  *
252  * Return: true if an export is needed before every import, otherwise false.
253  */
254 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
255 {
256 	/*
257 	 * The misc feature indicates, among other things, that importing a
258 	 * shared page from a different protected VM will automatically also
259 	 * transfer its ownership.
260 	 */
261 	if (uv_has_feature(BIT_UV_FEAT_MISC))
262 		return false;
263 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
264 		return false;
265 	return atomic_read(&mm->context.protected_count) > 1;
266 }
267 
268 /*
269  * Requests the Ultravisor to make a page accessible to a guest.
270  * If it's brought in the first time, it will be cleared. If
271  * it has been exported before, it will be decrypted and integrity
272  * checked.
273  */
274 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
275 {
276 	struct vm_area_struct *vma;
277 	bool local_drain = false;
278 	spinlock_t *ptelock;
279 	unsigned long uaddr;
280 	struct page *page;
281 	pte_t *ptep;
282 	int rc;
283 
284 again:
285 	rc = -EFAULT;
286 	mmap_read_lock(gmap->mm);
287 
288 	uaddr = __gmap_translate(gmap, gaddr);
289 	if (IS_ERR_VALUE(uaddr))
290 		goto out;
291 	vma = vma_lookup(gmap->mm, uaddr);
292 	if (!vma)
293 		goto out;
294 	/*
295 	 * Secure pages cannot be huge and userspace should not combine both.
296 	 * In case userspace does it anyway this will result in an -EFAULT for
297 	 * the unpack. The guest is thus never reaching secure mode. If
298 	 * userspace is playing dirty tricky with mapping huge pages later
299 	 * on this will result in a segmentation fault.
300 	 */
301 	if (is_vm_hugetlb_page(vma))
302 		goto out;
303 
304 	rc = -ENXIO;
305 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
306 	if (!ptep)
307 		goto out;
308 	if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
309 		page = pte_page(*ptep);
310 		rc = -EAGAIN;
311 		if (trylock_page(page)) {
312 			if (should_export_before_import(uvcb, gmap->mm))
313 				uv_convert_from_secure(page_to_phys(page));
314 			rc = make_page_secure(page, uvcb);
315 			unlock_page(page);
316 		}
317 	}
318 	pte_unmap_unlock(ptep, ptelock);
319 out:
320 	mmap_read_unlock(gmap->mm);
321 
322 	if (rc == -EAGAIN) {
323 		/*
324 		 * If we are here because the UVC returned busy or partial
325 		 * completion, this is just a useless check, but it is safe.
326 		 */
327 		wait_on_page_writeback(page);
328 	} else if (rc == -EBUSY) {
329 		/*
330 		 * If we have tried a local drain and the page refcount
331 		 * still does not match our expected safe value, try with a
332 		 * system wide drain. This is needed if the pagevecs holding
333 		 * the page are on a different CPU.
334 		 */
335 		if (local_drain) {
336 			lru_add_drain_all();
337 			/* We give up here, and let the caller try again */
338 			return -EAGAIN;
339 		}
340 		/*
341 		 * We are here if the page refcount does not match the
342 		 * expected safe value. The main culprits are usually
343 		 * pagevecs. With lru_add_drain() we drain the pagevecs
344 		 * on the local CPU so that hopefully the refcount will
345 		 * reach the expected safe value.
346 		 */
347 		lru_add_drain();
348 		local_drain = true;
349 		/* And now we try again immediately after draining */
350 		goto again;
351 	} else if (rc == -ENXIO) {
352 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
353 			return -EFAULT;
354 		return -EAGAIN;
355 	}
356 	return rc;
357 }
358 EXPORT_SYMBOL_GPL(gmap_make_secure);
359 
360 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
361 {
362 	struct uv_cb_cts uvcb = {
363 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
364 		.header.len = sizeof(uvcb),
365 		.guest_handle = gmap->guest_handle,
366 		.gaddr = gaddr,
367 	};
368 
369 	return gmap_make_secure(gmap, gaddr, &uvcb);
370 }
371 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
372 
373 /**
374  * gmap_destroy_page - Destroy a guest page.
375  * @gmap: the gmap of the guest
376  * @gaddr: the guest address to destroy
377  *
378  * An attempt will be made to destroy the given guest page. If the attempt
379  * fails, an attempt is made to export the page. If both attempts fail, an
380  * appropriate error is returned.
