xref: /linux/arch/s390/kernel/time.c (revision f72aa1b276281b4e4f75261af8425bc99d903f3e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57 
58 union tod_clock tod_clock_base __section(".data");
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60 
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68 
69 unsigned char ptff_function_mask[16];
70 
71 static unsigned long lpar_offset;
72 static unsigned long initial_leap_seconds;
73 static unsigned long tod_steering_end;
74 static long tod_steering_delta;
75 
76 /*
77  * Get time offsets with PTFF
78  */
79 void __init time_early_init(void)
80 {
81 	struct ptff_qto qto;
82 	struct ptff_qui qui;
83 	int cs;
84 
85 	/* Initialize TOD steering parameters */
86 	tod_steering_end = tod_clock_base.tod;
87 	for (cs = 0; cs < CS_BASES; cs++)
88 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89 
90 	if (!test_facility(28))
91 		return;
92 
93 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94 
95 	/* get LPAR offset */
96 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97 		lpar_offset = qto.tod_epoch_difference;
98 
99 	/* get initial leap seconds */
100 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101 		initial_leap_seconds = (unsigned long)
102 			((long) qui.old_leap * 4096000000L);
103 }
104 
105 unsigned long long noinstr sched_clock_noinstr(void)
106 {
107 	return tod_to_ns(__get_tod_clock_monotonic());
108 }
109 
110 /*
111  * Scheduler clock - returns current time in nanosec units.
112  */
113 unsigned long long notrace sched_clock(void)
114 {
115 	return tod_to_ns(get_tod_clock_monotonic());
116 }
117 NOKPROBE_SYMBOL(sched_clock);
118 
119 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
120 {
121 	unsigned long rem, sec, nsec;
122 
123 	sec = clk->us;
124 	rem = do_div(sec, 1000000);
125 	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
126 	xt->tv_sec = sec;
127 	xt->tv_nsec = nsec;
128 }
129 
130 void clock_comparator_work(void)
131 {
132 	struct clock_event_device *cd;
133 
134 	get_lowcore()->clock_comparator = clock_comparator_max;
135 	cd = this_cpu_ptr(&comparators);
136 	cd->event_handler(cd);
137 }
138 
139 static int s390_next_event(unsigned long delta,
140 			   struct clock_event_device *evt)
141 {
142 	get_lowcore()->clock_comparator = get_tod_clock() + delta;
143 	set_clock_comparator(get_lowcore()->clock_comparator);
144 	return 0;
145 }
146 
147 /*
148  * Set up lowcore and control register of the current cpu to
149  * enable TOD clock and clock comparator interrupts.
150  */
151 void init_cpu_timer(void)
152 {
153 	struct clock_event_device *cd;
154 	int cpu;
155 
156 	get_lowcore()->clock_comparator = clock_comparator_max;
157 	set_clock_comparator(get_lowcore()->clock_comparator);
158 
159 	cpu = smp_processor_id();
160 	cd = &per_cpu(comparators, cpu);
161 	cd->name		= "comparator";
162 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
163 	cd->mult		= 16777;
164 	cd->shift		= 12;
165 	cd->min_delta_ns	= 1;
166 	cd->min_delta_ticks	= 1;
167 	cd->max_delta_ns	= LONG_MAX;
168 	cd->max_delta_ticks	= ULONG_MAX;
169 	cd->rating		= 400;
170 	cd->cpumask		= cpumask_of(cpu);
171 	cd->set_next_event	= s390_next_event;
172 
173 	clockevents_register_device(cd);
174 
175 	/* Enable clock comparator timer interrupt. */
176 	local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
177 
178 	/* Always allow the timing alert external interrupt. */
179 	local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
180 }
181 
182 static void clock_comparator_interrupt(struct ext_code ext_code,
183 				       unsigned int param32,
184 				       unsigned long param64)
185 {
186 	inc_irq_stat(IRQEXT_CLK);
187 	if (get_lowcore()->clock_comparator == clock_comparator_max)
