xref: /linux/arch/s390/kernel/uv.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 struct uv_info __bootdata_preserved(uv_info);
27 
28 #if IS_ENABLED(CONFIG_KVM)
29 int __bootdata_preserved(prot_virt_host);
30 EXPORT_SYMBOL(prot_virt_host);
31 EXPORT_SYMBOL(uv_info);
32 
33 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
34 {
35 	struct uv_cb_init uvcb = {
36 		.header.cmd = UVC_CMD_INIT_UV,
37 		.header.len = sizeof(uvcb),
38 		.stor_origin = stor_base,
39 		.stor_len = stor_len,
40 	};
41 
42 	if (uv_call(0, (uint64_t)&uvcb)) {
43 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
44 		       uvcb.header.rc, uvcb.header.rrc);
45 		return -1;
46 	}
47 	return 0;
48 }
49 
50 void __init setup_uv(void)
51 {
52 	void *uv_stor_base;
53 
54 	if (!is_prot_virt_host())
55 		return;
56 
57 	uv_stor_base = memblock_alloc_try_nid(
58 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
59 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
60 	if (!uv_stor_base) {
61 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
62 			uv_info.uv_base_stor_len);
63 		goto fail;
64 	}
65 
66 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
67 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
68 		goto fail;
69 	}
70 
71 	pr_info("Reserving %luMB as ultravisor base storage\n",
72 		uv_info.uv_base_stor_len >> 20);
73 	return;
74 fail:
75 	pr_info("Disabling support for protected virtualization");
76 	prot_virt_host = 0;
77 }
78 
79 /*
80  * Requests the Ultravisor to pin the page in the shared state. This will
81  * cause an intercept when the guest attempts to unshare the pinned page.
82  */
83 static int uv_pin_shared(unsigned long paddr)
84 {
85 	struct uv_cb_cfs uvcb = {
86 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
87 		.header.len = sizeof(uvcb),
88 		.paddr = paddr,
89 	};
90 
91 	if (uv_call(0, (u64)&uvcb))
92 		return -EINVAL;
93 	return 0;
94 }
95 
96 /*
97  * Requests the Ultravisor to destroy a guest page and make it
98  * accessible to the host. The destroy clears the page instead of
99  * exporting.
100  *
101  * @paddr: Absolute host address of page to be destroyed
102  */
103 static int uv_destroy_page(unsigned long paddr)
104 {
105 	struct uv_cb_cfs uvcb = {
106 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
107 		.header.len = sizeof(uvcb),
108 		.paddr = paddr
109 	};
110 
111 	if (uv_call(0, (u64)&uvcb)) {
112 		/*
113 		 * Older firmware uses 107/d as an indication of a non secure
114 		 * page. Let us emulate the newer variant (no-op).
115 		 */
116 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
117 			return 0;
118 		return -EINVAL;
119 	}
120 	return 0;
121 }
122 
123 /*
124  * The caller must already hold a reference to the page
125  */
126 int uv_destroy_owned_page(unsigned long paddr)
127 {
128 	struct page *page = phys_to_page(paddr);
129 	int rc;
130 
131 	get_page(page);
132 	rc = uv_destroy_page(paddr);
133 	if (!rc)
134 		clear_bit(PG_arch_1, &page->flags);
135 	put_page(page);
136 	return rc;
137 }
138 
139 /*
140  * Requests the Ultravisor to encrypt a guest page and make it
141  * accessible to the host for paging (export).
142  *
143  * @paddr: Absolute host address of page to be exported
144  */
145 int uv_convert_from_secure(unsigned long paddr)
146 {
147 	struct uv_cb_cfs uvcb = {
148 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
149 		.header.len = sizeof(uvcb),
150 		.paddr = paddr
151 	};
152 
153 	if (uv_call(0, (u64)&uvcb))
154 		return -EINVAL;
155 	return 0;
156 }
157 
158 /*
159  * The caller must already hold a reference to the page
160  */
161 int uv_convert_owned_from_secure(unsigned long paddr)
162 {
163 	struct page *page = phys_to_page(paddr);
164 	int rc;
165 
166 	get_page(page);
167 	rc = uv_convert_from_secure(paddr);
168 	if (!rc)
169 		clear_bit(PG_arch_1, &page->flags);
170 	put_page(page);
171 	return rc;
172 }
173 
174 /*
175  * Calculate the expected ref_count for a page that would otherwise have no
176  * further pins. This was cribbed from similar functions in other places in
177  * the kernel, but with some slight modifications. We know that a secure
178  * page can not be a huge page for example.
