xref: /linux/arch/s390/kernel/time.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <linux/bootmem.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
42 #include <asm/s390_ext.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/timer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 
51 /* change this if you have some constant time drift */
52 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
53 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
54 
55 /*
56  * Create a small time difference between the timer interrupts
57  * on the different cpus to avoid lock contention.
58  */
59 #define CPU_DEVIATION       (smp_processor_id() << 12)
60 
61 #define TICK_SIZE tick
62 
63 u64 sched_clock_base_cc = -1;	/* Force to data section. */
64 
65 static ext_int_info_t ext_int_info_cc;
66 static ext_int_info_t ext_int_etr_cc;
67 
68 static DEFINE_PER_CPU(struct clock_event_device, comparators);
69 
70 /*
71  * Scheduler clock - returns current time in nanosec units.
72  */
73 unsigned long long notrace sched_clock(void)
74 {
75 	return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9;
76 }
77 
78 /*
79  * Monotonic_clock - returns # of nanoseconds passed since time_init()
80  */
81 unsigned long long monotonic_clock(void)
82 {
83 	return sched_clock();
84 }
85 EXPORT_SYMBOL(monotonic_clock);
86 
87 void tod_to_timeval(__u64 todval, struct timespec *xtime)
88 {
89 	unsigned long long sec;
90 
91 	sec = todval >> 12;
92 	do_div(sec, 1000000);
93 	xtime->tv_sec = sec;
94 	todval -= (sec * 1000000) << 12;
95 	xtime->tv_nsec = ((todval * 1000) >> 12);
96 }
97 
98 void clock_comparator_work(void)
99 {
100 	struct clock_event_device *cd;
101 
102 	S390_lowcore.clock_comparator = -1ULL;
103 	set_clock_comparator(S390_lowcore.clock_comparator);
104 	cd = &__get_cpu_var(comparators);
105 	cd->event_handler(cd);
106 }
107 
108 /*
109  * Fixup the clock comparator.
110  */
111 static void fixup_clock_comparator(unsigned long long delta)
112 {
113 	/* If nobody is waiting there's nothing to fix. */
114 	if (S390_lowcore.clock_comparator == -1ULL)
115 		return;
116 	S390_lowcore.clock_comparator += delta;
117 	set_clock_comparator(S390_lowcore.clock_comparator);
118 }
119 
120 static int s390_next_event(unsigned long delta,
121 			   struct clock_event_device *evt)
122 {
123 	S390_lowcore.clock_comparator = get_clock() + delta;
124 	set_clock_comparator(S390_lowcore.clock_comparator);
125 	return 0;
126 }
127 
128 static void s390_set_mode(enum clock_event_mode mode,
129 			  struct clock_event_device *evt)
130 {
131 }
132 
133 /*
134  * Set up lowcore and control register of the current cpu to
135  * enable TOD clock and clock comparator interrupts.
136  */
137 void init_cpu_timer(void)
138 {
139 	struct clock_event_device *cd;
140 	int cpu;
141 
142 	S390_lowcore.clock_comparator = -1ULL;
143 	set_clock_comparator(S390_lowcore.clock_comparator);
144 
145 	cpu = smp_processor_id();
146 	cd = &per_cpu(comparators, cpu);
147 	cd->name		= "comparator";
148 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
149 	cd->mult		= 16777;
150 	cd->shift		= 12;
151 	cd->min_delta_ns	= 1;
152 	cd->max_delta_ns	= LONG_MAX;
153 	cd->rating		= 400;
154 	cd->cpumask		= cpumask_of(cpu);
155 	cd->set_next_event	= s390_next_event;
156 	cd->set_mode		= s390_set_mode;
157 
158 	clockevents_register_device(cd);
159 
160 	/* Enable clock comparator timer interrupt. */
161 	__ctl_set_bit(0,11);
162 
163 	/* Always allow the timing alert external interrupt. */
164 	__ctl_set_bit(0, 4);
165 }
166 
167 static void clock_comparator_interrupt(__u16 code)
168 {
169 	if (S390_lowcore.clock_comparator == -1ULL)
170 		set_clock_comparator(S390_lowcore.clock_comparator);
171 }
172 
173 static void etr_timing_alert(struct etr_irq_parm *);
174 static void stp_timing_alert(struct stp_irq_parm *);
175 
176 static void timing_alert_interrupt(__u16 code)
177 {
178 	if (S390_lowcore.ext_params & 0x00c40000)
179 		etr_timing_alert((struct etr_irq_parm *)
180 				 &S390_lowcore.ext_params);
181 	if (S390_lowcore.ext_params & 0x00038000)
182 		stp_timing_alert((struct stp_irq_parm *)
183 				 &S390_lowcore.ext_params);
184 }
185 
186 static void etr_reset(void);
187 static void stp_reset(void);
188 
189 unsigned long read_persistent_clock(void)
190 {
191 	struct timespec ts;
192 
193 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, &ts);
194 	return ts.tv_sec;
195 }
196 
197 static cycle_t read_tod_clock(struct clocksource *cs)
198 {
199 	return get_clock();
200 }
201 
202 static struct clocksource clocksource_tod = {
203 	.name		= "tod",
204 	.rating		= 400,
205 	.read		= read_tod_clock,
206 	.mask		= -1ULL,
207 	.mult		= 1000,
208 	.shift		= 12,
209 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211 
212 
213 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
214 {
215 	if (clock != &clocksource_tod)
216 		return;
217 
218 	/* Make userspace gettimeofday spin until we're done. */
219 	++vdso_data->tb_update_count;
220 	smp_wmb();
221 	vdso_data->xtime_tod_stamp = clock->cycle_last;
222 	vdso_data->xtime_clock_sec = xtime.tv_sec;
223 	vdso_data->xtime_clock_nsec = xtime.tv_nsec;
224 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
225 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
226 	smp_wmb();
227 	++vdso_data->tb_update_count;
228 }
229 
230 extern struct timezone sys_tz;
231 
232 void update_vsyscall_tz(void)
233 {
234 	/* Make userspace gettimeofday spin until we're done. */
235 	++vdso_data->tb_update_count;
236 	smp_wmb();
237 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
238 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
239 	smp_wmb();
240 	++vdso_data->tb_update_count;
241 }
242 
243 /*
244  * Initialize the TOD clock and the CPU timer of
245  * the boot cpu.