188 		set_clock_comparator(get_lowcore()->clock_comparator);
189 }
190 
191 static void stp_timing_alert(struct stp_irq_parm *);
192 
193 static void timing_alert_interrupt(struct ext_code ext_code,
194 				   unsigned int param32, unsigned long param64)
195 {
196 	inc_irq_stat(IRQEXT_TLA);
197 	if (param32 & 0x00038000)
198 		stp_timing_alert((struct stp_irq_parm *) &param32);
199 }
200 
201 static void stp_reset(void);
202 
203 void read_persistent_clock64(struct timespec64 *ts)
204 {
205 	union tod_clock clk;
206 	u64 delta;
207 
208 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209 	store_tod_clock_ext(&clk);
210 	clk.eitod -= delta;
211 	ext_to_timespec64(&clk, ts);
212 }
213 
214 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215 						 struct timespec64 *boot_offset)
216 {
217 	struct timespec64 boot_time;
218 	union tod_clock clk;
219 	u64 delta;
220 
221 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222 	clk = tod_clock_base;
223 	clk.eitod -= delta;
224 	ext_to_timespec64(&clk, &boot_time);
225 
226 	read_persistent_clock64(wall_time);
227 	*boot_offset = timespec64_sub(*wall_time, boot_time);
228 }
229 
230 static u64 read_tod_clock(struct clocksource *cs)
231 {
232 	unsigned long now, adj;
233 
234 	preempt_disable(); /* protect from changes to steering parameters */
235 	now = get_tod_clock();
236 	adj = tod_steering_end - now;
237 	if (unlikely((s64) adj > 0))
238 		/*
239 		 * manually steer by 1 cycle every 2^16 cycles. This
240 		 * corresponds to shifting the tod delta by 15. 1s is
241 		 * therefore steered in ~9h. The adjust will decrease
242 		 * over time, until it finally reaches 0.
243 		 */
244 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245 	preempt_enable();
246 	return now;
247 }
248 
249 static struct clocksource clocksource_tod = {
250 	.name		= "tod",
251 	.rating		= 400,
252 	.read		= read_tod_clock,
253 	.mask		= CLOCKSOURCE_MASK(64),
254 	.mult		= 4096000,
255 	.shift		= 24,
256 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
257 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258 	.id		= CSID_S390_TOD,
259 };
260 
261 struct clocksource * __init clocksource_default_clock(void)
262 {
263 	return &clocksource_tod;
264 }
265 
266 /*
267  * Initialize the TOD clock and the CPU timer of
268  * the boot cpu.
269  */
270 void __init time_init(void)
271 {
272 	/* Reset time synchronization interfaces. */
273 	stp_reset();
274 
275 	/* request the clock comparator external interrupt */
276 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277 		panic("Couldn't request external interrupt 0x1004");
278 
279 	/* request the timing alert external interrupt */
280 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281 		panic("Couldn't request external interrupt 0x1406");
282 
283 	if (__clocksource_register(&clocksource_tod) != 0)
284 		panic("Could not register TOD clock source");
285 
286 	/* Enable TOD clock interrupts on the boot cpu. */
287 	init_cpu_timer();
288 
289 	/* Enable cpu timer interrupts on the boot cpu. */
290 	vtime_init();
291 }
292 
293 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
294 static DEFINE_MUTEX(stp_mutex);
295 static unsigned long clock_sync_flags;
296 
297 #define CLOCK_SYNC_HAS_STP		0
298 #define CLOCK_SYNC_STP			1
299 #define CLOCK_SYNC_STPINFO_VALID	2
300 
301 /*
302  * The get_clock function for the physical clock. It will get the current
303  * TOD clock, subtract the LPAR offset and write the result to *clock.
304  * The function returns 0 if the clock is in sync with the external time
305  * source. If the clock mode is local it will return -EOPNOTSUPP and
306  * -EAGAIN if the clock is not in sync with the external reference.
