1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <vdso/vsyscall.h> 45 #include <vdso/clocksource.h> 46 #include <vdso/helpers.h> 47 #include <asm/facility.h> 48 #include <asm/delay.h> 49 #include <asm/div64.h> 50 #include <asm/vdso.h> 51 #include <asm/irq.h> 52 #include <asm/irq_regs.h> 53 #include <asm/vtimer.h> 54 #include <asm/stp.h> 55 #include <asm/cio.h> 56 #include "entry.h" 57 58 union tod_clock tod_clock_base __section(".data"); 59 EXPORT_SYMBOL_GPL(tod_clock_base); 60 61 u64 clock_comparator_max = -1ULL; 62 EXPORT_SYMBOL_GPL(clock_comparator_max); 63 64 static DEFINE_PER_CPU(struct clock_event_device, comparators); 65 66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 67 EXPORT_SYMBOL(s390_epoch_delta_notifier); 68 69 unsigned char ptff_function_mask[16]; 70 71 static unsigned long lpar_offset; 72 static unsigned long initial_leap_seconds; 73 static unsigned long tod_steering_end; 74 static long tod_steering_delta; 75 76 /* 77 * Get time offsets with PTFF 78 */ 79 void __init time_early_init(void) 80 { 81 struct ptff_qto qto; 82 struct ptff_qui qui; 83 int cs; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = tod_clock_base.tod; 87 for (cs = 0; cs < CS_BASES; cs++) 88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 89 90 if (!test_facility(28)) 91 return; 92 93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 94 95 /* get LPAR offset */ 96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 97 lpar_offset = qto.tod_epoch_difference; 98 99 /* get initial leap seconds */ 100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 101 initial_leap_seconds = (unsigned long) 102 ((long) qui.old_leap * 4096000000L); 103 } 104 105 unsigned long long noinstr sched_clock_noinstr(void) 106 { 107 return tod_to_ns(__get_tod_clock_monotonic()); 108 } 109 110 /* 111 * Scheduler clock - returns current time in nanosec units. 112 */ 113 unsigned long long notrace sched_clock(void) 114 { 115 return tod_to_ns(get_tod_clock_monotonic()); 116 } 117 NOKPROBE_SYMBOL(sched_clock); 118 119 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 120 { 121 unsigned long rem, sec, nsec; 122 123 sec = clk->us; 124 rem = do_div(sec, 1000000); 125 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 126 xt->tv_sec = sec; 127 xt->tv_nsec = nsec; 128 } 129 130 void clock_comparator_work(void) 131 { 132 struct clock_event_device *cd; 133 134 get_lowcore()->clock_comparator = clock_comparator_max; 135 cd = this_cpu_ptr(&comparators); 136 cd->event_handler(cd); 137 } 138 139 static int s390_next_event(unsigned long delta, 140 struct clock_event_device *evt) 141 { 142 get_lowcore()->clock_comparator = get_tod_clock() + delta; 143 set_clock_comparator(get_lowcore()->clock_comparator); 144 return 0; 145 } 146 147 /* 148 * Set up lowcore and control register of the current cpu to 149 * enable TOD clock and clock comparator interrupts. 150 */ 151 void init_cpu_timer(void) 152 { 153 struct clock_event_device *cd; 154 int cpu; 155 156 get_lowcore()->clock_comparator = clock_comparator_max; 157 set_clock_comparator(get_lowcore()->clock_comparator); 158 159 cpu = smp_processor_id(); 160 cd = &per_cpu(comparators, cpu); 161 cd->name = "comparator"; 162 cd->features = CLOCK_EVT_FEAT_ONESHOT; 163 cd->mult = 16777; 164 cd->shift = 12; 165 cd->min_delta_ns = 1; 166 cd->min_delta_ticks = 1; 167 cd->max_delta_ns = LONG_MAX; 168 cd->max_delta_ticks = ULONG_MAX; 169 cd->rating = 400; 170 cd->cpumask = cpumask_of(cpu); 171 cd->set_next_event = s390_next_event; 172 173 clockevents_register_device(cd); 