1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/sysdev.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/clocksource.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <asm/uaccess.h> 43 #include <asm/delay.h> 44 #include <asm/div64.h> 45 #include <asm/vdso.h> 46 #include <asm/irq.h> 47 #include <asm/irq_regs.h> 48 #include <asm/timer.h> 49 #include <asm/etr.h> 50 #include <asm/cio.h> 51 #include "entry.h" 52 53 /* change this if you have some constant time drift */ 54 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 56 57 u64 sched_clock_base_cc = -1; /* Force to data section. */ 58 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 59 60 static DEFINE_PER_CPU(struct clock_event_device, comparators); 61 62 /* 63 * Scheduler clock - returns current time in nanosec units. 64 */ 65 unsigned long long notrace __kprobes sched_clock(void) 66 { 67 return (get_clock_monotonic() * 125) >> 9; 68 } 69 70 /* 71 * Monotonic_clock - returns # of nanoseconds passed since time_init() 72 */ 73 unsigned long long monotonic_clock(void) 74 { 75 return sched_clock(); 76 } 77 EXPORT_SYMBOL(monotonic_clock); 78 79 void tod_to_timeval(__u64 todval, struct timespec *xt) 80 { 81 unsigned long long sec; 82 83 sec = todval >> 12; 84 do_div(sec, 1000000); 85 xt->tv_sec = sec; 86 todval -= (sec * 1000000) << 12; 87 xt->tv_nsec = ((todval * 1000) >> 12); 88 } 89 EXPORT_SYMBOL(tod_to_timeval); 90 91 void clock_comparator_work(void) 92 { 93 struct clock_event_device *cd; 94 95 S390_lowcore.clock_comparator = -1ULL; 96 set_clock_comparator(S390_lowcore.clock_comparator); 97 cd = &__get_cpu_var(comparators); 98 cd->event_handler(cd); 99 } 100 101 /* 102 * Fixup the clock comparator. 103 */ 104 static void fixup_clock_comparator(unsigned long long delta) 105 { 106 /* If nobody is waiting there's nothing to fix. */ 107 if (S390_lowcore.clock_comparator == -1ULL) 108 return; 109 S390_lowcore.clock_comparator += delta; 110 set_clock_comparator(S390_lowcore.clock_comparator); 111 } 112 113 static int s390_next_ktime(ktime_t expires, 114 struct clock_event_device *evt) 115 { 116 u64 nsecs; 117 118 nsecs = ktime_to_ns(ktime_sub(expires, ktime_get_monotonic_offset())); 119 do_div(nsecs, 125); 120 S390_lowcore.clock_comparator = TOD_UNIX_EPOCH + (nsecs << 9); 121 set_clock_comparator(S390_lowcore.clock_comparator); 122 return 0; 123 } 124 125 static void s390_set_mode(enum clock_event_mode mode, 126 struct clock_event_device *evt) 127 { 128 } 129 130 /* 131 * Set up lowcore and control register of the current cpu to 132 * enable TOD clock and clock comparator interrupts. 133 */ 134 void init_cpu_timer(void) 135 { 136 struct clock_event_device *cd; 137 int cpu; 138 139 S390_lowcore.clock_comparator = -1ULL; 140 set_clock_comparator(S390_lowcore.clock_comparator); 141 142 cpu = smp_processor_id(); 143 cd = &per_cpu(comparators, cpu); 144 cd->name = "comparator"; 145 cd->features = CLOCK_EVT_FEAT_ONESHOT | 146 CLOCK_EVT_FEAT_KTIME; 147 cd->mult = 16777; 148 cd->shift = 12; 149 cd->min_delta_ns = 1; 150 cd->max_delta_ns = LONG_MAX; 151 cd->rating = 400; 152 cd->cpumask = cpumask_of(cpu); 153 cd->set_next_ktime = s390_next_ktime; 154 cd->set_mode = s390_set_mode; 155 156 clockevents_register_device(cd); 157 158 /* Enable clock comparator timer interrupt. */ 159 __ctl_set_bit(0,11); 160 161 /* Always allow the timing alert external interrupt. */ 162 __ctl_set_bit(0, 4); 163 } 164 165 static void clock_comparator_interrupt(unsigned int ext_int_code, 166 unsigned int param32, 167 unsigned long param64) 168 { 169 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++; 170 if (S390_lowcore.clock_comparator == -1ULL) 171 set_clock_comparator(S390_lowcore.clock_comparator); 172 } 173 174 static void etr_timing_alert(struct etr_irq_parm *); 175 static void stp_timing_alert(struct stp_irq_parm *); 176 177 static void timing_alert_interrupt(unsigned int ext_int_code, 178 unsigned int param32, unsigned long param64) 179 { 180 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++; 181 if (param32 & 0x00c40000) 182 etr_timing_alert((struct etr_irq_parm *) ¶m32); 183 if (param32 & 0x00038000) 184 stp_timing_alert((struct stp_irq_parm *) ¶m32); 185 } 186 187 static void etr_reset(void); 188 static void stp_reset(void); 189 190 void read_persistent_clock(struct timespec *ts) 191 { 192 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts); 193 } 194 195 void read_boot_clock(struct timespec *ts) 196 { 197 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 198 } 199 200 static cycle_t read_tod_clock(struct clocksource *cs) 201 { 202 return get_clock(); 203 } 204 205 static struct clocksource clocksource_tod = { 206 .name = "tod", 207 .rating = 400, 208 .read = read_tod_clock, 209 .mask = -1ULL, 210 .mult = 1000, 211 .shift = 12, 212 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 213 }; 214 215 struct clocksource * __init clocksource_default_clock(void) 216 { 217 return &clocksource_tod; 218 } 219 220 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm, 221 struct clocksource *clock, u32 mult) 222 { 223 if (clock != &clocksource_tod) 224 return; 225 226 /* Make userspace gettimeofday spin until we're done. */ 227 ++vdso_data->tb_update_count; 228 smp_wmb(); 229 vdso_data->xtime_tod_stamp = clock->cycle_last; 230 vdso_data->xtime_clock_sec = wall_time->tv_sec; 231 vdso_data->xtime_clock_nsec = wall_time->tv_nsec; 232 vdso_data->wtom_clock_sec = wtm->tv_sec; 233 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 234 vdso_data->ntp_mult = mult; 235 smp_wmb(); 236 ++vdso_data->tb_update_count; 237 } 238 239 extern struct timezone sys_tz; 240 241 void update_vsyscall_tz(void) 242 { 243 /* Make userspace gettimeofday spin until we're done. */ 244 ++vdso_data->tb_update_count; 245 smp_wmb(); 246 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 247 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 248 smp_wmb(); 249 ++vdso_data->tb_update_count; 250 } 251 252 /* 253 * Initialize the TOD clock and the CPU timer of 254 * the boot cpu. 255 */ 256 void __init time_init(void) 257 { 258 /* Reset time synchronization interfaces. */ 259 etr_reset(); 260 stp_reset(); 261 262 /* request the clock comparator external interrupt */ 263 if (register_external_interrupt(0x1004, clock_comparator_interrupt)) 264 panic("Couldn't request external interrupt 0x1004"); 265 266 /* request the timing alert external