307  */
308 int get_phys_clock(unsigned long *clock)
309 {
310 	atomic_t *sw_ptr;
311 	unsigned int sw0, sw1;
312 
313 	sw_ptr = &get_cpu_var(clock_sync_word);
314 	sw0 = atomic_read(sw_ptr);
315 	*clock = get_tod_clock() - lpar_offset;
316 	sw1 = atomic_read(sw_ptr);
317 	put_cpu_var(clock_sync_word);
318 	if (sw0 == sw1 && (sw0 & 0x80000000U))
319 		/* Success: time is in sync. */
320 		return 0;
321 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
322 		return -EOPNOTSUPP;
323 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
324 		return -EACCES;
325 	return -EAGAIN;
326 }
327 EXPORT_SYMBOL(get_phys_clock);
328 
329 /*
330  * Make get_phys_clock() return -EAGAIN.
331  */
332 static void disable_sync_clock(void *dummy)
333 {
334 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
335 	/*
336 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
337 	 * fail until the sync bit is turned back on. In addition
338 	 * increase the "sequence" counter to avoid the race of an
339 	 * stp event and the complete recovery against get_phys_clock.
340 	 */
341 	atomic_andnot(0x80000000, sw_ptr);
342 	atomic_inc(sw_ptr);
343 }
344 
345 /*
346  * Make get_phys_clock() return 0 again.
347  * Needs to be called from a context disabled for preemption.
348  */
349 static void enable_sync_clock(void)
350 {
351 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
352 	atomic_or(0x80000000, sw_ptr);
353 }
354 
355 /*
356  * Function to check if the clock is in sync.
357  */
358 static inline int check_sync_clock(void)
359 {
360 	atomic_t *sw_ptr;
361 	int rc;
362 
363 	sw_ptr = &get_cpu_var(clock_sync_word);
364 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
365 	put_cpu_var(clock_sync_word);
366 	return rc;
367 }
368 
369 /*
370  * Apply clock delta to the global data structures.
371  * This is called once on the CPU that performed the clock sync.
372  */
373 static void clock_sync_global(long delta)
374 {
375 	unsigned long now, adj;
376 	struct ptff_qto qto;
377 	int cs;
378 
379 	/* Fixup the monotonic sched clock. */
380 	tod_clock_base.eitod += delta;
381 	/* Adjust TOD steering parameters. */
382 	now = get_tod_clock();
383 	adj = tod_steering_end - now;
384 	if (unlikely((s64) adj >= 0))
385 		/* Calculate how much of the old adjustment is left. */
386 		tod_steering_delta = (tod_steering_delta < 0) ?
387 			-(adj >> 15) : (adj >> 15);
388 	tod_steering_delta += delta;
389 	if ((abs(tod_steering_delta) >> 48) != 0)
390 		panic("TOD clock sync offset %li is too large to drift\n",
391 		      tod_steering_delta);
392 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
393 	for (cs = 0; cs < CS_BASES; cs++) {
394 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
395 		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
396 	}
397 
398 	/* Update LPAR offset. */
399 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
400 		lpar_offset = qto.tod_epoch_difference;
401 	/* Call the TOD clock change notifier. */
402 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
403 }
404 
405 /*
406  * Apply clock delta to the per-CPU data structures of this CPU.
407  * This is called for each online CPU after the call to clock_sync_global.
408  */
409 static void clock_sync_local(long delta)
410 {
411 	/* Add the delta to the clock comparator. */
412 	if (get_lowcore()->clock_comparator != clock_comparator_max) {
413 		get_lowcore()->clock_comparator += delta;
414 		set_clock_comparator(get_lowcore()->clock_comparator);
415 	}
416 	/* Adjust the last_update_clock time-stamp. */
417 	get_lowcore()->last_update_clock += delta;
418 }
419 
420 /* Single threaded workqueue used for stp sync events */
421 static struct workqueue_struct *time_sync_wq;
422 
423 static void __init time_init_wq(void)
424 {
425 	if (time_sync_wq)
426 		return;
427 	time_sync_wq = create_singlethread_workqueue("timesync");
428 }
429 
430 struct clock_sync_data {
431 	atomic_t cpus;
432 	int in_sync;
433 	long clock_delta;
434 };
435 
436 /*
437  * Server Time Protocol (STP) code.