174 175 /* Enable clock comparator timer interrupt. */ 176 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 177 178 /* Always allow the timing alert external interrupt. */ 179 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 180 } 181 182 static void clock_comparator_interrupt(struct ext_code ext_code, 183 unsigned int param32, 184 unsigned long param64) 185 { 186 inc_irq_stat(IRQEXT_CLK); 187 if (get_lowcore()->clock_comparator == clock_comparator_max) 188 set_clock_comparator(get_lowcore()->clock_comparator); 189 } 190 191 static void stp_timing_alert(struct stp_irq_parm *); 192 193 static void timing_alert_interrupt(struct ext_code ext_code, 194 unsigned int param32, unsigned long param64) 195 { 196 inc_irq_stat(IRQEXT_TLA); 197 if (param32 & 0x00038000) 198 stp_timing_alert((struct stp_irq_parm *) ¶m32); 199 } 200 201 static void stp_reset(void); 202 203 void read_persistent_clock64(struct timespec64 *ts) 204 { 205 union tod_clock clk; 206 u64 delta; 207 208 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 209 store_tod_clock_ext(&clk); 210 clk.eitod -= delta; 211 ext_to_timespec64(&clk, ts); 212 } 213 214 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 215 struct timespec64 *boot_offset) 216 { 217 struct timespec64 boot_time; 218 union tod_clock clk; 219 u64 delta; 220 221 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 222 clk = tod_clock_base; 223 clk.eitod -= delta; 224 ext_to_timespec64(&clk, &boot_time); 225 226 read_persistent_clock64(wall_time); 227 *boot_offset = timespec64_sub(*wall_time, boot_time); 228 } 229 230 static u64 read_tod_clock(struct clocksource *cs) 231 { 232 unsigned long now, adj; 233 234 preempt_disable(); /* protect from changes to steering parameters */ 235 now = get_tod_clock(); 236 adj = tod_steering_end - now; 237 if (unlikely((s64) adj > 0)) 238 /* 239 * manually steer by 1 cycle every 2^16 cycles. This 240 * corresponds to shifting the tod delta by 15. 1s is 241 * therefore steered in ~9h. The adjust will decrease 242 * over time, until it finally reaches 0. 243 */ 244 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 245 preempt_enable(); 246 return now; 247 } 248 249 static struct clocksource clocksource_tod = { 250 .name = "tod", 251 .rating = 400, 252 .read = read_tod_clock, 253 .mask = CLOCKSOURCE_MASK(64), 254 .mult = 4096000, 255 .shift = 24, 256 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 257 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 258 .id = CSID_S390_TOD, 259 }; 260 261 struct clocksource * __init clocksource_default_clock(void) 262 { 263 return &clocksource_tod; 264 } 265 266 /* 267 * Initialize the TOD clock and the CPU timer of 268 * the boot cpu. 269 */ 270 void __init time_init(void) 271 { 272 /* Reset time synchronization interfaces. */ 273 stp_reset(); 274 275 /* request the clock comparator external interrupt */ 276 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 277 panic("Couldn't request external interrupt 0x1004"); 278 279 /* request the timing alert external interrupt */ 280 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 281 panic("Couldn't request external interrupt 0x1406"); 282 283 if (__clocksource_register(&clocksource_tod) != 0) 284 panic("Could not register TOD clock source"); 285 286 /* Enable TOD clock interrupts on the boot cpu. */ 287 init_cpu_timer(); 288 289 /* Enable cpu timer interrupts on the boot cpu. */ 290 vtime_init(); 291 } 292 293 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 294 static DEFINE_MUTEX(stp_mutex); 295 static unsigned long clock_sync_flags; 296 297 #define CLOCK_SYNC_HAS_STP 0 298 #define CLOCK_SYNC_STP 1 299 #define CLOCK_SYNC_STPINFO_VALID 2 300 301 /* 302 * The get_clock function for the physical clock. It will get the current 303 * TOD clock, subtract the LPAR offset and write the result to *clock. 