xref: /linux/arch/s390/kernel/time.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <vdso/vsyscall.h>
44 #include <vdso/clocksource.h>
45 #include <vdso/helpers.h>
46 #include <asm/facility.h>
47 #include <asm/delay.h>
48 #include <asm/div64.h>
49 #include <asm/vdso.h>
50 #include <asm/irq.h>
51 #include <asm/irq_regs.h>
52 #include <asm/vtimer.h>
53 #include <asm/stp.h>
54 #include <asm/cio.h>
55 #include "entry.h"
56 
57 union tod_clock tod_clock_base __section(".data");
58 EXPORT_SYMBOL_GPL(tod_clock_base);
59 
60 u64 clock_comparator_max = -1ULL;
61 EXPORT_SYMBOL_GPL(clock_comparator_max);
62 
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64 
65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
66 EXPORT_SYMBOL(s390_epoch_delta_notifier);
67 
68 unsigned char ptff_function_mask[16];
69 
70 static unsigned long lpar_offset;
71 static unsigned long initial_leap_seconds;
72 static unsigned long tod_steering_end;
73 static long tod_steering_delta;
74 
75 /*
76  * Get time offsets with PTFF
77  */
78 void __init time_early_init(void)
79 {
80 	struct ptff_qto qto;
81 	struct ptff_qui qui;
82 	int cs;
83 
84 	/* Initialize TOD steering parameters */
85 	tod_steering_end = tod_clock_base.tod;
86 	for (cs = 0; cs < CS_BASES; cs++)
87 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
88 
89 	if (!test_facility(28))
90 		return;
91 
92 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93 
94 	/* get LPAR offset */
95 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 		lpar_offset = qto.tod_epoch_difference;
97 
98 	/* get initial leap seconds */
99 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 		initial_leap_seconds = (unsigned long)
101 			((long) qui.old_leap * 4096000000L);
102 }
103 
104 unsigned long long noinstr sched_clock_noinstr(void)
105 {
106 	return tod_to_ns(__get_tod_clock_monotonic());
107 }
108 
109 /*
110  * Scheduler clock - returns current time in nanosec units.
111  */
112 unsigned long long notrace sched_clock(void)
113 {
114 	return tod_to_ns(get_tod_clock_monotonic());
115 }
116 NOKPROBE_SYMBOL(sched_clock);
117 
118 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
119 {
120 	unsigned long rem, sec, nsec;
121 
122 	sec = clk->us;
123 	rem = do_div(sec, 1000000);
124 	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
125 	xt->tv_sec = sec;
126 	xt->tv_nsec = nsec;
127 }
128 
129 void clock_comparator_work(void)
130 {
131 	struct clock_event_device *cd;
132 
133 	get_lowcore()->clock_comparator = clock_comparator_max;
134 	cd = this_cpu_ptr(&comparators);
135 	cd->event_handler(cd);
136 }
137 
138 static int s390_next_event(unsigned long delta,
139 			   struct clock_event_device *evt)
140 {
141 	get_lowcore()->clock_comparator = get_tod_clock() + delta;
142 	set_clock_comparator(get_lowcore()->clock_comparator);
143 	return 0;
144 }
145 
146 /*
147  * Set up lowcore and control register of the current cpu to
148  * enable TOD clock and clock comparator interrupts.