438  */
439 static bool stp_online;
440 static struct stp_sstpi stp_info;
441 static void *stp_page;
442 
443 static void stp_work_fn(struct work_struct *work);
444 static DECLARE_WORK(stp_work, stp_work_fn);
445 static struct timer_list stp_timer;
446 
447 static int __init early_parse_stp(char *p)
448 {
449 	return kstrtobool(p, &stp_online);
450 }
451 early_param("stp", early_parse_stp);
452 
453 /*
454  * Reset STP attachment.
455  */
456 static void __init stp_reset(void)
457 {
458 	int rc;
459 
460 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
461 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
462 	if (rc == 0)
463 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
464 	else if (stp_online) {
465 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
466 		free_page((unsigned long) stp_page);
467 		stp_page = NULL;
468 		stp_online = false;
469 	}
470 }
471 
472 bool stp_enabled(void)
473 {
474 	return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
475 }
476 EXPORT_SYMBOL(stp_enabled);
477 
478 static void stp_timeout(struct timer_list *unused)
479 {
480 	queue_work(time_sync_wq, &stp_work);
481 }
482 
483 static int __init stp_init(void)
484 {
485 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
486 		return 0;
487 	timer_setup(&stp_timer, stp_timeout, 0);
488 	time_init_wq();
489 	if (!stp_online)
490 		return 0;
491 	queue_work(time_sync_wq, &stp_work);
492 	return 0;
493 }
494 
495 arch_initcall(stp_init);
496 
497 /*
498  * STP timing alert. There are three causes:
499  * 1) timing status change
500  * 2) link availability change
501  * 3) time control parameter change
502  * In all three cases we are only interested in the clock source state.
503  * If a STP clock source is now available use it.
504  */
505 static void stp_timing_alert(struct stp_irq_parm *intparm)
506 {
507 	if (intparm->tsc || intparm->lac || intparm->tcpc)
508 		queue_work(time_sync_wq, &stp_work);
509 }
510 
511 /*
512  * STP sync check machine check. This is called when the timing state
513  * changes from the synchronized state to the unsynchronized state.
514  * After a STP sync check the clock is not in sync. The machine check
515  * is broadcasted to all cpus at the same time.
516  */
517 int stp_sync_check(void)
518 {
519 	disable_sync_clock(NULL);
520 	return 1;
521 }
522 
523 /*
524  * STP island condition machine check. This is called when an attached
525  * server  attempts to communicate over an STP link and the servers
526  * have matching CTN ids and have a valid stratum-1 configuration
527  * but the configurations do not match.