246  */
247 void __init time_init(void)
248 {
249 	struct timespec ts;
250 	unsigned long flags;
251 	cycle_t now;
252 
253 	/* Reset time synchronization interfaces. */
254 	etr_reset();
255 	stp_reset();
256 
257 	/* request the clock comparator external interrupt */
258 	if (register_early_external_interrupt(0x1004,
259 					      clock_comparator_interrupt,
260 					      &ext_int_info_cc) != 0)
261                 panic("Couldn't request external interrupt 0x1004");
262 
263 	/* request the timing alert external interrupt */
264 	if (register_early_external_interrupt(0x1406,
265 					      timing_alert_interrupt,
266 					      &ext_int_etr_cc) != 0)
267 		panic("Couldn't request external interrupt 0x1406");
268 
269 	if (clocksource_register(&clocksource_tod) != 0)
270 		panic("Could not register TOD clock source");
271 
272 	/*
273 	 * The TOD clock is an accurate clock. The xtime should be
274 	 * initialized in a way that the difference between TOD and
275 	 * xtime is reasonably small. Too bad that timekeeping_init
276 	 * sets xtime.tv_nsec to zero. In addition the clock source
277 	 * change from the jiffies clock source to the TOD clock
278 	 * source add another error of up to 1/HZ second. The same
279 	 * function sets wall_to_monotonic to a value that is too
280 	 * small for /proc/uptime to be accurate.
281 	 * Reset xtime and wall_to_monotonic to sane values.
282 	 */
283 	write_seqlock_irqsave(&xtime_lock, flags);
284 	now = get_clock();
285 	tod_to_timeval(now - TOD_UNIX_EPOCH, &xtime);
286 	clocksource_tod.cycle_last = now;
287 	clocksource_tod.raw_time = xtime;
288 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &ts);
289 	set_normalized_timespec(&wall_to_monotonic, -ts.tv_sec, -ts.tv_nsec);
290 	write_sequnlock_irqrestore(&xtime_lock, flags);
291 
292 	/* Enable TOD clock interrupts on the boot cpu. */
293 	init_cpu_timer();
294 
295 	/* Enable cpu timer interrupts on the boot cpu. */
296 	vtime_init();
297 }
298 
299 /*
300  * The time is "clock". old is what we think the time is.
301  * Adjust the value by a multiple of jiffies and add the delta to ntp.
302  * "delay" is an approximation how long the synchronization took. If
303  * the time correction is positive, then "delay" is subtracted from
304  * the time difference and only the remaining part is passed to ntp.
305  */
306 static unsigned long long adjust_time(unsigned long long old,
307 				      unsigned long long clock,
308 				      unsigned long long delay)
309 {
310 	unsigned long long delta, ticks;
311 	struct timex adjust;
312 
313 	if (clock > old) {
314 		/* It is later than we thought. */
315 		delta = ticks = clock - old;
316 		delta = ticks = (delta < delay) ? 0 : delta - delay;
317 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
318 		adjust.offset = ticks * (1000000 / HZ);
319 	} else {
320 		/* It is earlier than we thought. */
321 		delta = ticks = old - clock;
322 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
323 		delta = -delta;
324 		adjust.offset = -ticks * (1000000 / HZ);
325 	}
326 	sched_clock_base_cc += delta;
327 	if (adjust.offset != 0) {
328 		pr_notice("The ETR interface has adjusted the clock "
329 			  "by %li microseconds\n", adjust.offset);
330 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
331 		do_adjtimex(&adjust);
332 	}
333 	return delta;
334 }
335 
336 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
337 static DEFINE_MUTEX(clock_sync_mutex);
338 static unsigned long clock_sync_flags;
339 
340 #define CLOCK_SYNC_HAS_ETR	0
341 #define CLOCK_SYNC_HAS_STP	1
342 #define CLOCK_SYNC_ETR		2
343 #define CLOCK_SYNC_STP		3
344 
345 /*
346  * The synchronous get_clock function. It will write the current clock
347  * value to the clock pointer and return 0 if the clock is in sync with
348  * the external time source. If the clock mode is local it will return
349  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
350  * reference.
351  */
352 int get_sync_clock(unsigned long long *clock)
353 {
354 	atomic_t *sw_ptr;
355 	unsigned int sw0, sw1;
356 
357 	sw_ptr = &get_cpu_var(clock_sync_word);
358 	sw0 = atomic_read(sw_ptr);
359 	*clock = get_clock();
360 	sw1 = atomic_read(sw_ptr);
361 	put_cpu_var(clock_sync_sync);
362 	if (sw0 == sw1 && (sw0 & 0x80000000U))
363 		/* Success: time is in sync. */
364 		return 0;
365 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
366 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
367 		return -ENOSYS;
368 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
369 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
370 		return -EACCES;
371 	return -EAGAIN;
372 }
373 EXPORT_SYMBOL(get_sync_clock);
374 
375 /*
376  * Make get_sync_clock return -EAGAIN.
377  */
378 static void disable_sync_clock(void *dummy)
379 {
380 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
381 	/*
382 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
383 	 * fail until the sync bit is turned back on. In addition
384 	 * increase the "sequence" counter to avoid the race of an
385 	 * etr event and the complete recovery against get_sync_clock.
386 	 */
387 	atomic_clear_mask(0x80000000, sw_ptr);
388 	atomic_inc(sw_ptr);
389 }
390 
391 /*
392  * Make get_sync_clock return 0 again.
393  * Needs to be called from a context disabled for preemption.
394  */
395 static void enable_sync_clock(void)
396 {
397 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
398 	atomic_set_mask(0x80000000, sw_ptr);
399 }
400 
401 /*
402  * Function to check if the clock is in sync.
403  */
404 static inline int check_sync_clock(void)
405 {
406 	atomic_t *sw_ptr;
407 	int rc;
408 
409 	sw_ptr = &get_cpu_var(clock_sync_word);
410 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
411 	put_cpu_var(clock_sync_sync);
412 	return rc;
413 }
414 
415 /* Single threaded workqueue used for etr and stp sync events */
416 static struct workqueue_struct *time_sync_wq;
417 
418 static void __init time_init_wq(void)
419 {
420 	if (time_sync_wq)
421 		return;
422 	time_sync_wq = create_singlethread_workqueue("timesync");
423 	stop_machine_create();
424 }
425 
426 /*
427  * External Time Reference (ETR) code.