304 * The function returns 0 if the clock is in sync with the external time 305 * source. If the clock mode is local it will return -EOPNOTSUPP and 306 * -EAGAIN if the clock is not in sync with the external reference. 307 */ 308 int get_phys_clock(unsigned long *clock) 309 { 310 atomic_t *sw_ptr; 311 unsigned int sw0, sw1; 312 313 sw_ptr = &get_cpu_var(clock_sync_word); 314 sw0 = atomic_read(sw_ptr); 315 *clock = get_tod_clock() - lpar_offset; 316 sw1 = atomic_read(sw_ptr); 317 put_cpu_var(clock_sync_word); 318 if (sw0 == sw1 && (sw0 & 0x80000000U)) 319 /* Success: time is in sync. */ 320 return 0; 321 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 322 return -EOPNOTSUPP; 323 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 324 return -EACCES; 325 return -EAGAIN; 326 } 327 EXPORT_SYMBOL(get_phys_clock); 328 329 /* 330 * Make get_phys_clock() return -EAGAIN. 331 */ 332 static void disable_sync_clock(void *dummy) 333 { 334 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 335 /* 336 * Clear the in-sync bit 2^31. All get_phys_clock calls will 337 * fail until the sync bit is turned back on. In addition 338 * increase the "sequence" counter to avoid the race of an 339 * stp event and the complete recovery against get_phys_clock. 340 */ 341 atomic_andnot(0x80000000, sw_ptr); 342 atomic_inc(sw_ptr); 343 } 344 345 /* 346 * Make get_phys_clock() return 0 again. 347 * Needs to be called from a context disabled for preemption. 348 */ 349 static void enable_sync_clock(void) 350 { 351 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 352 atomic_or(0x80000000, sw_ptr); 353 } 354 355 /* 356 * Function to check if the clock is in sync. 357 */ 358 static inline int check_sync_clock(void) 359 { 360 atomic_t *sw_ptr; 361 int rc; 362 363 sw_ptr = &get_cpu_var(clock_sync_word); 364 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 365 put_cpu_var(clock_sync_word); 366 return rc; 367 } 368 369 /* 370 * Apply clock delta to the global data structures. 371 * This is called once on the CPU that performed the clock sync. 372 */ 373 static void clock_sync_global(long delta) 374 { 375 unsigned long now, adj; 376 struct ptff_qto qto; 377 int cs; 378 379 /* Fixup the monotonic sched clock. */ 380 tod_clock_base.eitod += delta; 381 /* Adjust TOD steering parameters. */ 382 now = get_tod_clock(); 383 adj = tod_steering_end - now; 384 if (unlikely((s64) adj >= 0)) 385 /* Calculate how much of the old adjustment is left. */ 386 tod_steering_delta = (tod_steering_delta < 0) ? 387 -(adj >> 15) : (adj >> 15); 388 tod_steering_delta += delta; 389 if ((abs(tod_steering_delta) >> 48) != 0) 390 panic("TOD clock sync offset %li is too large to drift\n", 391 tod_steering_delta); 392 tod_steering_end = now + (abs(tod_steering_delta) << 15); 393 for (cs = 0; cs < CS_BASES; cs++) { 394 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 395 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; 396 } 397 398 /* Update LPAR offset. */ 399 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 400 lpar_offset = qto.tod_epoch_difference; 401 /* Call the TOD clock change notifier. */ 402 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 403 } 404 405 /* 406 * Apply clock delta to the per-CPU data structures of this CPU. 407 * This is called for each online CPU after the call to clock_sync_global. 