xref: /linux/arch/s390/kernel/uv.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 EXPORT_SYMBOL(prot_virt_guest);
25 #endif
26 
27 /*
28  * uv_info contains both host and guest information but it's currently only
29  * expected to be used within modules if it's the KVM module or for
30  * any PV guest module.
31  *
32  * The kernel itself will write these values once in uv_query_info()
33  * and then make some of them readable via a sysfs interface.
34  */
35 struct uv_info __bootdata_preserved(uv_info);
36 EXPORT_SYMBOL(uv_info);
37 
38 #if IS_ENABLED(CONFIG_KVM)
39 int __bootdata_preserved(prot_virt_host);
40 EXPORT_SYMBOL(prot_virt_host);
41 
42 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
43 {
44 	struct uv_cb_init uvcb = {
45 		.header.cmd = UVC_CMD_INIT_UV,
46 		.header.len = sizeof(uvcb),
47 		.stor_origin = stor_base,
48 		.stor_len = stor_len,
49 	};
50 
51 	if (uv_call(0, (uint64_t)&uvcb)) {
52 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
53 		       uvcb.header.rc, uvcb.header.rrc);
54 		return -1;
55 	}
56 	return 0;
57 }
58 
59 void __init setup_uv(void)
60 {
61 	void *uv_stor_base;
62 
63 	if (!is_prot_virt_host())
64 		return;
65 
66 	uv_stor_base = memblock_alloc_try_nid(
67 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
68 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
69 	if (!uv_stor_base) {
70 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
71 			uv_info.uv_base_stor_len);
72 		goto fail;
73 	}
74 
75 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
76 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
77 		goto fail;
78 	}
79 
80 	pr_info("Reserving %luMB as ultravisor base storage\n",
81 		uv_info.uv_base_stor_len >> 20);
82 	return;
83 fail:
84 	pr_info("Disabling support for protected virtualization");
85 	prot_virt_host = 0;
86 }
87 
88 /*
89  * Requests the Ultravisor to pin the page in the shared state. This will
90  * cause an intercept when the guest attempts to unshare the pinned page.
91  */
92 int uv_pin_shared(unsigned long paddr)
93 {
94 	struct uv_cb_cfs uvcb = {
95 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
96 		.header.len = sizeof(uvcb),
97 		.paddr = paddr,
98 	};
99 
100 	if (uv_call(0, (u64)&uvcb))
101 		return -EINVAL;
102 	return 0;
103 }
104 EXPORT_SYMBOL_GPL(uv_pin_shared);
105 
106 /*
107  * Requests the Ultravisor to destroy a guest page and make it
108  * accessible to the host. The destroy clears the page instead of
109  * exporting.
110  *
111  * @paddr: Absolute host address of page to be destroyed
112  */
113 static int uv_destroy_page(unsigned long paddr)
114 {
115 	struct uv_cb_cfs uvcb = {
116 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
117 		.header.len = sizeof(uvcb),
118 		.paddr = paddr
119 	};
120 
121 	if (uv_call(0, (u64)&uvcb)) {
122 		/*
123 		 * Older firmware uses 107/d as an indication of a non secure
124 		 * page. Let us emulate the newer variant (no-op).
125 		 */
126 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
127 			return 0;
128 		return -EINVAL;
129 	}
130 	return 0;
131 }
132 
133 /*
134  * The caller must already hold a reference to the page
135  */
136 int uv_destroy_owned_page(unsigned long paddr)
137 {
138 	struct page *page = phys_to_page(paddr);
139 	int rc;
140 
141 	get_page(page);
142 	rc = uv_destroy_page(paddr);
143 	if (!rc)
144 		clear_bit(PG_arch_1, &page->flags);
145 	put_page(page);
146 	return rc;
147 }
148 
149 /*
150  * Requests the Ultravisor to encrypt a guest page and make it
151  * accessible to the host for paging (export).