428  */
429 static int etr_port0_online;
430 static int etr_port1_online;
431 static int etr_steai_available;
432 
433 static int __init early_parse_etr(char *p)
434 {
435 	if (strncmp(p, "off", 3) == 0)
436 		etr_port0_online = etr_port1_online = 0;
437 	else if (strncmp(p, "port0", 5) == 0)
438 		etr_port0_online = 1;
439 	else if (strncmp(p, "port1", 5) == 0)
440 		etr_port1_online = 1;
441 	else if (strncmp(p, "on", 2) == 0)
442 		etr_port0_online = etr_port1_online = 1;
443 	return 0;
444 }
445 early_param("etr", early_parse_etr);
446 
447 enum etr_event {
448 	ETR_EVENT_PORT0_CHANGE,
449 	ETR_EVENT_PORT1_CHANGE,
450 	ETR_EVENT_PORT_ALERT,
451 	ETR_EVENT_SYNC_CHECK,
452 	ETR_EVENT_SWITCH_LOCAL,
453 	ETR_EVENT_UPDATE,
454 };
455 
456 /*
457  * Valid bit combinations of the eacr register are (x = don't care):
458  * e0 e1 dp p0 p1 ea es sl
459  *  0  0  x  0	0  0  0  0  initial, disabled state
460  *  0  0  x  0	1  1  0  0  port 1 online
461  *  0  0  x  1	0  1  0  0  port 0 online
462  *  0  0  x  1	1  1  0  0  both ports online
463  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
464  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
465  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
466  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
467  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
468  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
469  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
470  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
471  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
472  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
473  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
474  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
475  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
476  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
477  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
478  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
479  */
480 static struct etr_eacr etr_eacr;
481 static u64 etr_tolec;			/* time of last eacr update */
482 static struct etr_aib etr_port0;
483 static int etr_port0_uptodate;
484 static struct etr_aib etr_port1;
485 static int etr_port1_uptodate;
486 static unsigned long etr_events;
487 static struct timer_list etr_timer;
488 
489 static void etr_timeout(unsigned long dummy);
490 static void etr_work_fn(struct work_struct *work);
491 static DEFINE_MUTEX(etr_work_mutex);
492 static DECLARE_WORK(etr_work, etr_work_fn);
493 
494 /*
495  * Reset ETR attachment.
496  */
497 static void etr_reset(void)
498 {
499 	etr_eacr =  (struct etr_eacr) {
500 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
501 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
502 		.es = 0, .sl = 0 };
503 	if (etr_setr(&etr_eacr) == 0) {
504 		etr_tolec = get_clock();
505 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
506 		if (etr_port0_online && etr_port1_online)
507 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
508 	} else if (etr_port0_online || etr_port1_online) {
509 		pr_warning("The real or virtual hardware system does "
510 			   "not provide an ETR interface\n");
511 		etr_port0_online = etr_port1_online = 0;
512 	}
513 }
514 
515 static int __init etr_init(void)
516 {
517 	struct etr_aib aib;
518 
519 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
520 		return 0;
521 	time_init_wq();
522 	/* Check if this machine has the steai instruction. */
523 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
524 		etr_steai_available = 1;
525 	setup_timer(&etr_timer, etr_timeout, 0UL);
526 	if (etr_port0_online) {
527 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
528 		queue_work(time_sync_wq, &etr_work);
529 	}
530 	if (etr_port1_online) {
531 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
532 		queue_work(time_sync_wq, &etr_work);
533 	}
534 	return 0;
535 }
536 
537 arch_initcall(etr_init);
538 
539 /*
540  * Two sorts of ETR machine checks. The architecture reads:
541  * "When a machine-check niterruption occurs and if a switch-to-local or
542  *  ETR-sync-check interrupt request is pending but disabled, this pending
543  *  disabled interruption request is indicated and is cleared".
544  * Which means that we can get etr_switch_to_local events from the machine
545  * check handler although the interruption condition is disabled. Lovely..
546  */
547 
548 /*
549  * Switch to local machine check. This is called when the last usable
550  * ETR port goes inactive. After switch to local the clock is not in sync.
551  */
552 void etr_switch_to_local(void)
553 {
554 	if (!etr_eacr.sl)
555 		return;
556 	disable_sync_clock(NULL);
557 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
558 	queue_work(time_sync_wq, &etr_work);
559 }
560 
561 /*
562  * ETR sync check machine check. This is called when the ETR OTE and the
563  * local clock OTE are farther apart than the ETR sync check tolerance.
564  * After a ETR sync check the clock is not in sync. The machine check
565  * is broadcasted to all cpus at the same time.
566  */
567 void etr_sync_check(void)
568 {
569 	if (!etr_eacr.es)
570 		return;
571 	disable_sync_clock(NULL);
572 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
573 	queue_work(time_sync_wq, &etr_work);
574 }
575 
576 /*
577  * ETR timing alert. There are two causes:
578  * 1) port state change, check the usability of the port
579  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
580  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
581  *    or ETR-data word 4 (edf4) has changed.
582  */
583 static void etr_timing_alert(struct etr_irq_parm *intparm)
584 {
585 	if (intparm->pc0)
586 		/* ETR port 0 state change. */
587 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
588 	if (intparm->pc1)
589 		/* ETR port 1 state change. */
590 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
591 	if (intparm->eai)
592 		/*
593 		 * ETR port alert on either port 0, 1 or both.
594 		 * Both ports are not up-to-date now.
595 		 */
596 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
597 	queue_work(time_sync_wq, &etr_work);
598 }
599 
600 static void etr_timeout(unsigned long dummy)
601 {
602 	set_bit(ETR_EVENT_UPDATE, &etr_events);
603 	queue_work(time_sync_wq, &etr_work);
604 }
605 
606 /*
607  * Check if the etr mode is pss.
608  */
609 static inline int etr_mode_is_pps(struct etr_eacr eacr)
610 {
611 	return eacr.es && !eacr.sl;
612 }
613 
614 /*
615  * Check if the etr mode is etr.
616  */
617 static inline int etr_mode_is_etr(struct etr_eacr eacr)
618 {
619 	return eacr.es && eacr.sl;
620 }
621 
622 /*
623  * Check if the port can be used for TOD synchronization.
624  * For PPS mode the port has to receive OTEs. For ETR mode
625  * the port has to receive OTEs, the ETR stepping bit has to
626  * be zero and the validity bits for data frame 1, 2, and 3
627  * have to be 1.
628  */
629 static int etr_port_valid(struct etr_aib *aib, int port)
630 {
631 	unsigned int psc;
632 
633 	/* Check that this port is receiving OTEs. */
634 	if (aib->tsp == 0)
635 		return 0;
636 
637 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
638 	if (psc == etr_lpsc_pps_mode)
639 		return 1;
640 	if (psc == etr_lpsc_operational_step)
641 		return !aib->esw.y && aib->slsw.v1 &&
642 			aib->slsw.v2 && aib->slsw.v3;
643 	return 0;
644 }
645 
646 /*
647  * Check if two ports are on the same network.
648  */
649 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
650 {
651 	// FIXME: any other fields we have to compare?
652 	return aib1->edf1.net_id == aib2->edf1.net_id;
653 }
654 
655 /*
656  * Wrapper for etr_stei that converts physical port states
657  * to logical port states to be consistent with the output
658  * of stetr (see etr_psc vs. etr_lpsc).
659  */
660 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
661 {
662 	BUG_ON(etr_steai(aib, func) != 0);
663 	/* Convert port state to logical port state. */
664 	if (aib->esw.psc0 == 1)
665 		aib->esw.psc0 = 2;
666 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
667 		aib->esw.psc0 = 1;
668 	if (aib->esw.psc1 == 1)
669 		aib->esw.psc1 = 2;
670 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
671 		aib->esw.psc1 = 1;
672 }
673 
674 /*
675  * Check if the aib a2 is still connected to the same attachment as
676  * aib a1, the etv values differ by one and a2 is valid.