149  */
150 void init_cpu_timer(void)
151 {
152 	struct clock_event_device *cd;
153 	int cpu;
154 
155 	get_lowcore()->clock_comparator = clock_comparator_max;
156 	set_clock_comparator(get_lowcore()->clock_comparator);
157 
158 	cpu = smp_processor_id();
159 	cd = &per_cpu(comparators, cpu);
160 	cd->name		= "comparator";
161 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
162 	cd->mult		= 16777;
163 	cd->shift		= 12;
164 	cd->min_delta_ns	= 1;
165 	cd->min_delta_ticks	= 1;
166 	cd->max_delta_ns	= LONG_MAX;
167 	cd->max_delta_ticks	= ULONG_MAX;
168 	cd->rating		= 400;
169 	cd->cpumask		= cpumask_of(cpu);
170 	cd->set_next_event	= s390_next_event;
171 
172 	clockevents_register_device(cd);
173 
174 	/* Enable clock comparator timer interrupt. */
175 	local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
176 
177 	/* Always allow the timing alert external interrupt. */
178 	local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
179 }
180 
181 static void clock_comparator_interrupt(struct ext_code ext_code,
182 				       unsigned int param32,
183 				       unsigned long param64)
184 {
185 	inc_irq_stat(IRQEXT_CLK);
186 	if (get_lowcore()->clock_comparator == clock_comparator_max)
187 		set_clock_comparator(get_lowcore()->clock_comparator);
188 }
189 
190 static void stp_timing_alert(struct stp_irq_parm *);
191 
192 static void timing_alert_interrupt(struct ext_code ext_code,
193 				   unsigned int param32, unsigned long param64)
194 {
195 	inc_irq_stat(IRQEXT_TLA);
196 	if (param32 & 0x00038000)
197 		stp_timing_alert((struct stp_irq_parm *) &param32);
198 }
199 
200 static void stp_reset(void);
201 
202 void read_persistent_clock64(struct timespec64 *ts)
203 {
204 	union tod_clock clk;
205 	u64 delta;
206 
207 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
208 	store_tod_clock_ext(&clk);
209 	clk.eitod -= delta;
210 	ext_to_timespec64(&clk, ts);
211 }
212 
213 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
214 						 struct timespec64 *boot_offset)
215 {
216 	struct timespec64 boot_time;
217 	union tod_clock clk;
218 	u64 delta;
219 
220 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
221 	clk = tod_clock_base;
222 	clk.eitod -= delta;
223 	ext_to_timespec64(&clk, &boot_time);
224 
225 	read_persistent_clock64(wall_time);
226 	*boot_offset = timespec64_sub(*wall_time, boot_time);
227 }
228 
229 static u64 read_tod_clock(struct clocksource *cs)
230 {
231 	unsigned long now, adj;
232 
233 	preempt_disable(); /* protect from changes to steering parameters */
234 	now = get_tod_clock();
235 	adj = tod_steering_end - now;
236 	if (unlikely((s64) adj > 0))
237 		/*
238 		 * manually steer by 1 cycle every 2^16 cycles. This
239 		 * corresponds to shifting the tod delta by 15. 1s is
240 		 * therefore steered in ~9h. The adjust will decrease
241 		 * over time, until it finally reaches 0.
242 		 */
243 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
244 	preempt_enable();
245 	return now;
246 }
247 
248 static struct clocksource clocksource_tod = {
249 	.name		= "tod",
250 	.rating		= 400,
251 	.read		= read_tod_clock,
252 	.mask		= CLOCKSOURCE_MASK(64),
253 	.mult		= 4096000,
254 	.shift		= 24,
255 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
256 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
257 	.id		= CSID_S390_TOD,
258 };
259 
260 struct clocksource * __init clocksource_default_clock(void)
261 {
262 	return &clocksource_tod;
263 }
264 
265 /*
266  * Initialize the TOD clock and the CPU timer of
267  * the boot cpu.
268  */
269 void __init time_init(void)
270 {
271 	/* Reset time synchronization interfaces. */
272 	stp_reset();
273 
274 	/* request the clock comparator external interrupt */
275 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276 		panic("Couldn't request external interrupt 0x1004");
277 
278 	/* request the timing alert external interrupt */
279 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280 		panic("Couldn't request external interrupt 0x1406");
281 
282 	if (__clocksource_register(&clocksource_tod) != 0)
283 		panic("Could not register TOD clock source");
284 
285 	/* Enable TOD clock interrupts on the boot cpu. */
286 	init_cpu_timer();
287 
288 	/* Enable cpu timer interrupts on the boot cpu. */
289 	vtime_init();
290 }
291 
292 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293 static DEFINE_MUTEX(stp_mutex);
294 static unsigned long clock_sync_flags;
295 
296 #define CLOCK_SYNC_HAS_STP		0
297 #define CLOCK_SYNC_STP			1
298 #define CLOCK_SYNC_STPINFO_VALID	2
299 
300 /*
301  * The get_clock function for the physical clock. It will get the current
302  * TOD clock, subtract the LPAR offset and write the result to *clock.
