1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <vdso/vsyscall.h> 45 #include <vdso/clocksource.h> 46 #include <vdso/helpers.h> 47 #include <asm/facility.h> 48 #include <asm/delay.h> 49 #include <asm/div64.h> 50 #include <asm/vdso.h> 51 #include <asm/irq.h> 52 #include <asm/irq_regs.h> 53 #include <asm/vtimer.h> 54 #include <asm/stp.h> 55 #include <asm/cio.h> 56 #include "entry.h" 57 58 union tod_clock tod_clock_base __section(".data"); 59 EXPORT_SYMBOL_GPL(tod_clock_base); 60 61 u64 clock_comparator_max = -1ULL; 62 EXPORT_SYMBOL_GPL(clock_comparator_max); 63 64 static DEFINE_PER_CPU(struct clock_event_device, comparators); 65 66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 67 EXPORT_SYMBOL(s390_epoch_delta_notifier); 68 69 unsigned char ptff_function_mask[16]; 70 71 static unsigned long lpar_offset; 72 static unsigned long initial_leap_seconds; 73 static unsigned long tod_steering_end; 74 static long tod_steering_delta; 75 76 /* 77 * Get time offsets with PTFF 78 */ 79 void __init time_early_init(void) 80 { 81 struct ptff_qto qto; 82 struct ptff_qui qui; 83 int cs; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = tod_clock_base.tod; 87 for (cs = 0; cs < CS_BASES; cs++) 88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 89 90 if (!test_facility(28)) 91 return; 92 93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 94 95 /* get LPAR offset */ 96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 97 lpar_offset = qto.tod_epoch_difference; 98 99 /* get initial leap seconds */ 100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 101 initial_leap_seconds = (unsigned long) 102 ((long) qui.old_leap * 4096000000L); 103 } 104 105 unsigned long long noinstr sched_clock_noinstr(void) 106 { 107 return tod_to_ns(__get_tod_clock_monotonic()); 108 } 109 110 /* 111 * Scheduler clock - returns current time in nanosec units. 112 */ 113 unsigned long long notrace sched_clock(void) 114 { 115 return tod_to_ns(get_tod_clock_monotonic()); 116 } 117 NOKPROBE_SYMBOL(sched_clock); 118 119 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt) 120 { 121 unsigned long rem, sec, nsec; 122 123 sec = clk->us; 124 rem = do_div(sec, 1000000); 125 nsec = ((clk->sus + (rem << 12)) * 125) >> 9; 126 xt->tv_sec = sec; 127 xt->tv_nsec = nsec; 128 } 129 130 void clock_comparator_work(void) 131 { 132 struct clock_event_device *cd; 133 134 get_lowcore()->clock_comparator = clock_comparator_max; 135 cd = this_cpu_ptr(&comparators); 136 cd->event_handler(cd); 137 } 138 139 static int s390_next_event(unsigned long delta, 140 struct clock_event_device *evt) 141 { 142 get_lowcore()->clock_comparator = get_tod_clock() + delta; 143 set_clock_comparator(get_lowcore()->clock_comparator); 144 return 0; 145 } 146 147 /* 148 * Set up lowcore and control register of the current cpu to 149 * enable TOD clock and clock comparator interrupts. 150 */ 151 void init_cpu_timer(void) 152 { 153 struct clock_event_device *cd; 154 int cpu; 155 156 get_lowcore()->clock_comparator = clock_comparator_max; 157 set_clock_comparator(get_lowcore()->clock_comparator); 158 159 cpu = smp_processor_id(); 160 cd = &per_cpu(comparators, cpu); 161 cd->name = "comparator"; 162 cd->features = CLOCK_EVT_FEAT_ONESHOT; 163 cd->mult = 16777; 164 cd->shift = 12; 165 cd->min_delta_ns = 1; 166 cd->min_delta_ticks = 1; 167 cd->max_delta_ns = LONG_MAX; 168 cd->max_delta_ticks = ULONG_MAX; 169 cd->rating = 400; 170 cd->cpumask = cpumask_of(cpu); 171 cd->set_next_event = s390_next_event; 172 173 