xref: /linux/arch/s390/kernel/uv.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 struct uv_info __bootdata_preserved(uv_info);
27 
28 #if IS_ENABLED(CONFIG_KVM)
29 int __bootdata_preserved(prot_virt_host);
30 EXPORT_SYMBOL(prot_virt_host);
31 EXPORT_SYMBOL(uv_info);
32 
33 static int __init uv_init(unsigned long stor_base, unsigned long stor_len)
34 {
35 	struct uv_cb_init uvcb = {
36 		.header.cmd = UVC_CMD_INIT_UV,
37 		.header.len = sizeof(uvcb),
38 		.stor_origin = stor_base,
39 		.stor_len = stor_len,
40 	};
41 
42 	if (uv_call(0, (uint64_t)&uvcb)) {
43 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
44 		       uvcb.header.rc, uvcb.header.rrc);
45 		return -1;
46 	}
47 	return 0;
48 }
49 
50 void __init setup_uv(void)
51 {
52 	unsigned long uv_stor_base;
53 
54 	/*
55 	 * keep these conditions in line with has_uv_sec_stor_limit()
56 	 */
57 	if (!is_prot_virt_host())
58 		return;
59 
60 	if (is_prot_virt_guest()) {
61 		prot_virt_host = 0;
62 		pr_warn("Protected virtualization not available in protected guests.");
63 		return;
64 	}
65 
66 	if (!test_facility(158)) {
67 		prot_virt_host = 0;
68 		pr_warn("Protected virtualization not supported by the hardware.");
69 		return;
70 	}
71 
72 	uv_stor_base = (unsigned long)memblock_alloc_try_nid(
73 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
74 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
75 	if (!uv_stor_base) {
76 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
77 			uv_info.uv_base_stor_len);
78 		goto fail;
79 	}
80 
81 	if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) {
82 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
83 		goto fail;
84 	}
85 
86 	pr_info("Reserving %luMB as ultravisor base storage\n",
87 		uv_info.uv_base_stor_len >> 20);
88 	return;
89 fail:
90 	pr_info("Disabling support for protected virtualization");
91 	prot_virt_host = 0;
92 }
93 
94 /*
95  * Requests the Ultravisor to pin the page in the shared state. This will
96  * cause an intercept when the guest attempts to unshare the pinned page.
97  */
98 static int uv_pin_shared(unsigned long paddr)
99 {
100 	struct uv_cb_cfs uvcb = {
101 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
102 		.header.len = sizeof(uvcb),
103 		.paddr = paddr,
104 	};
105 
106 	if (uv_call(0, (u64)&uvcb))
107 		return -EINVAL;
108 	return 0;
109 }
110 
111 /*
112  * Requests the Ultravisor to destroy a guest page and make it
113  * accessible to the host. The destroy clears the page instead of
114  * exporting.
115  *
116  * @paddr: Absolute host address of page to be destroyed
117  */
118 int uv_destroy_page(unsigned long paddr)
119 {
120 	struct uv_cb_cfs uvcb = {
121 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
122 		.header.len = sizeof(uvcb),
123 		.paddr = paddr
124 	};
125 
126 	if (uv_call(0, (u64)&uvcb)) {
127 		/*
128 		 * Older firmware uses 107/d as an indication of a non secure
129 		 * page. Let us emulate the newer variant (no-op).
130 		 */
131 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
132 			return 0;
133 		return -EINVAL;
134 	}
135 	return 0;
136 }
137 
138 /*
139  * Requests the Ultravisor to encrypt a guest page and make it
140  * accessible to the host for paging (export).
141  *
142  * @paddr: Absolute host address of page to be exported
143  */
144 int uv_convert_from_secure(unsigned long paddr)
145 {
146 	struct uv_cb_cfs uvcb = {
147 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
148 		.header.len = sizeof(uvcb),
149 		.paddr = paddr
150 	};
151 
152 	if (uv_call(0, (u64)&uvcb))
153 		return -EINVAL;
154 	return 0;
155 }
156 
157 /*
158  * Calculate the expected ref_count for a page that would otherwise have no
159  * further pins. This was cribbed from similar functions in other places in
160  * the kernel, but with some slight modifications. We know that a secure
161  * page can not be a huge page for example.
