1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <vdso/vsyscall.h> 44 #include <vdso/clocksource.h> 45 #include <vdso/helpers.h> 46 #include <asm/facility.h> 47 #include <asm/delay.h> 48 #include <asm/div64.h> 49 #include <asm/vdso.h> 50 #include <asm/irq.h> 51 #include <asm/irq_regs.h> 52 #include <asm/vtimer.h> 53 #include <asm/stp.h> 54 #include <asm/cio.h> 55 #include "entry.h" 56 57 union tod_clock tod_clock_base __section(".data"); 58 EXPORT_SYMBOL_GPL(tod_clock_base); 59 60 u64 clock_comparator_max = -1ULL; 61 EXPORT_SYMBOL_GPL(clock_comparator_max); 62 63 static DEFINE_PER_CPU(struct clock_event_device, comparators); 64 65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 66 EXPORT_SYMBOL(s390_epoch_delta_notifier); 67 68 unsigned char ptff_function_mask[16]; 69 70 static unsigned long lpar_offset; 71 static unsigned long initial_leap_seconds; 72 static unsigned long tod_steering_end; 73 static long tod_steering_delta; 74 75 /* 76 * Get time offsets with PTFF 77 */ 78 void __init time_early_init(void) 79 { 80 struct ptff_qto qto; 81 struct ptff_qui qui; 82 int cs; 83 84 /* Initialize TOD steering parameters */ 85 tod_steering_end = tod_clock_base.tod; 86 for (cs = 0; cs < CS_BASES; cs++) 87 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 88 89 if (!test_facility(28)) 90 return; 91 92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 93 94 /* get LPAR offset */ 95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 96 lpar_offset = qto.tod_epoch_difference; 97 98 /* get initial leap seconds */ 99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 100 initial_leap_seconds = (unsigned long) 101 ((long) qui.old_leap * 4096000000L); 102 } 103 104 unsigned long long noinstr sched_clock_noinstr(void) 105 { 106 return tod_to_ns(__get_tod_clock_monotonic()); 107 } 108 109 /* 110 * Scheduler clock - returns current time in nanosec units. 111 */ 112 unsigned long long notrace sched_clock(void) 113 { 114 return tod_to_ns(get_tod_clock_monotonic()); 115 } 116 NOKPROBE_SYMBOL(sched_clock); 117 118 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 119 { 120 unsigned long rem, sec, nsec; 121 122 sec = clk->us; 123 rem = do_div(sec, 1000000); 124 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 125 xt->tv_sec = sec; 126 xt->tv_nsec = nsec; 127 } 128 129 void clock_comparator_work(void) 130 { 131 struct clock_event_device *cd; 132 133 get_lowcore()->clock_comparator = clock_comparator_max; 134 cd = this_cpu_ptr(&comparators); 135 cd->event_handler(cd); 136 } 137 138 static int s390_next_event(unsigned long delta, 139 struct clock_event_device *evt) 140 { 141 get_lowcore()->clock_comparator = get_tod_clock() + delta; 142 set_clock_comparator(get_lowcore()->clock_comparator); 143 return 0; 144 } 145 146 /* 147 * Set up lowcore and control register of the current cpu to 148 * enable TOD clock and clock comparator interrupts. 149 */ 150 void init_cpu_timer(void) 151 { 152 struct clock_event_device *cd; 153 int cpu; 154 155 get_lowcore()->clock_comparator = clock_comparator_max; 156 set_clock_comparator(get_lowcore()->clock_comparator); 157 158 cpu = smp_processor_id(); 159 cd = &per_cpu(comparators, cpu); 160 cd->name = "comparator"; 161 cd->features = CLOCK_EVT_FEAT_ONESHOT; 162 cd->mult = 16777; 163 cd->shift = 12; 164 cd->min_delta_ns = 1; 165 cd->min_delta_ticks = 1; 166 cd->max_delta_ns = LONG_MAX; 167 cd->max_delta_ticks = ULONG_MAX; 168 cd->rating = 400; 169 cd->cpumask = cpumask_of(cpu); 170 cd->set_next_event = s390_next_event; 171 172 