clockevents_register_device(cd); 174 175 /* Enable clock comparator timer interrupt. */ 176 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT); 177 178 /* Always allow the timing alert external interrupt. */ 179 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT); 180 } 181 182 static void clock_comparator_interrupt(struct ext_code ext_code, 183 unsigned int param32, 184 unsigned long param64) 185 { 186 inc_irq_stat(IRQEXT_CLK); 187 if (get_lowcore()->clock_comparator == clock_comparator_max) 188 set_clock_comparator(get_lowcore()->clock_comparator); 189 } 190 191 static void stp_timing_alert(struct stp_irq_parm *); 192 193 static void timing_alert_interrupt(struct ext_code ext_code, 194 unsigned int param32, unsigned long param64) 195 { 196 inc_irq_stat(IRQEXT_TLA); 197 if (param32 & 0x00038000) 198 stp_timing_alert((struct stp_irq_parm *) ¶m32); 199 } 200 201 static void stp_reset(void); 202 203 void read_persistent_clock64(struct timespec64 *ts) 204 { 205 union tod_clock clk; 206 u64 delta; 207 208 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 209 store_tod_clock_ext(&clk); 210 clk.eitod -= delta; 211 ext_to_timespec64(&clk, ts); 212 } 213 214 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 215 struct timespec64 *boot_offset) 216 { 217 struct timespec64 boot_time; 218 union tod_clock clk; 219 u64 delta; 220 221 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 222 clk = tod_clock_base; 223 clk.eitod -= delta; 224 ext_to_timespec64(&clk, &boot_time); 225 226 read_persistent_clock64(wall_time); 227 *boot_offset = timespec64_sub(*wall_time, boot_time); 228 } 229 230 static u64 read_tod_clock(struct clocksource *cs) 231 { 232 unsigned long now, adj; 233 234 preempt_disable(); /* protect from changes to steering parameters */ 235 now = get_tod_clock(); 236 adj = tod_steering_end - now; 237 if (unlikely((s64) adj > 0)) 238 /* 239 * manually steer by 1 cycle every 2^16 cycles. This 240 * corresponds to shifting the tod delta by 15. 1s is 241 * therefore steered in ~9h. The adjust will decrease 242 * over time, until it finally reaches 0. 243 */ 244 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 245 preempt_enable(); 246 return now; 247 } 248 249 static struct clocksource clocksource_tod = { 250 .name = "tod", 251 .rating = 400, 252 .read = read_tod_clock, 253 .mask = CLOCKSOURCE_MASK(64), 254 .mult = 4096000, 255 .shift = 24, 256 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 257 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 258 }; 259 260 struct clocksource * __init clocksource_default_clock(void) 261 { 262 return &clocksource_tod; 263 } 264 265 /* 266 * Initialize the TOD clock and the CPU timer of 267 * the boot cpu. 268 */ 269 void __init time_init(void) 270 { 271 /* Reset time synchronization interfaces. */ 272 stp_reset(); 273 274 /* request the clock comparator external interrupt */ 275 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 276 panic("Couldn't request external interrupt 0x1004"); 277 278 /* request the timing alert external interrupt */ 279 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 280 panic("Couldn't request external interrupt 0x1406"); 281 282 if (__clocksource_register(&clocksource_tod) != 0) 283 panic("Could not register TOD clock source"); 284 285 /* Enable TOD clock interrupts on the boot cpu. */ 286 init_cpu_timer(); 287 288 /* Enable cpu timer interrupts on the boot cpu. */ 289 vtime_init(); 290 } 291 292 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 293 static DEFINE_MUTEX(stp_mutex); 294 static unsigned long clock_sync_flags; 295 296 #define CLOCK_SYNC_HAS_STP 0 297 #define CLOCK_SYNC_STP 1 298 #define CLOCK_SYNC_STPINFO_VALID 2 299 300 /* 301 * The get_clock function for the physical clock. It will get the current 302 * TOD clock, subtract the LPAR offset and write the result to *clock. 