interrupt */ 267 if (register_external_interrupt(0x1406, timing_alert_interrupt)) 268 panic("Couldn't request external interrupt 0x1406"); 269 270 if (clocksource_register(&clocksource_tod) != 0) 271 panic("Could not register TOD clock source"); 272 273 /* Enable TOD clock interrupts on the boot cpu. */ 274 init_cpu_timer(); 275 276 /* Enable cpu timer interrupts on the boot cpu. */ 277 vtime_init(); 278 } 279 280 /* 281 * The time is "clock". old is what we think the time is. 282 * Adjust the value by a multiple of jiffies and add the delta to ntp. 283 * "delay" is an approximation how long the synchronization took. If 284 * the time correction is positive, then "delay" is subtracted from 285 * the time difference and only the remaining part is passed to ntp. 286 */ 287 static unsigned long long adjust_time(unsigned long long old, 288 unsigned long long clock, 289 unsigned long long delay) 290 { 291 unsigned long long delta, ticks; 292 struct timex adjust; 293 294 if (clock > old) { 295 /* It is later than we thought. */ 296 delta = ticks = clock - old; 297 delta = ticks = (delta < delay) ? 0 : delta - delay; 298 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 299 adjust.offset = ticks * (1000000 / HZ); 300 } else { 301 /* It is earlier than we thought. */ 302 delta = ticks = old - clock; 303 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 304 delta = -delta; 305 adjust.offset = -ticks * (1000000 / HZ); 306 } 307 sched_clock_base_cc += delta; 308 if (adjust.offset != 0) { 309 pr_notice("The ETR interface has adjusted the clock " 310 "by %li microseconds\n", adjust.offset); 311 adjust.modes = ADJ_OFFSET_SINGLESHOT; 312 do_adjtimex(&adjust); 313 } 314 return delta; 315 } 316 317 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 318 static DEFINE_MUTEX(clock_sync_mutex); 319 static unsigned long clock_sync_flags; 320 321 #define CLOCK_SYNC_HAS_ETR 0 322 #define CLOCK_SYNC_HAS_STP 1 323 #define CLOCK_SYNC_ETR 2 324 #define CLOCK_SYNC_STP 3 325 326 /* 327 * The synchronous get_clock function. It will write the current clock 328 * value to the clock pointer and return 0 if the clock is in sync with 329 * the external time source. If the clock mode is local it will return 330 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 331 * reference. 332 */ 333 int get_sync_clock(unsigned long long *clock) 334 { 335 atomic_t *sw_ptr; 336 unsigned int sw0, sw1; 337 338 sw_ptr = &get_cpu_var(clock_sync_word); 339 sw0 = atomic_read(sw_ptr); 340 *clock = get_clock(); 341 sw1 = atomic_read(sw_ptr); 342 put_cpu_var(clock_sync_word); 343 if (sw0 == sw1 && (sw0 & 0x80000000U)) 344 /* Success: time is in sync. */ 345 return 0; 346 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 347 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 348 return -ENOSYS; 349 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 350 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 351 return -EACCES; 352 return -EAGAIN; 353 } 354 EXPORT_SYMBOL(get_sync_clock); 355 356 /* 357 * Make get_sync_clock return -EAGAIN. 358 */ 359 static void disable_sync_clock(void *dummy) 360 { 361 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 362 /* 363 * Clear the in-sync bit 2^31. All get_sync_clock calls will 364 * fail until the sync bit is turned back on. In addition 365 * increase the "sequence" counter to avoid the race of an 366 * etr event and the complete recovery against get_sync_clock. 367 */ 368 atomic_clear_mask(0x80000000, sw_ptr); 369 atomic_inc(sw_ptr); 370 } 371 372 /* 373 * Make get_sync_clock return 0 again. 374 * Needs to be called from a context disabled for preemption. 375 */ 376 static void enable_sync_clock(void) 377 { 378 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 379 atomic_set_mask(0x80000000, sw_ptr); 380 } 381 382 /* 383 * Function to check if the clock is in sync. 384 */ 385 static inline int check_sync_clock(void) 386 { 387 atomic_t *sw_ptr; 388 int rc; 389 390 sw_ptr = &get_cpu_var(clock_sync_word); 391 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 392 put_cpu_var(clock_sync_word); 393 return rc; 394 } 395 396 /* Single threaded workqueue used for etr and stp sync events */ 397 static struct workqueue_struct *time_sync_wq; 398 399 static void __init time_init_wq(void) 400 { 401 if (time_sync_wq) 402 return; 403 time_sync_wq = create_singlethread_workqueue("timesync"); 404 } 405 406 /* 407 * External Time Reference (ETR) code. 408 */ 409 static int etr_port0_online; 410 static int etr_port1_online; 411 static int etr_steai_available; 412 413 static int __init early_parse_etr(char *p) 414 { 415 if (strncmp(p, "off", 3) == 0) 416 etr_port0_online = etr_port1_online = 0; 417 else if (strncmp(p, "port0", 5) == 0) 418 etr_port0_online = 1; 419 else if (strncmp(p, "port1", 5) == 0) 420 etr_port1_online = 1; 421 else if (strncmp(p, "on", 2) == 0) 422 etr_port0_online = etr_port1_online = 1; 423 return 0; 424 } 425 early_param("etr", early_parse_etr); 426 427 enum etr_event { 428 ETR_EVENT_PORT0_CHANGE, 429 ETR_EVENT_PORT1_CHANGE, 430 ETR_EVENT_PORT_ALERT, 431 ETR_EVENT_SYNC_CHECK, 432 ETR_EVENT_SWITCH_LOCAL, 433 ETR_EVENT_UPDATE, 434 }; 435 436 /* 437 * Valid bit combinations of the eacr register are (x = don't care): 438 * e0 e1 dp p0 p1 ea es sl 439 * 0 0 x 0 0 0 0 0 initial, disabled state 440 * 0 0 x 0 1 1 0 0 port 1 online 441 * 0 0 x 1 0 1 0 0 port 0 online 442 * 0 0 x 1 1 1 0 0 both ports online 443 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 444 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 445 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 446 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 447 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 448 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 449 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 450 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 451 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 452 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 453 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 454 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 455 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 456 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 457 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 458 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 459 */ 460 static struct etr_eacr etr_eacr; 461 static u64 etr_tolec; /* time of last eacr update */ 462 static struct etr_aib etr_port0; 463 static int etr_port0_uptodate; 464 static struct etr_aib etr_port1; 465 static int etr_port1_uptodate; 466 static unsigned long etr_events; 467 static struct timer_list etr_timer; 468 469 static void etr_timeout(unsigned long dummy); 470 static void etr_work_fn(struct work_struct *work); 471 static DEFINE_MUTEX(etr_work_mutex); 472 static DECLARE_WORK(etr_work, etr_work_fn); 473 474 /* 475 * Reset ETR attachment. 