1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Ultravisor functions and initialization 4 * 5 * Copyright IBM Corp. 2019, 2020 6 */ 7 #define KMSG_COMPONENT "prot_virt" 8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/sizes.h> 13 #include <linux/bitmap.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <asm/facility.h> 18 #include <asm/sections.h> 19 #include <asm/uv.h> 20 21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ 22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 23 int __bootdata_preserved(prot_virt_guest); 24 #endif 25 26 struct uv_info __bootdata_preserved(uv_info); 27 28 #if IS_ENABLED(CONFIG_KVM) 29 int __bootdata_preserved(prot_virt_host); 30 EXPORT_SYMBOL(prot_virt_host); 31 EXPORT_SYMBOL(uv_info); 32 33 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len) 34 { 35 struct uv_cb_init uvcb = { 36 .header.cmd = UVC_CMD_INIT_UV, 37 .header.len = sizeof(uvcb), 38 .stor_origin = stor_base, 39 .stor_len = stor_len, 40 }; 41 42 if (uv_call(0, (uint64_t)&uvcb)) { 43 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", 44 uvcb.header.rc, uvcb.header.rrc); 45 return -1; 46 } 47 return 0; 48 } 49 50 void __init setup_uv(void) 51 { 52 void *uv_stor_base; 53 54 if (!is_prot_virt_host()) 55 return; 56 57 uv_stor_base = memblock_alloc_try_nid( 58 uv_info.uv_base_stor_len, SZ_1M, SZ_2G, 59 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 60 if (!uv_stor_base) { 61 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", 62 uv_info.uv_base_stor_len); 63 goto fail; 64 } 65 66 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) { 67 memblock_free(uv_stor_base, uv_info.uv_base_stor_len); 68 goto fail; 69 } 70 71 pr_info("Reserving %luMB as ultravisor base storage\n", 72 uv_info.uv_base_stor_len >> 20); 73 return; 74 fail: 75 pr_info("Disabling support for protected virtualization"); 76 prot_virt_host = 0; 77 } 78 79 /* 80 * Requests the Ultravisor to pin the page in the shared state. This will 81 * cause an intercept when the guest attempts to unshare the pinned page. 82 */ 83 static int uv_pin_shared(unsigned long paddr) 84 { 85 struct uv_cb_cfs uvcb = { 86 .header.cmd = UVC_CMD_PIN_PAGE_SHARED, 87 .header.len = sizeof(uvcb), 88 .paddr = paddr, 89 }; 90 91 if (uv_call(0, (u64)&uvcb)) 92 return -EINVAL; 93 return 0; 94 } 95 96 /* 97 * Requests the Ultravisor to destroy a guest page and make it 98 * accessible to the host. The destroy clears the page instead of 99 * exporting. 100 * 101 * @paddr: Absolute host address of page to be destroyed 102 */ 103 static int uv_destroy_page(unsigned long paddr) 104 { 105 struct uv_cb_cfs uvcb = { 106 .header.cmd = UVC_CMD_DESTR_SEC_STOR, 107 .header.len = sizeof(uvcb), 108 .paddr = paddr 109 }; 110 111 if (uv_call(0, (u64)&uvcb)) { 112 /* 113 * Older firmware uses 107/d as an indication of a non secure 114 * page. Let us emulate the newer variant (no-op). 115 */ 116 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) 117 return 0; 118 return -EINVAL; 119 } 120 return 0; 121 } 122 123 /* 124 * The caller must already hold a reference to the page 125 */ 126 int uv_destroy_owned_page(unsigned long paddr) 127 { 128 struct page *page = phys_to_page(paddr); 129 int rc; 130 131 get_page(page); 132 rc = uv_destroy_page(paddr); 133 if (!rc) 134 clear_bit(PG_arch_1, &page->flags); 135 put_page(page); 136 return rc; 137 } 138 139 /* 140 * Requests the Ultravisor to encrypt a guest page and make it 141 * accessible to the host for paging (export). 