408 */ 409 static void clock_sync_local(long delta) 410 { 411 /* Add the delta to the clock comparator. */ 412 if (get_lowcore()->clock_comparator != clock_comparator_max) { 413 get_lowcore()->clock_comparator += delta; 414 set_clock_comparator(get_lowcore()->clock_comparator); 415 } 416 /* Adjust the last_update_clock time-stamp. */ 417 get_lowcore()->last_update_clock += delta; 418 } 419 420 /* Single threaded workqueue used for stp sync events */ 421 static struct workqueue_struct *time_sync_wq; 422 423 static void __init time_init_wq(void) 424 { 425 if (time_sync_wq) 426 return; 427 time_sync_wq = create_singlethread_workqueue("timesync"); 428 } 429 430 struct clock_sync_data { 431 atomic_t cpus; 432 int in_sync; 433 long clock_delta; 434 }; 435 436 /* 437 * Server Time Protocol (STP) code. 438 */ 439 static bool stp_online; 440 static struct stp_sstpi stp_info; 441 static void *stp_page; 442 443 static void stp_work_fn(struct work_struct *work); 444 static DECLARE_WORK(stp_work, stp_work_fn); 445 static struct timer_list stp_timer; 446 447 static int __init early_parse_stp(char *p) 448 { 449 return kstrtobool(p, &stp_online); 450 } 451 early_param("stp", early_parse_stp); 452 453 /* 454 * Reset STP attachment. 455 */ 456 static void __init stp_reset(void) 457 { 458 int rc; 459 460 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 461 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 462 if (rc == 0) 463 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 464 else if (stp_online) { 465 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 466 free_page((unsigned long) stp_page); 467 stp_page = NULL; 468 stp_online = false; 469 } 470 } 471 472 bool stp_enabled(void) 473 { 474 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online; 475 } 476 EXPORT_SYMBOL(stp_enabled); 477 478 static void stp_timeout(struct timer_list *unused) 479 { 480 queue_work(time_sync_wq, &stp_work); 481 } 482 483 static int __init stp_init(void) 484 { 485 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 486 return 0; 487 timer_setup(&stp_timer, stp_timeout, 0); 488 time_init_wq(); 489 if (!stp_online) 490 return 0; 491 queue_work(time_sync_wq, &stp_work); 492 return 0; 493 } 494 495 arch_initcall(stp_init); 496 497 /* 498 * STP timing alert. There are three causes: 499 * 1) timing status change 500 * 2) link availability change 501 * 3) time control parameter change 502 * In all three cases we are only interested in the clock source state. 503 * If a STP clock source is now available use it. 504 */ 505 static void stp_timing_alert(struct stp_irq_parm *intparm) 506 { 507 if (intparm->tsc || intparm->lac || intparm->tcpc) 508 queue_work(time_sync_wq, &stp_work); 509 } 510 511 /* 512 * STP sync check machine check. This is called when the timing state 513 * changes from the synchronized state to the unsynchronized state. 514 * After a STP sync check the clock is not in sync. The machine check 515 * is broadcasted to all cpus at the same time. 516 */ 517 int stp_sync_check(void) 518 { 519 disable_sync_clock(NULL); 520 return 1; 521 } 522 523 /* 524 * STP island condition machine check. This is called when an attached 525 * server attempts to communicate over an STP link and the servers 526 * have matching CTN ids and have a valid stratum-1 configuration 527 * but the configurations do not match. 