677  */
678 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
679 {
680 	int state_a1, state_a2;
681 
682 	/* Paranoia check: e0/e1 should better be the same. */
683 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
684 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
685 		return 0;
686 
687 	/* Still connected to the same etr ? */
688 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
689 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
690 	if (state_a1 == etr_lpsc_operational_step) {
691 		if (state_a2 != etr_lpsc_operational_step ||
692 		    a1->edf1.net_id != a2->edf1.net_id ||
693 		    a1->edf1.etr_id != a2->edf1.etr_id ||
694 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
695 			return 0;
696 	} else if (state_a2 != etr_lpsc_pps_mode)
697 		return 0;
698 
699 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
700 	if (a1->edf2.etv + 1 != a2->edf2.etv)
701 		return 0;
702 
703 	if (!etr_port_valid(a2, p))
704 		return 0;
705 
706 	return 1;
707 }
708 
709 struct clock_sync_data {
710 	atomic_t cpus;
711 	int in_sync;
712 	unsigned long long fixup_cc;
713 	int etr_port;
714 	struct etr_aib *etr_aib;
715 };
716 
717 static void clock_sync_cpu(struct clock_sync_data *sync)
718 {
719 	atomic_dec(&sync->cpus);
720 	enable_sync_clock();
721 	/*
722 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
723 	 * is called on all other cpus while the TOD clocks is stopped.
724 	 * __udelay will stop the cpu on an enabled wait psw until the
725 	 * TOD is running again.
726 	 */
727 	while (sync->in_sync == 0) {
728 		__udelay(1);
729 		/*
730 		 * A different cpu changes *in_sync. Therefore use
731 		 * barrier() to force memory access.
732 		 */
733 		barrier();
734 	}
735 	if (sync->in_sync != 1)
736 		/* Didn't work. Clear per-cpu in sync bit again. */
737 		disable_sync_clock(NULL);
738 	/*
739 	 * This round of TOD syncing is done. Set the clock comparator
740 	 * to the next tick and let the processor continue.
741 	 */
742 	fixup_clock_comparator(sync->fixup_cc);
743 }
744 
745 /*
746  * Sync the TOD clock using the port refered to by aibp. This port
747  * has to be enabled and the other port has to be disabled. The
748  * last eacr update has to be more than 1.6 seconds in the past.
749  */
750 static int etr_sync_clock(void *data)
751 {
752 	static int first;
753 	unsigned long long clock, old_clock, delay, delta;
754 	struct clock_sync_data *etr_sync;
755 	struct etr_aib *sync_port, *aib;
756 	int port;
757 	int rc;
758 
759 	etr_sync = data;
760 
761 	if (xchg(&first, 1) == 1) {
762 		/* Slave */
763 		clock_sync_cpu(etr_sync);
764 		return 0;
765 	}
766 
767 	/* Wait until all other cpus entered the sync function. */
768 	while (atomic_read(&etr_sync->cpus) != 0)
769 		cpu_relax();
770 
771 	port = etr_sync->etr_port;
772 	aib = etr_sync->etr_aib;
773 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
774 	enable_sync_clock();
775 
776 	/* Set clock to next OTE. */
777 	__ctl_set_bit(14, 21);
778 	__ctl_set_bit(0, 29);
779 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
780 	old_clock = get_clock();
781 	if (set_clock(clock) == 0) {
782 		__udelay(1);	/* Wait for the clock to start. */
783 		__ctl_clear_bit(0, 29);
784 		__ctl_clear_bit(14, 21);
785 		etr_stetr(aib);
786 		/* Adjust Linux timing variables. */
787 		delay = (unsigned long long)
788 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
789 		delta = adjust_time(old_clock, clock, delay);
790 		etr_sync->fixup_cc = delta;
791 		fixup_clock_comparator(delta);
792 		/* Verify that the clock is properly set. */
793 		if (!etr_aib_follows(sync_port, aib, port)) {
794 			/* Didn't work. */
795 			disable_sync_clock(NULL);
796 			etr_sync->in_sync = -EAGAIN;
797 			rc = -EAGAIN;
798 		} else {
799 			etr_sync->in_sync = 1;
800 			rc = 0;
801 		}
802 	} else {
803 		/* Could not set the clock ?!? */
804 		__ctl_clear_bit(0, 29);
805 		__ctl_clear_bit(14, 21);
806 		disable_sync_clock(NULL);
807 		etr_sync->in_sync = -EAGAIN;
808 		rc = -EAGAIN;
809 	}
810 	xchg(&first, 0);
811 	return rc;
812 }
813 
814 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
815 {
816 	struct clock_sync_data etr_sync;
817 	struct etr_aib *sync_port;
818 	int follows;
819 	int rc;
820 
821 	/* Check if the current aib is adjacent to the sync port aib. */
822 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
823 	follows = etr_aib_follows(sync_port, aib, port);
824 	memcpy(sync_port, aib, sizeof(*aib));
825 	if (!follows)
826 		return -EAGAIN;
827 	memset(&etr_sync, 0, sizeof(etr_sync));
828 	etr_sync.etr_aib = aib;
829 	etr_sync.etr_port = port;
830 	get_online_cpus();
831 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
832 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
833 	put_online_cpus();
834 	return rc;
835 }
836 
837 /*
838  * Handle the immediate effects of the different events.
839  * The port change event is used for online/offline changes.
840  */
841 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
842 {
843 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
844 		eacr.es = 0;
845 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
846 		eacr.es = eacr.sl = 0;
847 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
848 		etr_port0_uptodate = etr_port1_uptodate = 0;
849 
850 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
851 		if (eacr.e0)
852 			/*
853 			 * Port change of an enabled port. We have to
854 			 * assume that this can have caused an stepping
855 			 * port switch.
856 			 */
857 			etr_tolec = get_clock();
858 		eacr.p0 = etr_port0_online;
859 		if (!eacr.p0)
860 			eacr.e0 = 0;
861 		etr_port0_uptodate = 0;
862 	}
863 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
864 		if (eacr.e1)
865 			/*
866 			 * Port change of an enabled port. We have to
867 			 * assume that this can have caused an stepping
868 			 * port switch.
869 			 */
870 			etr_tolec = get_clock();
871 		eacr.p1 = etr_port1_online;
872 		if (!eacr.p1)
873 			eacr.e1 = 0;
874 		etr_port1_uptodate = 0;
875 	}
876 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
877 	return eacr;
878 }
879 
880 /*
881  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
882  * one of the ports needs an update.
883  */
884 static void etr_set_tolec_timeout(unsigned long long now)
885 {
886 	unsigned long micros;
887 
888 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
889 	    (!etr_eacr.p1 || etr_port1_uptodate))
890 		return;
891 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
892 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
893 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
894 }
895 
896 /*
897  * Set up a time that expires after 1/2 second.