476 */ 477 static void etr_reset(void) 478 { 479 etr_eacr = (struct etr_eacr) { 480 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 481 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 482 .es = 0, .sl = 0 }; 483 if (etr_setr(&etr_eacr) == 0) { 484 etr_tolec = get_clock(); 485 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 486 if (etr_port0_online && etr_port1_online) 487 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 488 } else if (etr_port0_online || etr_port1_online) { 489 pr_warning("The real or virtual hardware system does " 490 "not provide an ETR interface\n"); 491 etr_port0_online = etr_port1_online = 0; 492 } 493 } 494 495 static int __init etr_init(void) 496 { 497 struct etr_aib aib; 498 499 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 500 return 0; 501 time_init_wq(); 502 /* Check if this machine has the steai instruction. */ 503 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 504 etr_steai_available = 1; 505 setup_timer(&etr_timer, etr_timeout, 0UL); 506 if (etr_port0_online) { 507 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 508 queue_work(time_sync_wq, &etr_work); 509 } 510 if (etr_port1_online) { 511 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 512 queue_work(time_sync_wq, &etr_work); 513 } 514 return 0; 515 } 516 517 arch_initcall(etr_init); 518 519 /* 520 * Two sorts of ETR machine checks. The architecture reads: 521 * "When a machine-check niterruption occurs and if a switch-to-local or 522 * ETR-sync-check interrupt request is pending but disabled, this pending 523 * disabled interruption request is indicated and is cleared". 524 * Which means that we can get etr_switch_to_local events from the machine 525 * check handler although the interruption condition is disabled. Lovely.. 526 */ 527 528 /* 529 * Switch to local machine check. This is called when the last usable 530 * ETR port goes inactive. After switch to local the clock is not in sync. 531 */ 532 void etr_switch_to_local(void) 533 { 534 if (!etr_eacr.sl) 535 return; 536 disable_sync_clock(NULL); 537 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) { 538 etr_eacr.es = etr_eacr.sl = 0; 539 etr_setr(&etr_eacr); 540 queue_work(time_sync_wq, &etr_work); 541 } 542 } 543 544 /* 545 * ETR sync check machine check. This is called when the ETR OTE and the 546 * local clock OTE are farther apart than the ETR sync check tolerance. 547 * After a ETR sync check the clock is not in sync. The machine check 548 * is broadcasted to all cpus at the same time. 549 */ 550 void etr_sync_check(void) 551 { 552 if (!etr_eacr.es) 553 return; 554 disable_sync_clock(NULL); 555 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) { 556 etr_eacr.es = 0; 557 etr_setr(&etr_eacr); 558 queue_work(time_sync_wq, &etr_work); 559 } 560 } 561 562 /* 563 * ETR timing alert. There are two causes: 564 * 1) port state change, check the usability of the port 565 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 566 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 567 * or ETR-data word 4 (edf4) has changed. 568 */ 569 static void etr_timing_alert(struct etr_irq_parm *intparm) 570 { 571 if (intparm->pc0) 572 /* ETR port 0 state change. */ 573 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 574 if (intparm->pc1) 575 /* ETR port 1 state change. */ 576 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 577 if (intparm->eai) 578 /* 579 * ETR port alert on either port 0, 1 or both. 580 * Both ports are not up-to-date now. 581 */ 582 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 583 queue_work(time_sync_wq, &etr_work); 584 } 585 586 static void etr_timeout(unsigned long dummy) 587 { 588 set_bit(ETR_EVENT_UPDATE, &etr_events); 589 queue_work(time_sync_wq, &etr_work); 590 } 591 592 /* 593 * Check if the etr mode is pss. 594 */ 595 static inline int etr_mode_is_pps(struct etr_eacr eacr) 596 { 597 return eacr.es && !eacr.sl; 598 } 599 600 /* 601 * Check if the etr mode is etr. 602 */ 603 static inline int etr_mode_is_etr(struct etr_eacr eacr) 604 { 605 return eacr.es && eacr.sl; 606 } 607 608 /* 609 * Check if the port can be used for TOD synchronization. 610 * For PPS mode the port has to receive OTEs. For ETR mode 611 * the port has to receive OTEs, the ETR stepping bit has to 612 * be zero and the validity bits for data frame 1, 2, and 3 613 * have to be 1. 614 */ 615 static int etr_port_valid(struct etr_aib *aib, int port) 616 { 617 unsigned int psc; 618 619 /* Check that this port is receiving OTEs. */ 620 if (aib->tsp == 0) 621 return 0; 622 623 psc = port ? aib->esw.psc1 : aib->esw.psc0; 624 if (psc == etr_lpsc_pps_mode) 625 return 1; 626 if (psc == etr_lpsc_operational_step) 627 return !aib->esw.y && aib->slsw.v1 && 628 aib->slsw.v2 && aib->slsw.v3; 629 return 0; 630 } 631 632 /* 633 * Check if two ports are on the same network. 634 */ 635 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 636 { 637 // FIXME: any other fields we have to compare? 638 return aib1->edf1.net_id == aib2->edf1.net_id; 639 } 640 641 /* 642 * Wrapper for etr_stei that converts physical port states 643 * to logical port states to be consistent with the output 644 * of stetr (see etr_psc vs. etr_lpsc). 645 */ 646 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 647 { 648 BUG_ON(etr_steai(aib, func) != 0); 649 /* Convert port state to logical port state. */ 650 if (aib->esw.psc0 == 1) 651 aib->esw.psc0 = 2; 652 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 653 aib->esw.psc0 = 1; 654 if (aib->esw.psc1 == 1) 655 aib->esw.psc1 = 2; 656 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 657 aib->esw.psc1 = 1; 658 } 659 660 /* 661 * Check if the aib a2 is still connected to the same attachment as 662 * aib a1, the etv values differ by one and a2 is valid. 