clockevents_register_device(cd); 173 174 /* Enable clock comparator timer interrupt. */ 175 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 176 177 /* Always allow the timing alert external interrupt. */ 178 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 179 } 180 181 static void clock_comparator_interrupt(struct ext_code ext_code, 182 unsigned int param32, 183 unsigned long param64) 184 { 185 inc_irq_stat(IRQEXT_CLK); 186 if (get_lowcore()->clock_comparator == clock_comparator_max) 187 set_clock_comparator(get_lowcore()->clock_comparator); 188 } 189 190 static void stp_timing_alert(struct stp_irq_parm *); 191 192 static void timing_alert_interrupt(struct ext_code ext_code, 193 unsigned int param32, unsigned long param64) 194 { 195 inc_irq_stat(IRQEXT_TLA); 196 if (param32 & 0x00038000) 197 stp_timing_alert((struct stp_irq_parm *) ¶m32); 198 } 199 200 static void stp_reset(void); 201 202 void read_persistent_clock64(struct timespec64 *ts) 203 { 204 union tod_clock clk; 205 u64 delta; 206 207 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 208 store_tod_clock_ext(&clk); 209 clk.eitod -= delta; 210 ext_to_timespec64(&clk, ts); 211 } 212 213 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 214 struct timespec64 *boot_offset) 215 { 216 struct timespec64 boot_time; 217 union tod_clock clk; 218 u64 delta; 219 220 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 221 clk = tod_clock_base; 222 clk.eitod -= delta; 223 ext_to_timespec64(&clk, &boot_time); 224 225 read_persistent_clock64(wall_time); 226 *boot_offset = timespec64_sub(*wall_time, boot_time); 227 } 228 229 static u64 read_tod_clock(struct clocksource *cs) 230 { 231 unsigned long now, adj; 232 233 preempt_disable(); /* protect from changes to steering parameters */ 234 now = get_tod_clock(); 235 adj = tod_steering_end - now; 236 if (unlikely((s64) adj > 0)) 237 /* 238 * manually steer by 1 cycle every 2^16 cycles. This 239 * corresponds to shifting the tod delta by 15. 1s is 240 * therefore steered in ~9h. The adjust will decrease 241 * over time, until it finally reaches 0. 242 */ 243 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 244 preempt_enable(); 245 return now; 246 } 247 248 static struct clocksource clocksource_tod = { 249 .name = "tod", 250 .rating = 400, 251 .read = read_tod_clock, 252 .mask = CLOCKSOURCE_MASK(64), 253 .mult = 4096000, 254 .shift = 24, 255 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 256 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 257 .id = CSID_S390_TOD, 258 }; 259 260 struct clocksource * __init clocksource_default_clock(void) 261 { 262 return &clocksource_tod; 263 } 264 265 /* 266 * Initialize the TOD clock and the CPU timer of 267 * the boot cpu. 268 */ 269 void __init time_init(void) 270 { 271 /* Reset time synchronization interfaces. */ 272 stp_reset(); 273 274 /* request the clock comparator external interrupt */ 275 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 276 panic("Couldn't request external interrupt 0x1004"); 277 278 /* request the timing alert external interrupt */ 279 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 280 panic("Couldn't request external interrupt 0x1406"); 281 282 if (__clocksource_register(&clocksource_tod) != 0) 283 panic("Could not register TOD clock source"); 284 285 /* Enable TOD clock interrupts on the boot cpu. */ 286 init_cpu_timer(); 287 288 /* Enable cpu timer interrupts on the boot cpu. */ 289 vtime_init(); 290 } 291 292 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 293 static DEFINE_MUTEX(stp_mutex); 294 static unsigned long clock_sync_flags; 295 296 #define CLOCK_SYNC_HAS_STP 0 297 #define CLOCK_SYNC_STP 1 298 #define CLOCK_SYNC_STPINFO_VALID 2 299 300 /* 301 * The get_clock function for the physical clock. It will get the current 302 * TOD clock, subtract the LPAR offset and write the result to *clock. 