142 * 143 * @paddr: Absolute host address of page to be exported 144 */ 145 int uv_convert_from_secure(unsigned long paddr) 146 { 147 struct uv_cb_cfs uvcb = { 148 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, 149 .header.len = sizeof(uvcb), 150 .paddr = paddr 151 }; 152 153 if (uv_call(0, (u64)&uvcb)) 154 return -EINVAL; 155 return 0; 156 } 157 158 /* 159 * The caller must already hold a reference to the page 160 */ 161 int uv_convert_owned_from_secure(unsigned long paddr) 162 { 163 struct page *page = phys_to_page(paddr); 164 int rc; 165 166 get_page(page); 167 rc = uv_convert_from_secure(paddr); 168 if (!rc) 169 clear_bit(PG_arch_1, &page->flags); 170 put_page(page); 171 return rc; 172 } 173 174 /* 175 * Calculate the expected ref_count for a page that would otherwise have no 176 * further pins. This was cribbed from similar functions in other places in 177 * the kernel, but with some slight modifications. We know that a secure 178 * page can not be a huge page for example. 179 */ 180 static int expected_page_refs(struct page *page) 181 { 182 int res; 183 184 res = page_mapcount(page); 185 if (PageSwapCache(page)) { 186 res++; 187 } else if (page_mapping(page)) { 188 res++; 189 if (page_has_private(page)) 190 res++; 191 } 192 return res; 193 } 194 195 static int make_page_secure(struct page *page, struct uv_cb_header *uvcb) 196 { 197 int expected, cc = 0; 198 199 if (PageWriteback(page)) 200 return -EAGAIN; 201 expected = expected_page_refs(page); 202 if (!page_ref_freeze(page, expected)) 203 return -EBUSY; 204 set_bit(PG_arch_1, &page->flags); 205 /* 206 * If the UVC does not succeed or fail immediately, we don't want to 207 * loop for long, or we might get stall notifications. 208 * On the other hand, this is a complex scenario and we are holding a lot of 209 * locks, so we can't easily sleep and reschedule. We try only once, 210 * and if the UVC returned busy or partial completion, we return 211 * -EAGAIN and we let the callers deal with it. 212 */ 213 cc = __uv_call(0, (u64)uvcb); 214 page_ref_unfreeze(page, expected); 215 /* 216 * Return -ENXIO if the page was not mapped, -EINVAL for other errors. 217 * If busy or partially completed, return -EAGAIN. 218 */ 219 if (cc == UVC_CC_OK) 220 return 0; 221 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL) 222 return -EAGAIN; 223 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL; 224 } 225 226 /** 227 * should_export_before_import - Determine whether an export is needed 228 * before an import-like operation 229 * @uvcb: the Ultravisor control block of the UVC to be performed 230 * @mm: the mm of the process 231 * 232 * Returns whether an export is needed before every import-like operation. 233 * This is needed for shared pages, which don't trigger a secure storage 234 * exception when accessed from a different guest. 235 * 236 * Although considered as one, the Unpin Page UVC is not an actual import, 237 * so it is not affected. 238 * 239 * No export is needed also when there is only one protected VM, because the 240 * page cannot belong to the wrong VM in that case (there is no "other VM" 241 * it can belong to). 242 * 243 * Return: true if an export is needed before every import, otherwise false. 244 */ 245 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm) 246 { 247 /* 248 * The misc feature indicates, among other things, that importing a 249 * shared page from a different protected VM will automatically also 250 * transfer its ownership. 251 */ 252 if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications)) 253 return false; 254 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED) 255 return false; 256 return atomic_read(&mm->context.protected_count) > 1; 257 } 258 259 /* 260 * Requests the Ultravisor to make a page accessible to a guest. 261 * If it's brought in the first time, it will be cleared. If 262 * it has been exported before, it will be decrypted and integrity 263 * checked. 264 */ 265 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) 266 { 267 struct vm_area_struct *vma; 268 bool local_drain = false; 269 spinlock_t *ptelock; 270 unsigned long uaddr; 271 struct page *page; 272 pte_t *ptep; 273 int rc; 274 275 again: 276 rc = -EFAULT; 277 mmap_read_lock(gmap->mm); 278 279 uaddr = __gmap_translate(gmap, gaddr); 280 if (IS_ERR_VALUE(uaddr)) 281 goto out; 282 vma = vma_lookup(gmap->mm, uaddr); 283 if (!vma) 284 goto out; 285 /* 286 * Secure pages cannot be huge and userspace should not combine both. 287 * In case userspace does it anyway this will result in an -EFAULT for 288 * the unpack. The guest is thus never reaching secure mode. If 289 * userspace is playing dirty tricky with mapping huge pages later 290 * on this will result in a segmentation fault. 