898  */
899 static void etr_set_sync_timeout(void)
900 {
901 	mod_timer(&etr_timer, jiffies + HZ/2);
902 }
903 
904 /*
905  * Update the aib information for one or both ports.
906  */
907 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
908 					 struct etr_eacr eacr)
909 {
910 	/* With both ports disabled the aib information is useless. */
911 	if (!eacr.e0 && !eacr.e1)
912 		return eacr;
913 
914 	/* Update port0 or port1 with aib stored in etr_work_fn. */
915 	if (aib->esw.q == 0) {
916 		/* Information for port 0 stored. */
917 		if (eacr.p0 && !etr_port0_uptodate) {
918 			etr_port0 = *aib;
919 			if (etr_port0_online)
920 				etr_port0_uptodate = 1;
921 		}
922 	} else {
923 		/* Information for port 1 stored. */
924 		if (eacr.p1 && !etr_port1_uptodate) {
925 			etr_port1 = *aib;
926 			if (etr_port0_online)
927 				etr_port1_uptodate = 1;
928 		}
929 	}
930 
931 	/*
932 	 * Do not try to get the alternate port aib if the clock
933 	 * is not in sync yet.
934 	 */
935 	if (!check_sync_clock())
936 		return eacr;
937 
938 	/*
939 	 * If steai is available we can get the information about
940 	 * the other port immediately. If only stetr is available the
941 	 * data-port bit toggle has to be used.
942 	 */
943 	if (etr_steai_available) {
944 		if (eacr.p0 && !etr_port0_uptodate) {
945 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
946 			etr_port0_uptodate = 1;
947 		}
948 		if (eacr.p1 && !etr_port1_uptodate) {
949 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
950 			etr_port1_uptodate = 1;
951 		}
952 	} else {
953 		/*
954 		 * One port was updated above, if the other
955 		 * port is not uptodate toggle dp bit.
956 		 */
957 		if ((eacr.p0 && !etr_port0_uptodate) ||
958 		    (eacr.p1 && !etr_port1_uptodate))
959 			eacr.dp ^= 1;
960 		else
961 			eacr.dp = 0;
962 	}
963 	return eacr;
964 }
965 
966 /*
967  * Write new etr control register if it differs from the current one.
968  * Return 1 if etr_tolec has been updated as well.
969  */
970 static void etr_update_eacr(struct etr_eacr eacr)
971 {
972 	int dp_changed;
973 
974 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
975 		/* No change, return. */
976 		return;
977 	/*
978 	 * The disable of an active port of the change of the data port
979 	 * bit can/will cause a change in the data port.
980 	 */
981 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
982 		(etr_eacr.dp ^ eacr.dp) != 0;
983 	etr_eacr = eacr;
984 	etr_setr(&etr_eacr);
985 	if (dp_changed)
986 		etr_tolec = get_clock();
987 }
988 
989 /*
990  * ETR work. In this function you'll find the main logic. In
991  * particular this is the only function that calls etr_update_eacr(),
992  * it "controls" the etr control register.
993  */
994 static void etr_work_fn(struct work_struct *work)
995 {
996 	unsigned long long now;
997 	struct etr_eacr eacr;
998 	struct etr_aib aib;
999 	int sync_port;
1000 
1001 	/* prevent multiple execution. */
1002 	mutex_lock(&etr_work_mutex);
1003 
1004 	/* Create working copy of etr_eacr. */
1005 	eacr = etr_eacr;
1006 
1007 	/* Check for the different events and their immediate effects. */
1008 	eacr = etr_handle_events(eacr);
1009 
1010 	/* Check if ETR is supposed to be active. */
1011 	eacr.ea = eacr.p0 || eacr.p1;
1012 	if (!eacr.ea) {
1013 		/* Both ports offline. Reset everything. */
1014 		eacr.dp = eacr.es = eacr.sl = 0;
1015 		on_each_cpu(disable_sync_clock, NULL, 1);
1016 		del_timer_sync(&etr_timer);
1017 		etr_update_eacr(eacr);
1018 		goto out_unlock;
1019 	}
1020 
1021 	/* Store aib to get the current ETR status word. */
1022 	BUG_ON(etr_stetr(&aib) != 0);
1023 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1024 	now = get_clock();
1025 
1026 	/*
1027 	 * Update the port information if the last stepping port change
1028 	 * or data port change is older than 1.6 seconds.
1029 	 */
1030 	if (now >= etr_tolec + (1600000 << 12))
1031 		eacr = etr_handle_update(&aib, eacr);
1032 
1033 	/*
1034 	 * Select ports to enable. The prefered synchronization mode is PPS.
1035 	 * If a port can be enabled depends on a number of things:
1036 	 * 1) The port needs to be online and uptodate. A port is not
1037 	 *    disabled just because it is not uptodate, but it is only
1038 	 *    enabled if it is uptodate.
1039 	 * 2) The port needs to have the same mode (pps / etr).
1040 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1041 	 * 4) To enable the second port the clock needs to be in sync.
1042 	 * 5) If both ports are useable and are ETR ports, the network id
1043 	 *    has to be the same.
1044 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1045 	 */
1046 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1047 		eacr.sl = 0;
1048 		eacr.e0 = 1;
1049 		if (!etr_mode_is_pps(etr_eacr))
1050 			eacr.es = 0;
1051 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1052 			eacr.e1 = 0;
1053 		// FIXME: uptodate checks ?
1054 		else if (etr_port0_uptodate && etr_port1_uptodate)
1055 			eacr.e1 = 1;
1056 		sync_port = (etr_port0_uptodate &&
1057 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1058 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1059 		eacr.sl = 0;
1060 		eacr.e0 = 0;
1061 		eacr.e1 = 1;
1062 		if (!etr_mode_is_pps(etr_eacr))
1063 			eacr.es = 0;
1064 		sync_port = (etr_port1_uptodate &&
1065 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1066 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1067 		eacr.sl = 1;
1068 		eacr.e0 = 1;
1069 		if (!etr_mode_is_etr(etr_eacr))
1070 			eacr.es = 0;
1071 		if (!eacr.es || !eacr.p1 ||
1072 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1073 			eacr.e1 = 0;
1074 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1075 			 etr_compare_network(&etr_port0, &etr_port1))
1076 			eacr.e1 = 1;
1077 		sync_port = (etr_port0_uptodate &&
1078 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1079 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1080 		eacr.sl = 1;
1081 		eacr.e0 = 0;
1082 		eacr.e1 = 1;
1083 		if (!etr_mode_is_etr(etr_eacr))
1084 			eacr.es = 0;
1085 		sync_port = (etr_port1_uptodate &&
1086 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1087 	} else {
1088 		/* Both ports not usable. */
1089 		eacr.es = eacr.sl = 0;
1090 		sync_port = -1;
1091 	}
1092 
1093 	/*
1094 	 * If the clock is in sync just update the eacr and return.