303 * The function returns 0 if the clock is in sync with the external time 304 * source. If the clock mode is local it will return -EOPNOTSUPP and 305 * -EAGAIN if the clock is not in sync with the external reference. 306 */ 307 int get_phys_clock(unsigned long *clock) 308 { 309 atomic_t *sw_ptr; 310 unsigned int sw0, sw1; 311 312 sw_ptr = &get_cpu_var(clock_sync_word); 313 sw0 = atomic_read(sw_ptr); 314 *clock = get_tod_clock() - lpar_offset; 315 sw1 = atomic_read(sw_ptr); 316 put_cpu_var(clock_sync_word); 317 if (sw0 == sw1 && (sw0 & 0x80000000U)) 318 /* Success: time is in sync. */ 319 return 0; 320 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 321 return -EOPNOTSUPP; 322 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 323 return -EACCES; 324 return -EAGAIN; 325 } 326 EXPORT_SYMBOL(get_phys_clock); 327 328 /* 329 * Make get_phys_clock() return -EAGAIN. 330 */ 331 static void disable_sync_clock(void *dummy) 332 { 333 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 334 /* 335 * Clear the in-sync bit 2^31. All get_phys_clock calls will 336 * fail until the sync bit is turned back on. In addition 337 * increase the "sequence" counter to avoid the race of an 338 * stp event and the complete recovery against get_phys_clock. 339 */ 340 atomic_andnot(0x80000000, sw_ptr); 341 atomic_inc(sw_ptr); 342 } 343 344 /* 345 * Make get_phys_clock() return 0 again. 346 * Needs to be called from a context disabled for preemption. 347 */ 348 static void enable_sync_clock(void) 349 { 350 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 351 atomic_or(0x80000000, sw_ptr); 352 } 353 354 /* 355 * Function to check if the clock is in sync. 356 */ 357 static inline int check_sync_clock(void) 358 { 359 atomic_t *sw_ptr; 360 int rc; 361 362 sw_ptr = &get_cpu_var(clock_sync_word); 363 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 364 put_cpu_var(clock_sync_word); 365 return rc; 366 } 367 368 /* 369 * Apply clock delta to the global data structures. 370 * This is called once on the CPU that performed the clock sync. 371 */ 372 static void clock_sync_global(long delta) 373 { 374 unsigned long now, adj; 375 struct ptff_qto qto; 376 int cs; 377 378 /* Fixup the monotonic sched clock. */ 379 tod_clock_base.eitod += delta; 380 /* Adjust TOD steering parameters. */ 381 now = get_tod_clock(); 382 adj = tod_steering_end - now; 383 if (unlikely((s64) adj >= 0)) 384 /* Calculate how much of the old adjustment is left. */ 385 tod_steering_delta = (tod_steering_delta < 0) ? 386 -(adj >> 15) : (adj >> 15); 387 tod_steering_delta += delta; 388 if ((abs(tod_steering_delta) >> 48) != 0) 389 panic("TOD clock sync offset %li is too large to drift\n", 390 tod_steering_delta); 391 tod_steering_end = now + (abs(tod_steering_delta) << 15); 392 for (cs = 0; cs < CS_BASES; cs++) { 393 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 394 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; 395 } 396 397 /* Update LPAR offset. */ 398 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 399 lpar_offset = qto.tod_epoch_difference; 400 /* Call the TOD clock change notifier. */ 401 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 402 } 403 404 /* 405 * Apply clock delta to the per-CPU data structures of this CPU. 406 * This is called for each online CPU after the call to clock_sync_global. 