291 */ 292 if (is_vm_hugetlb_page(vma)) 293 goto out; 294 295 rc = -ENXIO; 296 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); 297 if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) { 298 page = pte_page(*ptep); 299 rc = -EAGAIN; 300 if (trylock_page(page)) { 301 if (should_export_before_import(uvcb, gmap->mm)) 302 uv_convert_from_secure(page_to_phys(page)); 303 rc = make_page_secure(page, uvcb); 304 unlock_page(page); 305 } 306 } 307 pte_unmap_unlock(ptep, ptelock); 308 out: 309 mmap_read_unlock(gmap->mm); 310 311 if (rc == -EAGAIN) { 312 /* 313 * If we are here because the UVC returned busy or partial 314 * completion, this is just a useless check, but it is safe. 315 */ 316 wait_on_page_writeback(page); 317 } else if (rc == -EBUSY) { 318 /* 319 * If we have tried a local drain and the page refcount 320 * still does not match our expected safe value, try with a 321 * system wide drain. This is needed if the pagevecs holding 322 * the page are on a different CPU. 323 */ 324 if (local_drain) { 325 lru_add_drain_all(); 326 /* We give up here, and let the caller try again */ 327 return -EAGAIN; 328 } 329 /* 330 * We are here if the page refcount does not match the 331 * expected safe value. The main culprits are usually 332 * pagevecs. With lru_add_drain() we drain the pagevecs 333 * on the local CPU so that hopefully the refcount will 334 * reach the expected safe value. 335 */ 336 lru_add_drain(); 337 local_drain = true; 338 /* And now we try again immediately after draining */ 339 goto again; 340 } else if (rc == -ENXIO) { 341 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) 342 return -EFAULT; 343 return -EAGAIN; 344 } 345 return rc; 346 } 347 EXPORT_SYMBOL_GPL(gmap_make_secure); 348 349 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) 350 { 351 struct uv_cb_cts uvcb = { 352 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, 353 .header.len = sizeof(uvcb), 354 .guest_handle = gmap->guest_handle, 355 .gaddr = gaddr, 356 }; 357 358 return gmap_make_secure(gmap, gaddr, &uvcb); 359 } 360 EXPORT_SYMBOL_GPL(gmap_convert_to_secure); 361 362 /** 363 * gmap_destroy_page - Destroy a guest page. 364 * @gmap: the gmap of the guest 365 * @gaddr: the guest address to destroy 366 * 367 * An attempt will be made to destroy the given guest page. If the attempt 368 * fails, an attempt is made to export the page. If both attempts fail, an 369 * appropriate error is returned. 370 */ 371 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr) 372 { 373 struct vm_area_struct *vma; 374 unsigned long uaddr; 375 struct page *page; 376 int rc; 377 378 rc = -EFAULT; 379 mmap_read_lock(gmap->mm); 380 381 uaddr = __gmap_translate(gmap, gaddr); 382 if (IS_ERR_VALUE(uaddr)) 383 goto out; 384 vma = vma_lookup(gmap->mm, uaddr); 385 if (!vma) 386 goto out; 387 /* 388 * Huge pages should not be able to become secure 389 */ 390 if (is_vm_hugetlb_page(vma)) 391 goto out; 392 393 rc = 0; 394 /* we take an extra reference here */ 395 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET); 396 if (IS_ERR_OR_NULL(page)) 397 goto out; 398 rc = uv_destroy_owned_page(page_to_phys(page)); 399 /* 400 * Fault handlers can race; it is possible that two CPUs will fault 401 * on the same secure page. One CPU can destroy the page, reboot, 402 * re-enter secure mode and import it, while the second CPU was 403 * stuck at the beginning of the handler. At some point the second 404 * CPU will be able to progress, and it will not be able to destroy 405 * the page. In that case we do not want to terminate the process, 406 * we instead try to export the page. 407 */ 408 if (rc) 409 rc = uv_convert_owned_from_secure(page_to_phys(page)); 410 put_page(page); 411 out: 412 mmap_read_unlock(gmap->mm); 413 return rc; 414 } 415 EXPORT_SYMBOL_GPL(gmap_destroy_page); 416 417 /* 418 * To be called with the page locked or with an extra reference! This will 419 * prevent gmap_make_secure from touching the page concurrently. Having 2 420 * parallel make_page_accessible is fine, as the UV calls will become a 421 * no-op if the page is already exported. 