663 */ 664 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 665 { 666 int state_a1, state_a2; 667 668 /* Paranoia check: e0/e1 should better be the same. */ 669 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 670 a1->esw.eacr.e1 != a2->esw.eacr.e1) 671 return 0; 672 673 /* Still connected to the same etr ? */ 674 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 675 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 676 if (state_a1 == etr_lpsc_operational_step) { 677 if (state_a2 != etr_lpsc_operational_step || 678 a1->edf1.net_id != a2->edf1.net_id || 679 a1->edf1.etr_id != a2->edf1.etr_id || 680 a1->edf1.etr_pn != a2->edf1.etr_pn) 681 return 0; 682 } else if (state_a2 != etr_lpsc_pps_mode) 683 return 0; 684 685 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 686 if (a1->edf2.etv + 1 != a2->edf2.etv) 687 return 0; 688 689 if (!etr_port_valid(a2, p)) 690 return 0; 691 692 return 1; 693 } 694 695 struct clock_sync_data { 696 atomic_t cpus; 697 int in_sync; 698 unsigned long long fixup_cc; 699 int etr_port; 700 struct etr_aib *etr_aib; 701 }; 702 703 static void clock_sync_cpu(struct clock_sync_data *sync) 704 { 705 atomic_dec(&sync->cpus); 706 enable_sync_clock(); 707 /* 708 * This looks like a busy wait loop but it isn't. etr_sync_cpus 709 * is called on all other cpus while the TOD clocks is stopped. 710 * __udelay will stop the cpu on an enabled wait psw until the 711 * TOD is running again. 712 */ 713 while (sync->in_sync == 0) { 714 __udelay(1); 715 /* 716 * A different cpu changes *in_sync. Therefore use 717 * barrier() to force memory access. 718 */ 719 barrier(); 720 } 721 if (sync->in_sync != 1) 722 /* Didn't work. Clear per-cpu in sync bit again. */ 723 disable_sync_clock(NULL); 724 /* 725 * This round of TOD syncing is done. Set the clock comparator 726 * to the next tick and let the processor continue. 727 */ 728 fixup_clock_comparator(sync->fixup_cc); 729 } 730 731 /* 732 * Sync the TOD clock using the port referred to by aibp. This port 733 * has to be enabled and the other port has to be disabled. The 734 * last eacr update has to be more than 1.6 seconds in the past. 735 */ 736 static int etr_sync_clock(void *data) 737 { 738 static int first; 739 unsigned long long clock, old_clock, delay, delta; 740 struct clock_sync_data *etr_sync; 741 struct etr_aib *sync_port, *aib; 742 int port; 743 int rc; 744 745 etr_sync = data; 746 747 if (xchg(&first, 1) == 1) { 748 /* Slave */ 749 clock_sync_cpu(etr_sync); 750 return 0; 751 } 752 753 /* Wait until all other cpus entered the sync function. */ 754 while (atomic_read(&etr_sync->cpus) != 0) 755 cpu_relax(); 756 757 port = etr_sync->etr_port; 758 aib = etr_sync->etr_aib; 759 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 760 enable_sync_clock(); 761 762 /* Set clock to next OTE. */ 763 __ctl_set_bit(14, 21); 764 __ctl_set_bit(0, 29); 765 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 766 old_clock = get_clock(); 767 if (set_clock(clock) == 0) { 768 __udelay(1); /* Wait for the clock to start. */ 769 __ctl_clear_bit(0, 29); 770 __ctl_clear_bit(14, 21); 771 etr_stetr(aib); 772 /* Adjust Linux timing variables. */ 773 delay = (unsigned long long) 774 (aib->edf2.etv - sync_port->edf2.etv) << 32; 775 delta = adjust_time(old_clock, clock, delay); 776 etr_sync->fixup_cc = delta; 777 fixup_clock_comparator(delta); 778 /* Verify that the clock is properly set. */ 779 if (!etr_aib_follows(sync_port, aib, port)) { 780 /* Didn't work. */ 781 disable_sync_clock(NULL); 782 etr_sync->in_sync = -EAGAIN; 783 rc = -EAGAIN; 784 } else { 785 etr_sync->in_sync = 1; 786 rc = 0; 787 } 788 } else { 789 /* Could not set the clock ?!? */ 790 __ctl_clear_bit(0, 29); 791 __ctl_clear_bit(14, 21); 792 disable_sync_clock(NULL); 793 etr_sync->in_sync = -EAGAIN; 794 rc = -EAGAIN; 795 } 796 xchg(&first, 0); 797 return rc; 798 } 799 800 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 801 { 802 struct clock_sync_data etr_sync; 803 struct etr_aib *sync_port; 804 int follows; 805 int rc; 806 807 /* Check if the current aib is adjacent to the sync port aib. */ 808 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 809 follows = etr_aib_follows(sync_port, aib, port); 810 memcpy(sync_port, aib, sizeof(*aib)); 811 if (!follows) 812 return -EAGAIN; 813 memset(&etr_sync, 0, sizeof(etr_sync)); 814 etr_sync.etr_aib = aib; 815 etr_sync.etr_port = port; 816 get_online_cpus(); 817 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 818 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask); 819 put_online_cpus(); 820 return rc; 821 } 822 823 /* 824 * Handle the immediate effects of the different events. 825 * The port change event is used for online/offline changes. 826 */ 827 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 828 { 829 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 830 eacr.es = 0; 831 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 832 eacr.es = eacr.sl = 0; 833 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 834 etr_port0_uptodate = etr_port1_uptodate = 0; 835 836 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 837 if (eacr.e0) 838 /* 839 * Port change of an enabled port. We have to 840 * assume that this can have caused an stepping 841 * port switch. 842 */ 843 etr_tolec = get_clock(); 844 eacr.p0 = etr_port0_online; 845 if (!eacr.p0) 846 eacr.e0 = 0; 847 etr_port0_uptodate = 0; 848 } 849 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 850 if (eacr.e1) 851 /* 852 * Port change of an enabled port. We have to 853 * assume that this can have caused an stepping 854 * port switch. 855 */ 856 etr_tolec = get_clock(); 857 eacr.p1 = etr_port1_online; 858 if (!eacr.p1) 859 eacr.e1 = 0; 860 etr_port1_uptodate = 0; 861 } 862 clear_bit(ETR_EVENT_UPDATE, &etr_events); 863 return eacr; 864 } 865 866 /* 867 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 868 * one of the ports needs an update. 869 */ 870 static void etr_set_tolec_timeout(unsigned long long now) 871 { 872 unsigned long micros; 873 874 if ((!etr_eacr.p0 || etr_port0_uptodate) && 875 (!etr_eacr.p1 || etr_port1_uptodate)) 876 return; 877 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 878 micros = (micros > 1600000) ? 0 : 1600000 - micros; 879 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 880 } 881 882 /* 883 * Set up a time that expires after 1/2 second. 884 */ 885 static void etr_set_sync_timeout(void) 886 { 887 mod_timer(&etr_timer, jiffies + HZ/2); 888 } 889 890 /* 891 * Update the aib information for one or both ports. 