528  */
529 int stp_island_check(void)
530 {
531 	disable_sync_clock(NULL);
532 	return 1;
533 }
534 
535 void stp_queue_work(void)
536 {
537 	queue_work(time_sync_wq, &stp_work);
538 }
539 
540 static int __store_stpinfo(void)
541 {
542 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
543 
544 	if (rc)
545 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
546 	else
547 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
548 	return rc;
549 }
550 
551 static int stpinfo_valid(void)
552 {
553 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
554 }
555 
556 static int stp_sync_clock(void *data)
557 {
558 	struct clock_sync_data *sync = data;
559 	long clock_delta, flags;
560 	static int first;
561 	int rc;
562 
563 	enable_sync_clock();
564 	if (xchg(&first, 1) == 0) {
565 		/* Wait until all other cpus entered the sync function. */
566 		while (atomic_read(&sync->cpus) != 0)
567 			cpu_relax();
568 		rc = 0;
569 		if (stp_info.todoff || stp_info.tmd != 2) {
570 			flags = vdso_update_begin();
571 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
572 					&clock_delta);
573 			if (rc == 0) {
574 				sync->clock_delta = clock_delta;
575 				clock_sync_global(clock_delta);
576 				rc = __store_stpinfo();
577 				if (rc == 0 && stp_info.tmd != 2)
578 					rc = -EAGAIN;
579 			}
580 			vdso_update_end(flags);
581 		}
582 		sync->in_sync = rc ? -EAGAIN : 1;
583 		xchg(&first, 0);
584 	} else {
585 		/* Slave */
586 		atomic_dec(&sync->cpus);
587 		/* Wait for in_sync to be set. */
588 		while (READ_ONCE(sync->in_sync) == 0)
589 			__udelay(1);
590 	}
591 	if (sync->in_sync != 1)
592 		/* Didn't work. Clear per-cpu in sync bit again. */
593 		disable_sync_clock(NULL);
594 	/* Apply clock delta to per-CPU fields of this CPU. */
595 	clock_sync_local(sync->clock_delta);
596 
597 	return 0;
598 }
599 
600 static int stp_clear_leap(void)
601 {
602 	struct __kernel_timex txc;
603 	int ret;
604 
605 	memset(&txc, 0, sizeof(txc));
606 
607 	ret = do_adjtimex(&txc);
608 	if (ret < 0)
609 		return ret;
610 
611 	txc.modes = ADJ_STATUS;
612 	txc.status &= ~(STA_INS|STA_DEL);
613 	return do_adjtimex(&txc);
614 }
615 
616 static void stp_check_leap(void)
617 {
618 	struct stp_stzi stzi;
619 	struct stp_lsoib *lsoib = &stzi.lsoib;
620 	struct __kernel_timex txc;
621 	int64_t timediff;
622 	int leapdiff, ret;
623 
624 	if (!stp_info.lu || !check_sync_clock()) {
625 		/*
626 		 * Either a scheduled leap second was removed by the operator,
627 		 * or STP is out of sync. In both cases, clear the leap second
628 		 * kernel flags.
629 		 */
630 		if (stp_clear_leap() < 0)
631 			pr_err("failed to clear leap second flags\n");
632 		return;
633 	}
634 
635 	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
636 		pr_err("stzi failed\n");
637 		return;
638 	}
639 
640 	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
641 	leapdiff = lsoib->nlso - lsoib->also;
642 
643 	if (leapdiff != 1 && leapdiff != -1) {
644 		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
645 		return;
646 	}
647 
648 	if (timediff < 0) {
649 		if (stp_clear_leap() < 0)
650 			pr_err("failed to clear leap second flags\n");
651 	} else if (timediff < 7200) {
652 		memset(&txc, 0, sizeof(txc));
653 		ret = do_adjtimex(&txc);
654 		if (ret < 0)
655 			return;
656 
657 		txc.modes = ADJ_STATUS;
658 		if (leapdiff > 0)
659 			txc.status |= STA_INS;
660 		else
661 			txc.status |= STA_DEL;
662 		ret = do_adjtimex(&txc);
663 		if (ret < 0)
664 			pr_err("failed to set leap second flags\n");
665 		/* arm Timer to clear leap second flags */
666 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
667 	} else {
668 		/* The day the leap second is scheduled for hasn't been reached. Retry
669 		 * in one hour.
670 		 */
671 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
672 	}
673 }
674 
675 /*
676  * STP work. Check for the STP state and take over the clock
677  * synchronization if the STP clock source is usable.