179  */
180 static int expected_page_refs(struct page *page)
181 {
182 	int res;
183 
184 	res = page_mapcount(page);
185 	if (PageSwapCache(page)) {
186 		res++;
187 	} else if (page_mapping(page)) {
188 		res++;
189 		if (page_has_private(page))
190 			res++;
191 	}
192 	return res;
193 }
194 
195 static int make_secure_pte(pte_t *ptep, unsigned long addr,
196 			   struct page *exp_page, struct uv_cb_header *uvcb)
197 {
198 	pte_t entry = READ_ONCE(*ptep);
199 	struct page *page;
200 	int expected, cc = 0;
201 
202 	if (!pte_present(entry))
203 		return -ENXIO;
204 	if (pte_val(entry) & _PAGE_INVALID)
205 		return -ENXIO;
206 
207 	page = pte_page(entry);
208 	if (page != exp_page)
209 		return -ENXIO;
210 	if (PageWriteback(page))
211 		return -EAGAIN;
212 	expected = expected_page_refs(page);
213 	if (!page_ref_freeze(page, expected))
214 		return -EBUSY;
215 	set_bit(PG_arch_1, &page->flags);
216 	/*
217 	 * If the UVC does not succeed or fail immediately, we don't want to
218 	 * loop for long, or we might get stall notifications.
219 	 * On the other hand, this is a complex scenario and we are holding a lot of
220 	 * locks, so we can't easily sleep and reschedule. We try only once,
221 	 * and if the UVC returned busy or partial completion, we return
222 	 * -EAGAIN and we let the callers deal with it.
223 	 */
224 	cc = __uv_call(0, (u64)uvcb);
225 	page_ref_unfreeze(page, expected);
226 	/*
227 	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
228 	 * If busy or partially completed, return -EAGAIN.
229 	 */
230 	if (cc == UVC_CC_OK)
231 		return 0;
232 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
233 		return -EAGAIN;
234 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
235 }
236 
237 /*
238  * Requests the Ultravisor to make a page accessible to a guest.
239  * If it's brought in the first time, it will be cleared. If
240  * it has been exported before, it will be decrypted and integrity
241  * checked.
242  */
243 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
244 {
245 	struct vm_area_struct *vma;
246 	bool local_drain = false;
247 	spinlock_t *ptelock;
248 	unsigned long uaddr;
249 	struct page *page;
250 	pte_t *ptep;
251 	int rc;
252 
253 again:
254 	rc = -EFAULT;
255 	mmap_read_lock(gmap->mm);
256 
257 	uaddr = __gmap_translate(gmap, gaddr);
258 	if (IS_ERR_VALUE(uaddr))
259 		goto out;
260 	vma = vma_lookup(gmap->mm, uaddr);
261 	if (!vma)
262 		goto out;
263 	/*
264 	 * Secure pages cannot be huge and userspace should not combine both.
265 	 * In case userspace does it anyway this will result in an -EFAULT for
266 	 * the unpack. The guest is thus never reaching secure mode. If
267 	 * userspace is playing dirty tricky with mapping huge pages later
268 	 * on this will result in a segmentation fault.
269 	 */
270 	if (is_vm_hugetlb_page(vma))
271 		goto out;
272 
273 	rc = -ENXIO;
274 	page = follow_page(vma, uaddr, FOLL_WRITE);
275 	if (IS_ERR_OR_NULL(page))
276 		goto out;
277 
278 	lock_page(page);
279 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
280 	rc = make_secure_pte(ptep, uaddr, page, uvcb);
281 	pte_unmap_unlock(ptep, ptelock);
282 	unlock_page(page);
283 out:
284 	mmap_read_unlock(gmap->mm);
285 
286 	if (rc == -EAGAIN) {
287 		/*
288 		 * If we are here because the UVC returned busy or partial
289 		 * completion, this is just a useless check, but it is safe.
290 		 */
291 		wait_on_page_writeback(page);
292 	} else if (rc == -EBUSY) {
293 		/*
294 		 * If we have tried a local drain and the page refcount
295 		 * still does not match our expected safe value, try with a
296 		 * system wide drain. This is needed if the pagevecs holding
297 		 * the page are on a different CPU.
298 		 */
299 		if (local_drain) {
300 			lru_add_drain_all();
301 			/* We give up here, and let the caller try again */
302 			return -EAGAIN;
303 		}
304 		/*
305 		 * We are here if the page refcount does not match the
306 		 * expected safe value. The main culprits are usually
307 		 * pagevecs. With lru_add_drain() we drain the pagevecs
308 		 * on the local CPU so that hopefully the refcount will
309 		 * reach the expected safe value.
310 		 */
311 		lru_add_drain();
312 		local_drain = true;
313 		/* And now we try again immediately after draining */
314 		goto again;
315 	} else if (rc == -ENXIO) {
316 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
317 			return -EFAULT;
318 		return -EAGAIN;
319 	}
320 	return rc;
321 }
322 EXPORT_SYMBOL_GPL(gmap_make_secure);
323 
324 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
325 {
326 	struct uv_cb_cts uvcb = {
327 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
328 		.header.len = sizeof(uvcb),
329 		.guest_handle = gmap->guest_handle,
330 		.gaddr = gaddr,
331 	};
332 
333 	return gmap_make_secure(gmap, gaddr, &uvcb);
334 }
335 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
336 
337 /*
338  * To be called with the page locked or with an extra reference! This will
339  * prevent gmap_make_secure from touching the page concurrently. Having 2
340  * parallel make_page_accessible is fine, as the UV calls will become a
341  * no-op if the page is already exported.