381  */
382 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
383 {
384 	struct vm_area_struct *vma;
385 	unsigned long uaddr;
386 	struct page *page;
387 	int rc;
388 
389 	rc = -EFAULT;
390 	mmap_read_lock(gmap->mm);
391 
392 	uaddr = __gmap_translate(gmap, gaddr);
393 	if (IS_ERR_VALUE(uaddr))
394 		goto out;
395 	vma = vma_lookup(gmap->mm, uaddr);
396 	if (!vma)
397 		goto out;
398 	/*
399 	 * Huge pages should not be able to become secure
400 	 */
401 	if (is_vm_hugetlb_page(vma))
402 		goto out;
403 
404 	rc = 0;
405 	/* we take an extra reference here */
406 	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
407 	if (IS_ERR_OR_NULL(page))
408 		goto out;
409 	rc = uv_destroy_owned_page(page_to_phys(page));
410 	/*
411 	 * Fault handlers can race; it is possible that two CPUs will fault
412 	 * on the same secure page. One CPU can destroy the page, reboot,
413 	 * re-enter secure mode and import it, while the second CPU was
414 	 * stuck at the beginning of the handler. At some point the second
415 	 * CPU will be able to progress, and it will not be able to destroy
416 	 * the page. In that case we do not want to terminate the process,
417 	 * we instead try to export the page.
418 	 */
419 	if (rc)
420 		rc = uv_convert_owned_from_secure(page_to_phys(page));
421 	put_page(page);
422 out:
423 	mmap_read_unlock(gmap->mm);
424 	return rc;
425 }
426 EXPORT_SYMBOL_GPL(gmap_destroy_page);
427 
428 /*
429  * To be called with the page locked or with an extra reference! This will
430  * prevent gmap_make_secure from touching the page concurrently. Having 2
431  * parallel make_page_accessible is fine, as the UV calls will become a
432  * no-op if the page is already exported.
433  */
434 int arch_make_page_accessible(struct page *page)
435 {
436 	int rc = 0;
437 
438 	/* Hugepage cannot be protected, so nothing to do */
439 	if (PageHuge(page))
440 		return 0;
441 
442 	/*
443 	 * PG_arch_1 is used in 3 places:
444 	 * 1. for kernel page tables during early boot
445 	 * 2. for storage keys of huge pages and KVM
446 	 * 3. As an indication that this page might be secure. This can
447 	 *    overindicate, e.g. we set the bit before calling
448 	 *    convert_to_secure.
449 	 * As secure pages are never huge, all 3 variants can co-exists.
450 	 */
451 	if (!test_bit(PG_arch_1, &page->flags))
452 		return 0;
453 
454 	rc = uv_pin_shared(page_to_phys(page));
455 	if (!rc) {
456 		clear_bit(PG_arch_1, &page->flags);
457 		return 0;
458 	}
459 
460 	rc = uv_convert_from_secure(page_to_phys(page));
461 	if (!rc) {
462 		clear_bit(PG_arch_1, &page->flags);
463 		return 0;
464 	}
465 
466 	return rc;
467 }
468 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
469 
470 #endif
471 
472 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
473 static ssize_t uv_query_facilities(struct kobject *kobj,
474 				   struct kobj_attribute *attr, char *buf)
475 {
476 	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
477 			  uv_info.inst_calls_list[0],
478 			  uv_info.inst_calls_list[1],
479 			  uv_info.inst_calls_list[2],
480 			  uv_info.inst_calls_list[3]);
481 }
482 
483 static struct kobj_attribute uv_query_facilities_attr =
484 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
485 
486 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
487 					struct kobj_attribute *attr, char *buf)
488 {
489 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
490 }
491 
492 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
493 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
494 
495 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
496 					struct kobj_attribute *attr, char *buf)
497 {
498 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
499 }
500 
501 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
502 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
503 
504 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
505 				     struct kobj_attribute *attr, char *buf)
506 {
507 	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
508 }
509 
510 static struct kobj_attribute uv_query_dump_cpu_len_attr =
511 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
512 
513 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
514 					       struct kobj_attribute *attr, char *buf)
515 {
516 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
517 }
518 
519 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
520 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
521 
522 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
523 					  struct kobj_attribute *attr, char *buf)
524 {
525 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
526 }
527 
528 static struct kobj_attribute uv_query_dump_finalize_len_attr =
529 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
530 
531 static ssize_t uv_query_feature_indications(struct kobject *kobj,
532 					    struct kobj_attribute *attr, char *buf)
533 {
534 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
535 }
536 
537 static struct kobj_attribute uv_query_feature_indications_attr =
538 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
539 
540 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
541 				       struct kobj_attribute *attr, char *buf)
542 {
543 	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
544 }
545 