303  * The function returns 0 if the clock is in sync with the external time
304  * source. If the clock mode is local it will return -EOPNOTSUPP and
305  * -EAGAIN if the clock is not in sync with the external reference.
306  */
307 int get_phys_clock(unsigned long *clock)
308 {
309 	atomic_t *sw_ptr;
310 	unsigned int sw0, sw1;
311 
312 	sw_ptr = &get_cpu_var(clock_sync_word);
313 	sw0 = atomic_read(sw_ptr);
314 	*clock = get_tod_clock() - lpar_offset;
315 	sw1 = atomic_read(sw_ptr);
316 	put_cpu_var(clock_sync_word);
317 	if (sw0 == sw1 && (sw0 & 0x80000000U))
318 		/* Success: time is in sync. */
319 		return 0;
320 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321 		return -EOPNOTSUPP;
322 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323 		return -EACCES;
324 	return -EAGAIN;
325 }
326 EXPORT_SYMBOL(get_phys_clock);
327 
328 /*
329  * Make get_phys_clock() return -EAGAIN.
330  */
331 static void disable_sync_clock(void *dummy)
332 {
333 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334 	/*
335 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336 	 * fail until the sync bit is turned back on. In addition
337 	 * increase the "sequence" counter to avoid the race of an
338 	 * stp event and the complete recovery against get_phys_clock.
339 	 */
340 	atomic_andnot(0x80000000, sw_ptr);
341 	atomic_inc(sw_ptr);
342 }
343 
344 /*
345  * Make get_phys_clock() return 0 again.
346  * Needs to be called from a context disabled for preemption.
347  */
348 static void enable_sync_clock(void)
349 {
350 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351 	atomic_or(0x80000000, sw_ptr);
352 }
353 
354 /*
355  * Function to check if the clock is in sync.
356  */
357 static inline int check_sync_clock(void)
358 {
359 	atomic_t *sw_ptr;
360 	int rc;
361 
362 	sw_ptr = &get_cpu_var(clock_sync_word);
363 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364 	put_cpu_var(clock_sync_word);
365 	return rc;
366 }
367 
368 /*
369  * Apply clock delta to the global data structures.
370  * This is called once on the CPU that performed the clock sync.
371  */
372 static void clock_sync_global(long delta)
373 {
374 	unsigned long now, adj;
375 	struct ptff_qto qto;
376 	int cs;
377 
378 	/* Fixup the monotonic sched clock. */
379 	tod_clock_base.eitod += delta;
380 	/* Adjust TOD steering parameters. */
381 	now = get_tod_clock();
382 	adj = tod_steering_end - now;
383 	if (unlikely((s64) adj >= 0))
384 		/* Calculate how much of the old adjustment is left. */
385 		tod_steering_delta = (tod_steering_delta < 0) ?
386 			-(adj >> 15) : (adj >> 15);
387 	tod_steering_delta += delta;
388 	if ((abs(tod_steering_delta) >> 48) != 0)
389 		panic("TOD clock sync offset %li is too large to drift\n",
390 		      tod_steering_delta);
391 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
392 	for (cs = 0; cs < CS_BASES; cs++) {
393 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394 		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395 	}
396 
397 	/* Update LPAR offset. */
398 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399 		lpar_offset = qto.tod_epoch_difference;
400 	/* Call the TOD clock change notifier. */
401 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402 }
403 
404 /*
405  * Apply clock delta to the per-CPU data structures of this CPU.
406  * This is called for each online CPU after the call to clock_sync_global.