1095 	 * If there is no valid sync port wait for a port update.
1096 	 */
1097 	if (check_sync_clock() || sync_port < 0) {
1098 		etr_update_eacr(eacr);
1099 		etr_set_tolec_timeout(now);
1100 		goto out_unlock;
1101 	}
1102 
1103 	/*
1104 	 * Prepare control register for clock syncing
1105 	 * (reset data port bit, set sync check control.
1106 	 */
1107 	eacr.dp = 0;
1108 	eacr.es = 1;
1109 
1110 	/*
1111 	 * Update eacr and try to synchronize the clock. If the update
1112 	 * of eacr caused a stepping port switch (or if we have to
1113 	 * assume that a stepping port switch has occured) or the
1114 	 * clock syncing failed, reset the sync check control bit
1115 	 * and set up a timer to try again after 0.5 seconds
1116 	 */
1117 	etr_update_eacr(eacr);
1118 	if (now < etr_tolec + (1600000 << 12) ||
1119 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1120 		/* Sync failed. Try again in 1/2 second. */
1121 		eacr.es = 0;
1122 		etr_update_eacr(eacr);
1123 		etr_set_sync_timeout();
1124 	} else
1125 		etr_set_tolec_timeout(now);
1126 out_unlock:
1127 	mutex_unlock(&etr_work_mutex);
1128 }
1129 
1130 /*
1131  * Sysfs interface functions
1132  */
1133 static struct sysdev_class etr_sysclass = {
1134 	.name	= "etr",
1135 };
1136 
1137 static struct sys_device etr_port0_dev = {
1138 	.id	= 0,
1139 	.cls	= &etr_sysclass,
1140 };
1141 
1142 static struct sys_device etr_port1_dev = {
1143 	.id	= 1,
1144 	.cls	= &etr_sysclass,
1145 };
1146 
1147 /*
1148  * ETR class attributes
1149  */
1150 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1151 {
1152 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1153 }
1154 
1155 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1156 
1157 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1158 {
1159 	char *mode_str;
1160 
1161 	if (etr_mode_is_pps(etr_eacr))
1162 		mode_str = "pps";
1163 	else if (etr_mode_is_etr(etr_eacr))
1164 		mode_str = "etr";
1165 	else
1166 		mode_str = "local";
1167 	return sprintf(buf, "%s\n", mode_str);
1168 }
1169 
1170 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1171 
1172 /*
1173  * ETR port attributes
1174  */
1175 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1176 {
1177 	if (dev == &etr_port0_dev)
1178 		return etr_port0_online ? &etr_port0 : NULL;
1179 	else
1180 		return etr_port1_online ? &etr_port1 : NULL;
1181 }
1182 
1183 static ssize_t etr_online_show(struct sys_device *dev,
1184 				struct sysdev_attribute *attr,
1185 				char *buf)
1186 {
1187 	unsigned int online;
1188 
1189 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1190 	return sprintf(buf, "%i\n", online);
1191 }
1192 
1193 static ssize_t etr_online_store(struct sys_device *dev,
1194 				struct sysdev_attribute *attr,
1195 				const char *buf, size_t count)
1196 {
1197 	unsigned int value;
1198 
1199 	value = simple_strtoul(buf, NULL, 0);
1200 	if (value != 0 && value != 1)
1201 		return -EINVAL;
1202 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1203 		return -EOPNOTSUPP;
1204 	mutex_lock(&clock_sync_mutex);
1205 	if (dev == &etr_port0_dev) {
1206 		if (etr_port0_online == value)
1207 			goto out;	/* Nothing to do. */
1208 		etr_port0_online = value;
1209 		if (etr_port0_online && etr_port1_online)
1210 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1211 		else
1212 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1213 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1214 		queue_work(time_sync_wq, &etr_work);
1215 	} else {
1216 		if (etr_port1_online == value)
1217 			goto out;	/* Nothing to do. */
1218 		etr_port1_online = value;
1219 		if (etr_port0_online && etr_port1_online)
1220 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1221 		else
1222 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1223 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1224 		queue_work(time_sync_wq, &etr_work);
1225 	}
1226 out:
1227 	mutex_unlock(&clock_sync_mutex);
1228 	return count;
1229 }
1230 
1231 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1232 
1233 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1234 					struct sysdev_attribute *attr,
1235 					char *buf)
1236 {
1237 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1238 		       etr_eacr.e0 : etr_eacr.e1);
1239 }
1240 
1241 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1242 
1243 static ssize_t etr_mode_code_show(struct sys_device *dev,
1244 				struct sysdev_attribute *attr, char *buf)
1245 {
1246 	if (!etr_port0_online && !etr_port1_online)
1247 		/* Status word is not uptodate if both ports are offline. */
1248 		return -ENODATA;
1249 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1250 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1251 }
1252 
1253 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1254 
1255 static ssize_t etr_untuned_show(struct sys_device *dev,
1256 				struct sysdev_attribute *attr, char *buf)
1257 {
1258 	struct etr_aib *aib = etr_aib_from_dev(dev);
1259 
1260 	if (!aib || !aib->slsw.v1)
1261 		return -ENODATA;
1262 	return sprintf(buf, "%i\n", aib->edf1.u);
1263 }
1264 
1265 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1266 
1267 static ssize_t etr_network_id_show(struct sys_device *dev,
1268 				struct sysdev_attribute *attr, char *buf)
1269 {
1270 	struct etr_aib *aib = etr_aib_from_dev(dev);
1271 
1272 	if (!aib || !aib->slsw.v1)
1273 		return -ENODATA;
1274 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1275 }
1276 
1277 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1278 
1279 static ssize_t etr_id_show(struct sys_device *dev,
1280 			struct sysdev_attribute *attr, char *buf)
1281 {
1282 	struct etr_aib *aib = etr_aib_from_dev(dev);
1283 
1284 	if (!aib || !aib->slsw.v1)
1285 		return -ENODATA;
1286 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1287 }
1288 
1289 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1290 
1291 static ssize_t etr_port_number_show(struct sys_device *dev,
1292 			struct sysdev_attribute *attr, char *buf)
1293 {
1294 	struct etr_aib *aib = etr_aib_from_dev(dev);
1295 
1296 	if (!aib || !aib->slsw.v1)