678  */
679 static void stp_work_fn(struct work_struct *work)
680 {
681 	struct clock_sync_data stp_sync;
682 	int rc;
683 
684 	/* prevent multiple execution. */
685 	mutex_lock(&stp_mutex);
686 
687 	if (!stp_online) {
688 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
689 		del_timer_sync(&stp_timer);
690 		goto out_unlock;
691 	}
692 
693 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
694 	if (rc)
695 		goto out_unlock;
696 
697 	rc = __store_stpinfo();
698 	if (rc || stp_info.c == 0)
699 		goto out_unlock;
700 
701 	/* Skip synchronization if the clock is already in sync. */
702 	if (!check_sync_clock()) {
703 		memset(&stp_sync, 0, sizeof(stp_sync));
704 		cpus_read_lock();
705 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
706 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
707 		cpus_read_unlock();
708 	}
709 
710 	if (!check_sync_clock())
711 		/*
712 		 * There is a usable clock but the synchronization failed.
713 		 * Retry after a second.
714 		 */
715 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
716 	else if (stp_info.lu)
717 		stp_check_leap();
718 
719 out_unlock:
720 	mutex_unlock(&stp_mutex);
721 }
722 
723 /*
724  * STP subsys sysfs interface functions
725  */
726 static const struct bus_type stp_subsys = {
727 	.name		= "stp",
728 	.dev_name	= "stp",
729 };
730 
731 static ssize_t ctn_id_show(struct device *dev,
732 				struct device_attribute *attr,
733 				char *buf)
734 {
735 	ssize_t ret = -ENODATA;
736 
737 	mutex_lock(&stp_mutex);
738 	if (stpinfo_valid())
739 		ret = sprintf(buf, "%016lx\n",
740 			      *(unsigned long *) stp_info.ctnid);
741 	mutex_unlock(&stp_mutex);
742 	return ret;
743 }
744 
745 static DEVICE_ATTR_RO(ctn_id);
746 
747 static ssize_t ctn_type_show(struct device *dev,
748 				struct device_attribute *attr,
749 				char *buf)
750 {
751 	ssize_t ret = -ENODATA;
752 
753 	mutex_lock(&stp_mutex);
754 	if (stpinfo_valid())
755 		ret = sprintf(buf, "%i\n", stp_info.ctn);
756 	mutex_unlock(&stp_mutex);
757 	return ret;
758 }
759 
760 static DEVICE_ATTR_RO(ctn_type);
761 
762 static ssize_t dst_offset_show(struct device *dev,
763 				   struct device_attribute *attr,
764 				   char *buf)
765 {
766 	ssize_t ret = -ENODATA;
767 
768 	mutex_lock(&stp_mutex);
769 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
770 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
771 	mutex_unlock(&stp_mutex);
772 	return ret;
773 }
774 
775 static DEVICE_ATTR_RO(dst_offset);
776 
777 static ssize_t leap_seconds_show(struct device *dev,
778 					struct device_attribute *attr,
779 					char *buf)
780 {
781 	ssize_t ret = -ENODATA;
782 
783 	mutex_lock(&stp_mutex);
784 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
785 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
786 	mutex_unlock(&stp_mutex);
787 	return ret;
788 }
789 
790 static DEVICE_ATTR_RO(leap_seconds);
791 
792 static ssize_t leap_seconds_scheduled_show(struct device *dev,
793 						struct device_attribute *attr,
794 						char *buf)
795 {
796 	struct stp_stzi stzi;
797 	ssize_t ret;
798 
799 	mutex_lock(&stp_mutex);
800 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
801 		mutex_unlock(&stp_mutex);
802 		return -ENODATA;
803 	}
804 
805 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
806 	mutex_unlock(&stp_mutex);
807 	if (ret < 0)
808 		return ret;
809 
810 	if (!stzi.lsoib.p)
811 		return sprintf(buf, "0,0\n");
812 
813 	return sprintf(buf, "%lu,%d\n",
814 		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
815 		       stzi.lsoib.nlso - stzi.lsoib.also);
816 }
817 