152  *
153  * @paddr: Absolute host address of page to be exported
154  */
155 int uv_convert_from_secure(unsigned long paddr)
156 {
157 	struct uv_cb_cfs uvcb = {
158 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
159 		.header.len = sizeof(uvcb),
160 		.paddr = paddr
161 	};
162 
163 	if (uv_call(0, (u64)&uvcb))
164 		return -EINVAL;
165 	return 0;
166 }
167 
168 /*
169  * The caller must already hold a reference to the page
170  */
171 int uv_convert_owned_from_secure(unsigned long paddr)
172 {
173 	struct page *page = phys_to_page(paddr);
174 	int rc;
175 
176 	get_page(page);
177 	rc = uv_convert_from_secure(paddr);
178 	if (!rc)
179 		clear_bit(PG_arch_1, &page->flags);
180 	put_page(page);
181 	return rc;
182 }
183 
184 /*
185  * Calculate the expected ref_count for a folio that would otherwise have no
186  * further pins. This was cribbed from similar functions in other places in
187  * the kernel, but with some slight modifications. We know that a secure
188  * folio can not be a large folio, for example.
189  */
190 static int expected_folio_refs(struct folio *folio)
191 {
192 	int res;
193 
194 	res = folio_mapcount(folio);
195 	if (folio_test_swapcache(folio)) {
196 		res++;
197 	} else if (folio_mapping(folio)) {
198 		res++;
199 		if (folio->private)
200 			res++;
201 	}
202 	return res;
203 }
204 
205 static int make_folio_secure(struct folio *folio, struct uv_cb_header *uvcb)
206 {
207 	int expected, cc = 0;
208 
209 	if (folio_test_writeback(folio))
210 		return -EAGAIN;
211 	expected = expected_folio_refs(folio);
212 	if (!folio_ref_freeze(folio, expected))
213 		return -EBUSY;
214 	set_bit(PG_arch_1, &folio->flags);
215 	/*
216 	 * If the UVC does not succeed or fail immediately, we don't want to
217 	 * loop for long, or we might get stall notifications.
218 	 * On the other hand, this is a complex scenario and we are holding a lot of
219 	 * locks, so we can't easily sleep and reschedule. We try only once,
220 	 * and if the UVC returned busy or partial completion, we return
221 	 * -EAGAIN and we let the callers deal with it.
222 	 */
223 	cc = __uv_call(0, (u64)uvcb);
224 	folio_ref_unfreeze(folio, expected);
225 	/*
226 	 * Return -ENXIO if the folio was not mapped, -EINVAL for other errors.
227 	 * If busy or partially completed, return -EAGAIN.
228 	 */
229 	if (cc == UVC_CC_OK)
230 		return 0;
231 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
232 		return -EAGAIN;
233 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
234 }
235 
236 /**
237  * should_export_before_import - Determine whether an export is needed
238  * before an import-like operation
239  * @uvcb: the Ultravisor control block of the UVC to be performed
240  * @mm: the mm of the process
241  *
242  * Returns whether an export is needed before every import-like operation.
243  * This is needed for shared pages, which don't trigger a secure storage
244  * exception when accessed from a different guest.
245  *
246  * Although considered as one, the Unpin Page UVC is not an actual import,
247  * so it is not affected.
248  *
249  * No export is needed also when there is only one protected VM, because the
250  * page cannot belong to the wrong VM in that case (there is no "other VM"
251  * it can belong to).
252  *
253  * Return: true if an export is needed before every import, otherwise false.
254  */
255 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
256 {
257 	/*
258 	 * The misc feature indicates, among other things, that importing a
259 	 * shared page from a different protected VM will automatically also
260 	 * transfer its ownership.
261 	 */
262 	if (uv_has_feature(BIT_UV_FEAT_MISC))
263 		return false;
264 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
265 		return false;
266 	return atomic_read(&mm->context.protected_count) > 1;
267 }
268 
269 /*
270  * Requests the Ultravisor to make a page accessible to a guest.
271  * If it's brought in the first time, it will be cleared. If
272  * it has been exported before, it will be decrypted and integrity
273  * checked.
274  */
275 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
276 {
277 	struct vm_area_struct *vma;
278 	bool local_drain = false;
279 	spinlock_t *ptelock;
280 	unsigned long uaddr;
281 	struct folio *folio;
282 	pte_t *ptep;
283 	int rc;
284 
285 again:
286 	rc = -EFAULT;
287 	mmap_read_lock(gmap->mm);
288 
289 	uaddr = __gmap_translate(gmap, gaddr);
290 	if (IS_ERR_VALUE(uaddr))
291 		goto out;
292 	vma = vma_lookup(gmap->mm, uaddr);
293 	if (!vma)
294 		goto out;
295 	/*
296 	 * Secure pages cannot be huge and userspace should not combine both.