303 * The function returns 0 if the clock is in sync with the external time 304 * source. If the clock mode is local it will return -EOPNOTSUPP and 305 * -EAGAIN if the clock is not in sync with the external reference. 306 */ 307 int get_phys_clock(unsigned long *clock) 308 { 309 atomic_t *sw_ptr; 310 unsigned int sw0, sw1; 311 312 sw_ptr = &get_cpu_var(clock_sync_word); 313 sw0 = atomic_read(sw_ptr); 314 *clock = get_tod_clock() - lpar_offset; 315 sw1 = atomic_read(sw_ptr); 316 put_cpu_var(clock_sync_word); 317 if (sw0 == sw1 && (sw0 & 0x80000000U)) 318 /* Success: time is in sync. */ 319 return 0; 320 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 321 return -EOPNOTSUPP; 322 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 323 return -EACCES; 324 return -EAGAIN; 325 } 326 EXPORT_SYMBOL(get_phys_clock); 327 328 /* 329 * Make get_phys_clock() return -EAGAIN. 330 */ 331 static void disable_sync_clock(void *dummy) 332 { 333 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 334 /* 335 * Clear the in-sync bit 2^31. All get_phys_clock calls will 336 * fail until the sync bit is turned back on. In addition 337 * increase the "sequence" counter to avoid the race of an 338 * stp event and the complete recovery against get_phys_clock. 339 */ 340 atomic_andnot(0x80000000, sw_ptr); 341 atomic_inc(sw_ptr); 342 } 343 344 /* 345 * Make get_phys_clock() return 0 again. 346 * Needs to be called from a context disabled for preemption. 347 */ 348 static void enable_sync_clock(void) 349 { 350 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 351 atomic_or(0x80000000, sw_ptr); 352 } 353 354 /* 355 * Function to check if the clock is in sync. 356 */ 357 static inline int check_sync_clock(void) 358 { 359 atomic_t *sw_ptr; 360 int rc; 361 362 sw_ptr = &get_cpu_var(clock_sync_word); 363 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 364 put_cpu_var(clock_sync_word); 365 return rc; 366 } 367 368 /* 369 * Apply clock delta to the global data structures. 370 * This is called once on the CPU that performed the clock sync. 371 */ 372 static void clock_sync_global(long delta) 373 { 374 unsigned long now, adj; 375 struct ptff_qto qto; 376 int cs; 377 378 /* Fixup the monotonic sched clock. */ 379 tod_clock_base.eitod += delta; 380 /* Adjust TOD steering parameters. */ 381 now = get_tod_clock(); 382 adj = tod_steering_end - now; 383 if (unlikely((s64) adj >= 0)) 384 /* Calculate how much of the old adjustment is left. */ 385 tod_steering_delta = (tod_steering_delta < 0) ? 386 -(adj >> 15) : (adj >> 15); 387 tod_steering_delta += delta; 388 if ((abs(tod_steering_delta) >> 48) != 0) 389 panic("TOD clock sync offset %li is too large to drift\n", 390 tod_steering_delta); 391 tod_steering_end = now + (abs(tod_steering_delta) << 15); 392 for (cs = 0; cs < CS_BASES; cs++) { 393 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end; 394 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta; 395 } 396 397 /* Update LPAR offset. */ 398 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 399 lpar_offset = qto.tod_epoch_difference; 400 /* Call the TOD clock change notifier. */ 401 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 402 } 403 404 /* 405 * Apply clock delta to the per-CPU data structures of this CPU. 406 * This is called for each online CPU after the call to clock_sync_global. 