818 static DEVICE_ATTR_RO(leap_seconds_scheduled);
819 
820 static ssize_t stratum_show(struct device *dev,
821 				struct device_attribute *attr,
822 				char *buf)
823 {
824 	ssize_t ret = -ENODATA;
825 
826 	mutex_lock(&stp_mutex);
827 	if (stpinfo_valid())
828 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
829 	mutex_unlock(&stp_mutex);
830 	return ret;
831 }
832 
833 static DEVICE_ATTR_RO(stratum);
834 
835 static ssize_t time_offset_show(struct device *dev,
836 				struct device_attribute *attr,
837 				char *buf)
838 {
839 	ssize_t ret = -ENODATA;
840 
841 	mutex_lock(&stp_mutex);
842 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
843 		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
844 	mutex_unlock(&stp_mutex);
845 	return ret;
846 }
847 
848 static DEVICE_ATTR_RO(time_offset);
849 
850 static ssize_t time_zone_offset_show(struct device *dev,
851 				struct device_attribute *attr,
852 				char *buf)
853 {
854 	ssize_t ret = -ENODATA;
855 
856 	mutex_lock(&stp_mutex);
857 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
858 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
859 	mutex_unlock(&stp_mutex);
860 	return ret;
861 }
862 
863 static DEVICE_ATTR_RO(time_zone_offset);
864 
865 static ssize_t timing_mode_show(struct device *dev,
866 				struct device_attribute *attr,
867 				char *buf)
868 {
869 	ssize_t ret = -ENODATA;
870 
871 	mutex_lock(&stp_mutex);
872 	if (stpinfo_valid())
873 		ret = sprintf(buf, "%i\n", stp_info.tmd);
874 	mutex_unlock(&stp_mutex);
875 	return ret;
876 }
877 
878 static DEVICE_ATTR_RO(timing_mode);
879 
880 static ssize_t timing_state_show(struct device *dev,
881 				struct device_attribute *attr,
882 				char *buf)
883 {
884 	ssize_t ret = -ENODATA;
885 
886 	mutex_lock(&stp_mutex);
887 	if (stpinfo_valid())
888 		ret = sprintf(buf, "%i\n", stp_info.tst);
889 	mutex_unlock(&stp_mutex);
890 	return ret;
891 }
892 
893 static DEVICE_ATTR_RO(timing_state);
894 
895 static ssize_t online_show(struct device *dev,
896 				struct device_attribute *attr,
897 				char *buf)
898 {
899 	return sprintf(buf, "%i\n", stp_online);
900 }
901 
902 static ssize_t online_store(struct device *dev,
903 				struct device_attribute *attr,
904 				const char *buf, size_t count)
905 {
906 	unsigned int value;
907 
908 	value = simple_strtoul(buf, NULL, 0);
909 	if (value != 0 && value != 1)
910 		return -EINVAL;
911 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
912 		return -EOPNOTSUPP;
913 	mutex_lock(&stp_mutex);
914 	stp_online = value;
915 	if (stp_online)
916 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
917 	else
918 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
919 	queue_work(time_sync_wq, &stp_work);
920 	mutex_unlock(&stp_mutex);
921 	return count;
922 }
923 
924 /*
925  * Can't use DEVICE_ATTR because the attribute should be named
926  * stp/online but dev_attr_online already exists in this file ..
927  */
928 static DEVICE_ATTR_RW(online);
929 
930 static struct attribute *stp_dev_attrs[] = {
931 	&dev_attr_ctn_id.attr,
932 	&dev_attr_ctn_type.attr,
933 	&dev_attr_dst_offset.attr,
934 	&dev_attr_leap_seconds.attr,
935 	&dev_attr_online.attr,
936 	&dev_attr_leap_seconds_scheduled.attr,
937 	&dev_attr_stratum.attr,
938 	&dev_attr_time_offset.attr,
939 	&dev_attr_time_zone_offset.attr,
940 	&dev_attr_timing_mode.attr,
941 	&dev_attr_timing_state.attr,
942 	NULL
943 };
944 ATTRIBUTE_GROUPS(stp_dev);
945 
946 static int __init stp_init_sysfs(void)
947 {
948 	return subsys_system_register(&stp_subsys, stp_dev_groups);
949 }
950 
951 device_initcall(stp_init_sysfs);
952