297 	 * In case userspace does it anyway this will result in an -EFAULT for
298 	 * the unpack. The guest is thus never reaching secure mode. If
299 	 * userspace is playing dirty tricky with mapping huge pages later
300 	 * on this will result in a segmentation fault.
301 	 */
302 	if (is_vm_hugetlb_page(vma))
303 		goto out;
304 
305 	rc = -ENXIO;
306 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
307 	if (!ptep)
308 		goto out;
309 	if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
310 		folio = page_folio(pte_page(*ptep));
311 		rc = -EINVAL;
312 		if (folio_test_large(folio))
313 			goto unlock;
314 		rc = -EAGAIN;
315 		if (folio_trylock(folio)) {
316 			if (should_export_before_import(uvcb, gmap->mm))
317 				uv_convert_from_secure(PFN_PHYS(folio_pfn(folio)));
318 			rc = make_folio_secure(folio, uvcb);
319 			folio_unlock(folio);
320 		}
321 	}
322 unlock:
323 	pte_unmap_unlock(ptep, ptelock);
324 out:
325 	mmap_read_unlock(gmap->mm);
326 
327 	if (rc == -EAGAIN) {
328 		/*
329 		 * If we are here because the UVC returned busy or partial
330 		 * completion, this is just a useless check, but it is safe.
331 		 */
332 		folio_wait_writeback(folio);
333 	} else if (rc == -EBUSY) {
334 		/*
335 		 * If we have tried a local drain and the folio refcount
336 		 * still does not match our expected safe value, try with a
337 		 * system wide drain. This is needed if the pagevecs holding
338 		 * the page are on a different CPU.
339 		 */
340 		if (local_drain) {
341 			lru_add_drain_all();
342 			/* We give up here, and let the caller try again */
343 			return -EAGAIN;
344 		}
345 		/*
346 		 * We are here if the folio refcount does not match the
347 		 * expected safe value. The main culprits are usually
348 		 * pagevecs. With lru_add_drain() we drain the pagevecs
349 		 * on the local CPU so that hopefully the refcount will
350 		 * reach the expected safe value.
351 		 */
352 		lru_add_drain();
353 		local_drain = true;
354 		/* And now we try again immediately after draining */
355 		goto again;
356 	} else if (rc == -ENXIO) {
357 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
358 			return -EFAULT;
359 		return -EAGAIN;
360 	}
361 	return rc;
362 }
363 EXPORT_SYMBOL_GPL(gmap_make_secure);
364 
365 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
366 {
367 	struct uv_cb_cts uvcb = {
368 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
369 		.header.len = sizeof(uvcb),
370 		.guest_handle = gmap->guest_handle,
371 		.gaddr = gaddr,
372 	};
373 
374 	return gmap_make_secure(gmap, gaddr, &uvcb);
375 }
376 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
377 
378 /**
379  * gmap_destroy_page - Destroy a guest page.
380  * @gmap: the gmap of the guest
381  * @gaddr: the guest address to destroy
382  *
383  * An attempt will be made to destroy the given guest page. If the attempt
384  * fails, an attempt is made to export the page. If both attempts fail, an
385  * appropriate error is returned.
386  */
387 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
388 {
389 	struct vm_area_struct *vma;
390 	unsigned long uaddr;
391 	struct page *page;
392 	int rc;
393 
394 	rc = -EFAULT;
395 	mmap_read_lock(gmap->mm);
396 
397 	uaddr = __gmap_translate(gmap, gaddr);
398 	if (IS_ERR_VALUE(uaddr))
399 		goto out;
400 	vma = vma_lookup(gmap->mm, uaddr);
401 	if (!vma)
402 		goto out;
403 	/*
404 	 * Huge pages should not be able to become secure
405 	 */
406 	if (is_vm_hugetlb_page(vma))
407 		goto out;
408 
409 	rc = 0;
410 	/* we take an extra reference here */
411 	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
412 	if (IS_ERR_OR_NULL(page))
413 		goto out;
414 	rc = uv_destroy_owned_page(page_to_phys(page));
415 	/*
416 	 * Fault handlers can race; it is possible that two CPUs will fault
417 	 * on the same secure page. One CPU can destroy the page, reboot,
418 	 * re-enter secure mode and import it, while the second CPU was
419 	 * stuck at the beginning of the handler. At some point the second
420 	 * CPU will be able to progress, and it will not be able to destroy
421 	 * the page. In that case we do not want to terminate the process,
422 	 * we instead try to export the page.