892 */ 893 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 894 struct etr_eacr eacr) 895 { 896 /* With both ports disabled the aib information is useless. */ 897 if (!eacr.e0 && !eacr.e1) 898 return eacr; 899 900 /* Update port0 or port1 with aib stored in etr_work_fn. */ 901 if (aib->esw.q == 0) { 902 /* Information for port 0 stored. */ 903 if (eacr.p0 && !etr_port0_uptodate) { 904 etr_port0 = *aib; 905 if (etr_port0_online) 906 etr_port0_uptodate = 1; 907 } 908 } else { 909 /* Information for port 1 stored. */ 910 if (eacr.p1 && !etr_port1_uptodate) { 911 etr_port1 = *aib; 912 if (etr_port0_online) 913 etr_port1_uptodate = 1; 914 } 915 } 916 917 /* 918 * Do not try to get the alternate port aib if the clock 919 * is not in sync yet. 920 */ 921 if (!eacr.es || !check_sync_clock()) 922 return eacr; 923 924 /* 925 * If steai is available we can get the information about 926 * the other port immediately. If only stetr is available the 927 * data-port bit toggle has to be used. 928 */ 929 if (etr_steai_available) { 930 if (eacr.p0 && !etr_port0_uptodate) { 931 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 932 etr_port0_uptodate = 1; 933 } 934 if (eacr.p1 && !etr_port1_uptodate) { 935 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 936 etr_port1_uptodate = 1; 937 } 938 } else { 939 /* 940 * One port was updated above, if the other 941 * port is not uptodate toggle dp bit. 942 */ 943 if ((eacr.p0 && !etr_port0_uptodate) || 944 (eacr.p1 && !etr_port1_uptodate)) 945 eacr.dp ^= 1; 946 else 947 eacr.dp = 0; 948 } 949 return eacr; 950 } 951 952 /* 953 * Write new etr control register if it differs from the current one. 954 * Return 1 if etr_tolec has been updated as well. 955 */ 956 static void etr_update_eacr(struct etr_eacr eacr) 957 { 958 int dp_changed; 959 960 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 961 /* No change, return. */ 962 return; 963 /* 964 * The disable of an active port of the change of the data port 965 * bit can/will cause a change in the data port. 966 */ 967 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 968 (etr_eacr.dp ^ eacr.dp) != 0; 969 etr_eacr = eacr; 970 etr_setr(&etr_eacr); 971 if (dp_changed) 972 etr_tolec = get_clock(); 973 } 974 975 /* 976 * ETR work. In this function you'll find the main logic. In 977 * particular this is the only function that calls etr_update_eacr(), 978 * it "controls" the etr control register. 979 */ 980 static void etr_work_fn(struct work_struct *work) 981 { 982 unsigned long long now; 983 struct etr_eacr eacr; 984 struct etr_aib aib; 985 int sync_port; 986 987 /* prevent multiple execution. */ 988 mutex_lock(&etr_work_mutex); 989 990 /* Create working copy of etr_eacr. */ 991 eacr = etr_eacr; 992 993 /* Check for the different events and their immediate effects. */ 994 eacr = etr_handle_events(eacr); 995 996 /* Check if ETR is supposed to be active. */ 997 eacr.ea = eacr.p0 || eacr.p1; 998 if (!eacr.ea) { 999 /* Both ports offline. Reset everything. */ 1000 eacr.dp = eacr.es = eacr.sl = 0; 1001 on_each_cpu(disable_sync_clock, NULL, 1); 1002 del_timer_sync(&etr_timer); 1003 etr_update_eacr(eacr); 1004 goto out_unlock; 1005 } 1006 1007 /* Store aib to get the current ETR status word. */ 1008 BUG_ON(etr_stetr(&aib) != 0); 1009 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 1010 now = get_clock(); 1011 1012 /* 1013 * Update the port information if the last stepping port change 1014 * or data port change is older than 1.6 seconds. 1015 */ 1016 if (now >= etr_tolec + (1600000 << 12)) 1017 eacr = etr_handle_update(&aib, eacr); 1018 1019 /* 1020 * Select ports to enable. The preferred synchronization mode is PPS. 1021 * If a port can be enabled depends on a number of things: 1022 * 1) The port needs to be online and uptodate. A port is not 1023 * disabled just because it is not uptodate, but it is only 1024 * enabled if it is uptodate. 1025 * 2) The port needs to have the same mode (pps / etr). 1026 * 3) The port needs to be usable -> etr_port_valid() == 1 1027 * 4) To enable the second port the clock needs to be in sync. 1028 * 5) If both ports are useable and are ETR ports, the network id 1029 * has to be the same. 1030 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1031 */ 1032 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1033 eacr.sl = 0; 1034 eacr.e0 = 1; 1035 if (!etr_mode_is_pps(etr_eacr)) 1036 eacr.es = 0; 1037 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1038 eacr.e1 = 0; 1039 // FIXME: uptodate checks ? 1040 else if (etr_port0_uptodate && etr_port1_uptodate) 1041 eacr.e1 = 1; 1042 sync_port = (etr_port0_uptodate && 1043 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1044 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1045 eacr.sl = 0; 1046 eacr.e0 = 0; 1047 eacr.e1 = 1; 1048 if (!etr_mode_is_pps(etr_eacr)) 1049 eacr.es = 0; 1050 sync_port = (etr_port1_uptodate && 1051 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1052 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1053 eacr.sl = 1; 1054 eacr.e0 = 1; 1055 if (!etr_mode_is_etr(etr_eacr)) 1056 eacr.es = 0; 1057 if (!eacr.es || !eacr.p1 || 1058 aib.esw.psc1 != etr_lpsc_operational_alt) 1059 eacr.e1 = 0; 1060 else if (etr_port0_uptodate && etr_port1_uptodate && 1061 etr_compare_network(&etr_port0, &etr_port1)) 1062 eacr.e1 = 1; 1063 sync_port = (etr_port0_uptodate && 1064 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1065 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1066 eacr.sl = 1; 1067 eacr.e0 = 0; 1068 eacr.e1 = 1; 1069 if (!etr_mode_is_etr(etr_eacr)) 1070 eacr.es = 0; 1071 sync_port = (etr_port1_uptodate && 1072 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1073 } else { 1074 /* Both ports not usable. */ 1075 eacr.es = eacr.sl = 0; 1076 sync_port = -1; 1077 } 1078 1079 /* 1080 * If the clock is in sync just update the eacr and return. 1081 * If there is no valid sync port wait for a port update. 1082 */ 1083 if ((eacr.es && check_sync_clock()) || sync_port < 0) { 1084 etr_update_eacr(eacr); 1085 etr_set_tolec_timeout(now); 1086 goto out_unlock; 1087 } 1088 1089 /* 1090 * Prepare control register for clock syncing 1091 * (reset data port bit, set sync check control. 