407 */ 408 static void clock_sync_local(long delta) 409 { 410 /* Add the delta to the clock comparator. */ 411 if (get_lowcore()->clock_comparator != clock_comparator_max) { 412 get_lowcore()->clock_comparator += delta; 413 set_clock_comparator(get_lowcore()->clock_comparator); 414 } 415 /* Adjust the last_update_clock time-stamp. */ 416 get_lowcore()->last_update_clock += delta; 417 } 418 419 /* Single threaded workqueue used for stp sync events */ 420 static struct workqueue_struct *time_sync_wq; 421 422 static void __init time_init_wq(void) 423 { 424 if (time_sync_wq) 425 return; 426 time_sync_wq = create_singlethread_workqueue("timesync"); 427 } 428 429 struct clock_sync_data { 430 atomic_t cpus; 431 int in_sync; 432 long clock_delta; 433 }; 434 435 /* 436 * Server Time Protocol (STP) code. 437 */ 438 static bool stp_online; 439 static struct stp_sstpi stp_info; 440 static void *stp_page; 441 442 static void stp_work_fn(struct work_struct *work); 443 static DECLARE_WORK(stp_work, stp_work_fn); 444 static struct timer_list stp_timer; 445 446 static int __init early_parse_stp(char *p) 447 { 448 return kstrtobool(p, &stp_online); 449 } 450 early_param("stp", early_parse_stp); 451 452 /* 453 * Reset STP attachment. 454 */ 455 static void __init stp_reset(void) 456 { 457 int rc; 458 459 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 460 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 461 if (rc == 0) 462 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 463 else if (stp_online) { 464 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 465 free_page((unsigned long) stp_page); 466 stp_page = NULL; 467 stp_online = false; 468 } 469 } 470 471 static void stp_timeout(struct timer_list *unused) 472 { 473 queue_work(time_sync_wq, &stp_work); 474 } 475 476 static int __init stp_init(void) 477 { 478 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 479 return 0; 480 timer_setup(&stp_timer, stp_timeout, 0); 481 time_init_wq(); 482 if (!stp_online) 483 return 0; 484 queue_work(time_sync_wq, &stp_work); 485 return 0; 486 } 487 488 arch_initcall(stp_init); 489 490 /* 491 * STP timing alert. There are three causes: 492 * 1) timing status change 493 * 2) link availability change 494 * 3) time control parameter change 495 * In all three cases we are only interested in the clock source state. 496 * If a STP clock source is now available use it. 497 */ 498 static void stp_timing_alert(struct stp_irq_parm *intparm) 499 { 500 if (intparm->tsc || intparm->lac || intparm->tcpc) 501 queue_work(time_sync_wq, &stp_work); 502 } 503 504 /* 505 * STP sync check machine check. This is called when the timing state 506 * changes from the synchronized state to the unsynchronized state. 507 * After a STP sync check the clock is not in sync. The machine check 508 * is broadcasted to all cpus at the same time. 509 */ 510 int stp_sync_check(void) 511 { 512 disable_sync_clock(NULL); 513 return 1; 514 } 515 516 /* 517 * STP island condition machine check. This is called when an attached 518 * server attempts to communicate over an STP link and the servers 519 * have matching CTN ids and have a valid stratum-1 configuration 520 * but the configurations do not match. 