1297 		return -ENODATA;
1298 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1299 }
1300 
1301 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1302 
1303 static ssize_t etr_coupled_show(struct sys_device *dev,
1304 			struct sysdev_attribute *attr, char *buf)
1305 {
1306 	struct etr_aib *aib = etr_aib_from_dev(dev);
1307 
1308 	if (!aib || !aib->slsw.v3)
1309 		return -ENODATA;
1310 	return sprintf(buf, "%i\n", aib->edf3.c);
1311 }
1312 
1313 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1314 
1315 static ssize_t etr_local_time_show(struct sys_device *dev,
1316 			struct sysdev_attribute *attr, char *buf)
1317 {
1318 	struct etr_aib *aib = etr_aib_from_dev(dev);
1319 
1320 	if (!aib || !aib->slsw.v3)
1321 		return -ENODATA;
1322 	return sprintf(buf, "%i\n", aib->edf3.blto);
1323 }
1324 
1325 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1326 
1327 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1328 			struct sysdev_attribute *attr, char *buf)
1329 {
1330 	struct etr_aib *aib = etr_aib_from_dev(dev);
1331 
1332 	if (!aib || !aib->slsw.v3)
1333 		return -ENODATA;
1334 	return sprintf(buf, "%i\n", aib->edf3.buo);
1335 }
1336 
1337 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1338 
1339 static struct sysdev_attribute *etr_port_attributes[] = {
1340 	&attr_online,
1341 	&attr_stepping_control,
1342 	&attr_state_code,
1343 	&attr_untuned,
1344 	&attr_network,
1345 	&attr_id,
1346 	&attr_port,
1347 	&attr_coupled,
1348 	&attr_local_time,
1349 	&attr_utc_offset,
1350 	NULL
1351 };
1352 
1353 static int __init etr_register_port(struct sys_device *dev)
1354 {
1355 	struct sysdev_attribute **attr;
1356 	int rc;
1357 
1358 	rc = sysdev_register(dev);
1359 	if (rc)
1360 		goto out;
1361 	for (attr = etr_port_attributes; *attr; attr++) {
1362 		rc = sysdev_create_file(dev, *attr);
1363 		if (rc)
1364 			goto out_unreg;
1365 	}
1366 	return 0;
1367 out_unreg:
1368 	for (; attr >= etr_port_attributes; attr--)
1369 		sysdev_remove_file(dev, *attr);
1370 	sysdev_unregister(dev);
1371 out:
1372 	return rc;
1373 }
1374 
1375 static void __init etr_unregister_port(struct sys_device *dev)
1376 {
1377 	struct sysdev_attribute **attr;
1378 
1379 	for (attr = etr_port_attributes; *attr; attr++)
1380 		sysdev_remove_file(dev, *attr);
1381 	sysdev_unregister(dev);
1382 }
1383 
1384 static int __init etr_init_sysfs(void)
1385 {
1386 	int rc;
1387 
1388 	rc = sysdev_class_register(&etr_sysclass);
1389 	if (rc)
1390 		goto out;
1391 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1392 	if (rc)
1393 		goto out_unreg_class;
1394 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1395 	if (rc)
1396 		goto out_remove_stepping_port;
1397 	rc = etr_register_port(&etr_port0_dev);
1398 	if (rc)
1399 		goto out_remove_stepping_mode;
1400 	rc = etr_register_port(&etr_port1_dev);
1401 	if (rc)
1402 		goto out_remove_port0;
1403 	return 0;
1404 
1405 out_remove_port0:
1406 	etr_unregister_port(&etr_port0_dev);
1407 out_remove_stepping_mode:
1408 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1409 out_remove_stepping_port:
1410 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1411 out_unreg_class:
1412 	sysdev_class_unregister(&etr_sysclass);
1413 out:
1414 	return rc;
1415 }
1416 
1417 device_initcall(etr_init_sysfs);
1418 
1419 /*
1420  * Server Time Protocol (STP) code.
1421  */
1422 static int stp_online;
1423 static struct stp_sstpi stp_info;
1424 static void *stp_page;
1425 
1426 static void stp_work_fn(struct work_struct *work);
1427 static DEFINE_MUTEX(stp_work_mutex);
1428 static DECLARE_WORK(stp_work, stp_work_fn);
1429 static struct timer_list stp_timer;
1430 
1431 static int __init early_parse_stp(char *p)
1432 {
1433 	if (strncmp(p, "off", 3) == 0)
1434 		stp_online = 0;
1435 	else if (strncmp(p, "on", 2) == 0)
1436 		stp_online = 1;
1437 	return 0;
1438 }
1439 early_param("stp", early_parse_stp);
1440 
1441 /*
1442  * Reset STP attachment.
1443  */
1444 static void __init stp_reset(void)
1445 {
1446 	int rc;
1447 
1448 	stp_page = alloc_bootmem_pages(PAGE_SIZE);
1449 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1450 	if (rc == 0)
1451 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1452 	else if (stp_online) {
1453 		pr_warning("The real or virtual hardware system does "
1454 			   "not provide an STP interface\n");
1455 		free_bootmem((unsigned long) stp_page, PAGE_SIZE);
1456 		stp_page = NULL;
1457 		stp_online = 0;
1458 	}
1459 }
1460 
1461 static void stp_timeout(unsigned long dummy)
1462 {
1463 	queue_work(time_sync_wq, &stp_work);
1464 }
1465 
1466 static int __init stp_init(void)
1467 {
1468 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1469 		return 0;
1470 	setup_timer(&stp_timer, stp_timeout, 0UL);
1471 	time_init_wq();
1472 	if (!stp_online)
1473 		return 0;
1474 	queue_work(time_sync_wq, &stp_work);
1475 	return 0;
1476 }
1477 
1478 arch_initcall(stp_init);
1479 
1480 /*
1481  * STP timing alert. There are three causes:
1482  * 1) timing status change
1483  * 2) link availability change
1484  * 3) time control parameter change
1485  * In all three cases we are only interested in the clock source state.
1486  * If a STP clock source is now available use it.
1487  */
1488 static void stp_timing_alert(struct stp_irq_parm *intparm)
1489 {
1490 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1491 		queue_work(time_sync_wq, &stp_work);
1492 }
1493 
1494 /*
1495  * STP sync check machine check. This is called when the timing state
1496  * changes from the synchronized state to the unsynchronized state.
1497  * After a STP sync check the clock is not in sync. The machine check
1498  * is broadcasted to all cpus at the same time.
1499  */
1500 void stp_sync_check(void)
1501 {
1502 	disable_sync_clock(NULL);
1503 	queue_work(time_sync_wq, &stp_work);
1504 }
1505 
1506 /*
1507  * STP island condition machine check. This is called when an attached
1508  * server  attempts to communicate over an STP link and the servers
1509  * have matching CTN ids and have a valid stratum-1 configuration
1510  * but the configurations do not match.