1092 */ 1093 eacr.dp = 0; 1094 eacr.es = 1; 1095 1096 /* 1097 * Update eacr and try to synchronize the clock. If the update 1098 * of eacr caused a stepping port switch (or if we have to 1099 * assume that a stepping port switch has occurred) or the 1100 * clock syncing failed, reset the sync check control bit 1101 * and set up a timer to try again after 0.5 seconds 1102 */ 1103 etr_update_eacr(eacr); 1104 if (now < etr_tolec + (1600000 << 12) || 1105 etr_sync_clock_stop(&aib, sync_port) != 0) { 1106 /* Sync failed. Try again in 1/2 second. */ 1107 eacr.es = 0; 1108 etr_update_eacr(eacr); 1109 etr_set_sync_timeout(); 1110 } else 1111 etr_set_tolec_timeout(now); 1112 out_unlock: 1113 mutex_unlock(&etr_work_mutex); 1114 } 1115 1116 /* 1117 * Sysfs interface functions 1118 */ 1119 static struct sysdev_class etr_sysclass = { 1120 .name = "etr", 1121 }; 1122 1123 static struct sys_device etr_port0_dev = { 1124 .id = 0, 1125 .cls = &etr_sysclass, 1126 }; 1127 1128 static struct sys_device etr_port1_dev = { 1129 .id = 1, 1130 .cls = &etr_sysclass, 1131 }; 1132 1133 /* 1134 * ETR class attributes 1135 */ 1136 static ssize_t etr_stepping_port_show(struct sysdev_class *class, 1137 struct sysdev_class_attribute *attr, 1138 char *buf) 1139 { 1140 return sprintf(buf, "%i\n", etr_port0.esw.p); 1141 } 1142 1143 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1144 1145 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, 1146 struct sysdev_class_attribute *attr, 1147 char *buf) 1148 { 1149 char *mode_str; 1150 1151 if (etr_mode_is_pps(etr_eacr)) 1152 mode_str = "pps"; 1153 else if (etr_mode_is_etr(etr_eacr)) 1154 mode_str = "etr"; 1155 else 1156 mode_str = "local"; 1157 return sprintf(buf, "%s\n", mode_str); 1158 } 1159 1160 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1161 1162 /* 1163 * ETR port attributes 1164 */ 1165 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) 1166 { 1167 if (dev == &etr_port0_dev) 1168 return etr_port0_online ? &etr_port0 : NULL; 1169 else 1170 return etr_port1_online ? &etr_port1 : NULL; 1171 } 1172 1173 static ssize_t etr_online_show(struct sys_device *dev, 1174 struct sysdev_attribute *attr, 1175 char *buf) 1176 { 1177 unsigned int online; 1178 1179 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1180 return sprintf(buf, "%i\n", online); 1181 } 1182 1183 static ssize_t etr_online_store(struct sys_device *dev, 1184 struct sysdev_attribute *attr, 1185 const char *buf, size_t count) 1186 { 1187 unsigned int value; 1188 1189 value = simple_strtoul(buf, NULL, 0); 1190 if (value != 0 && value != 1) 1191 return -EINVAL; 1192 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1193 return -EOPNOTSUPP; 1194 mutex_lock(&clock_sync_mutex); 1195 if (dev == &etr_port0_dev) { 1196 if (etr_port0_online == value) 1197 goto out; /* Nothing to do. */ 1198 etr_port0_online = value; 1199 if (etr_port0_online && etr_port1_online) 1200 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1201 else 1202 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1203 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1204 queue_work(time_sync_wq, &etr_work); 1205 } else { 1206 if (etr_port1_online == value) 1207 goto out; /* Nothing to do. */ 1208 etr_port1_online = value; 1209 if (etr_port0_online && etr_port1_online) 1210 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1211 else 1212 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1213 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1214 queue_work(time_sync_wq, &etr_work); 1215 } 1216 out: 1217 mutex_unlock(&clock_sync_mutex); 1218 return count; 1219 } 1220 1221 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); 1222 1223 static ssize_t etr_stepping_control_show(struct sys_device *dev, 1224 struct sysdev_attribute *attr, 1225 char *buf) 1226 { 1227 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1228 etr_eacr.e0 : etr_eacr.e1); 1229 } 1230 1231 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1232 1233 static ssize_t etr_mode_code_show(struct sys_device *dev, 1234 struct sysdev_attribute *attr, char *buf) 1235 { 1236 if (!etr_port0_online && !etr_port1_online) 1237 /* Status word is not uptodate if both ports are offline. */ 1238 return -ENODATA; 1239 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1240 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1241 } 1242 1243 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1244 1245 static ssize_t etr_untuned_show(struct sys_device *dev, 1246 struct sysdev_attribute *attr, char *buf) 1247 { 1248 struct etr_aib *aib = etr_aib_from_dev(dev); 1249 1250 if (!aib || !aib->slsw.v1) 1251 return -ENODATA; 1252 return sprintf(buf, "%i\n", aib->edf1.u); 1253 } 1254 1255 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); 1256 1257 static ssize_t etr_network_id_show(struct sys_device *dev, 1258 struct sysdev_attribute *attr, char *buf) 1259 { 1260 struct etr_aib *aib = etr_aib_from_dev(dev); 1261 1262 if (!aib || !aib->slsw.v1) 1263 return -ENODATA; 1264 return sprintf(buf, "%i\n", aib->edf1.net_id); 1265 } 1266 1267 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); 1268 1269 static ssize_t etr_id_show(struct sys_device *dev, 1270 struct sysdev_attribute *attr, char *buf) 1271 { 1272 struct etr_aib *aib = etr_aib_from_dev(dev); 1273 1274 if (!aib || !aib->slsw.v1) 1275 return -ENODATA; 1276 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1277 } 1278 1279 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); 1280 1281 static ssize_t etr_port_number_show(struct sys_device *dev, 1282 struct sysdev_attribute *attr, char *buf) 1283 { 1284 struct etr_aib *aib = etr_aib_from_dev(dev); 1285 1286 if (!aib || !aib->slsw.v1) 1287 return -ENODATA; 1288 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1289 } 1290 1291 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); 1292 1293 static ssize_t etr_coupled_show(struct sys_device *dev, 1294 struct sysdev_attribute *attr, char *buf) 1295 { 1296 struct etr_aib *aib = etr_aib_from_dev(dev); 1297 1298 if (!aib || !aib->slsw.v3) 1299 return -ENODATA; 1300 return sprintf(buf, "%i\n", aib->edf3.c); 1301 } 1302 1303 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); 1304 1305 static ssize_t etr_local_time_show(struct sys_device *dev, 1306 struct sysdev_attribute *attr, char *buf) 1307 { 1308 struct etr_aib *aib = etr_aib_from_dev(dev); 1309 1310 if (!aib || !aib->slsw.v3) 1311 return -ENODATA; 1312 return sprintf(buf, "%i\n", aib->edf3.blto); 1313 } 1314 1315 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); 1316 1317 static ssize_t