342  */
343 int arch_make_page_accessible(struct page *page)
344 {
345 	int rc = 0;
346 
347 	/* Hugepage cannot be protected, so nothing to do */
348 	if (PageHuge(page))
349 		return 0;
350 
351 	/*
352 	 * PG_arch_1 is used in 3 places:
353 	 * 1. for kernel page tables during early boot
354 	 * 2. for storage keys of huge pages and KVM
355 	 * 3. As an indication that this page might be secure. This can
356 	 *    overindicate, e.g. we set the bit before calling
357 	 *    convert_to_secure.
358 	 * As secure pages are never huge, all 3 variants can co-exists.
359 	 */
360 	if (!test_bit(PG_arch_1, &page->flags))
361 		return 0;
362 
363 	rc = uv_pin_shared(page_to_phys(page));
364 	if (!rc) {
365 		clear_bit(PG_arch_1, &page->flags);
366 		return 0;
367 	}
368 
369 	rc = uv_convert_from_secure(page_to_phys(page));
370 	if (!rc) {
371 		clear_bit(PG_arch_1, &page->flags);
372 		return 0;
373 	}
374 
375 	return rc;
376 }
377 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
378 
379 #endif
380 
381 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
382 static ssize_t uv_query_facilities(struct kobject *kobj,
383 				   struct kobj_attribute *attr, char *page)
384 {
385 	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
386 			uv_info.inst_calls_list[0],
387 			uv_info.inst_calls_list[1],
388 			uv_info.inst_calls_list[2],
389 			uv_info.inst_calls_list[3]);
390 }
391 
392 static struct kobj_attribute uv_query_facilities_attr =
393 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
394 
395 static ssize_t uv_query_feature_indications(struct kobject *kobj,
396 					    struct kobj_attribute *attr, char *buf)
397 {
398 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
399 }
400 
401 static struct kobj_attribute uv_query_feature_indications_attr =
402 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
403 
404 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
405 				       struct kobj_attribute *attr, char *page)
406 {
407 	return scnprintf(page, PAGE_SIZE, "%d\n",
408 			uv_info.max_guest_cpu_id + 1);
409 }
410 
411 static struct kobj_attribute uv_query_max_guest_cpus_attr =
412 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
413 
414 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
415 				      struct kobj_attribute *attr, char *page)
416 {
417 	return scnprintf(page, PAGE_SIZE, "%d\n",
418 			uv_info.max_num_sec_conf);
419 }
420 
421 static struct kobj_attribute uv_query_max_guest_vms_attr =
422 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
423 
424 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
425 				       struct kobj_attribute *attr, char *page)
426 {
427 	return scnprintf(page, PAGE_SIZE, "%lx\n",
428 			uv_info.max_sec_stor_addr);
429 }
430 
431 static struct kobj_attribute uv_query_max_guest_addr_attr =
432 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
433 
434 static struct attribute *uv_query_attrs[] = {
435 	&uv_query_facilities_attr.attr,
436 	&uv_query_feature_indications_attr.attr,
437 	&uv_query_max_guest_cpus_attr.attr,
438 	&uv_query_max_guest_vms_attr.attr,
439 	&uv_query_max_guest_addr_attr.attr,
440 	NULL,
441 };
442 
443 static struct attribute_group uv_query_attr_group = {
444 	.attrs = uv_query_attrs,
445 };
446 
447 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
448 				     struct kobj_attribute *attr, char *page)
449 {
450 	int val = 0;
451 
452 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
453 	val = prot_virt_guest;
454 #endif
455 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
456 }
457 
458 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
459 				    struct kobj_attribute *attr, char *page)
460 {
461 	int val = 0;
462 
463 #if IS_ENABLED(CONFIG_KVM)
464 	val = prot_virt_host;
465 #endif
466 
467 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
468 }
469 
470 static struct kobj_attribute uv_prot_virt_guest =
471 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
472 
473 static struct kobj_attribute uv_prot_virt_host =
474 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
475 
476 static const struct attribute *uv_prot_virt_attrs[] = {
477 	&uv_prot_virt_guest.attr,
478 	&uv_prot_virt_host.attr,
479 	NULL,
480 };
481 
482 static struct kset *uv_query_kset;
483 static struct kobject *uv_kobj;
484 
485 static int __init uv_info_init(void)
486 {
487 	int rc = -ENOMEM;
488 
489 	if (!test_facility(158))
490 		return 0;
491 
492 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
493 	if (!uv_kobj)
494 		return -ENOMEM;
495 
496 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
497 	if (rc)
498 		goto out_kobj;
499 
500 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
501 	if (!uv_query_kset) {
502 		rc = -ENOMEM;
503 		goto out_ind_files;
504 	}
505 
506 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
507 	if (!rc)
508 		return 0;
509 
510 	kset_unregister(uv_query_kset);
511 out_ind_files:
512 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
513 out_kobj:
514 	kobject_del(uv_kobj);
515 	kobject_put(uv_kobj);
516 	return rc;
517 }
518 device_initcall(uv_info_init);
519 #endif
520