528 */ 529 int stp_island_check(void) 530 { 531 disable_sync_clock(NULL); 532 return 1; 533 } 534 535 void stp_queue_work(void) 536 { 537 queue_work(time_sync_wq, &stp_work); 538 } 539 540 static int __store_stpinfo(void) 541 { 542 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 543 544 if (rc) 545 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 546 else 547 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 548 return rc; 549 } 550 551 static int stpinfo_valid(void) 552 { 553 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 554 } 555 556 static int stp_sync_clock(void *data) 557 { 558 struct clock_sync_data *sync = data; 559 long clock_delta, flags; 560 static int first; 561 int rc; 562 563 enable_sync_clock(); 564 if (xchg(&first, 1) == 0) { 565 /* Wait until all other cpus entered the sync function. */ 566 while (atomic_read(&sync->cpus) != 0) 567 cpu_relax(); 568 rc = 0; 569 if (stp_info.todoff || stp_info.tmd != 2) { 570 flags = vdso_update_begin(); 571 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 572 &clock_delta); 573 if (rc == 0) { 574 sync->clock_delta = clock_delta; 575 clock_sync_global(clock_delta); 576 rc = __store_stpinfo(); 577 if (rc == 0 && stp_info.tmd != 2) 578 rc = -EAGAIN; 579 } 580 vdso_update_end(flags); 581 } 582 sync->in_sync = rc ? -EAGAIN : 1; 583 xchg(&first, 0); 584 } else { 585 /* Slave */ 586 atomic_dec(&sync->cpus); 587 /* Wait for in_sync to be set. */ 588 while (READ_ONCE(sync->in_sync) == 0) 589 __udelay(1); 590 } 591 if (sync->in_sync != 1) 592 /* Didn't work. Clear per-cpu in sync bit again. */ 593 disable_sync_clock(NULL); 594 /* Apply clock delta to per-CPU fields of this CPU. */ 595 clock_sync_local(sync->clock_delta); 596 597 return 0; 598 } 599 600 static int stp_clear_leap(void) 601 { 602 struct __kernel_timex txc; 603 int ret; 604 605 memset(&txc, 0, sizeof(txc)); 606 607 ret = do_adjtimex(&txc); 608 if (ret < 0) 609 return ret; 610 611 txc.modes = ADJ_STATUS; 612 txc.status &= ~(STA_INS|STA_DEL); 613 return do_adjtimex(&txc); 614 } 615 616 static void stp_check_leap(void) 617 { 618 struct stp_stzi stzi; 619 struct stp_lsoib *lsoib = &stzi.lsoib; 620 struct __kernel_timex txc; 621 int64_t timediff; 622 int leapdiff, ret; 623 624 if (!stp_info.lu || !check_sync_clock()) { 625 /* 626 * Either a scheduled leap second was removed by the operator, 627 * or STP is out of sync. In both cases, clear the leap second 628 * kernel flags. 629 */ 630 if (stp_clear_leap() < 0) 631 pr_err("failed to clear leap second flags\n"); 632 return; 633 } 634 635 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 636 pr_err("stzi failed\n"); 637 return; 638 } 639 640 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 641 leapdiff = lsoib->nlso - lsoib->also; 642 643 if (leapdiff != 1 && leapdiff != -1) { 644 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 645 return; 646 } 647 648 if (timediff < 0) { 649 if (stp_clear_leap() < 0) 650 pr_err("failed to clear leap second flags\n"); 651 } else if (timediff < 7200) { 652 memset(&txc, 0, sizeof(txc)); 653 ret = do_adjtimex(&txc); 654 if (ret < 0) 655 return; 656 657 txc.modes = ADJ_STATUS; 658 if (leapdiff > 0) 659 txc.status |= STA_INS; 660 else 661 txc.status |= STA_DEL; 662 ret = do_adjtimex(&txc); 663 if (ret < 0) 664 pr_err("failed to set leap second flags\n"); 665 /* arm Timer to clear leap second flags */ 666 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 667 } else { 668 /* The day the leap second is scheduled for hasn't been reached. Retry 669 * in one hour. 670 */ 671 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 672 } 673 } 674 675 /* 676 * STP work. Check for the STP state and take over the clock 677 * synchronization if the STP clock source is usable. 