407  */
408 static void clock_sync_local(long delta)
409 {
410 	/* Add the delta to the clock comparator. */
411 	if (get_lowcore()->clock_comparator != clock_comparator_max) {
412 		get_lowcore()->clock_comparator += delta;
413 		set_clock_comparator(get_lowcore()->clock_comparator);
414 	}
415 	/* Adjust the last_update_clock time-stamp. */
416 	get_lowcore()->last_update_clock += delta;
417 }
418 
419 /* Single threaded workqueue used for stp sync events */
420 static struct workqueue_struct *time_sync_wq;
421 
422 static void __init time_init_wq(void)
423 {
424 	if (time_sync_wq)
425 		return;
426 	time_sync_wq = create_singlethread_workqueue("timesync");
427 }
428 
429 struct clock_sync_data {
430 	atomic_t cpus;
431 	int in_sync;
432 	long clock_delta;
433 };
434 
435 /*
436  * Server Time Protocol (STP) code.
437  */
438 static bool stp_online;
439 static struct stp_sstpi stp_info;
440 static void *stp_page;
441 
442 static void stp_work_fn(struct work_struct *work);
443 static DECLARE_WORK(stp_work, stp_work_fn);
444 static struct timer_list stp_timer;
445 
446 static int __init early_parse_stp(char *p)
447 {
448 	return kstrtobool(p, &stp_online);
449 }
450 early_param("stp", early_parse_stp);
451 
452 /*
453  * Reset STP attachment.
454  */
455 static void __init stp_reset(void)
456 {
457 	int rc;
458 
459 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461 	if (rc == 0)
462 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463 	else if (stp_online) {
464 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465 		free_page((unsigned long) stp_page);
466 		stp_page = NULL;
467 		stp_online = false;
468 	}
469 }
470 
471 bool stp_enabled(void)
472 {
473 	return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
474 }
475 EXPORT_SYMBOL(stp_enabled);
476 
477 static void stp_timeout(struct timer_list *unused)
478 {
479 	queue_work(time_sync_wq, &stp_work);
480 }
481 
482 static int __init stp_init(void)
483 {
484 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
485 		return 0;
486 	timer_setup(&stp_timer, stp_timeout, 0);
487 	time_init_wq();
488 	if (!stp_online)
489 		return 0;
490 	queue_work(time_sync_wq, &stp_work);
491 	return 0;
492 }
493 
494 arch_initcall(stp_init);
495 
496 /*
497  * STP timing alert. There are three causes:
498  * 1) timing status change
499  * 2) link availability change
500  * 3) time control parameter change
501  * In all three cases we are only interested in the clock source state.
502  * If a STP clock source is now available use it.
503  */
504 static void stp_timing_alert(struct stp_irq_parm *intparm)
505 {
506 	if (intparm->tsc || intparm->lac || intparm->tcpc)
507 		queue_work(time_sync_wq, &stp_work);
508 }
509 
510 /*
511  * STP sync check machine check. This is called when the timing state
512  * changes from the synchronized state to the unsynchronized state.
513  * After a STP sync check the clock is not in sync. The machine check
514  * is broadcasted to all cpus at the same time.
515  */
516 int stp_sync_check(void)
517 {
518 	disable_sync_clock(NULL);
519 	return 1;
520 }
521 
522 /*
523  * STP island condition machine check. This is called when an attached
524  * server  attempts to communicate over an STP link and the servers
525  * have matching CTN ids and have a valid stratum-1 configuration
526  * but the configurations do not match.