etr_utc_offset_show(struct sys_device *dev, 1318 struct sysdev_attribute *attr, char *buf) 1319 { 1320 struct etr_aib *aib = etr_aib_from_dev(dev); 1321 1322 if (!aib || !aib->slsw.v3) 1323 return -ENODATA; 1324 return sprintf(buf, "%i\n", aib->edf3.buo); 1325 } 1326 1327 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1328 1329 static struct sysdev_attribute *etr_port_attributes[] = { 1330 &attr_online, 1331 &attr_stepping_control, 1332 &attr_state_code, 1333 &attr_untuned, 1334 &attr_network, 1335 &attr_id, 1336 &attr_port, 1337 &attr_coupled, 1338 &attr_local_time, 1339 &attr_utc_offset, 1340 NULL 1341 }; 1342 1343 static int __init etr_register_port(struct sys_device *dev) 1344 { 1345 struct sysdev_attribute **attr; 1346 int rc; 1347 1348 rc = sysdev_register(dev); 1349 if (rc) 1350 goto out; 1351 for (attr = etr_port_attributes; *attr; attr++) { 1352 rc = sysdev_create_file(dev, *attr); 1353 if (rc) 1354 goto out_unreg; 1355 } 1356 return 0; 1357 out_unreg: 1358 for (; attr >= etr_port_attributes; attr--) 1359 sysdev_remove_file(dev, *attr); 1360 sysdev_unregister(dev); 1361 out: 1362 return rc; 1363 } 1364 1365 static void __init etr_unregister_port(struct sys_device *dev) 1366 { 1367 struct sysdev_attribute **attr; 1368 1369 for (attr = etr_port_attributes; *attr; attr++) 1370 sysdev_remove_file(dev, *attr); 1371 sysdev_unregister(dev); 1372 } 1373 1374 static int __init etr_init_sysfs(void) 1375 { 1376 int rc; 1377 1378 rc = sysdev_class_register(&etr_sysclass); 1379 if (rc) 1380 goto out; 1381 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); 1382 if (rc) 1383 goto out_unreg_class; 1384 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); 1385 if (rc) 1386 goto out_remove_stepping_port; 1387 rc = etr_register_port(&etr_port0_dev); 1388 if (rc) 1389 goto out_remove_stepping_mode; 1390 rc = etr_register_port(&etr_port1_dev); 1391 if (rc) 1392 goto out_remove_port0; 1393 return 0; 1394 1395 out_remove_port0: 1396 etr_unregister_port(&etr_port0_dev); 1397 out_remove_stepping_mode: 1398 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); 1399 out_remove_stepping_port: 1400 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); 1401 out_unreg_class: 1402 sysdev_class_unregister(&etr_sysclass); 1403 out: 1404 return rc; 1405 } 1406 1407 device_initcall(etr_init_sysfs); 1408 1409 /* 1410 * Server Time Protocol (STP) code. 1411 */ 1412 static int stp_online; 1413 static struct stp_sstpi stp_info; 1414 static void *stp_page; 1415 1416 static void stp_work_fn(struct work_struct *work); 1417 static DEFINE_MUTEX(stp_work_mutex); 1418 static DECLARE_WORK(stp_work, stp_work_fn); 1419 static struct timer_list stp_timer; 1420 1421 static int __init early_parse_stp(char *p) 1422 { 1423 if (strncmp(p, "off", 3) == 0) 1424 stp_online = 0; 1425 else if (strncmp(p, "on", 2) == 0) 1426 stp_online = 1; 1427 return 0; 1428 } 1429 early_param("stp", early_parse_stp); 1430 1431 /* 1432 * Reset STP attachment. 1433 */ 1434 static void __init stp_reset(void) 1435 { 1436 int rc; 1437 1438 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1439 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1440 if (rc == 0) 1441 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1442 else if (stp_online) { 1443 pr_warning("The real or virtual hardware system does " 1444 "not provide an STP interface\n"); 1445 free_page((unsigned long) stp_page); 1446 stp_page = NULL; 1447 stp_online = 0; 1448 } 1449 } 1450 1451 static void stp_timeout(unsigned long dummy) 1452 { 1453 queue_work(time_sync_wq, &stp_work); 1454 } 1455 1456 static int __init stp_init(void) 1457 { 1458 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1459 return 0; 1460 setup_timer(&stp_timer, stp_timeout, 0UL); 1461 time_init_wq(); 1462 if (!stp_online) 1463 return 0; 1464 queue_work(time_sync_wq, &stp_work); 1465 return 0; 1466 } 1467 1468 arch_initcall(stp_init); 1469 1470 /* 1471 * STP timing alert. There are three causes: 1472 * 1) timing status change 1473 * 2) link availability change 1474 * 3) time control parameter change 1475 * In all three cases we are only interested in the clock source state. 1476 * If a STP clock source is now available use it. 1477 */ 1478 static void stp_timing_alert(struct stp_irq_parm *intparm) 1479 { 1480 if (intparm->tsc || intparm->lac || intparm->tcpc) 1481 queue_work(time_sync_wq, &stp_work); 1482 } 1483 1484 /* 1485 * STP sync check machine check. This is called when the timing state 1486 * changes from the synchronized state to the unsynchronized state. 1487 * After a STP sync check the clock is not in sync. The machine check 1488 * is broadcasted to all cpus at the same time. 1489 */ 1490 void stp_sync_check(void) 1491 { 1492 disable_sync_clock(NULL); 1493 queue_work(time_sync_wq, &stp_work); 1494 } 1495 1496 /* 1497 * STP island condition machine check. This is called when an attached 1498 * server attempts to communicate over an STP link and the servers 1499 * have matching CTN ids and have a valid stratum-1 configuration 1500 * but the configurations do not match. 1501 */ 1502 void stp_island_check(void) 1503 { 1504 disable_sync_clock(NULL); 1505 queue_work(time_sync_wq, &stp_work); 1506 } 1507 1508 1509 static int stp_sync_clock(void *data) 1510 { 1511 static int first; 1512 unsigned long long old_clock, delta; 1513 struct clock_sync_data *stp_sync; 1514 int rc; 1515 1516 stp_sync = data; 1517 1518 if (xchg(&first, 1) == 1) { 1519 /* Slave */ 1520 clock_sync_cpu(stp_sync); 1521 return 0; 1522 } 1523 1524 /* Wait until all other cpus entered the sync function. */ 1525 while (atomic_read(&stp_sync->cpus) != 0) 1526 cpu_relax(); 1527 1528 enable_sync_clock(); 1529 1530 rc = 0; 1531 if (stp_info.todoff[0] || stp_info.todoff[1] || 1532 stp_info.todoff[2] || stp_info.todoff[3] || 1533 stp_info.tmd != 2) { 1534 old_clock = get_clock(); 1535 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1536 if (rc == 0) { 1537 delta = adjust_time(old_clock, get_clock(), 0); 1538 fixup_clock_comparator(delta); 1539 rc = chsc_sstpi(stp_page, &stp_info, 1540 sizeof(struct stp_sstpi)); 1541 if (rc == 0 && stp_info.tmd != 2) 1542 rc = -EAGAIN; 1543 } 1544 } 1545 if (rc) { 1546 disable_sync_clock(NULL); 1547 stp_sync->in_sync = -EAGAIN; 1548 } else 1549 stp_sync->in_sync = 1; 1550 xchg(&first, 0); 1551 return 0; 1552 } 1553 1554 /* 1555 * STP work. Check for the STP state and take over the clock 1556 * synchronization if the STP clock source is usable. 