407 */ 408 static void clock_sync_local(long delta) 409 { 410 /* Add the delta to the clock comparator. */ 411 if (get_lowcore()->clock_comparator != clock_comparator_max) { 412 get_lowcore()->clock_comparator += delta; 413 set_clock_comparator(get_lowcore()->clock_comparator); 414 } 415 /* Adjust the last_update_clock time-stamp. */ 416 get_lowcore()->last_update_clock += delta; 417 } 418 419 /* Single threaded workqueue used for stp sync events */ 420 static struct workqueue_struct *time_sync_wq; 421 422 static void __init time_init_wq(void) 423 { 424 if (time_sync_wq) 425 return; 426 time_sync_wq = create_singlethread_workqueue("timesync"); 427 } 428 429 struct clock_sync_data { 430 atomic_t cpus; 431 int in_sync; 432 long clock_delta; 433 }; 434 435 /* 436 * Server Time Protocol (STP) code. 437 */ 438 static bool stp_online; 439 static struct stp_sstpi stp_info; 440 static void *stp_page; 441 442 static void stp_work_fn(struct work_struct *work); 443 static DECLARE_WORK(stp_work, stp_work_fn); 444 static struct timer_list stp_timer; 445 446 static int __init early_parse_stp(char *p) 447 { 448 return kstrtobool(p, &stp_online); 449 } 450 early_param("stp", early_parse_stp); 451 452 /* 453 * Reset STP attachment. 454 */ 455 static void __init stp_reset(void) 456 { 457 int rc; 458 459 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 460 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 461 if (rc == 0) 462 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 463 else if (stp_online) { 464 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 465 free_page((unsigned long) stp_page); 466 stp_page = NULL; 467 stp_online = false; 468 } 469 } 470 471 bool stp_enabled(void) 472 { 473 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online; 474 } 475 EXPORT_SYMBOL(stp_enabled); 476 477 static void stp_timeout(struct timer_list *unused) 478 { 479 queue_work(time_sync_wq, &stp_work); 480 } 481 482 static int __init stp_init(void) 483 { 484 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 485 return 0; 486 timer_setup(&stp_timer, stp_timeout, 0); 487 time_init_wq(); 488 if (!stp_online) 489 return 0; 490 queue_work(time_sync_wq, &stp_work); 491 return 0; 492 } 493 494 arch_initcall(stp_init); 495 496 /* 497 * STP timing alert. There are three causes: 498 * 1) timing status change 499 * 2) link availability change 500 * 3) time control parameter change 501 * In all three cases we are only interested in the clock source state. 502 * If a STP clock source is now available use it. 503 */ 504 static void stp_timing_alert(struct stp_irq_parm *intparm) 505 { 506 if (intparm->tsc || intparm->lac || intparm->tcpc) 507 queue_work(time_sync_wq, &stp_work); 508 } 509 510 /* 511 * STP sync check machine check. This is called when the timing state 512 * changes from the synchronized state to the unsynchronized state. 513 * After a STP sync check the clock is not in sync. The machine check 514 * is broadcasted to all cpus at the same time. 515 */ 516 int stp_sync_check(void) 517 { 518 disable_sync_clock(NULL); 519 return 1; 520 } 521 522 /* 523 * STP island condition machine check. This is called when an attached 524 * server attempts to communicate over an STP link and the servers 525 * have matching CTN ids and have a valid stratum-1 configuration 526 * but the configurations do not match. 