422 */ 423 int arch_make_page_accessible(struct page *page) 424 { 425 int rc = 0; 426 427 /* Hugepage cannot be protected, so nothing to do */ 428 if (PageHuge(page)) 429 return 0; 430 431 /* 432 * PG_arch_1 is used in 3 places: 433 * 1. for kernel page tables during early boot 434 * 2. for storage keys of huge pages and KVM 435 * 3. As an indication that this page might be secure. This can 436 * overindicate, e.g. we set the bit before calling 437 * convert_to_secure. 438 * As secure pages are never huge, all 3 variants can co-exists. 439 */ 440 if (!test_bit(PG_arch_1, &page->flags)) 441 return 0; 442 443 rc = uv_pin_shared(page_to_phys(page)); 444 if (!rc) { 445 clear_bit(PG_arch_1, &page->flags); 446 return 0; 447 } 448 449 rc = uv_convert_from_secure(page_to_phys(page)); 450 if (!rc) { 451 clear_bit(PG_arch_1, &page->flags); 452 return 0; 453 } 454 455 return rc; 456 } 457 EXPORT_SYMBOL_GPL(arch_make_page_accessible); 458 459 #endif 460 461 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM) 462 static ssize_t uv_query_facilities(struct kobject *kobj, 463 struct kobj_attribute *attr, char *page) 464 { 465 return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n", 466 uv_info.inst_calls_list[0], 467 uv_info.inst_calls_list[1], 468 uv_info.inst_calls_list[2], 469 uv_info.inst_calls_list[3]); 470 } 471 472 static struct kobj_attribute uv_query_facilities_attr = 473 __ATTR(facilities, 0444, uv_query_facilities, NULL); 474 475 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj, 476 struct kobj_attribute *attr, char *buf) 477 { 478 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver); 479 } 480 481 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr = 482 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL); 483 484 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj, 485 struct kobj_attribute *attr, char *buf) 486 { 487 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf); 488 } 489 490 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr = 491 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL); 492 493 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj, 494 struct kobj_attribute *attr, char *page) 495 { 496 return scnprintf(page, PAGE_SIZE, "%lx\n", 497 uv_info.guest_cpu_stor_len); 498 } 499 500 static struct kobj_attribute uv_query_dump_cpu_len_attr = 501 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL); 502 503 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj, 504 struct kobj_attribute *attr, char *page) 505 { 506 return scnprintf(page, PAGE_SIZE, "%lx\n", 507 uv_info.conf_dump_storage_state_len); 508 } 509 510 static struct kobj_attribute uv_query_dump_storage_state_len_attr = 511 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL); 512 513 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj, 514 struct kobj_attribute *attr, char *page) 515 { 516 return scnprintf(page, PAGE_SIZE, "%lx\n", 517 uv_info.conf_dump_finalize_len); 518 } 519 520 static struct kobj_attribute uv_query_dump_finalize_len_attr = 521 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL); 522 523 static ssize_t uv_query_feature_indications(struct kobject *kobj, 524 struct kobj_attribute *attr, char *buf) 525 { 526 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); 527 } 528 529 static struct kobj_attribute uv_query_feature_indications_attr = 530 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); 531 532 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, 533 struct kobj_attribute *attr, char *page) 534 { 535 return scnprintf(page, PAGE_SIZE, "%d\n", 