1557 */ 1558 static void stp_work_fn(struct work_struct *work) 1559 { 1560 struct clock_sync_data stp_sync; 1561 int rc; 1562 1563 /* prevent multiple execution. */ 1564 mutex_lock(&stp_work_mutex); 1565 1566 if (!stp_online) { 1567 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1568 del_timer_sync(&stp_timer); 1569 goto out_unlock; 1570 } 1571 1572 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1573 if (rc) 1574 goto out_unlock; 1575 1576 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1577 if (rc || stp_info.c == 0) 1578 goto out_unlock; 1579 1580 /* Skip synchronization if the clock is already in sync. */ 1581 if (check_sync_clock()) 1582 goto out_unlock; 1583 1584 memset(&stp_sync, 0, sizeof(stp_sync)); 1585 get_online_cpus(); 1586 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1587 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 1588 put_online_cpus(); 1589 1590 if (!check_sync_clock()) 1591 /* 1592 * There is a usable clock but the synchonization failed. 1593 * Retry after a second. 1594 */ 1595 mod_timer(&stp_timer, jiffies + HZ); 1596 1597 out_unlock: 1598 mutex_unlock(&stp_work_mutex); 1599 } 1600 1601 /* 1602 * STP class sysfs interface functions 1603 */ 1604 static struct sysdev_class stp_sysclass = { 1605 .name = "stp", 1606 }; 1607 1608 static ssize_t stp_ctn_id_show(struct sysdev_class *class, 1609 struct sysdev_class_attribute *attr, 1610 char *buf) 1611 { 1612 if (!stp_online) 1613 return -ENODATA; 1614 return sprintf(buf, "%016llx\n", 1615 *(unsigned long long *) stp_info.ctnid); 1616 } 1617 1618 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1619 1620 static ssize_t stp_ctn_type_show(struct sysdev_class *class, 1621 struct sysdev_class_attribute *attr, 1622 char *buf) 1623 { 1624 if (!stp_online) 1625 return -ENODATA; 1626 return sprintf(buf, "%i\n", stp_info.ctn); 1627 } 1628 1629 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1630 1631 static ssize_t stp_dst_offset_show(struct sysdev_class *class, 1632 struct sysdev_class_attribute *attr, 1633 char *buf) 1634 { 1635 if (!stp_online || !(stp_info.vbits & 0x2000)) 1636 return -ENODATA; 1637 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1638 } 1639 1640 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1641 1642 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, 1643 struct sysdev_class_attribute *attr, 1644 char *buf) 1645 { 1646 if (!stp_online || !(stp_info.vbits & 0x8000)) 1647 return -ENODATA; 1648 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1649 } 1650 1651 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1652 1653 static ssize_t stp_stratum_show(struct sysdev_class *class, 1654 struct sysdev_class_attribute *attr, 1655 char *buf) 1656 { 1657 if (!stp_online) 1658 return -ENODATA; 1659 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1660 } 1661 1662 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); 1663 1664 static ssize_t stp_time_offset_show(struct sysdev_class *class, 1665 struct sysdev_class_attribute *attr, 1666 char *buf) 1667 { 1668 if (!stp_online || !(stp_info.vbits & 0x0800)) 1669 return -ENODATA; 1670 return sprintf(buf, "%i\n", (int) stp_info.tto); 1671 } 1672 1673 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1674 1675 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, 1676 struct sysdev_class_attribute *attr, 1677 char *buf) 1678 { 1679 if (!stp_online || !(stp_info.vbits & 0x4000)) 1680 return -ENODATA; 1681 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1682 } 1683 1684 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, 1685 stp_time_zone_offset_show, NULL); 1686 1687 static ssize_t stp_timing_mode_show(struct sysdev_class *class, 1688 struct sysdev_class_attribute *attr, 1689 char *buf) 1690 { 1691 if (!stp_online) 1692 return -ENODATA; 1693 return sprintf(buf, "%i\n", stp_info.tmd); 1694 } 1695 1696 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1697 1698 static ssize_t stp_timing_state_show(struct sysdev_class *class, 1699 struct sysdev_class_attribute *attr, 1700 char *buf) 1701 { 1702 if (!stp_online) 1703 return -ENODATA; 1704 return sprintf(buf, "%i\n", stp_info.tst); 1705 } 1706 1707 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1708 1709 static ssize_t stp_online_show(struct sysdev_class *class, 1710 struct sysdev_class_attribute *attr, 1711 char *buf) 1712 { 1713 return sprintf(buf, "%i\n", stp_online); 1714 } 1715 1716 static ssize_t stp_online_store(struct sysdev_class *class, 1717 struct sysdev_class_attribute *attr, 1718 const char *buf, size_t count) 1719 { 1720 unsigned int value; 1721 1722 value = simple_strtoul(buf, NULL, 0); 1723 if (value != 0 && value != 1) 1724 return -EINVAL; 1725 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1726 return -EOPNOTSUPP; 1727 mutex_lock(&clock_sync_mutex); 1728 stp_online = value; 1729 if (stp_online) 1730 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1731 else 1732 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1733 queue_work(time_sync_wq, &stp_work); 1734 mutex_unlock(&clock_sync_mutex); 1735 return count; 1736 } 1737 1738 /* 1739 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named 1740 * stp/online but attr_online already exists in this file .. 1741 */ 1742 static struct sysdev_class_attribute attr_stp_online = { 1743 .attr = { .name = "online", .mode = 0600 }, 1744 .show = stp_online_show, 1745 .store = stp_online_store, 1746 }; 1747 1748 static struct sysdev_class_attribute *stp_attributes[] = { 1749 &attr_ctn_id, 1750 &attr_ctn_type, 1751 &attr_dst_offset, 1752 &attr_leap_seconds, 1753 &attr_stp_online, 1754 &attr_stratum, 1755 &attr_time_offset, 1756 &attr_time_zone_offset, 1757 &attr_timing_mode, 1758 &attr_timing_state, 1759 NULL 1760 }; 1761 1762 static int __init stp_init_sysfs(void) 1763 { 1764 struct sysdev_class_attribute **attr; 1765 int rc; 1766 1767 rc = sysdev_class_register(&stp_sysclass); 1768 if (rc) 1769 goto out; 1770 for (attr = stp_attributes; *attr; attr++) { 1771 rc = sysdev_class_create_file(&stp_sysclass, *attr); 1772 if (rc) 1773 goto out_unreg; 1774 } 1775 return 0; 1776 out_unreg: 1777 for (; attr >= stp_attributes; attr--) 1778 sysdev_class_remove_file(&stp_sysclass, *attr); 1779 sysdev_class_unregister(&stp_sysclass); 1780 out: 1781 return rc; 1782 } 1783 1784 device_initcall(stp_init_sysfs); 1785