527 */ 528 int stp_island_check(void) 529 { 530 disable_sync_clock(NULL); 531 return 1; 532 } 533 534 void stp_queue_work(void) 535 { 536 queue_work(time_sync_wq, &stp_work); 537 } 538 539 static int __store_stpinfo(void) 540 { 541 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 542 543 if (rc) 544 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 545 else 546 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 547 return rc; 548 } 549 550 static int stpinfo_valid(void) 551 { 552 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 553 } 554 555 static int stp_sync_clock(void *data) 556 { 557 struct clock_sync_data *sync = data; 558 long clock_delta, flags; 559 static int first; 560 int rc; 561 562 enable_sync_clock(); 563 if (xchg(&first, 1) == 0) { 564 /* Wait until all other cpus entered the sync function. */ 565 while (atomic_read(&sync->cpus) != 0) 566 cpu_relax(); 567 rc = 0; 568 if (stp_info.todoff || stp_info.tmd != 2) { 569 flags = vdso_update_begin(); 570 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 571 &clock_delta); 572 if (rc == 0) { 573 sync->clock_delta = clock_delta; 574 clock_sync_global(clock_delta); 575 rc = __store_stpinfo(); 576 if (rc == 0 && stp_info.tmd != 2) 577 rc = -EAGAIN; 578 } 579 vdso_update_end(flags); 580 } 581 sync->in_sync = rc ? -EAGAIN : 1; 582 xchg(&first, 0); 583 } else { 584 /* Slave */ 585 atomic_dec(&sync->cpus); 586 /* Wait for in_sync to be set. */ 587 while (READ_ONCE(sync->in_sync) == 0) 588 __udelay(1); 589 } 590 if (sync->in_sync != 1) 591 /* Didn't work. Clear per-cpu in sync bit again. */ 592 disable_sync_clock(NULL); 593 /* Apply clock delta to per-CPU fields of this CPU. */ 594 clock_sync_local(sync->clock_delta); 595 596 return 0; 597 } 598 599 static int stp_clear_leap(void) 600 { 601 struct __kernel_timex txc; 602 int ret; 603 604 memset(&txc, 0, sizeof(txc)); 605 606 ret = do_adjtimex(&txc); 607 if (ret < 0) 608 return ret; 609 610 txc.modes = ADJ_STATUS; 611 txc.status &= ~(STA_INS|STA_DEL); 612 return do_adjtimex(&txc); 613 } 614 615 static void stp_check_leap(void) 616 { 617 struct stp_stzi stzi; 618 struct stp_lsoib *lsoib = &stzi.lsoib; 619 struct __kernel_timex txc; 620 int64_t timediff; 621 int leapdiff, ret; 622 623 if (!stp_info.lu || !check_sync_clock()) { 624 /* 625 * Either a scheduled leap second was removed by the operator, 626 * or STP is out of sync. In both cases, clear the leap second 627 * kernel flags. 628 */ 629 if (stp_clear_leap() < 0) 630 pr_err("failed to clear leap second flags\n"); 631 return; 632 } 633 634 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 635 pr_err("stzi failed\n"); 636 return; 637 } 638 639 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 640 leapdiff = lsoib->nlso - lsoib->also; 641 642 if (leapdiff != 1 && leapdiff != -1) { 643 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 644 return; 645 } 646 647 if (timediff < 0) { 648 if (stp_clear_leap() < 0) 649 pr_err("failed to clear leap second flags\n"); 650 } else if (timediff < 7200) { 651 memset(&txc, 0, sizeof(txc)); 652 ret = do_adjtimex(&txc); 653 if (ret < 0) 654 return; 655 656 txc.modes = ADJ_STATUS; 657 if (leapdiff > 0) 658 txc.status |= STA_INS; 659 else 660 txc.status |= STA_DEL; 661 ret = do_adjtimex(&txc); 662 if (ret < 0) 663 pr_err("failed to set leap second flags\n"); 664 /* arm Timer to clear leap second flags */ 665 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 666 } else { 667 /* The day the leap second is scheduled for hasn't been reached. Retry 668 * in one hour. 669 */ 670 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 671 } 672 } 673 674 /* 675 * STP work. Check for the STP state and take over the clock 676 * synchronization if the STP clock source is usable. 