521 */ 522 int stp_island_check(void) 523 { 524 disable_sync_clock(NULL); 525 return 1; 526 } 527 528 void stp_queue_work(void) 529 { 530 queue_work(time_sync_wq, &stp_work); 531 } 532 533 static int __store_stpinfo(void) 534 { 535 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 536 537 if (rc) 538 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 539 else 540 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 541 return rc; 542 } 543 544 static int stpinfo_valid(void) 545 { 546 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 547 } 548 549 static int stp_sync_clock(void *data) 550 { 551 struct clock_sync_data *sync = data; 552 long clock_delta, flags; 553 static int first; 554 int rc; 555 556 enable_sync_clock(); 557 if (xchg(&first, 1) == 0) { 558 /* Wait until all other cpus entered the sync function. */ 559 while (atomic_read(&sync->cpus) != 0) 560 cpu_relax(); 561 rc = 0; 562 if (stp_info.todoff || stp_info.tmd != 2) { 563 flags = vdso_update_begin(); 564 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 565 &clock_delta); 566 if (rc == 0) { 567 sync->clock_delta = clock_delta; 568 clock_sync_global(clock_delta); 569 rc = __store_stpinfo(); 570 if (rc == 0 && stp_info.tmd != 2) 571 rc = -EAGAIN; 572 } 573 vdso_update_end(flags); 574 } 575 sync->in_sync = rc ? -EAGAIN : 1; 576 xchg(&first, 0); 577 } else { 578 /* Slave */ 579 atomic_dec(&sync->cpus); 580 /* Wait for in_sync to be set. */ 581 while (READ_ONCE(sync->in_sync) == 0) 582 __udelay(1); 583 } 584 if (sync->in_sync != 1) 585 /* Didn't work. Clear per-cpu in sync bit again. */ 586 disable_sync_clock(NULL); 587 /* Apply clock delta to per-CPU fields of this CPU. */ 588 clock_sync_local(sync->clock_delta); 589 590 return 0; 591 } 592 593 static int stp_clear_leap(void) 594 { 595 struct __kernel_timex txc; 596 int ret; 597 598 memset(&txc, 0, sizeof(txc)); 599 600 ret = do_adjtimex(&txc); 601 if (ret < 0) 602 return ret; 603 604 txc.modes = ADJ_STATUS; 605 txc.status &= ~(STA_INS|STA_DEL); 606 return do_adjtimex(&txc); 607 } 608 609 static void stp_check_leap(void) 610 { 611 struct stp_stzi stzi; 612 struct stp_lsoib *lsoib = &stzi.lsoib; 613 struct __kernel_timex txc; 614 int64_t timediff; 615 int leapdiff, ret; 616 617 if (!stp_info.lu || !check_sync_clock()) { 618 /* 619 * Either a scheduled leap second was removed by the operator, 620 * or STP is out of sync. In both cases, clear the leap second 621 * kernel flags. 622 */ 623 if (stp_clear_leap() < 0) 624 pr_err("failed to clear leap second flags\n"); 625 return; 626 } 627 628 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 629 pr_err("stzi failed\n"); 630 return; 631 } 632 633 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 634 leapdiff = lsoib->nlso - lsoib->also; 635 636 if (leapdiff != 1 && leapdiff != -1) { 637 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 638 return; 639 } 640 641 if (timediff < 0) { 642 if (stp_clear_leap() < 0) 643 pr_err("failed to clear leap second flags\n"); 644 } else if (timediff < 7200) { 645 memset(&txc, 0, sizeof(txc)); 646 ret = do_adjtimex(&txc); 647 if (ret < 0) 648 return; 649 650 txc.modes = ADJ_STATUS; 651 if (leapdiff > 0) 652 txc.status |= STA_INS; 653 else 654 txc.status |= STA_DEL; 655 ret = do_adjtimex(&txc); 656 if (ret < 0) 657 pr_err("failed to set leap second flags\n"); 658 /* arm Timer to clear leap second flags */ 659 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 660 } else { 661 /* The day the leap second is scheduled for hasn't been reached. Retry 662 * in one hour. 663 */ 664 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 665 } 666 } 667 668 /* 669 * STP work. Check for the STP state and take over the clock 670 * synchronization if the STP clock source is usable. 