423 	 */
424 	if (rc)
425 		rc = uv_convert_owned_from_secure(page_to_phys(page));
426 	put_page(page);
427 out:
428 	mmap_read_unlock(gmap->mm);
429 	return rc;
430 }
431 EXPORT_SYMBOL_GPL(gmap_destroy_page);
432 
433 /*
434  * To be called with the page locked or with an extra reference! This will
435  * prevent gmap_make_secure from touching the page concurrently. Having 2
436  * parallel make_page_accessible is fine, as the UV calls will become a
437  * no-op if the page is already exported.
438  */
439 int arch_make_page_accessible(struct page *page)
440 {
441 	int rc = 0;
442 
443 	/* Hugepage cannot be protected, so nothing to do */
444 	if (PageHuge(page))
445 		return 0;
446 
447 	/*
448 	 * PG_arch_1 is used in 3 places:
449 	 * 1. for kernel page tables during early boot
450 	 * 2. for storage keys of huge pages and KVM
451 	 * 3. As an indication that this page might be secure. This can
452 	 *    overindicate, e.g. we set the bit before calling
453 	 *    convert_to_secure.
454 	 * As secure pages are never huge, all 3 variants can co-exists.
455 	 */
456 	if (!test_bit(PG_arch_1, &page->flags))
457 		return 0;
458 
459 	rc = uv_pin_shared(page_to_phys(page));
460 	if (!rc) {
461 		clear_bit(PG_arch_1, &page->flags);
462 		return 0;
463 	}
464 
465 	rc = uv_convert_from_secure(page_to_phys(page));
466 	if (!rc) {
467 		clear_bit(PG_arch_1, &page->flags);
468 		return 0;
469 	}
470 
471 	return rc;
472 }
473 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
474 
475 #endif
476 
477 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
478 static ssize_t uv_query_facilities(struct kobject *kobj,
479 				   struct kobj_attribute *attr, char *buf)
480 {
481 	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
482 			  uv_info.inst_calls_list[0],
483 			  uv_info.inst_calls_list[1],
484 			  uv_info.inst_calls_list[2],
485 			  uv_info.inst_calls_list[3]);
486 }
487 
488 static struct kobj_attribute uv_query_facilities_attr =
489 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
490 
491 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
492 					struct kobj_attribute *attr, char *buf)
493 {
494 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
495 }
496 
497 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
498 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
499 
500 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
501 					struct kobj_attribute *attr, char *buf)
502 {
503 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
504 }
505 
506 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
507 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
508 
509 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
510 				     struct kobj_attribute *attr, char *buf)
511 {
512 	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
513 }
514 
515 static struct kobj_attribute uv_query_dump_cpu_len_attr =
516 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
517 
518 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
519 					       struct kobj_attribute *attr, char *buf)
520 {
521 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
522 }
523 
524 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
525 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
526 
527 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
528 					  struct kobj_attribute *attr, char *buf)
529 {
530 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
531 }
532 
533 static struct kobj_attribute uv_query_dump_finalize_len_attr =
534 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
535 
536 static ssize_t uv_query_feature_indications(struct kobject *kobj,
537 					    struct kobj_attribute *attr, char *buf)
538 {
539 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
540 }
541 
542 static struct kobj_attribute uv_query_feature_indications_attr =
543 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
544 
545 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
546 				       struct kobj_attribute *attr, char *buf)
547 {
548 	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
549 }
550 
551 static struct kobj_attribute uv_query_max_guest_cpus_attr =
552 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
553 
554 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
555 				      struct kobj_attribute *attr, char *buf)
556 {
557 	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
558 }
559 
560 static struct kobj_attribute uv_query_max_guest_vms_attr =
561 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
562 
563 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
564 				       struct kobj_attribute *attr, char *buf)
565 {
566 	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