677 */ 678 static void stp_work_fn(struct work_struct *work) 679 { 680 struct clock_sync_data stp_sync; 681 int rc; 682 683 /* prevent multiple execution. */ 684 mutex_lock(&stp_mutex); 685 686 if (!stp_online) { 687 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 688 del_timer_sync(&stp_timer); 689 goto out_unlock; 690 } 691 692 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 693 if (rc) 694 goto out_unlock; 695 696 rc = __store_stpinfo(); 697 if (rc || stp_info.c == 0) 698 goto out_unlock; 699 700 /* Skip synchronization if the clock is already in sync. */ 701 if (!check_sync_clock()) { 702 memset(&stp_sync, 0, sizeof(stp_sync)); 703 cpus_read_lock(); 704 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 705 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 706 cpus_read_unlock(); 707 } 708 709 if (!check_sync_clock()) 710 /* 711 * There is a usable clock but the synchronization failed. 712 * Retry after a second. 713 */ 714 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 715 else if (stp_info.lu) 716 stp_check_leap(); 717 718 out_unlock: 719 mutex_unlock(&stp_mutex); 720 } 721 722 /* 723 * STP subsys sysfs interface functions 724 */ 725 static const struct bus_type stp_subsys = { 726 .name = "stp", 727 .dev_name = "stp", 728 }; 729 730 static ssize_t ctn_id_show(struct device *dev, 731 struct device_attribute *attr, 732 char *buf) 733 { 734 ssize_t ret = -ENODATA; 735 736 mutex_lock(&stp_mutex); 737 if (stpinfo_valid()) 738 ret = sysfs_emit(buf, "%016lx\n", 739 *(unsigned long *)stp_info.ctnid); 740 mutex_unlock(&stp_mutex); 741 return ret; 742 } 743 744 static DEVICE_ATTR_RO(ctn_id); 745 746 static ssize_t ctn_type_show(struct device *dev, 747 struct device_attribute *attr, 748 char *buf) 749 { 750 ssize_t ret = -ENODATA; 751 752 mutex_lock(&stp_mutex); 753 if (stpinfo_valid()) 754 ret = sysfs_emit(buf, "%i\n", stp_info.ctn); 755 mutex_unlock(&stp_mutex); 756 return ret; 757 } 758 759 static DEVICE_ATTR_RO(ctn_type); 760 761 static ssize_t dst_offset_show(struct device *dev, 762 struct device_attribute *attr, 763 char *buf) 764 { 765 ssize_t ret = -ENODATA; 766 767 mutex_lock(&stp_mutex); 768 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 769 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto); 770 mutex_unlock(&stp_mutex); 771 return ret; 772 } 773 774 static DEVICE_ATTR_RO(dst_offset); 775 776 static ssize_t leap_seconds_show(struct device *dev, 777 struct device_attribute *attr, 778 char *buf) 779 { 780 ssize_t ret = -ENODATA; 781 782 mutex_lock(&stp_mutex); 783 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 784 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps); 785 mutex_unlock(&stp_mutex); 786 return ret; 787 } 788 789 static DEVICE_ATTR_RO(leap_seconds); 790 791 static ssize_t leap_seconds_scheduled_show(struct device *dev, 792 struct device_attribute *attr, 793 char *buf) 794 { 795 struct stp_stzi stzi; 796 ssize_t ret; 797 798 mutex_lock(&stp_mutex); 799 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 800 mutex_unlock(&stp_mutex); 801 return -ENODATA; 802 } 803 804 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 805 mutex_unlock(&stp_mutex); 806 if (ret < 0) 807 return ret; 808 809 if (!stzi.lsoib.p) 810 return sysfs_emit(buf, "0,0\n"); 811 812 return sysfs_emit(buf, "%lu,%d\n", 813 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 814 