527  */
528 int stp_island_check(void)
529 {
530 	disable_sync_clock(NULL);
531 	return 1;
532 }
533 
534 void stp_queue_work(void)
535 {
536 	queue_work(time_sync_wq, &stp_work);
537 }
538 
539 static int __store_stpinfo(void)
540 {
541 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
542 
543 	if (rc)
544 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
545 	else
546 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 	return rc;
548 }
549 
550 static int stpinfo_valid(void)
551 {
552 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
553 }
554 
555 static int stp_sync_clock(void *data)
556 {
557 	struct clock_sync_data *sync = data;
558 	long clock_delta, flags;
559 	static int first;
560 	int rc;
561 
562 	enable_sync_clock();
563 	if (xchg(&first, 1) == 0) {
564 		/* Wait until all other cpus entered the sync function. */
565 		while (atomic_read(&sync->cpus) != 0)
566 			cpu_relax();
567 		rc = 0;
568 		if (stp_info.todoff || stp_info.tmd != 2) {
569 			flags = vdso_update_begin();
570 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
571 					&clock_delta);
572 			if (rc == 0) {
573 				sync->clock_delta = clock_delta;
574 				clock_sync_global(clock_delta);
575 				rc = __store_stpinfo();
576 				if (rc == 0 && stp_info.tmd != 2)
577 					rc = -EAGAIN;
578 			}
579 			vdso_update_end(flags);
580 		}
581 		sync->in_sync = rc ? -EAGAIN : 1;
582 		xchg(&first, 0);
583 	} else {
584 		/* Slave */
585 		atomic_dec(&sync->cpus);
586 		/* Wait for in_sync to be set. */
587 		while (READ_ONCE(sync->in_sync) == 0)
588 			__udelay(1);
589 	}
590 	if (sync->in_sync != 1)
591 		/* Didn't work. Clear per-cpu in sync bit again. */
592 		disable_sync_clock(NULL);
593 	/* Apply clock delta to per-CPU fields of this CPU. */
594 	clock_sync_local(sync->clock_delta);
595 
596 	return 0;
597 }
598 
599 static int stp_clear_leap(void)
600 {
601 	struct __kernel_timex txc;
602 	int ret;
603 
604 	memset(&txc, 0, sizeof(txc));
605 
606 	ret = do_adjtimex(&txc);
607 	if (ret < 0)
608 		return ret;
609 
610 	txc.modes = ADJ_STATUS;
611 	txc.status &= ~(STA_INS|STA_DEL);
612 	return do_adjtimex(&txc);
613 }
614 
615 static void stp_check_leap(void)
616 {
617 	struct stp_stzi stzi;
618 	struct stp_lsoib *lsoib = &stzi.lsoib;
619 	struct __kernel_timex txc;
620 	int64_t timediff;
621 	int leapdiff, ret;
622 
623 	if (!stp_info.lu || !check_sync_clock()) {
624 		/*
625 		 * Either a scheduled leap second was removed by the operator,
626 		 * or STP is out of sync. In both cases, clear the leap second
627 		 * kernel flags.
628 		 */
629 		if (stp_clear_leap() < 0)
630 			pr_err("failed to clear leap second flags\n");
631 		return;
632 	}
633 
634 	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
635 		pr_err("stzi failed\n");
636 		return;
637 	}
638 
639 	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
640 	leapdiff = lsoib->nlso - lsoib->also;
641 
642 	if (leapdiff != 1 && leapdiff != -1) {
643 		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
644 		return;
645 	}
646 
647 	if (timediff < 0) {
648 		if (stp_clear_leap() < 0)
649 			pr_err("failed to clear leap second flags\n");
650 	} else if (timediff < 7200) {
651 		memset(&txc, 0, sizeof(txc));
652 		ret = do_adjtimex(&txc);
653 		if (ret < 0)
654 			return;
655 
656 		txc.modes = ADJ_STATUS;
657 		if (leapdiff > 0)
658 			txc.status |= STA_INS;
659 		else
660 			txc.status |= STA_DEL;
661 		ret = do_adjtimex(&txc);
662 		if (ret < 0)
663 			pr_err("failed to set leap second flags\n");
664 		/* arm Timer to clear leap second flags */
665 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
666 	} else {
667 		/* The day the leap second is scheduled for hasn't been reached. Retry
668 		 * in one hour.
669 		 */
670 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
671 	}
672 }
673 
674 /*
675  * STP work. Check for the STP state and take over the clock
676  * synchronization if the STP clock source is usable.