671 */ 672 static void stp_work_fn(struct work_struct *work) 673 { 674 struct clock_sync_data stp_sync; 675 int rc; 676 677 /* prevent multiple execution. */ 678 mutex_lock(&stp_mutex); 679 680 if (!stp_online) { 681 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 682 del_timer_sync(&stp_timer); 683 goto out_unlock; 684 } 685 686 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 687 if (rc) 688 goto out_unlock; 689 690 rc = __store_stpinfo(); 691 if (rc || stp_info.c == 0) 692 goto out_unlock; 693 694 /* Skip synchronization if the clock is already in sync. */ 695 if (!check_sync_clock()) { 696 memset(&stp_sync, 0, sizeof(stp_sync)); 697 cpus_read_lock(); 698 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 699 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 700 cpus_read_unlock(); 701 } 702 703 if (!check_sync_clock()) 704 /* 705 * There is a usable clock but the synchronization failed. 706 * Retry after a second. 707 */ 708 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 709 else if (stp_info.lu) 710 stp_check_leap(); 711 712 out_unlock: 713 mutex_unlock(&stp_mutex); 714 } 715 716 /* 717 * STP subsys sysfs interface functions 718 */ 719 static const struct bus_type stp_subsys = { 720 .name = "stp", 721 .dev_name = "stp", 722 }; 723 724 static ssize_t ctn_id_show(struct device *dev, 725 struct device_attribute *attr, 726 char *buf) 727 { 728 ssize_t ret = -ENODATA; 729 730 mutex_lock(&stp_mutex); 731 if (stpinfo_valid()) 732 ret = sprintf(buf, "%016lx\n", 733 *(unsigned long *) stp_info.ctnid); 734 mutex_unlock(&stp_mutex); 735 return ret; 736 } 737 738 static DEVICE_ATTR_RO(ctn_id); 739 740 static ssize_t ctn_type_show(struct device *dev, 741 struct device_attribute *attr, 742 char *buf) 743 { 744 ssize_t ret = -ENODATA; 745 746 mutex_lock(&stp_mutex); 747 if (stpinfo_valid()) 748 ret = sprintf(buf, "%i\n", stp_info.ctn); 749 mutex_unlock(&stp_mutex); 750 return ret; 751 } 752 753 static DEVICE_ATTR_RO(ctn_type); 754 755 static ssize_t dst_offset_show(struct device *dev, 756 struct device_attribute *attr, 757 char *buf) 758 { 759 ssize_t ret = -ENODATA; 760 761 mutex_lock(&stp_mutex); 762 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 763 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 764 mutex_unlock(&stp_mutex); 765 return ret; 766 } 767 768 static DEVICE_ATTR_RO(dst_offset); 769 770 static ssize_t leap_seconds_show(struct device *dev, 771 struct device_attribute *attr, 772 char *buf) 773 { 774 ssize_t ret = -ENODATA; 775 776 mutex_lock(&stp_mutex); 777 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 778 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 779 mutex_unlock(&stp_mutex); 780 return ret; 781 } 782 783 static DEVICE_ATTR_RO(leap_seconds); 784 785 static ssize_t leap_seconds_scheduled_show(struct device *dev, 786 struct device_attribute *attr, 787 char *buf) 788 { 789 struct stp_stzi stzi; 790 ssize_t ret; 791 792 mutex_lock(&stp_mutex); 793 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 794 mutex_unlock(&stp_mutex); 795 return -ENODATA; 796 } 797 798 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 799 mutex_unlock(&stp_mutex); 800 if (ret < 0) 801 return ret; 802 803 if (!stzi.lsoib.p) 804 return sprintf(buf, "0,0\n"); 805 806 return sprintf(buf, "%lu,%d\n", 807 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 808 