678 */ 679 static void stp_work_fn(struct work_struct *work) 680 { 681 struct clock_sync_data stp_sync; 682 int rc; 683 684 /* prevent multiple execution. */ 685 mutex_lock(&stp_mutex); 686 687 if (!stp_online) { 688 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 689 del_timer_sync(&stp_timer); 690 goto out_unlock; 691 } 692 693 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 694 if (rc) 695 goto out_unlock; 696 697 rc = __store_stpinfo(); 698 if (rc || stp_info.c == 0) 699 goto out_unlock; 700 701 /* Skip synchronization if the clock is already in sync. */ 702 if (!check_sync_clock()) { 703 memset(&stp_sync, 0, sizeof(stp_sync)); 704 cpus_read_lock(); 705 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 706 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 707 cpus_read_unlock(); 708 } 709 710 if (!check_sync_clock()) 711 /* 712 * There is a usable clock but the synchronization failed. 713 * Retry after a second. 714 */ 715 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 716 else if (stp_info.lu) 717 stp_check_leap(); 718 719 out_unlock: 720 mutex_unlock(&stp_mutex); 721 } 722 723 /* 724 * STP subsys sysfs interface functions 725 */ 726 static const struct bus_type stp_subsys = { 727 .name = "stp", 728 .dev_name = "stp", 729 }; 730 731 static ssize_t ctn_id_show(struct device *dev, 732 struct device_attribute *attr, 733 char *buf) 734 { 735 ssize_t ret = -ENODATA; 736 737 mutex_lock(&stp_mutex); 738 if (stpinfo_valid()) 739 ret = sprintf(buf, "%016lx\n", 740 *(unsigned long *) stp_info.ctnid); 741 mutex_unlock(&stp_mutex); 742 return ret; 743 } 744 745 static DEVICE_ATTR_RO(ctn_id); 746 747 static ssize_t ctn_type_show(struct device *dev, 748 struct device_attribute *attr, 749 char *buf) 750 { 751 ssize_t ret = -ENODATA; 752 753 mutex_lock(&stp_mutex); 754 if (stpinfo_valid()) 755 ret = sprintf(buf, "%i\n", stp_info.ctn); 756 mutex_unlock(&stp_mutex); 757 return ret; 758 } 759 760 static DEVICE_ATTR_RO(ctn_type); 761 762 static ssize_t dst_offset_show(struct device *dev, 763 struct device_attribute *attr, 764 char *buf) 765 { 766 ssize_t ret = -ENODATA; 767 768 mutex_lock(&stp_mutex); 769 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 770 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 771 mutex_unlock(&stp_mutex); 772 return ret; 773 } 774 775 static DEVICE_ATTR_RO(dst_offset); 776 777 static ssize_t leap_seconds_show(struct device *dev, 778 struct device_attribute *attr, 779 char *buf) 780 { 781 ssize_t ret = -ENODATA; 782 783 mutex_lock(&stp_mutex); 784 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 785 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 786 mutex_unlock(&stp_mutex); 787 return ret; 788 } 789 790 static DEVICE_ATTR_RO(leap_seconds); 791 792 static ssize_t leap_seconds_scheduled_show(struct device *dev, 793 struct device_attribute *attr, 794 char *buf) 795 { 796 struct stp_stzi stzi; 797 ssize_t ret; 798 799 mutex_lock(&stp_mutex); 800 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 801 mutex_unlock(&stp_mutex); 802 return -ENODATA; 803 } 804 805 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 806 mutex_unlock(&stp_mutex); 807 if (ret < 0) 808 return ret; 809 810 if (!stzi.lsoib.p) 811 return sprintf(buf, "0,0\n"); 812 813 return sprintf(buf, "%lu,%d\n", 814 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 