536 uv_info.max_guest_cpu_id + 1); 537 } 538 539 static struct kobj_attribute uv_query_max_guest_cpus_attr = 540 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); 541 542 static ssize_t uv_query_max_guest_vms(struct kobject *kobj, 543 struct kobj_attribute *attr, char *page) 544 { 545 return scnprintf(page, PAGE_SIZE, "%d\n", 546 uv_info.max_num_sec_conf); 547 } 548 549 static struct kobj_attribute uv_query_max_guest_vms_attr = 550 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); 551 552 static ssize_t uv_query_max_guest_addr(struct kobject *kobj, 553 struct kobj_attribute *attr, char *page) 554 { 555 return scnprintf(page, PAGE_SIZE, "%lx\n", 556 uv_info.max_sec_stor_addr); 557 } 558 559 static struct kobj_attribute uv_query_max_guest_addr_attr = 560 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); 561 562 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj, 563 struct kobj_attribute *attr, char *page) 564 { 565 return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_req_hdr_ver); 566 } 567 568 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr = 569 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL); 570 571 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj, 572 struct kobj_attribute *attr, char *page) 573 { 574 return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_pflags); 575 } 576 577 static struct kobj_attribute uv_query_supp_att_pflags_attr = 578 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL); 579 580 static struct attribute *uv_query_attrs[] = { 581 &uv_query_facilities_attr.attr, 582 &uv_query_feature_indications_attr.attr, 583 &uv_query_max_guest_cpus_attr.attr, 584 &uv_query_max_guest_vms_attr.attr, 585 &uv_query_max_guest_addr_attr.attr, 586 &uv_query_supp_se_hdr_ver_attr.attr, 587 &uv_query_supp_se_hdr_pcf_attr.attr, 588 &uv_query_dump_storage_state_len_attr.attr, 589 &uv_query_dump_finalize_len_attr.attr, 590 &uv_query_dump_cpu_len_attr.attr, 591 &uv_query_supp_att_req_hdr_ver_attr.attr, 592 &uv_query_supp_att_pflags_attr.attr, 593 NULL, 594 }; 595 596 static struct attribute_group uv_query_attr_group = { 597 .attrs = uv_query_attrs, 598 }; 599 600 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj, 601 struct kobj_attribute *attr, char *page) 602 { 603 int val = 0; 604 605 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 606 val = prot_virt_guest; 607 #endif 608 return scnprintf(page, PAGE_SIZE, "%d\n", val); 609 } 610 611 static ssize_t uv_is_prot_virt_host(struct kobject *kobj, 612 struct kobj_attribute *attr, char *page) 613 { 614 int val = 0; 615 616 #if IS_ENABLED(CONFIG_KVM) 617 val = prot_virt_host; 618 #endif 619 620 return scnprintf(page, PAGE_SIZE, "%d\n", val); 621 } 622 623 static struct kobj_attribute uv_prot_virt_guest = 624 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL); 625 626 static struct kobj_attribute uv_prot_virt_host = 627 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL); 628 629 static const struct attribute *uv_prot_virt_attrs[] = { 630 &uv_prot_virt_guest.attr, 631 &uv_prot_virt_host.attr, 632 NULL, 633 }; 634 635 static struct kset *uv_query_kset; 636 static struct kobject *uv_kobj; 637 638 static int __init uv_info_init(void) 639 { 640 int rc = -ENOMEM; 641 642 if (!test_facility(158)) 643 return 0; 644 645 uv_kobj = kobject_create_and_add("uv", firmware_kobj); 646 if (!uv_kobj) 647 return -ENOMEM; 648 649 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs); 650 if (rc) 651 goto out_kobj; 652 653 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); 654 if (!uv_query_kset) { 655 rc = -ENOMEM; 656 goto out_ind_files; 657 } 658 659 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); 660 if (!rc) 661 return 0; 662 663 kset_unregister(uv_query_kset); 664 out_ind_files: 665 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs); 666 out_kobj: 667 kobject_del(uv_kobj); 668 kobject_put(uv_kobj); 669 return rc; 670 } 671 device_initcall(uv_info_init); 672 #endif 673