546 static struct kobj_attribute uv_query_max_guest_cpus_attr =
547 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
548 
549 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
550 				      struct kobj_attribute *attr, char *buf)
551 {
552 	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
553 }
554 
555 static struct kobj_attribute uv_query_max_guest_vms_attr =
556 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
557 
558 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
559 				       struct kobj_attribute *attr, char *buf)
560 {
561 	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
562 }
563 
564 static struct kobj_attribute uv_query_max_guest_addr_attr =
565 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
566 
567 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
568 					     struct kobj_attribute *attr, char *buf)
569 {
570 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
571 }
572 
573 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
574 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
575 
576 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
577 					struct kobj_attribute *attr, char *buf)
578 {
579 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
580 }
581 
582 static struct kobj_attribute uv_query_supp_att_pflags_attr =
583 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
584 
585 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
586 						struct kobj_attribute *attr, char *buf)
587 {
588 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
589 }
590 
591 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
592 	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
593 
594 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
595 					    struct kobj_attribute *attr, char *buf)
596 {
597 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
598 }
599 
600 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
601 	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
602 
603 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
604 					  struct kobj_attribute *attr, char *buf)
605 {
606 	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
607 }
608 
609 static struct kobj_attribute uv_query_supp_secret_types_attr =
610 	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
611 
612 static ssize_t uv_query_max_secrets(struct kobject *kobj,
613 				    struct kobj_attribute *attr, char *buf)
614 {
615 	return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
616 }
617 
618 static struct kobj_attribute uv_query_max_secrets_attr =
619 	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
620 
621 static struct attribute *uv_query_attrs[] = {
622 	&uv_query_facilities_attr.attr,
623 	&uv_query_feature_indications_attr.attr,
624 	&uv_query_max_guest_cpus_attr.attr,
625 	&uv_query_max_guest_vms_attr.attr,
626 	&uv_query_max_guest_addr_attr.attr,
627 	&uv_query_supp_se_hdr_ver_attr.attr,
628 	&uv_query_supp_se_hdr_pcf_attr.attr,
629 	&uv_query_dump_storage_state_len_attr.attr,
630 	&uv_query_dump_finalize_len_attr.attr,
631 	&uv_query_dump_cpu_len_attr.attr,
632 	&uv_query_supp_att_req_hdr_ver_attr.attr,
633 	&uv_query_supp_att_pflags_attr.attr,
634 	&uv_query_supp_add_secret_req_ver_attr.attr,
635 	&uv_query_supp_add_secret_pcf_attr.attr,
636 	&uv_query_supp_secret_types_attr.attr,
637 	&uv_query_max_secrets_attr.attr,
638 	NULL,
639 };
640 
641 static struct attribute_group uv_query_attr_group = {
642 	.attrs = uv_query_attrs,
643 };
644 
645 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
646 				     struct kobj_attribute *attr, char *buf)
647 {
648 	int val = 0;
649 
650 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
651 	val = prot_virt_guest;
652 #endif
653 	return sysfs_emit(buf, "%d\n", val);
654 }
655 
656 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
657 				    struct kobj_attribute *attr, char *buf)
658 {
659 	int val = 0;
660 
661 #if IS_ENABLED(CONFIG_KVM)
662 	val = prot_virt_host;
663 #endif
664 
665 	return sysfs_emit(buf, "%d\n", val);
666 }
667 
668 static struct kobj_attribute uv_prot_virt_guest =
669 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
670 
671 static struct kobj_attribute uv_prot_virt_host =
672 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
673 
674 static const struct attribute *uv_prot_virt_attrs[] = {
675 	&uv_prot_virt_guest.attr,
676 	&uv_prot_virt_host.attr,
677 	NULL,
678 };
679 
680 static struct kset *uv_query_kset;
681 static struct kobject *uv_kobj;
682 
683 static int __init uv_info_init(void)
684 {
685 	int rc = -ENOMEM;
686 
687 	if (!test_facility(158))
688 		return 0;
689 
690 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
691 	if (!uv_kobj)
692 		return -ENOMEM;
693 
694 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
695 	if (rc)
696 		goto out_kobj;
697 
698 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
699 	if (!uv_query_kset) {
700 		rc = -ENOMEM;
701 		goto out_ind_files;
702 	}
703 
704 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
705 	if (!rc)
706 		return 0;
707 
708 	kset_unregister(uv_query_kset);
709 out_ind_files:
710 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
711 out_kobj:
712 	kobject_del(uv_kobj);
713 	kobject_put(uv_kobj);
714 	return rc;
715 }
716 device_initcall(uv_info_init);
717 #endif
718