162  */
163 static int expected_page_refs(struct page *page)
164 {
165 	int res;
166 
167 	res = page_mapcount(page);
168 	if (PageSwapCache(page)) {
169 		res++;
170 	} else if (page_mapping(page)) {
171 		res++;
172 		if (page_has_private(page))
173 			res++;
174 	}
175 	return res;
176 }
177 
178 static int make_secure_pte(pte_t *ptep, unsigned long addr,
179 			   struct page *exp_page, struct uv_cb_header *uvcb)
180 {
181 	pte_t entry = READ_ONCE(*ptep);
182 	struct page *page;
183 	int expected, rc = 0;
184 
185 	if (!pte_present(entry))
186 		return -ENXIO;
187 	if (pte_val(entry) & _PAGE_INVALID)
188 		return -ENXIO;
189 
190 	page = pte_page(entry);
191 	if (page != exp_page)
192 		return -ENXIO;
193 	if (PageWriteback(page))
194 		return -EAGAIN;
195 	expected = expected_page_refs(page);
196 	if (!page_ref_freeze(page, expected))
197 		return -EBUSY;
198 	set_bit(PG_arch_1, &page->flags);
199 	rc = uv_call(0, (u64)uvcb);
200 	page_ref_unfreeze(page, expected);
201 	/* Return -ENXIO if the page was not mapped, -EINVAL otherwise */
202 	if (rc)
203 		rc = uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
204 	return rc;
205 }
206 
207 /*
208  * Requests the Ultravisor to make a page accessible to a guest.
209  * If it's brought in the first time, it will be cleared. If
210  * it has been exported before, it will be decrypted and integrity
211  * checked.
212  */
213 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
214 {
215 	struct vm_area_struct *vma;
216 	bool local_drain = false;
217 	spinlock_t *ptelock;
218 	unsigned long uaddr;
219 	struct page *page;
220 	pte_t *ptep;
221 	int rc;
222 
223 again:
224 	rc = -EFAULT;
225 	mmap_read_lock(gmap->mm);
226 
227 	uaddr = __gmap_translate(gmap, gaddr);
228 	if (IS_ERR_VALUE(uaddr))
229 		goto out;
230 	vma = find_vma(gmap->mm, uaddr);
231 	if (!vma)
232 		goto out;
233 	/*
234 	 * Secure pages cannot be huge and userspace should not combine both.
235 	 * In case userspace does it anyway this will result in an -EFAULT for
236 	 * the unpack. The guest is thus never reaching secure mode. If
237 	 * userspace is playing dirty tricky with mapping huge pages later
238 	 * on this will result in a segmentation fault.
239 	 */
240 	if (is_vm_hugetlb_page(vma))
241 		goto out;
242 
243 	rc = -ENXIO;
244 	page = follow_page(vma, uaddr, FOLL_WRITE);
245 	if (IS_ERR_OR_NULL(page))
246 		goto out;
247 
248 	lock_page(page);
249 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
250 	rc = make_secure_pte(ptep, uaddr, page, uvcb);
251 	pte_unmap_unlock(ptep, ptelock);
252 	unlock_page(page);
253 out:
254 	mmap_read_unlock(gmap->mm);
255 
256 	if (rc == -EAGAIN) {
257 		wait_on_page_writeback(page);
258 	} else if (rc == -EBUSY) {
259 		/*
260 		 * If we have tried a local drain and the page refcount
261 		 * still does not match our expected safe value, try with a
262 		 * system wide drain. This is needed if the pagevecs holding
263 		 * the page are on a different CPU.
264 		 */
265 		if (local_drain) {
266 			lru_add_drain_all();
267 			/* We give up here, and let the caller try again */
268 			return -EAGAIN;
269 		}
270 		/*
271 		 * We are here if the page refcount does not match the
272 		 * expected safe value. The main culprits are usually
273 		 * pagevecs. With lru_add_drain() we drain the pagevecs
274 		 * on the local CPU so that hopefully the refcount will
275 		 * reach the expected safe value.
276 		 */
277 		lru_add_drain();
278 		local_drain = true;
279 		/* And now we try again immediately after draining */
280 		goto again;
281 	} else if (rc == -ENXIO) {
282 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
283 			return -EFAULT;
284 		return -EAGAIN;
285 	}
286 	return rc;
287 }
288 EXPORT_SYMBOL_GPL(gmap_make_secure);
289 
290 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
291 {
292 	struct uv_cb_cts uvcb = {
293 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
294 		.header.len = sizeof(uvcb),
295 		.guest_handle = gmap->guest_handle,
296 		.gaddr = gaddr,
297 	};
298 
299 	return gmap_make_secure(gmap, gaddr, &uvcb);
300 }
301 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
302 
303 /*
304  * To be called with the page locked or with an extra reference! This will
305  * prevent gmap_make_secure from touching the page concurrently. Having 2
306  * parallel make_page_accessible is fine, as the UV calls will become a
307  * no-op if the page is already exported.
308  */
309 int arch_make_page_accessible(struct page *page)
310 {
311 	int rc = 0;
312 
313 	/* Hugepage cannot be protected, so nothing to do */
314 	if (PageHuge(page))
315 		return 0;
316 
317 	/*
318 	 * PG_arch_1 is used in 3 places:
319 	 * 1. for kernel page tables during early boot
320 	 * 2. for storage keys of huge pages and KVM
321 	 * 3. As an indication that this page might be secure. This can
322 	 *    overindicate, e.g. we set the bit before calling
323 	 *    convert_to_secure.