815 stzi.lsoib.nlso - stzi.lsoib.also); 816 } 817 818 static DEVICE_ATTR_RO(leap_seconds_scheduled); 819 820 static ssize_t stratum_show(struct device *dev, 821 struct device_attribute *attr, 822 char *buf) 823 { 824 ssize_t ret = -ENODATA; 825 826 mutex_lock(&stp_mutex); 827 if (stpinfo_valid()) 828 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 829 mutex_unlock(&stp_mutex); 830 return ret; 831 } 832 833 static DEVICE_ATTR_RO(stratum); 834 835 static ssize_t time_offset_show(struct device *dev, 836 struct device_attribute *attr, 837 char *buf) 838 { 839 ssize_t ret = -ENODATA; 840 841 mutex_lock(&stp_mutex); 842 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 843 ret = sprintf(buf, "%i\n", (int) stp_info.tto); 844 mutex_unlock(&stp_mutex); 845 return ret; 846 } 847 848 static DEVICE_ATTR_RO(time_offset); 849 850 static ssize_t time_zone_offset_show(struct device *dev, 851 struct device_attribute *attr, 852 char *buf) 853 { 854 ssize_t ret = -ENODATA; 855 856 mutex_lock(&stp_mutex); 857 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 858 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 859 mutex_unlock(&stp_mutex); 860 return ret; 861 } 862 863 static DEVICE_ATTR_RO(time_zone_offset); 864 865 static ssize_t timing_mode_show(struct device *dev, 866 struct device_attribute *attr, 867 char *buf) 868 { 869 ssize_t ret = -ENODATA; 870 871 mutex_lock(&stp_mutex); 872 if (stpinfo_valid()) 873 ret = sprintf(buf, "%i\n", stp_info.tmd); 874 mutex_unlock(&stp_mutex); 875 return ret; 876 } 877 878 static DEVICE_ATTR_RO(timing_mode); 879 880 static ssize_t timing_state_show(struct device *dev, 881 struct device_attribute *attr, 882 char *buf) 883 { 884 ssize_t ret = -ENODATA; 885 886 mutex_lock(&stp_mutex); 887 if (stpinfo_valid()) 888 ret = sprintf(buf, "%i\n", stp_info.tst); 889 mutex_unlock(&stp_mutex); 890 return ret; 891 } 892 893 static DEVICE_ATTR_RO(timing_state); 894 895 static ssize_t online_show(struct device *dev, 896 struct device_attribute *attr, 897 char *buf) 898 { 899 return sprintf(buf, "%i\n", stp_online); 900 } 901 902 static ssize_t online_store(struct device *dev, 903 struct device_attribute *attr, 904 const char *buf, size_t count) 905 { 906 unsigned int value; 907 908 value = simple_strtoul(buf, NULL, 0); 909 if (value != 0 && value != 1) 910 return -EINVAL; 911 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 912 return -EOPNOTSUPP; 913 mutex_lock(&stp_mutex); 914 stp_online = value; 915 if (stp_online) 916 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 917 else 918 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 919 queue_work(time_sync_wq, &stp_work); 920 mutex_unlock(&stp_mutex); 921 return count; 922 } 923 924 /* 925 * Can't use DEVICE_ATTR because the attribute should be named 926 * stp/online but dev_attr_online already exists in this file .. 927 */ 928 static DEVICE_ATTR_RW(online); 929 930 static struct attribute *stp_dev_attrs[] = { 931 &dev_attr_ctn_id.attr, 932 &dev_attr_ctn_type.attr, 933 &dev_attr_dst_offset.attr, 934 &dev_attr_leap_seconds.attr, 935 &dev_attr_online.attr, 936 &dev_attr_leap_seconds_scheduled.attr, 937 &dev_attr_stratum.attr, 938 &dev_attr_time_offset.attr, 939 &dev_attr_time_zone_offset.attr, 940 &dev_attr_timing_mode.attr, 941 &dev_attr_timing_state.attr, 942 NULL 943 }; 944 ATTRIBUTE_GROUPS(stp_dev); 945 946 static int __init stp_init_sysfs(void) 947 { 948 return subsys_system_register(&stp_subsys, stp_dev_groups); 949 } 950 951 device_initcall(stp_init_sysfs); 952