677  */
678 static void stp_work_fn(struct work_struct *work)
679 {
680 	struct clock_sync_data stp_sync;
681 	int rc;
682 
683 	/* prevent multiple execution. */
684 	mutex_lock(&stp_mutex);
685 
686 	if (!stp_online) {
687 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
688 		del_timer_sync(&stp_timer);
689 		goto out_unlock;
690 	}
691 
692 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
693 	if (rc)
694 		goto out_unlock;
695 
696 	rc = __store_stpinfo();
697 	if (rc || stp_info.c == 0)
698 		goto out_unlock;
699 
700 	/* Skip synchronization if the clock is already in sync. */
701 	if (!check_sync_clock()) {
702 		memset(&stp_sync, 0, sizeof(stp_sync));
703 		cpus_read_lock();
704 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
705 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
706 		cpus_read_unlock();
707 	}
708 
709 	if (!check_sync_clock())
710 		/*
711 		 * There is a usable clock but the synchronization failed.
712 		 * Retry after a second.
713 		 */
714 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
715 	else if (stp_info.lu)
716 		stp_check_leap();
717 
718 out_unlock:
719 	mutex_unlock(&stp_mutex);
720 }
721 
722 /*
723  * STP subsys sysfs interface functions
724  */
725 static const struct bus_type stp_subsys = {
726 	.name		= "stp",
727 	.dev_name	= "stp",
728 };
729 
730 static ssize_t ctn_id_show(struct device *dev,
731 				struct device_attribute *attr,
732 				char *buf)
733 {
734 	ssize_t ret = -ENODATA;
735 
736 	mutex_lock(&stp_mutex);
737 	if (stpinfo_valid())
738 		ret = sysfs_emit(buf, "%016lx\n",
739 				 *(unsigned long *)stp_info.ctnid);
740 	mutex_unlock(&stp_mutex);
741 	return ret;
742 }
743 
744 static DEVICE_ATTR_RO(ctn_id);
745 
746 static ssize_t ctn_type_show(struct device *dev,
747 				struct device_attribute *attr,
748 				char *buf)
749 {
750 	ssize_t ret = -ENODATA;
751 
752 	mutex_lock(&stp_mutex);
753 	if (stpinfo_valid())
754 		ret = sysfs_emit(buf, "%i\n", stp_info.ctn);
755 	mutex_unlock(&stp_mutex);
756 	return ret;
757 }
758 
759 static DEVICE_ATTR_RO(ctn_type);
760 
761 static ssize_t dst_offset_show(struct device *dev,
762 				   struct device_attribute *attr,
763 				   char *buf)
764 {
765 	ssize_t ret = -ENODATA;
766 
767 	mutex_lock(&stp_mutex);
768 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
769 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto);
770 	mutex_unlock(&stp_mutex);
771 	return ret;
772 }
773 
774 static DEVICE_ATTR_RO(dst_offset);
775 
776 static ssize_t leap_seconds_show(struct device *dev,
777 					struct device_attribute *attr,
778 					char *buf)
779 {
780 	ssize_t ret = -ENODATA;
781 
782 	mutex_lock(&stp_mutex);
783 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
784 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps);
785 	mutex_unlock(&stp_mutex);
786 	return ret;
787 }
788 
789 static DEVICE_ATTR_RO(leap_seconds);
790 
791 static ssize_t leap_seconds_scheduled_show(struct device *dev,
792 						struct device_attribute *attr,
793 						char *buf)
794 {
795 	struct stp_stzi stzi;
796 	ssize_t ret;
797 
798 	mutex_lock(&stp_mutex);
799 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
800 		mutex_unlock(&stp_mutex);
801 		return -ENODATA;
802 	}
803 
804 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
805 	mutex_unlock(&stp_mutex);
806 	if (ret < 0)
807 		return ret;
808 
809 	if (!stzi.lsoib.p)
810 		return sysfs_emit(buf, "0,0\n");
811 
812 	return sysfs_emit(buf, "%lu,%d\n",
813 			  tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
814 			  stzi.lsoib.nlso - stzi.lsoib.also);
815 }
816 