1511  */
1512 void stp_island_check(void)
1513 {
1514 	disable_sync_clock(NULL);
1515 	queue_work(time_sync_wq, &stp_work);
1516 }
1517 
1518 
1519 static int stp_sync_clock(void *data)
1520 {
1521 	static int first;
1522 	unsigned long long old_clock, delta;
1523 	struct clock_sync_data *stp_sync;
1524 	int rc;
1525 
1526 	stp_sync = data;
1527 
1528 	if (xchg(&first, 1) == 1) {
1529 		/* Slave */
1530 		clock_sync_cpu(stp_sync);
1531 		return 0;
1532 	}
1533 
1534 	/* Wait until all other cpus entered the sync function. */
1535 	while (atomic_read(&stp_sync->cpus) != 0)
1536 		cpu_relax();
1537 
1538 	enable_sync_clock();
1539 
1540 	rc = 0;
1541 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1542 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1543 	    stp_info.tmd != 2) {
1544 		old_clock = get_clock();
1545 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1546 		if (rc == 0) {
1547 			delta = adjust_time(old_clock, get_clock(), 0);
1548 			fixup_clock_comparator(delta);
1549 			rc = chsc_sstpi(stp_page, &stp_info,
1550 					sizeof(struct stp_sstpi));
1551 			if (rc == 0 && stp_info.tmd != 2)
1552 				rc = -EAGAIN;
1553 		}
1554 	}
1555 	if (rc) {
1556 		disable_sync_clock(NULL);
1557 		stp_sync->in_sync = -EAGAIN;
1558 	} else
1559 		stp_sync->in_sync = 1;
1560 	xchg(&first, 0);
1561 	return 0;
1562 }
1563 
1564 /*
1565  * STP work. Check for the STP state and take over the clock
1566  * synchronization if the STP clock source is usable.
1567  */
1568 static void stp_work_fn(struct work_struct *work)
1569 {
1570 	struct clock_sync_data stp_sync;
1571 	int rc;
1572 
1573 	/* prevent multiple execution. */
1574 	mutex_lock(&stp_work_mutex);
1575 
1576 	if (!stp_online) {
1577 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1578 		del_timer_sync(&stp_timer);
1579 		goto out_unlock;
1580 	}
1581 
1582 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1583 	if (rc)
1584 		goto out_unlock;
1585 
1586 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1587 	if (rc || stp_info.c == 0)
1588 		goto out_unlock;
1589 
1590 	/* Skip synchronization if the clock is already in sync. */
1591 	if (check_sync_clock())
1592 		goto out_unlock;
1593 
1594 	memset(&stp_sync, 0, sizeof(stp_sync));
1595 	get_online_cpus();
1596 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1597 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1598 	put_online_cpus();
1599 
1600 	if (!check_sync_clock())
1601 		/*
1602 		 * There is a usable clock but the synchonization failed.
1603 		 * Retry after a second.
1604 		 */
1605 		mod_timer(&stp_timer, jiffies + HZ);
1606 
1607 out_unlock:
1608 	mutex_unlock(&stp_work_mutex);
1609 }
1610 
1611 /*
1612  * STP class sysfs interface functions
1613  */
1614 static struct sysdev_class stp_sysclass = {
1615 	.name	= "stp",
1616 };
1617 
1618 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1619 {
1620 	if (!stp_online)
1621 		return -ENODATA;
1622 	return sprintf(buf, "%016llx\n",
1623 		       *(unsigned long long *) stp_info.ctnid);
1624 }
1625 
1626 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1627 
1628 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1629 {
1630 	if (!stp_online)
1631 		return -ENODATA;
1632 	return sprintf(buf, "%i\n", stp_info.ctn);
1633 }
1634 
1635 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1636 
1637 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1638 {
1639 	if (!stp_online || !(stp_info.vbits & 0x2000))
1640 		return -ENODATA;
1641 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642 }
1643 
1644 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645 
1646 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1647 {
1648 	if (!stp_online || !(stp_info.vbits & 0x8000))
1649 		return -ENODATA;
1650 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1651 }
1652 
1653 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1654 
1655 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1656 {
1657 	if (!stp_online)
1658 		return -ENODATA;
1659 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1660 }
1661 
1662 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1663 
1664 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1665 {
1666 	if (!stp_online || !(stp_info.vbits & 0x0800))
1667 		return -ENODATA;
1668 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1669 }
1670 
1671 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1672 
1673 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1674 {
1675 	if (!stp_online || !(stp_info.vbits & 0x4000))
1676 		return -ENODATA;
1677 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1678 }
1679 
1680 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1681 			 stp_time_zone_offset_show, NULL);
1682 
1683 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1684 {
1685 	if (!stp_online)
1686 		return -ENODATA;
1687 	return sprintf(buf, "%i\n", stp_info.tmd);
1688 }
1689 
1690 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1691 
1692 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1693 {
1694 	if (!stp_online)
1695 		return -ENODATA;
1696 	return sprintf(buf, "%i\n", stp_info.tst);
1697 }
1698 
1699 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1700 
1701 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1702 {
1703 	return sprintf(buf, "%i\n", stp_online);
1704 }
1705 
1706 static ssize_t stp_online_store(struct sysdev_class *class,
1707 				const char *buf, size_t count)
1708 {
1709 	unsigned int value;
1710 
1711 	value = simple_strtoul(buf, NULL, 0);
1712 	if (value != 0 && value != 1)
1713 		return -EINVAL;
1714 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1715 		return -EOPNOTSUPP;
1716 	mutex_lock(&clock_sync_mutex);
1717 	stp_online = value;
1718 	if (stp_online)
1719 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1720 	else
1721 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1722 	queue_work(time_sync_wq, &stp_work);
1723 	mutex_unlock(&clock_sync_mutex);
1724 	return count;
1725 }
1726 
1727 /*
1728  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1729  * stp/online but attr_online already exists in this file ..
1730  */
1731 static struct sysdev_class_attribute attr_stp_online = {
1732 	.attr = { .name = "online", .mode = 0600 },
1733 	.show	= stp_online_show,
1734 	.store	= stp_online_store,
1735 };
1736 
1737 static struct sysdev_class_attribute *stp_attributes[] = {
1738 	&attr_ctn_id,
1739 	&attr_ctn_type,
1740 	&attr_dst_offset,
1741 	&attr_leap_seconds,
1742 	&attr_stp_online,
1743 	&attr_stratum,
1744 	&attr_time_offset,
1745 	&attr_time_zone_offset,
1746 	&attr_timing_mode,
1747 	&attr_timing_state,
1748 	NULL
1749 };
1750 
1751 static int __init stp_init_sysfs(void)
1752 {
1753 	struct sysdev_class_attribute **attr;
1754 	int rc;
1755 
1756 	rc = sysdev_class_register(&stp_sysclass);
1757 	if (rc)
1758 		goto out;
1759 	for (attr = stp_attributes; *attr; attr++) {
1760 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1761 		if (rc)
1762 			goto out_unreg;
1763 	}
1764 	return 0;
1765 out_unreg:
1766 	for (; attr >= stp_attributes; attr--)
1767 		sysdev_class_remove_file(&stp_sysclass, *attr);
1768 	sysdev_class_unregister(&stp_sysclass);
1769 out:
1770 	return rc;
1771 }
1772 
1773 device_initcall(stp_init_sysfs);
1774