stzi.lsoib.nlso - stzi.lsoib.also); 815 } 816 817 static DEVICE_ATTR_RO(leap_seconds_scheduled); 818 819 static ssize_t stratum_show(struct device *dev, 820 struct device_attribute *attr, 821 char *buf) 822 { 823 ssize_t ret = -ENODATA; 824 825 mutex_lock(&stp_mutex); 826 if (stpinfo_valid()) 827 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum); 828 mutex_unlock(&stp_mutex); 829 return ret; 830 } 831 832 static DEVICE_ATTR_RO(stratum); 833 834 static ssize_t time_offset_show(struct device *dev, 835 struct device_attribute *attr, 836 char *buf) 837 { 838 ssize_t ret = -ENODATA; 839 840 mutex_lock(&stp_mutex); 841 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 842 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto); 843 mutex_unlock(&stp_mutex); 844 return ret; 845 } 846 847 static DEVICE_ATTR_RO(time_offset); 848 849 static ssize_t time_zone_offset_show(struct device *dev, 850 struct device_attribute *attr, 851 char *buf) 852 { 853 ssize_t ret = -ENODATA; 854 855 mutex_lock(&stp_mutex); 856 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 857 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo); 858 mutex_unlock(&stp_mutex); 859 return ret; 860 } 861 862 static DEVICE_ATTR_RO(time_zone_offset); 863 864 static ssize_t timing_mode_show(struct device *dev, 865 struct device_attribute *attr, 866 char *buf) 867 { 868 ssize_t ret = -ENODATA; 869 870 mutex_lock(&stp_mutex); 871 if (stpinfo_valid()) 872 ret = sysfs_emit(buf, "%i\n", stp_info.tmd); 873 mutex_unlock(&stp_mutex); 874 return ret; 875 } 876 877 static DEVICE_ATTR_RO(timing_mode); 878 879 static ssize_t timing_state_show(struct device *dev, 880 struct device_attribute *attr, 881 char *buf) 882 { 883 ssize_t ret = -ENODATA; 884 885 mutex_lock(&stp_mutex); 886 if (stpinfo_valid()) 887 ret = sysfs_emit(buf, "%i\n", stp_info.tst); 888 mutex_unlock(&stp_mutex); 889 return ret; 890 } 891 892 static DEVICE_ATTR_RO(timing_state); 893 894 static ssize_t online_show(struct device *dev, 895 struct device_attribute *attr, 896 char *buf) 897 { 898 return sysfs_emit(buf, "%i\n", stp_online); 899 } 900 901 static ssize_t online_store(struct device *dev, 902 struct device_attribute *attr, 903 const char *buf, size_t count) 904 { 905 unsigned int value; 906 907 value = simple_strtoul(buf, NULL, 0); 908 if (value != 0 && value != 1) 909 return -EINVAL; 910 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 911 return -EOPNOTSUPP; 912 mutex_lock(&stp_mutex); 913 stp_online = value; 914 if (stp_online) 915 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 916 else 917 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 918 queue_work(time_sync_wq, &stp_work); 919 mutex_unlock(&stp_mutex); 920 return count; 921 } 922 923 /* 924 * Can't use DEVICE_ATTR because the attribute should be named 925 * stp/online but dev_attr_online already exists in this file .. 926 */ 927 static DEVICE_ATTR_RW(online); 928 929 static struct attribute *stp_dev_attrs[] = { 930 &dev_attr_ctn_id.attr, 931 &dev_attr_ctn_type.attr, 932 &dev_attr_dst_offset.attr, 933 &dev_attr_leap_seconds.attr, 934 &dev_attr_online.attr, 935 &dev_attr_leap_seconds_scheduled.attr, 936 &dev_attr_stratum.attr, 937 &dev_attr_time_offset.attr, 938 &dev_attr_time_zone_offset.attr, 939 &dev_attr_timing_mode.attr, 940 &dev_attr_timing_state.attr, 941 NULL 942 }; 943 ATTRIBUTE_GROUPS(stp_dev); 944 945 static int __init stp_init_sysfs(void) 946 { 947 return subsys_system_register(&stp_subsys, stp_dev_groups); 948 } 949 950 device_initcall(stp_init_sysfs); 951