817 static DEVICE_ATTR_RO(leap_seconds_scheduled);
818 
819 static ssize_t stratum_show(struct device *dev,
820 				struct device_attribute *attr,
821 				char *buf)
822 {
823 	ssize_t ret = -ENODATA;
824 
825 	mutex_lock(&stp_mutex);
826 	if (stpinfo_valid())
827 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum);
828 	mutex_unlock(&stp_mutex);
829 	return ret;
830 }
831 
832 static DEVICE_ATTR_RO(stratum);
833 
834 static ssize_t time_offset_show(struct device *dev,
835 				struct device_attribute *attr,
836 				char *buf)
837 {
838 	ssize_t ret = -ENODATA;
839 
840 	mutex_lock(&stp_mutex);
841 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
842 		ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto);
843 	mutex_unlock(&stp_mutex);
844 	return ret;
845 }
846 
847 static DEVICE_ATTR_RO(time_offset);
848 
849 static ssize_t time_zone_offset_show(struct device *dev,
850 				struct device_attribute *attr,
851 				char *buf)
852 {
853 	ssize_t ret = -ENODATA;
854 
855 	mutex_lock(&stp_mutex);
856 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
857 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo);
858 	mutex_unlock(&stp_mutex);
859 	return ret;
860 }
861 
862 static DEVICE_ATTR_RO(time_zone_offset);
863 
864 static ssize_t timing_mode_show(struct device *dev,
865 				struct device_attribute *attr,
866 				char *buf)
867 {
868 	ssize_t ret = -ENODATA;
869 
870 	mutex_lock(&stp_mutex);
871 	if (stpinfo_valid())
872 		ret = sysfs_emit(buf, "%i\n", stp_info.tmd);
873 	mutex_unlock(&stp_mutex);
874 	return ret;
875 }
876 
877 static DEVICE_ATTR_RO(timing_mode);
878 
879 static ssize_t timing_state_show(struct device *dev,
880 				struct device_attribute *attr,
881 				char *buf)
882 {
883 	ssize_t ret = -ENODATA;
884 
885 	mutex_lock(&stp_mutex);
886 	if (stpinfo_valid())
887 		ret = sysfs_emit(buf, "%i\n", stp_info.tst);
888 	mutex_unlock(&stp_mutex);
889 	return ret;
890 }
891 
892 static DEVICE_ATTR_RO(timing_state);
893 
894 static ssize_t online_show(struct device *dev,
895 				struct device_attribute *attr,
896 				char *buf)
897 {
898 	return sysfs_emit(buf, "%i\n", stp_online);
899 }
900 
901 static ssize_t online_store(struct device *dev,
902 				struct device_attribute *attr,
903 				const char *buf, size_t count)
904 {
905 	unsigned int value;
906 
907 	value = simple_strtoul(buf, NULL, 0);
908 	if (value != 0 && value != 1)
909 		return -EINVAL;
910 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
911 		return -EOPNOTSUPP;
912 	mutex_lock(&stp_mutex);
913 	stp_online = value;
914 	if (stp_online)
915 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
916 	else
917 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
918 	queue_work(time_sync_wq, &stp_work);
919 	mutex_unlock(&stp_mutex);
920 	return count;
921 }
922 
923 /*
924  * Can't use DEVICE_ATTR because the attribute should be named
925  * stp/online but dev_attr_online already exists in this file ..
926  */
927 static DEVICE_ATTR_RW(online);
928 
929 static struct attribute *stp_dev_attrs[] = {
930 	&dev_attr_ctn_id.attr,
931 	&dev_attr_ctn_type.attr,
932 	&dev_attr_dst_offset.attr,
933 	&dev_attr_leap_seconds.attr,
934 	&dev_attr_online.attr,
935 	&dev_attr_leap_seconds_scheduled.attr,
936 	&dev_attr_stratum.attr,
937 	&dev_attr_time_offset.attr,
938 	&dev_attr_time_zone_offset.attr,
939 	&dev_attr_timing_mode.attr,
940 	&dev_attr_timing_state.attr,
941 	NULL
942 };
943 ATTRIBUTE_GROUPS(stp_dev);
944 
945 static int __init stp_init_sysfs(void)
946 {
947 	return subsys_system_register(&stp_subsys, stp_dev_groups);
948 }
949 
950 device_initcall(stp_init_sysfs);
951