567 }
568 
569 static struct kobj_attribute uv_query_max_guest_addr_attr =
570 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
571 
572 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
573 					     struct kobj_attribute *attr, char *buf)
574 {
575 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
576 }
577 
578 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
579 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
580 
581 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
582 					struct kobj_attribute *attr, char *buf)
583 {
584 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
585 }
586 
587 static struct kobj_attribute uv_query_supp_att_pflags_attr =
588 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
589 
590 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
591 						struct kobj_attribute *attr, char *buf)
592 {
593 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
594 }
595 
596 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
597 	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
598 
599 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
600 					    struct kobj_attribute *attr, char *buf)
601 {
602 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
603 }
604 
605 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
606 	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
607 
608 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
609 					  struct kobj_attribute *attr, char *buf)
610 {
611 	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
612 }
613 
614 static struct kobj_attribute uv_query_supp_secret_types_attr =
615 	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
616 
617 static ssize_t uv_query_max_secrets(struct kobject *kobj,
618 				    struct kobj_attribute *attr, char *buf)
619 {
620 	return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
621 }
622 
623 static struct kobj_attribute uv_query_max_secrets_attr =
624 	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
625 
626 static struct attribute *uv_query_attrs[] = {
627 	&uv_query_facilities_attr.attr,
628 	&uv_query_feature_indications_attr.attr,
629 	&uv_query_max_guest_cpus_attr.attr,
630 	&uv_query_max_guest_vms_attr.attr,
631 	&uv_query_max_guest_addr_attr.attr,
632 	&uv_query_supp_se_hdr_ver_attr.attr,
633 	&uv_query_supp_se_hdr_pcf_attr.attr,
634 	&uv_query_dump_storage_state_len_attr.attr,
635 	&uv_query_dump_finalize_len_attr.attr,
636 	&uv_query_dump_cpu_len_attr.attr,
637 	&uv_query_supp_att_req_hdr_ver_attr.attr,
638 	&uv_query_supp_att_pflags_attr.attr,
639 	&uv_query_supp_add_secret_req_ver_attr.attr,
640 	&uv_query_supp_add_secret_pcf_attr.attr,
641 	&uv_query_supp_secret_types_attr.attr,
642 	&uv_query_max_secrets_attr.attr,
643 	NULL,
644 };
645 
646 static struct attribute_group uv_query_attr_group = {
647 	.attrs = uv_query_attrs,
648 };
649 
650 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
651 				     struct kobj_attribute *attr, char *buf)
652 {
653 	int val = 0;
654 
655 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
656 	val = prot_virt_guest;
657 #endif
658 	return sysfs_emit(buf, "%d\n", val);
659 }
660 
661 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
662 				    struct kobj_attribute *attr, char *buf)
663 {
664 	int val = 0;
665 
666 #if IS_ENABLED(CONFIG_KVM)
667 	val = prot_virt_host;
668 #endif
669 
670 	return sysfs_emit(buf, "%d\n", val);
671 }
672 
673 static struct kobj_attribute uv_prot_virt_guest =
674 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
675 
676 static struct kobj_attribute uv_prot_virt_host =
677 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
678 
679 static const struct attribute *uv_prot_virt_attrs[] = {
680 	&uv_prot_virt_guest.attr,
681 	&uv_prot_virt_host.attr,
682 	NULL,
683 };
684 
685 static struct kset *uv_query_kset;
686 static struct kobject *uv_kobj;
687 
688 static int __init uv_info_init(void)
689 {
690 	int rc = -ENOMEM;
691 
692 	if (!test_facility(158))
693 		return 0;
694 
695 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
696 	if (!uv_kobj)
697 		return -ENOMEM;
698 
699 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
700 	if (rc)
701 		goto out_kobj;
702 
703 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
704 	if (!uv_query_kset) {
705 		rc = -ENOMEM;
706 		goto out_ind_files;
707 	}
708 
709 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
710 	if (!rc)
711 		return 0;
712 
713 	kset_unregister(uv_query_kset);
714 out_ind_files:
715 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
716 out_kobj:
717 	kobject_del(uv_kobj);
718 	kobject_put(uv_kobj);
719 	return rc;
720 }
721 device_initcall(uv_info_init);
722 #endif
723