stzi.lsoib.nlso - stzi.lsoib.also); 809 } 810 811 static DEVICE_ATTR_RO(leap_seconds_scheduled); 812 813 static ssize_t stratum_show(struct device *dev, 814 struct device_attribute *attr, 815 char *buf) 816 { 817 ssize_t ret = -ENODATA; 818 819 mutex_lock(&stp_mutex); 820 if (stpinfo_valid()) 821 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 822 mutex_unlock(&stp_mutex); 823 return ret; 824 } 825 826 static DEVICE_ATTR_RO(stratum); 827 828 static ssize_t time_offset_show(struct device *dev, 829 struct device_attribute *attr, 830 char *buf) 831 { 832 ssize_t ret = -ENODATA; 833 834 mutex_lock(&stp_mutex); 835 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 836 ret = sprintf(buf, "%i\n", (int) stp_info.tto); 837 mutex_unlock(&stp_mutex); 838 return ret; 839 } 840 841 static DEVICE_ATTR_RO(time_offset); 842 843 static ssize_t time_zone_offset_show(struct device *dev, 844 struct device_attribute *attr, 845 char *buf) 846 { 847 ssize_t ret = -ENODATA; 848 849 mutex_lock(&stp_mutex); 850 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 851 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 852 mutex_unlock(&stp_mutex); 853 return ret; 854 } 855 856 static DEVICE_ATTR_RO(time_zone_offset); 857 858 static ssize_t timing_mode_show(struct device *dev, 859 struct device_attribute *attr, 860 char *buf) 861 { 862 ssize_t ret = -ENODATA; 863 864 mutex_lock(&stp_mutex); 865 if (stpinfo_valid()) 866 ret = sprintf(buf, "%i\n", stp_info.tmd); 867 mutex_unlock(&stp_mutex); 868 return ret; 869 } 870 871 static DEVICE_ATTR_RO(timing_mode); 872 873 static ssize_t timing_state_show(struct device *dev, 874 struct device_attribute *attr, 875 char *buf) 876 { 877 ssize_t ret = -ENODATA; 878 879 mutex_lock(&stp_mutex); 880 if (stpinfo_valid()) 881 ret = sprintf(buf, "%i\n", stp_info.tst); 882 mutex_unlock(&stp_mutex); 883 return ret; 884 } 885 886 static DEVICE_ATTR_RO(timing_state); 887 888 static ssize_t online_show(struct device *dev, 889 struct device_attribute *attr, 890 char *buf) 891 { 892 return sprintf(buf, "%i\n", stp_online); 893 } 894 895 static ssize_t online_store(struct device *dev, 896 struct device_attribute *attr, 897 const char *buf, size_t count) 898 { 899 unsigned int value; 900 901 value = simple_strtoul(buf, NULL, 0); 902 if (value != 0 && value != 1) 903 return -EINVAL; 904 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 905 return -EOPNOTSUPP; 906 mutex_lock(&stp_mutex); 907 stp_online = value; 908 if (stp_online) 909 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 910 else 911 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 912 queue_work(time_sync_wq, &stp_work); 913 mutex_unlock(&stp_mutex); 914 return count; 915 } 916 917 /* 918 * Can't use DEVICE_ATTR because the attribute should be named 919 * stp/online but dev_attr_online already exists in this file .. 920 */ 921 static DEVICE_ATTR_RW(online); 922 923 static struct attribute *stp_dev_attrs[] = { 924 &dev_attr_ctn_id.attr, 925 &dev_attr_ctn_type.attr, 926 &dev_attr_dst_offset.attr, 927 &dev_attr_leap_seconds.attr, 928 &dev_attr_online.attr, 929 &dev_attr_leap_seconds_scheduled.attr, 930 &dev_attr_stratum.attr, 931 &dev_attr_time_offset.attr, 932 &dev_attr_time_zone_offset.attr, 933 &dev_attr_timing_mode.attr, 934 &dev_attr_timing_state.attr, 935 NULL 936 }; 937 ATTRIBUTE_GROUPS(stp_dev); 938 939 static int __init stp_init_sysfs(void) 940 { 941 return subsys_system_register(&stp_subsys, stp_dev_groups); 942 } 943 944 device_initcall(stp_init_sysfs); 945