324 	 * As secure pages are never huge, all 3 variants can co-exists.
325 	 */
326 	if (!test_bit(PG_arch_1, &page->flags))
327 		return 0;
328 
329 	rc = uv_pin_shared(page_to_phys(page));
330 	if (!rc) {
331 		clear_bit(PG_arch_1, &page->flags);
332 		return 0;
333 	}
334 
335 	rc = uv_convert_from_secure(page_to_phys(page));
336 	if (!rc) {
337 		clear_bit(PG_arch_1, &page->flags);
338 		return 0;
339 	}
340 
341 	return rc;
342 }
343 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
344 
345 #endif
346 
347 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
348 static ssize_t uv_query_facilities(struct kobject *kobj,
349 				   struct kobj_attribute *attr, char *page)
350 {
351 	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
352 			uv_info.inst_calls_list[0],
353 			uv_info.inst_calls_list[1],
354 			uv_info.inst_calls_list[2],
355 			uv_info.inst_calls_list[3]);
356 }
357 
358 static struct kobj_attribute uv_query_facilities_attr =
359 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
360 
361 static ssize_t uv_query_feature_indications(struct kobject *kobj,
362 					    struct kobj_attribute *attr, char *buf)
363 {
364 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
365 }
366 
367 static struct kobj_attribute uv_query_feature_indications_attr =
368 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
369 
370 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
371 				       struct kobj_attribute *attr, char *page)
372 {
373 	return scnprintf(page, PAGE_SIZE, "%d\n",
374 			uv_info.max_guest_cpu_id + 1);
375 }
376 
377 static struct kobj_attribute uv_query_max_guest_cpus_attr =
378 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
379 
380 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
381 				      struct kobj_attribute *attr, char *page)
382 {
383 	return scnprintf(page, PAGE_SIZE, "%d\n",
384 			uv_info.max_num_sec_conf);
385 }
386 
387 static struct kobj_attribute uv_query_max_guest_vms_attr =
388 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
389 
390 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
391 				       struct kobj_attribute *attr, char *page)
392 {
393 	return scnprintf(page, PAGE_SIZE, "%lx\n",
394 			uv_info.max_sec_stor_addr);
395 }
396 
397 static struct kobj_attribute uv_query_max_guest_addr_attr =
398 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
399 
400 static struct attribute *uv_query_attrs[] = {
401 	&uv_query_facilities_attr.attr,
402 	&uv_query_feature_indications_attr.attr,
403 	&uv_query_max_guest_cpus_attr.attr,
404 	&uv_query_max_guest_vms_attr.attr,
405 	&uv_query_max_guest_addr_attr.attr,
406 	NULL,
407 };
408 
409 static struct attribute_group uv_query_attr_group = {
410 	.attrs = uv_query_attrs,
411 };
412 
413 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
414 				     struct kobj_attribute *attr, char *page)
415 {
416 	int val = 0;
417 
418 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
419 	val = prot_virt_guest;
420 #endif
421 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
422 }
423 
424 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
425 				    struct kobj_attribute *attr, char *page)
426 {
427 	int val = 0;
428 
429 #if IS_ENABLED(CONFIG_KVM)
430 	val = prot_virt_host;
431 #endif
432 
433 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
434 }
435 
436 static struct kobj_attribute uv_prot_virt_guest =
437 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
438 
439 static struct kobj_attribute uv_prot_virt_host =
440 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
441 
442 static const struct attribute *uv_prot_virt_attrs[] = {
443 	&uv_prot_virt_guest.attr,
444 	&uv_prot_virt_host.attr,
445 	NULL,
446 };
447 
448 static struct kset *uv_query_kset;
449 static struct kobject *uv_kobj;
450 
451 static int __init uv_info_init(void)
452 {
453 	int rc = -ENOMEM;
454 
455 	if (!test_facility(158))
456 		return 0;
457 
458 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
459 	if (!uv_kobj)
460 		return -ENOMEM;
461 
462 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
463 	if (rc)
464 		goto out_kobj;
465 
466 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
467 	if (!uv_query_kset) {
468 		rc = -ENOMEM;
469 		goto out_ind_files;
470 	}
471 
472 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
473 	if (!rc)
474 		return 0;
475 
476 	kset_unregister(uv_query_kset);
477 out_ind_files:
478 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
479 out_kobj:
480 	kobject_del(uv_kobj);
481 	kobject_put(uv_kobj);
482 	return rc;
483 }
484 device_initcall(uv_info_init);
485 #endif
486